JP4621917B2 - Transmission line - Google Patents

Transmission line Download PDF

Info

Publication number
JP4621917B2
JP4621917B2 JP2005236145A JP2005236145A JP4621917B2 JP 4621917 B2 JP4621917 B2 JP 4621917B2 JP 2005236145 A JP2005236145 A JP 2005236145A JP 2005236145 A JP2005236145 A JP 2005236145A JP 4621917 B2 JP4621917 B2 JP 4621917B2
Authority
JP
Japan
Prior art keywords
transmission line
line
differential transmission
signal
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005236145A
Other languages
Japanese (ja)
Other versions
JP2006100797A (en
Inventor
一哉 益
健一 岡田
浩之 伊藤
英之 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005236145A priority Critical patent/JP4621917B2/en
Publication of JP2006100797A publication Critical patent/JP2006100797A/en
Application granted granted Critical
Publication of JP4621917B2 publication Critical patent/JP4621917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は半導体基板上に形成される伝送線路に関し、特に、擬差動伝送線路を有する伝送線路に関する。   The present invention relates to a transmission line formed on a semiconductor substrate, and more particularly to a transmission line having a pseudo-differential transmission line.

近来、微細化による高集積化に伴って、大規模集積回路(LSI)では1cm程度のチップサイズでGHz帯のデジタル信号処理を行うようになってきている。このようなLSI内で回路を高速に動作させたり長距離伝送させたりする場合、配線を抵抗と容量からなるRC集中定数回路として回路設計を行うと、mmオーダの長距離配線に関しては、配線を分割してリピータを挿入しなければならず、リピータ数の増加による遅延時間の増加、リピータによる消費電力の増加等が問題となっている。   Recently, with high integration due to miniaturization, large-scale integrated circuits (LSIs) are performing digital signal processing in the GHz band with a chip size of about 1 cm. When a circuit is operated at a high speed or transmitted over a long distance in such an LSI, if the circuit is designed as an RC lumped constant circuit composed of a resistor and a capacitor, the wiring for the long distance wiring of the order of mm is used. Repeaters must be inserted in a divided manner, and there are problems such as an increase in delay time due to an increase in the number of repeaters and an increase in power consumption due to the repeaters.

このようにLSIの高集積化に伴い信号波長とチップサイズが同程度になった場合、信号伝達は電磁波伝送として考える必要があり、配線を電気回路的には分布定数回路として扱う伝送線路として設計する必要がある。伝送線路は、信号の電磁波の特徴を考慮して回路設計を行うものであり、LSIに作成可能な伝送線路としては、例えば図1(a)に示すようなマイクロストリップ型伝送線路や図1(b)に示すようなコプレーナ型不平衡伝送線路、図1(c)に示すようなペアライン型不平衡伝送線路が挙げられる。これらの不平衡伝送線路を用いる場合、グラウンド線の寸法はミクロンオーダであり、抵抗が大きいことを考慮すると、電気的信頼性が保証できない。また、近傍の信号線路とのクロストークの問題もある。   When the signal wavelength and chip size become comparable with the higher integration of LSIs in this way, signal transmission must be considered as electromagnetic wave transmission, and the wiring is designed as a transmission line that handles wiring as a distributed constant circuit. There is a need to. The transmission line is designed in consideration of the characteristics of the electromagnetic wave of the signal. As a transmission line that can be created in an LSI, for example, a microstrip transmission line as shown in FIG. A coplanar unbalanced transmission line as shown in b) and a pair line unbalanced transmission line as shown in FIG. When these unbalanced transmission lines are used, the size of the ground line is on the order of microns, and considering that the resistance is large, electrical reliability cannot be guaranteed. There is also a problem of crosstalk with nearby signal lines.

このようなグラウンド線の電気的信頼性やクロストークの問題を解消するためには、ペア配線を用いる差動伝送線路を用いるのが有効である。図2に差動伝送線路の種々の構造の例を示す。図2(a)はスタックドペアライン型差動伝送線路、図2(b)はコプレーナ型差動伝送線路、図2(c)は対角線ペア型差動伝送線路の例である。図示の通り、差動伝送線路はそれぞれの線路に特性の反転した信号を伝送させ、受信側が差動増幅回路で受けるため、受信回路側で同相ノイズをキャンセルできるものである。   In order to solve such problems of electrical reliability of the ground line and crosstalk, it is effective to use a differential transmission line using a pair wiring. FIG. 2 shows examples of various structures of the differential transmission line. 2A is an example of a stacked pair line type differential transmission line, FIG. 2B is an example of a coplanar type differential transmission line, and FIG. 2C is an example of a diagonal pair type differential transmission line. As shown in the figure, the differential transmission lines transmit signals with inverted characteristics to the respective lines, and the reception side receives the differential amplification circuit, so that the common mode noise can be canceled on the reception circuit side.

特開平08−125412号公報Japanese Patent Laid-Open No. 08-125212 特開2004−207949号公報JP 2004-207949 A H. Ito, K. Okada, and K. Masu, “High Density Differential Transmission Line Structure on Si ULSI”, IEICE Transactions on Electronics, Vol. E87−C, No.6, pp. 942−948. June 2004.H. Ito, K.K. Okada, and K.K. Masu, “High Density Differential Transmission Line Structure on Si ULSI”, IEICE Transactions on Electronics, Vol. E87-C, no. 6, pp. 942-948. June 2004.

上述のような不平衡伝送線路は、配線の面積は小さくできるが、配線遅延、グラウンド線やクロストークの問題があり、さらに消費電力の問題もあった。また、差動伝送線路は、1つの信号を伝送するのに2本の信号線路が必要なため、不平衡伝送線路に比べて信号配線の面積を多く必要としていた。   Although the unbalanced transmission line as described above can reduce the area of the wiring, there are problems of wiring delay, ground lines and crosstalk, and there is also a problem of power consumption. In addition, since the differential transmission line requires two signal lines to transmit one signal, it requires a larger area of signal wiring than the unbalanced transmission line.

