JP4621487B2 - Integrated heat exchanger - Google Patents

Integrated heat exchanger Download PDF

Info

Publication number
JP4621487B2
JP4621487B2 JP2004347955A JP2004347955A JP4621487B2 JP 4621487 B2 JP4621487 B2 JP 4621487B2 JP 2004347955 A JP2004347955 A JP 2004347955A JP 2004347955 A JP2004347955 A JP 2004347955A JP 4621487 B2 JP4621487 B2 JP 4621487B2
Authority
JP
Japan
Prior art keywords
flat hollow
heat exchange
hollow body
flat
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004347955A
Other languages
Japanese (ja)
Other versions
JP2005188920A (en
Inventor
圭一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004347955A priority Critical patent/JP4621487B2/en
Publication of JP2005188920A publication Critical patent/JP2005188920A/en
Application granted granted Critical
Publication of JP4621487B2 publication Critical patent/JP4621487B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0366Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements
    • F28D1/0375Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by spaced plates with inserted elements the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0049Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for lubricants, e.g. oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、オイルクーラ、アフタークーラ、ラジエータ等のうちの少なくとも2つを備えており、かつコンプレッサ、工作機械、油圧機器などの産業機械に使用される一体型熱交換装置に関する。   The present invention relates to an integrated heat exchange device that includes at least two of an oil cooler, an aftercooler, a radiator, and the like and is used in industrial machines such as a compressor, a machine tool, and a hydraulic device.

この明細書および特許請求の範囲において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

従来、この種の一体型熱交換装置として、相互に間隔をおいて並列状に設けられかつ内部に流路を有する複数の偏平中空体と、隣り合う偏平中空体の少なくとも一端部どうしの間に配置されかつ隣り合う偏平中空体の流路どうしを通じさせる連通部材とを備えたオイルクーラとアフタークーラとが、偏平中空体の厚さ方向に並べられており、オイルクーラおよびアフタークーラにおける隣り合う偏平中空体間の通風間隙に、冷却風が偏平中空体の幅方向に流れるようになされ、オイルクーラとアフタークーラとの間に、両者間での流体の流れを遮断するスペーサが配置されたものが知られている(特許文献1参照)。   Conventionally, as this type of integrated heat exchange device, a plurality of flat hollow bodies that are provided in parallel and spaced apart from each other and that have a flow passage inside, and at least one end portion of adjacent flat hollow bodies are provided. An oil cooler and an after cooler, which are arranged and have a communicating member passing through the flow paths of adjacent flat hollow bodies, are arranged in the thickness direction of the flat hollow body. In the ventilation gap between the hollow bodies, the cooling air flows in the width direction of the flat hollow body, and a spacer is arranged between the oil cooler and the after cooler to block the flow of fluid between the two. It is known (see Patent Document 1).

特許文献1記載の一体型熱交換装置において、偏平中空体は、互いに間隔をおいて配されかつ両面にろう材層を有するアルミニウムブレージングシートからなる長方形状平板と、両平板間に配されかつ両平板にろう付されたアルミニウム製流路形成体とよりなり、平板の両端部にそれぞれ貫通穴が形成され、流路形成体が、両平板の周縁部間に跨る周壁部、および周壁部における両平板の長側縁部間に位置する2つの長側壁部の長さ方向の中間部どうしを連結するように設けられた伝熱面積拡大部とよりなる。   In the integrated heat exchange device described in Patent Document 1, the flat hollow body is formed of a rectangular flat plate made of an aluminum brazing sheet that is spaced apart from each other and has a brazing filler metal layer on both sides, and both flat plates. The flow path forming body is made of aluminum brazed to a flat plate, and through holes are formed at both ends of the flat plate, and the flow path forming body extends between the peripheral edge portions of both flat plates, and both of the peripheral wall portions. It consists of a heat-transfer area expansion part provided so that the intermediate part of the length direction of two long side wall parts located between the long side edge parts of a flat plate may be connected.