本発明は、斯かる実情に鑑み、低消費電力であるが高速化が可能であり配線遅延を劇的に低減でき、さらに配線密度が高い伝送線路を提供しようとするものである。   In view of such circumstances, the present invention is intended to provide a transmission line that has low power consumption but can be increased in speed, can dramatically reduce wiring delay, and has high wiring density.

上述した本発明の目的を達成するために、本発明による伝送線路は、所定の電圧がバイアスされる基準グラウンド線路と、基準グラウンド線路に並行に設けられペアとなり、基準グラウンド線路のバイアスされる所定の電圧に対応する電圧を基準として信号を擬差動伝送する信号線路を有する擬差動伝送線路と、を具備するものである。   In order to achieve the above-described object of the present invention, a transmission line according to the present invention is paired in parallel with a reference ground line to which a predetermined voltage is biased and a reference ground line that is biased to the reference ground line. And a pseudo-differential transmission line having a signal line for pseudo-differential transmission of a signal with reference to a voltage corresponding to the above voltage.

ここで、基準グラウンド線路はペア配線からなる第1差動伝送線路からなり、バイアスされる所定の電圧は第1差動伝送線路のコモンモード電圧であれば良い。   Here, the reference ground line is composed of a first differential transmission line composed of a pair wiring, and the predetermined voltage to be biased may be a common mode voltage of the first differential transmission line.

また、第1差動伝送線路の各配線は、水平方向若しくは垂直方向に並ぶ位置関係で又は水平方向若しくは垂直方向に対して斜め方向に並ぶ位置関係で配置されれば良い。   The wirings of the first differential transmission line may be arranged in a positional relationship aligned in the horizontal direction or the vertical direction, or in a positional relationship aligned in the oblique direction with respect to the horizontal direction or the vertical direction.

また、信号線路はペア配線からなる第2差動伝送線路からなり、擬差動伝送される信号は第2差動伝送線路のコモンモード電圧に重畳されれば良い。   Further, the signal line is composed of a second differential transmission line made of a pair wiring, and the signal subjected to pseudo-differential transmission may be superimposed on the common mode voltage of the second differential transmission line.

またさらに、第2差動伝送線路の各配線は、水平方向若しくは垂直方向に並ぶ位置関係で又は水平方向若しくは垂直方向に対して斜め方向に並ぶ位置関係で配置されれば良い。   Furthermore, the wirings of the second differential transmission line may be arranged in a positional relationship aligned in the horizontal direction or the vertical direction or in a positional relationship aligned in the oblique direction with respect to the horizontal direction or the vertical direction.

また、基準グラウンド線路と信号線路は、水平方向又は垂直方向に並ぶ位置関係で配置されれば良い。   In addition, the reference ground line and the signal line may be arranged in a positional relationship that is aligned in the horizontal direction or the vertical direction.

また、第1差動伝送線路の各配線は、信号線路の垂直方向よりも外側の両脇にそれぞれ設けられても良い。   Moreover, each wiring of the first differential transmission line may be provided on both sides outside the vertical direction of the signal line.

さらに、基準グラウンド線路と並行に設けられるペア配線からなる第3差動伝送線路を有し、該第3差動伝送線路は、第1差動伝送線路の間に設けられても良い。   Furthermore, it has a 3rd differential transmission line which consists of a pair wiring provided in parallel with a reference | standard ground line, and this 3rd differential transmission line may be provided between the 1st differential transmission lines.

ここで、基準グラウンド線路及び擬差動伝送線路は、再配線層に設けられても良い。   Here, the reference ground line and the pseudo differential transmission line may be provided in the redistribution layer.

また、基準グラウンド線路及び擬差動伝送線路は、多層基板に設けられても良い。   Further, the reference ground line and the pseudo-differential transmission line may be provided on the multilayer substrate.

本発明の伝送線路には、低消費電力且つ高速化が可能であり、配線密度を高くすることができるという利点がある。   The transmission line of the present invention has advantages that low power consumption and high speed can be achieved, and that the wiring density can be increased.

以下、本発明を実施するための最良の形態を図示例と共に説明する。図3は、本発明の第1実施例の伝送線路を説明するための図であり、図3(a)がその配線構造を示す概略斜視図、図3(b)がその回路図、図3(c)が信号線路と基準グラウンド線路の伝送波形である。なお、本明細書中では基本的にLSI内に設けられるような伝送線路について説明するが、本発明はこれに限定されず、LSIだけでなく、多層プリント基板等、実装基板上に形成される伝送線路であっても構わない。本発明の伝送線路は、多層配線層や再配線層、多層プリント基板等の複数の層からなるあらゆるものに形成可能なものである。   The best mode for carrying out the present invention will be described below with reference to the drawings. 3A and 3B are diagrams for explaining the transmission line of the first embodiment of the present invention. FIG. 3A is a schematic perspective view showing the wiring structure, FIG. 3B is its circuit diagram, and FIG. (C) is a transmission waveform of the signal line and the reference ground line. In this specification, a transmission line basically provided in an LSI will be described. However, the present invention is not limited to this, and the transmission line is formed not only on an LSI but also on a mounting board such as a multilayer printed board. It may be a transmission line. The transmission line of the present invention can be formed on any layer composed of a plurality of layers such as a multilayer wiring layer, a rewiring layer, and a multilayer printed board.