しかしながら、従来の一体型熱交換装置において、オイルクーラの高温オイルおよびアフタークーラの高温圧縮空気のうちいずれか一方の流れが止まってクーラが停止し、同他方の流れが止まらずにクーラが作動している場合、オイルクーラとアフタークーラとの温度差が大きくなり、流体の流れが止まっていない作動側クーラから流体の流れが止まった停止側クーラに多くの熱が伝わる。したがって、停止側クーラにおける作動側クーラ側の端部に位置する偏平中空体を構成する平板に比較的大きな熱歪みが発生し、この平板に大きな応力が発生するおそれがある。
特開2001−82891号公報
However, in the conventional integrated heat exchanger, the flow of one of the high-temperature oil of the oil cooler and the high-temperature compressed air of the aftercooler stops, the cooler stops, and the flow of the other does not stop and the cooler operates. In this case, the temperature difference between the oil cooler and the aftercooler increases, and a large amount of heat is transferred from the operating side cooler where the fluid flow has stopped to the stopped side cooler where the fluid flow has stopped. Therefore, a relatively large thermal strain is generated in the flat plate constituting the flat hollow body located at the end of the operating side cooler in the stop side cooler, and there is a possibility that a large stress is generated in the flat plate.
JP 2001-82891 A

この発明の目的は、上記問題を解決し、隣り合う2つの熱交換部のうちいずれか一方の熱交換部の高温流体の流れが止まった場合にも、これらの熱交換部間の伝熱量を従来に比べて小さくしうる一体型熱交換装置を提供することにある。   The object of the present invention is to solve the above problem and to reduce the amount of heat transfer between these heat exchange parts even when the flow of high-temperature fluid in one of the two adjacent heat exchange parts stops. An object of the present invention is to provide an integrated heat exchange device that can be made smaller than conventional ones.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)相互に間隔をおいて並列状に設けられかつ内部に流路を有する複数の偏平中空体と、隣り合う偏平中空体の少なくとも一端部どうしの間に配置されかつ隣り合う偏平中空体の流路どうしを通じさせる連通部材とを備えた複数の熱交換部が、偏平中空体の厚さ方向に並べられており、偏平中空体が、互いに対向する2つの長方形状壁部と、両長方形状壁部の周縁部間に跨る周壁部とを有しており、隣り合う2つの熱交換部の近接した偏平中空体間にスペーサが配置され、スペーサに貫通穴からなる伝熱量減少部が形成され、各熱交換部の隣り合う偏平中空体間を偏平中空体の幅方向に低温流体が流れるようになされ、スペーサの伝熱量減少部となる貫通穴が偏平中空体の幅方向に伸びている一体型熱交換装置1) A flow of a plurality of flat hollow bodies that are provided in parallel and spaced apart from each other and that have a flow channel therein, and a flow of adjacent flat hollow bodies that are disposed between at least one end of adjacent flat hollow bodies. A plurality of heat exchanging portions each having a communication member that allows passages to pass through each other are arranged in the thickness direction of the flat hollow body, and the flat hollow body includes two rectangular wall portions facing each other, and both rectangular wall portions A peripheral wall portion straddling between the peripheral portions of the portion, a spacer is disposed between the adjacent flat hollow bodies of two adjacent heat exchange portions, and a heat transfer amount reduction portion formed of a through hole is formed in the spacer , An integrated type in which a low-temperature fluid flows between adjacent flat hollow bodies of each heat exchanging portion in the width direction of the flat hollow body, and a through-hole serving as a heat transfer amount reducing portion of the spacer extends in the width direction of the flat hollow body Heat exchange device .

2)スペーサの伝熱量減少部となる貫通穴の内周面に、貫通穴の長さ方向に伸びる複数の凸部および/または凹部が形成されている上記1)記載の一体型熱交換装置。 2) The integrated heat exchange device according to 1) above, wherein a plurality of convex portions and / or concave portions extending in the length direction of the through hole are formed on the inner peripheral surface of the through hole serving as the heat transfer amount reducing portion of the spacer.