本発明の第1実施例の伝送線路は、図3(a)に示すように、基準グラウンド線路1と、基準グラウンド線路1に並行に設けられる信号線路2とからなる。図3(b)の回路図に示すように、基準グラウンド線路1は所定の電圧がバイアスされており、信号線路2は基準グラウンド線路1とペアとなりこのバイアスされた電圧を基準として、信号を擬差動伝送するものである。ここで、擬差動伝送とは、差動伝送と異なり、ペアとなる線路に反転信号を入力するのではなく、一方が基準バイアス電圧Vbiasで固定され、この電圧を基準にして他方に信号を伝送し、受信側で差動増幅器により差分を検出するものである(図3(c)参照)。したがって、擬差動伝送線路構成も差動伝送線路と同様に、同相ノイズには強い。なお、基準グラウンド線路1には信号は流さないため、線幅を太くする必要がない。したがって、図3(a)に示すように、信号線路2よりも基準グラウンド線路1を細く形成可能である。なお、図示例では信号線路2は1本のみ記載しているが、勿論他の多数の配線が並んでいても構わない。基準グラウンド線路1も、信号線路2の直下に1本設けられた例を示したが、本発明はこれに限定されず、上部にあっても側部にあっても構わず、また、他の配線が複数並んでいても構わない。 The transmission line according to the first embodiment of the present invention includes a reference ground line 1 and a signal line 2 provided in parallel to the reference ground line 1 as shown in FIG. As shown in the circuit diagram of FIG. 3 (b), the reference ground line 1 is biased with a predetermined voltage, and the signal line 2 is paired with the reference ground line 1, and the signal is simulated on the basis of the biased voltage. It is for differential transmission. Here, unlike the differential transmission, the pseudo-differential transmission does not input an inverted signal to a pair of lines, but one is fixed with a reference bias voltage V bias and a signal is transmitted to the other based on this voltage. The difference is detected by a differential amplifier on the receiving side (see FIG. 3C). Therefore, the pseudo-differential transmission line configuration is also strong against in-phase noise, like the differential transmission line. In addition, since no signal flows through the reference ground line 1, it is not necessary to increase the line width. Therefore, the reference ground line 1 can be formed narrower than the signal line 2 as shown in FIG. In the illustrated example, only one signal line 2 is shown, but it goes without saying that many other wirings may be arranged. The reference ground line 1 is also shown as an example in which one signal ground line 2 is provided. However, the present invention is not limited to this, and the reference ground line 1 may be in the upper part or in the side part. A plurality of wirings may be arranged.

配線密度としては、平面的には1本の信号線路で伝送可能なため、図2(b)に示すコプレーナ型差動伝送線路等と比べると、より高い配線密度となる。   As the wiring density, since it can be transmitted by one signal line in a plan view, the wiring density is higher than that of the coplanar type differential transmission line shown in FIG.

次に、本発明の第2実施例を図4を用いて説明する。図4は、本発明の第2実施例の伝送線路を説明するための図であり、図4(a)がその配線構造を示す概略斜視図であり、図4(b)がその回路図である。図中、図3と同一の符号を付した部分は同一要素を表わしている。第2実施例では、基準グラウンド線路1を信号線路2の直下よりも外側に設けている。これは、信号線路2と基準グラウンド線路1間の距離によりインピーダンスが変わることから、伝送線路が所定の特性インピーダンスを有するように、配線間隔を調整したものである。そして、基準グラウンド線路1は1本でも良いが、図示例では基準グラウンド線路1と1’の2本に分けている。基準グラウンド線路1,1’は、信号線路2の直下よりも外側であって、尚且つ信号線路2の両脇に設けられており、基準グラウンド線路1,1’を一体的にみて信号線路2とペアとなっている。なお、図4(b)の回路図で示すように、基準グラウンド線路1’は隣の信号線路2’ともペアとなっていても良い。このような擬差動伝送線路の構成により、インピーダンス整合を行う場合等、種々の条件に合った配線構成が実現可能である。また、図示例では基準グラウンド線路1,1’を信号線路2の直下よりも外側に設けているが、直上よりも外側でも良く、すなわち垂直方向よりも外側の両脇に設けられれば良い。また、後に詳説するように、基準グラウンド線路1,1’を差動伝送線路として用い、そのコモンモード電圧を基準バイアス電圧として用いても良い。   Next, a second embodiment of the present invention will be described with reference to FIG. 4A and 4B are diagrams for explaining a transmission line according to a second embodiment of the present invention. FIG. 4A is a schematic perspective view showing the wiring structure, and FIG. 4B is a circuit diagram thereof. is there. In the drawing, the same reference numerals as those in FIG. 3 represent the same elements. In the second embodiment, the reference ground line 1 is provided outside the signal line 2 directly below. In this case, since the impedance changes depending on the distance between the signal line 2 and the reference ground line 1, the wiring interval is adjusted so that the transmission line has a predetermined characteristic impedance. The reference ground line 1 may be one, but in the illustrated example, it is divided into two reference ground lines 1 and 1 '. The reference ground lines 1 and 1 ′ are provided outside the signal line 2 and on both sides of the signal line 2, and the signal ground line 1 and 1 ′ are viewed as a unit. Paired with As shown in the circuit diagram of FIG. 4B, the reference ground line 1 'may be paired with the adjacent signal line 2'. With such a configuration of the pseudo differential transmission line, it is possible to realize a wiring configuration that meets various conditions such as when impedance matching is performed. In the illustrated example, the reference ground lines 1 and 1 ′ are provided outside the signal line 2. However, the reference ground lines 1 and 1 ′ may be provided outside the signal line 2, that is, provided on both sides outside the vertical direction. Further, as will be described in detail later, the reference ground lines 1 and 1 'may be used as a differential transmission line, and the common mode voltage may be used as a reference bias voltage.

さらに、図5を用いて本発明の第3実施例を説明する。図5は、本発明の第3実施例の伝送線路の配線構造を示す概略斜視図である。図中、図4と同一の符号を付した部分は同一要素を表わしている。図4の第2実施例と異なる点は、信号線路2の近傍に、すなわち、第2実施例で信号線路2の両脇に設けられた基準グラウンド線路1,1’の間のスペースに、ペア配線からなる差動伝送線路3をさらに設けた点である。差動伝送線路3は、それぞれに反転信号を伝送するものであり、信号線路2の直下に設けられる。この構成により、擬差動伝送路と差動伝送路の2つを少ない面積において達成でき、より信号線の配線密度が高くなる。勿論、差動伝送線路3は、信号線路2の直下ではなく、上部でも側部でも構わない。   Further, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic perspective view showing the wiring structure of the transmission line of the third embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 4 denote the same elements. The difference from the second embodiment of FIG. 4 is that the pair is formed in the vicinity of the signal line 2, that is, in the space between the reference ground lines 1 and 1 ′ provided on both sides of the signal line 2 in the second embodiment. The difference is that a differential transmission line 3 made of wiring is further provided. The differential transmission line 3 transmits an inverted signal to each, and is provided immediately below the signal line 2. With this configuration, the pseudo differential transmission line and the differential transmission line can be achieved in a small area, and the wiring density of the signal lines is further increased. Of course, the differential transmission line 3 may not be directly under the signal line 2 but may be an upper part or a side part.

なお、図5に示した第3実施例における配線の寸法の一例を挙げると、例えばLSI内の配線の場合、信号線路2の配線幅が3.0μm、配線ピッチが5.6μm、差動伝送線路の各配線幅が1.0μm、配線ピッチが2.0μm程度である。また、再配線層や多層プリント基板等を用いた配線の場合には、配線寸法はLSI内の場合の約10倍、すなわち、信号線路2の配線幅が30μm、配線ピッチが56μm、差動伝送線路の各配線幅が10μm、配線ピッチが20μm程度となる。   As an example of wiring dimensions in the third embodiment shown in FIG. 5, for example, in the case of wiring in an LSI, the wiring width of the signal line 2 is 3.0 μm, the wiring pitch is 5.6 μm, and differential transmission is performed. Each wiring width of the line is about 1.0 μm, and the wiring pitch is about 2.0 μm. In the case of wiring using a rewiring layer, a multilayer printed board, etc., the wiring size is about 10 times that in an LSI, that is, the signal line 2 has a wiring width of 30 μm, a wiring pitch of 56 μm, and differential transmission. Each wiring width of the line is about 10 μm, and the wiring pitch is about 20 μm.

次に、本発明の第4実施例を図6を用いて説明する。図6は、本発明の第4実施例の伝送線路を説明するための図であり、図6(a)がその配線構造を示す概略斜視図であり、図6(b)がその回路図、図6(c)が伝送路の伝送波形である。図中、図4と同一の符号を付した部分は同一要素を表している。本実施例では、図6(a)に示すように、信号線路2の直下にペア配線3a,3bからなる差動伝送線路3を設けている。そして、図6(b)に示すように、この差動伝送線路3と信号線路2がペアとなり、擬差動伝送を行うように構成している。すなわち、差動伝送線路3自体を第3実施例等の基準グラウンド線路とみなし、図6(c)のように差動伝送線路3のコモンモード電圧(V3a+V3b)/2を、基準グラウンド線路の所定の基準バイアス電圧Vbiasとしている。なお、図示例ではバイアスされる所定の電圧をコモンモード電圧としているが、本発明はこれに限定されず、中心の電圧に限らず、所定の分圧比にて決定された所定の基準電圧を元に擬差動伝送するものであっても構わない。このように、少ない面積、配線本数で擬差動伝送線路と差動伝送線路を構成でき、これにより多くの信号伝送が可能となる。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram for explaining a transmission line according to a fourth embodiment of the present invention. FIG. 6 (a) is a schematic perspective view showing the wiring structure, and FIG. 6 (b) is a circuit diagram thereof. FIG. 6C shows the transmission waveform of the transmission path. In the figure, the same reference numerals as those in FIG. 4 represent the same elements. In this embodiment, as shown in FIG. 6A, a differential transmission line 3 including pair wirings 3a and 3b is provided immediately below the signal line 2. As shown in FIG. 6B, the differential transmission line 3 and the signal line 2 are paired to perform pseudo-differential transmission. That is, the differential transmission line 3 itself is regarded as a reference ground line in the third embodiment, and the common mode voltage (V 3a + V 3b ) / 2 of the differential transmission line 3 is changed to the reference ground as shown in FIG. The predetermined reference bias voltage Vbias of the line is used. In the illustrated example, the predetermined voltage to be biased is the common mode voltage. However, the present invention is not limited to this, and is not limited to the center voltage, and is based on a predetermined reference voltage determined by a predetermined voltage dividing ratio. Alternatively, pseudo differential transmission may be used. As described above, the pseudo-differential transmission line and the differential transmission line can be configured with a small area and the number of wires, thereby enabling a large number of signal transmissions.

ここで、図6(b)の伝送線路におけるドライバ回路4は、例えば図7(a)や図7(b)に記載のような回路構成のものを用いることが可能である。また、図6(b)のドライバ回路5は、例えば図8(a)に記載のような回路構成のものを用いることが可能である。さらに、図6(b)のレシーバ回路6及び図7(b)に示すドライバ回路4の構成要素であるアンプ6は、図8(b)に記載のような回路構成のものを用いることが可能である。勿論、これらは他の回路構成であっても構わない。   Here, as the driver circuit 4 in the transmission line of FIG. 6B, it is possible to use one having a circuit configuration as shown in FIG. 7A or FIG. 7B, for example. In addition, the driver circuit 5 shown in FIG. 6B can have a circuit configuration as shown in FIG. 8A, for example. Further, the amplifier 6 which is a component of the receiver circuit 6 in FIG. 6B and the driver circuit 4 shown in FIG. 7B can have a circuit configuration as shown in FIG. 8B. It is. Of course, these may have other circuit configurations.

従来の差動伝送線路では、2つの信号を送るのには最低4本の信号線路が必要となっていたが、本実施例の伝送線路では、2つの信号を送るのには3本の信号線路があれば足りる。このように、擬差動伝送線路と差動伝送線路を組み合わせることにより、配線密度を大幅に向上することが可能となる。配線幅の広い擬差動伝送線路は長距離伝送用、差動伝送線路は中距離伝送用等、用途により配線を使い分けることにより、シグナルインテグリティを考慮した高速信号伝送が可能となる。   In the conventional differential transmission line, at least four signal lines are required to send two signals, but in the transmission line of this embodiment, three signals are used to send two signals. A track is sufficient. Thus, by combining the pseudo differential transmission line and the differential transmission line, the wiring density can be greatly improved. High-speed signal transmission considering signal integrity becomes possible by using different wirings depending on the application, such as a long-distance transmission line with a wide wiring width and a long-distance transmission line and a differential transmission line with medium-distance transmission.

なお、図6に示した第4実施例における配線の寸法の一例を挙げると、例えば信号線路2の配線幅が1.2μm、配線ピッチが3.2μm、差動伝送線路の各配線幅が0.8μm、配線ピッチが0.8μm程度である。   An example of the wiring dimensions in the fourth embodiment shown in FIG. 6 is as follows. For example, the wiring width of the signal line 2 is 1.2 μm, the wiring pitch is 3.2 μm, and each wiring width of the differential transmission line is 0. .8 μm and the wiring pitch is about 0.8 μm.

以下、本発明の伝送線路の種々のバリエーションを示す。図9は、本発明の伝送線路の線路配線の種々のバリエーションを説明するための配線の概略断面図である。図中、図3等と同一の符号を付した部分は同一要素を表わしている。また、点線で囲まれた部分は差動伝送線路のコモンモード電圧を基準電圧とすること、又は差動伝送線路のコモンモード電圧に信号を重畳することを表す。なお、図9の各バリエーションは、その1つのユニットを示しており、実際にはこのユニットを水平方向又は垂直方向等に複数並べて配置するものである。   Hereinafter, various variations of the transmission line of the present invention will be described. FIG. 9 is a schematic cross-sectional view of wiring for explaining various variations of the line wiring of the transmission line of the present invention. In the figure, the same reference numerals as those in FIG. 3 and the like indicate the same elements. A portion surrounded by a dotted line indicates that the common mode voltage of the differential transmission line is used as a reference voltage or a signal is superimposed on the common mode voltage of the differential transmission line. Each variation in FIG. 9 shows one unit, and actually, a plurality of such units are arranged in the horizontal direction or the vertical direction.

図9(a)−(c)は、基準グラウンド線路1をペア配線からなる差動伝送線路とし、このコモンモード電圧を基準電圧として信号線路2を用いて擬差動伝送するものである。図9(a)は各配線が水平方向に並ぶ位置関係で配置されている例である。図9(b)は基準グラウンド線路1である差動伝送線路と信号線路2を垂直方向に並ぶ位置関係で配置した例である。図9(c)は基準グラウンド線路1である差動伝送線路の各配線を斜め方向に並ぶ位置関係で配置し、その一方の線路の水平方向に並ぶ位置関係で信号線路2が配置される例である。   9A to 9C show a case where the reference ground line 1 is a differential transmission line composed of a pair wiring, and pseudo differential transmission is performed using the signal line 2 with this common mode voltage as a reference voltage. FIG. 9A shows an example in which the wirings are arranged in a positional relationship in the horizontal direction. FIG. 9B shows an example in which the differential transmission line, which is the reference ground line 1, and the signal line 2 are arranged in a vertical relationship. FIG. 9C shows an example in which the wirings of the differential transmission line as the reference ground line 1 are arranged in a positional relationship arranged in an oblique direction, and the signal line 2 is arranged in a positional relationship arranged in the horizontal direction of one of the lines. It is.

また、図9(d)−(f)は、信号線路2がペア配線からなる差動伝送線路で構成され、このコモンモード電圧と基準グラウンド線路1とを用いて、コモンモード電圧に信号を重畳して擬差動伝送するように構成したものである。図9(d)は各配線が水平方向に並ぶ位置関係で配置されている例である。図9(e)は基準グラウンド線路1と信号線路2である差動伝送線路を垂直方向に並ぶ位置関係で配置した例である。図9(f)は信号線路2である差動伝送線路の各配線を斜め方向に並ぶ位置関係で配置し、その一方の線路の水平方向に並ぶ位置関係で基準グラウンド線路1が配置される例である。   9 (d)-(f), the signal line 2 is composed of a differential transmission line composed of a pair wiring, and a signal is superimposed on the common mode voltage using this common mode voltage and the reference ground line 1. FIG. Thus, the pseudo differential transmission is performed. FIG. 9D shows an example in which the wirings are arranged in a positional relationship in the horizontal direction. FIG. 9E shows an example in which the differential transmission line as the reference ground line 1 and the signal line 2 are arranged in a vertical relationship. FIG. 9F shows an example in which the wirings of the differential transmission line that is the signal line 2 are arranged in a positional relationship arranged in an oblique direction, and the reference ground line 1 is arranged in a positional relationship arranged in the horizontal direction of one of the lines. It is.

また、図9(g)−(l)は、基準グラウンド線路1及び信号線路2を、それぞれペア配線からなる差動伝送線路とするものである。そして一方のコモンモード電圧を基準電圧とし、他方のコモンモード電圧に信号を重畳して擬差動伝送するように構成したものである。図9(g)は各配線が水平方向に並ぶ位置関係で配置されている例である。図9(h)は基準グラウンド線路1の差動伝送線路の各配線を水平方向に配置し、信号線路2の差動伝送線路の各配線を水平方向に配置し、このように構成された基準グラウンド線路1と信号線路2を垂直方向に並ぶ位置関係で配置した例である。図9(i)は基準グラウンド線路1の差動伝送線路の各配線を垂直方向に配置し、信号線路2の差動伝送線路の各配線を垂直方向に配置し、このように構成された基準グラウンド線路1と信号線路2を水平方向に並ぶ位置関係で配置した例である。図9(j)は基準グラウンド線路1の差動伝送線路の各配線を垂直方向に配置し、信号線路2の差動伝送線路の各配線を垂直方向に配置し、このように構成された基準グラウンド線路1と信号線路2を垂直方向に並ぶ位置関係で配置した例である。さらに、図9(k)は基準グラウンド線路1の差動伝送線路の各配線を斜め方向に配置し、信号線路2の差動伝送線路の各配線を斜め方向に配置し、このように構成された基準グラウンド線路1と信号線路2を水平方向に並ぶ位置関係で配置した例である。また、図9(l)は基準グラウンド線路1の差動伝送線路の各配線を斜め方向に配置し、信号線路2の差動伝送線路の各配線を斜め方向に配置し、このように構成された基準グラウンド線路1と信号線路2を垂直方向に並ぶ位置関係で配置した例である。   Further, in FIGS. 9G to 9L, the reference ground line 1 and the signal line 2 are each a differential transmission line composed of a pair wiring. One common mode voltage is used as a reference voltage, and a signal is superimposed on the other common mode voltage so that pseudo-differential transmission is performed. FIG. 9G is an example in which the wirings are arranged in a positional relationship in the horizontal direction. In FIG. 9 (h), each wiring of the differential transmission line of the reference ground line 1 is arranged in the horizontal direction, and each wiring of the differential transmission line of the signal line 2 is arranged in the horizontal direction. This is an example in which the ground line 1 and the signal line 2 are arranged in a vertical relationship. In FIG. 9 (i), each wiring of the differential transmission line of the reference ground line 1 is arranged in the vertical direction, and each wiring of the differential transmission line of the signal line 2 is arranged in the vertical direction. This is an example in which the ground line 1 and the signal line 2 are arranged in a horizontal relationship. In FIG. 9 (j), each wiring of the differential transmission line of the reference ground line 1 is arranged in the vertical direction, and each wiring of the differential transmission line of the signal line 2 is arranged in the vertical direction. This is an example in which the ground line 1 and the signal line 2 are arranged in a vertical relationship. Further, in FIG. 9 (k), each wiring of the differential transmission line of the reference ground line 1 is arranged in an oblique direction, and each wiring of the differential transmission line of the signal line 2 is arranged in an oblique direction. This is an example in which the reference ground line 1 and the signal line 2 are arranged in a positional relationship in the horizontal direction. Further, FIG. 9L is configured in such a manner that each wiring of the differential transmission line of the reference ground line 1 is arranged in an oblique direction and each wiring of the differential transmission line of the signal line 2 is arranged in an oblique direction. This is an example in which the reference ground line 1 and the signal line 2 are arranged in a vertical relationship.

上述の図9(g)−(l)の説明では、基準グラウンド線路1と信号線路2の一方のコモンモード電圧を基準電圧とし、他方のコモンモード電圧に信号を重畳して擬差動伝送することを説明したが、この2つのコモンモード電圧を用いて差動伝送を行うことも可能である。すなわち、基準電圧が時間変化する電圧とし、これと逆相の信号を信号電圧として差動伝送するものである。このように構成することで、基準グラウンド線路1の差動伝送線路と、信号線路2の差動伝送線路、さらにこれらのコモンモード電圧による差動伝送線路の3つの差動伝送が実現できる。   In the description of FIGS. 9G to 9L described above, one common mode voltage of the reference ground line 1 and the signal line 2 is used as a reference voltage, and a pseudo-differential transmission is performed by superimposing a signal on the other common mode voltage. However, it is also possible to perform differential transmission using these two common mode voltages. That is, the reference voltage is a time-varying voltage, and a signal having a phase opposite to the reference voltage is differentially transmitted as a signal voltage. By configuring in this way, three differential transmissions of the differential transmission line of the reference ground line 1, the differential transmission line of the signal line 2, and further the differential transmission line by these common mode voltages can be realized.

またさらに、図9(m)は、信号線路2を2組用い、この信号線路2及び基準グラウンド線路1をそれぞれペア配線からなる差動伝送線路とするものであり、基準グラウンド線路1の差動伝送線路のコモンモード電圧を基準電圧とし、2組の信号線路2の各コモンモード電圧にそれぞれ信号を重畳して擬差動伝送するように構成したものである。図示例では基準グラウンド線路1の差動伝送線路の各配線を垂直方向に配置し、また、各配線を水平方向に配置した差動伝送線路を信号線路2としてそれを垂直方向に配置し、これに水平に基準グラウンド線路1を配置したものになっている。なお、図9に示したこれらの配線の配置例はあくまでも一例であり、上下を入れ替えたり左右を入れ替えたりすること等は勿論可能である。   Further, FIG. 9 (m) uses two sets of signal lines 2, and each of the signal lines 2 and the reference ground line 1 is a differential transmission line composed of a pair wiring. The common mode voltage of the transmission line is used as a reference voltage, and pseudo differential transmission is performed by superimposing a signal on each common mode voltage of the two signal lines 2. In the example shown in the drawing, each wiring of the differential transmission line of the reference ground line 1 is arranged in the vertical direction, and the differential transmission line in which each wiring is arranged in the horizontal direction is used as the signal line 2 and arranged in the vertical direction. The reference ground line 1 is horizontally arranged on the side. Note that the arrangement example of these wirings shown in FIG. 9 is merely an example, and it is of course possible to exchange the upper and lower sides and the left and right sides.

また、図9(m)に示したユニットの構成の線路を複数水平方向に並べた場合、基準グラウンド線路1は2つの信号線路2の両側に位置することになる。このとき、2つの基準グラウンド線路のコモンモード電圧を同電位にすることで、より安定した基準電圧を伝送することが可能となる。   When a plurality of lines having the unit configuration shown in FIG. 9M are arranged in the horizontal direction, the reference ground line 1 is located on both sides of the two signal lines 2. At this time, it is possible to transmit a more stable reference voltage by setting the common mode voltage of the two reference ground lines to the same potential.

なお、本発明の伝送線路は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。一例で示した配線の寸法はこれに限定されるものではなく、特許請求の範囲に記載された技術的範囲内で種々変更可能なものである。また、図示例ではすべて信号線路の下層に基準グラウンド線路、差動伝送線路を設けた例を示したが、本発明はこれに限定されず、上層に設けられるものや側方に設けられるものであったとしても、擬差動伝送を行うものであれば種々の構造が含まれるものである。   Note that the transmission line of the present invention is not limited to the illustrated examples described above, and it is needless to say that various changes can be made without departing from the scope of the present invention. The dimensions of the wiring shown as an example are not limited to this, and can be variously changed within the technical scope described in the claims. In the illustrated examples, the reference ground line and the differential transmission line are all provided in the lower layer of the signal line. However, the present invention is not limited to this and is provided in the upper layer or on the side. Even if it exists, various structures are included as long as pseudo differential transmission is performed.

図1は、従来の不平衡伝送線路の例を説明するための図である。FIG. 1 is a diagram for explaining an example of a conventional unbalanced transmission line. 図2は、従来の差動伝送線路の例を説明するための図である。FIG. 2 is a diagram for explaining an example of a conventional differential transmission line. 図3は、本発明の第1実施例を説明するための図であり、図3(a)は配線構造を示す概略斜視図、図3(b)がその回路図、図3(c)がその伝送波形である。3A and 3B are diagrams for explaining the first embodiment of the present invention. FIG. 3A is a schematic perspective view showing a wiring structure, FIG. 3B is a circuit diagram thereof, and FIG. This is the transmission waveform. 図4は、本発明の第2実施例を説明するための図であり、図4(a)は配線構造を示す概略斜視図、図4(b)がその回路図である。4A and 4B are diagrams for explaining a second embodiment of the present invention. FIG. 4A is a schematic perspective view showing a wiring structure, and FIG. 4B is a circuit diagram thereof. 図5は、本発明の第3実施例を説明するための配線構造を示す概略斜視図である。FIG. 5 is a schematic perspective view showing a wiring structure for explaining a third embodiment of the present invention. 図6は、本発明の第4実施例を説明するための図であり、図6(a)は配線構造を示す概略斜視図、図6(b)がその回路図、図6(c)がその伝送波形である。6A and 6B are diagrams for explaining a fourth embodiment of the present invention. FIG. 6A is a schematic perspective view showing a wiring structure, FIG. 6B is a circuit diagram thereof, and FIG. This is the transmission waveform. 図7は、本発明の伝送線路に利用可能なドライバ回路の例を説明するための回路図である。FIG. 7 is a circuit diagram for explaining an example of a driver circuit that can be used in the transmission line of the present invention. 図8は、本発明の伝送線路に利用可能なドライバ回路及びレシーバ回路の例を説明するための回路図である。FIG. 8 is a circuit diagram for explaining an example of a driver circuit and a receiver circuit that can be used in the transmission line of the present invention. 図9は、本発明の伝送線路の線路配線の種々のバリエーションを説明するための、配線の概略断面図である。FIG. 9 is a schematic cross-sectional view of wiring for explaining various variations of the line wiring of the transmission line of the present invention.

符号の説明Explanation of symbols

1,1’ 基準グラウンド線路
2 信号線路
3 差動伝送線路
3a,3b ペア配線
4 ドライバ回路
5 ドライバ回路
6 レシーバ回路
1, 1 'Reference ground line 2 Signal line 3 Differential transmission line 3a, 3b Pair wiring 4 Driver circuit 5 Driver circuit 6 Receiver circuit

Claims (9)

半導体基板上に形成される伝送線路であって、該伝送線路は、
所定の電圧がバイアスされる基準グラウンド線路であって、該基準グラウンド線路はペア配線からなる第1差動伝送線路からなり、前記バイアスされる所定の電圧は前記第1差動伝送線路のコモンモード電圧である、基準グラウンド線路と、
前記基準グラウンド線路に並行に設けられペアとなり、前記基準グラウンド線路のバイアスされる所定の電圧に対応する電圧を基準として信号を擬差動伝送する信号線路を有する擬差動伝送線路と、
を具備することを特徴とする伝送線路。
A transmission line formed on a semiconductor substrate, the transmission line,
A reference ground line to which a predetermined voltage is biased , wherein the reference ground line includes a first differential transmission line made of a pair wiring, and the predetermined voltage to be biased is a common mode of the first differential transmission line. A reference ground line that is a voltage, and
A pseudo-differential transmission line having a signal line for pseudo-differential transmission of a signal based on a voltage corresponding to a predetermined voltage biased to the reference ground line;
A transmission line comprising:
請求項1に記載の伝送線路において、前記第1差動伝送線路の各配線は、水平方向若しくは垂直方向に並ぶ位置関係で又は水平方向若しくは垂直方向に対して斜め方向に並ぶ位置関係で配置されることを特徴とする伝送線路。   2. The transmission line according to claim 1, wherein the wirings of the first differential transmission line are arranged in a positional relationship aligned in a horizontal direction or a vertical direction, or in a positional relationship aligned in an oblique direction with respect to the horizontal direction or the vertical direction. A transmission line characterized by that. 請求項1又は請求項に記載の伝送線路において、前記信号線路はペア配線からなる第2差動伝送線路からなり、前記擬差動伝送される信号は前記第2差動伝送線路のコモンモード電圧に重畳されることを特徴とする伝送線路。 In the transmission line of claim 1 or claim 2, wherein the signal line comprises a second differential transmission line made of a pair wiring, the signal transmitted the pseudo differential common mode of the second differential transmission line A transmission line that is superimposed on a voltage. 請求項に記載の伝送線路において、前記第2差動伝送線路の各配線は、水平方向若しくは垂直方向に並ぶ位置関係で又は水平方向若しくは垂直方向に対して斜め方向に並ぶ位置関係で配置されることを特徴とする伝送線路。 4. The transmission line according to claim 3 , wherein the wirings of the second differential transmission line are arranged in a positional relationship aligned in the horizontal direction or the vertical direction, or in a positional relationship aligned in an oblique direction with respect to the horizontal direction or the vertical direction. A transmission line characterized by that. 請求項1乃至請求項の何れかに記載の伝送線路において、前記基準グラウンド線路と信号線路は、水平方向又は垂直方向に並ぶ位置関係で配置されることを特徴とする伝送線路。 In the transmission line according to any one of claims 1 to 4, wherein the ground reference line and the signal line is a transmission line, characterized in that it is arranged in a positional relationship aligned horizontally or vertically. 請求項に記載の伝送線路において、前記第1差動伝送線路の各配線は、前記信号線路の垂直方向よりも外側の両脇にそれぞれ設けられることを特徴とする伝送線路。 2. The transmission line according to claim 1 , wherein each wiring of the first differential transmission line is provided on both sides outside the vertical direction of the signal line. 請求項に記載の伝送線路であって、さらに、前記基準グラウンド線路と並行に設けられるペア配線からなる第3差動伝送線路を有し、該第3差動伝送線路は、前記第1差動伝送線路の間に設けられることを特徴とする伝送線路。 The transmission line according to claim 6 , further comprising a third differential transmission line composed of a pair wiring provided in parallel with the reference ground line, wherein the third differential transmission line includes the first differential line. A transmission line provided between dynamic transmission lines. 請求項1乃至請求項の何れかに記載の伝送線路において、前記基準グラウンド線路及び前記擬差動伝送線路は、再配線層に設けられることを特徴とする伝送線路。 In the transmission line according to any one of claims 1 to 7, wherein the ground reference line and the pseudo differential transmission line, transmission line, characterized in that provided on the redistribution layer. 請求項1乃至請求項の何れかに記載の伝送線路において、前記基準グラウンド線路及び前記擬差動伝送線路は、多層基板に設けられることを特徴とする伝送線路。 In the transmission line according to any one of claims 1 to 7, wherein the ground reference line and the pseudo differential transmission line, transmission line, characterized in that provided in the multilayer substrate.
JP2005236145A 2004-08-30 2005-08-16 Transmission line Active JP4621917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236145A JP4621917B2 (en) 2004-08-30 2005-08-16 Transmission line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004249693 2004-08-30
JP2005236145A JP4621917B2 (en) 2004-08-30 2005-08-16 Transmission line

Publications (2)

Publication Number Publication Date
JP2006100797A JP2006100797A (en) 2006-04-13
JP4621917B2 true JP4621917B2 (en) 2011-02-02

Family

ID=36240260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236145A Active JP4621917B2 (en) 2004-08-30 2005-08-16 Transmission line

Country Status (1)

Country Link
JP (1) JP4621917B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859356B2 (en) * 2008-03-21 2010-12-28 Qualcomm Incorporated Transmission line system having high common mode impedance
JP4947006B2 (en) 2008-08-05 2012-06-06 ソニー株式会社 Photoelectric conversion device and photoelectric conversion element
JP2011192966A (en) 2010-02-17 2011-09-29 Sony Corp Photoelectric conversion element, photoelectric conversion apparatus and solid-state imaging apparatus
JP6080729B2 (en) * 2013-09-11 2017-02-15 三菱電機株式会社 Multilayer substrate, printed circuit board, semiconductor package substrate, semiconductor package, semiconductor chip, semiconductor device, information processing apparatus and communication apparatus
CN117411498A (en) * 2023-12-15 2024-01-16 合肥联宝信息技术有限公司 Pseudo-differential anti-interference circuit based on single-ended signal and communication device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247101A (en) * 1985-04-22 1986-11-04 テクトロニツクス・インコ−ポレイテツド Microstrip transmission line
JP2003168968A (en) * 2001-12-03 2003-06-13 Kanji Otsuka Electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247101A (en) * 1985-04-22 1986-11-04 テクトロニツクス・インコ−ポレイテツド Microstrip transmission line
JP2003168968A (en) * 2001-12-03 2003-06-13 Kanji Otsuka Electronic device

Also Published As

Publication number Publication date
JP2006100797A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US10103054B2 (en) Coupled vias for channel cross-talk reduction
KR101869581B1 (en) Inter-module communication device
US8334600B2 (en) Low-noise flip-chip packages and flip chips thereof
US20110007487A1 (en) Lsi package, printed board and electronic device
US8120927B2 (en) Printed circuit board
JP4916300B2 (en) Multilayer wiring board
US9105635B2 (en) Stubby pads for channel cross-talk reduction
JP4621917B2 (en) Transmission line
JP2007142307A (en) Multilayer substrate for high-speed differential signals, communication equipment, and data storage equipment
US7947908B2 (en) Electronic device
JP2003249904A (en) Device for shielding transmission line from ground or power supply
US7001834B2 (en) Integrated circuit and method of manufacturing an integrated circuit and package
US20050121766A1 (en) Integrated circuit and method of manufacturing an integrated circuit and package
JP4659087B2 (en) Differential balanced signal transmission board
JP4222943B2 (en) Electronic device carrier suitable for high-frequency signal transmission
JP5536656B2 (en) Semiconductor device
JP4820985B2 (en) Differential parallel track
US20120274413A1 (en) Monolithic power splitter for differenital signal
JP2013239511A (en) Multi-layer board, print circuit board, semiconductor package board, semiconductor package, semiconductor chip, semiconductor device, information processing apparatus, and communication device
US9270002B2 (en) Differential-to-single-ended transmission line interface
JP2004158553A (en) Semiconductor device
JP2009289858A (en) Semiconductor device
JP6080729B2 (en) Multilayer substrate, printed circuit board, semiconductor package substrate, semiconductor package, semiconductor chip, semiconductor device, information processing apparatus and communication apparatus
JP2004304134A (en) Wiring board and manufacturing method of the same
JP5739363B2 (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150