3)少なくとも1つの熱交換部の偏平中空体が、互いに間隔をおいて設けられた2つの長方形状壁部と、両長方形状壁部の周縁間に跨る周壁部と、内部を偏平中空体の長さ方向に伸びる2つの流路に区切る仕切壁部とよりなり、両長方形状壁部の一端部における仕切壁部の両側部分に、それぞれ両流路を外部に通じさせる2つの貫通穴が偏平中空体の幅方向に間隔をおいて形成され、仕切壁部における貫通穴とは反対側の端部が切除されて2つの流路が相互に連通させられてU字状流路が形成され、連通部材に両長方形状壁部の2つの貫通穴に通じる2つの貫通穴が形成されている上記1)または2)記載の一体型熱交換装置。 3) The flat hollow body of at least one heat exchanging portion has two rectangular wall portions spaced apart from each other, a peripheral wall portion straddling between the peripheral edges of both rectangular wall portions, and an inside of the flat hollow body. It consists of a partition wall section that divides into two flow paths extending in the length direction, and two through-holes that allow both the flow paths to the outside are flattened on both sides of the partition wall section at one end of both rectangular walls. It is formed at intervals in the width direction of the hollow body, the end on the opposite side to the through hole in the partition wall is cut away, and the two flow paths are communicated with each other to form a U-shaped flow path, The integrated heat exchange device according to 1) or 2) above, wherein the communication member is formed with two through-holes communicating with the two through-holes of both rectangular wall portions.

4)U字状流路を有する偏平中空体が、互いに間隔をおいて配置された長方形状平板と、両平板の両長側縁部間に配された2つの直線状サイドバーと、両サイドバー間にこれらと間隔をおいて配された1つの中間バーと、両サイドバーおよび中間バーに跨って高さの中間部に一体に設けられた2つの伝熱面積拡大部と、両サイドバーの一端にそれぞれ一体に設けられて内方に伸び、かつ先端が中間バーの一端部の両側面に当接させられてろう付されたエンドバーとよりなり、中間バーの他端部が切除され、両伝熱面積拡大部におけるエンドバー側の端部がそれぞれ切除され、両平板におけるエンドバー側の端部における中間バーの両側部分にそれぞれ貫通穴が形成されており、両平板により両長方形状壁部が形成され、両平板におけるエンドバーとは反対側の端部をそれぞれ互いに他の平板側に曲げるとともにこれらの屈曲部を相互に重ね合わせてろう付することにより周壁部における一方の短側壁部が形成され、流路形成体の両サイドバーにより周壁部の2つの長側壁部が形成され、流路形成体のエンドバーにより周壁部の他方の短側壁部が形成されている上記3)記載の一体型熱交換装置。 4) A flat hollow body having a U-shaped channel is formed by a rectangular flat plate arranged at a distance from each other, two linear side bars arranged between both long side edges of both flat plates, and both sides One intermediate bar that is spaced between these bars, two sidebars, two heat transfer area expansion sections that are integrated in the middle of the height across the intermediate bars, and both sidebars Each of which is integrally provided at one end and extending inward, and the tip is composed of an end bar brazed against both side surfaces of one end of the intermediate bar, and the other end of the intermediate bar is cut off. The end portions on the end bar side in both heat transfer area enlarged portions are respectively cut off, and through holes are formed in both side portions of the intermediate bar at the end portions on both end plates, and both rectangular walls are formed by both plates. Formed on both flat plates One short side wall portion of the peripheral wall portion is formed by bending the end portions opposite to each other to the other flat plate side and brazing these bent portions so as to overlap each other. The integrated heat exchange device according to 3) above, wherein two long side wall portions of the peripheral wall portion are formed by the side bar, and the other short side wall portion of the peripheral wall portion is formed by the end bar of the flow path forming body.

5)両平板がそれぞれアルミニウムブレージングシートからなり、流路形成体がアルミニウム押出形材よりなる上記4)記載の一体型熱交換装置。 5) The integrated heat exchange device according to 4) above, wherein both flat plates are each made of an aluminum brazing sheet, and the flow path forming body is made of an aluminum extruded profile.

6)U字状流路を有する偏平中空体を備えた熱交換部と、これに隣接する熱交換部との間に配置されるスペーサが、U字状流路を有する偏平中空体における2つの流路が相互に連通している側の端部に配置されている上記3)〜5)のうちのいずれかに記載の一体型熱交換装置。 6) Two spacers in the flat hollow body having a U-shaped flow path have spacers arranged between the heat exchange section having a flat hollow body having a U-shaped flow path and the heat exchange section adjacent thereto. 6. The integrated heat exchange device according to any one of the above 3) to 5) , which is disposed at an end portion on the side where the flow paths communicate with each other.

7)U字状流路を有する偏平中空体を備えた熱交換部において、この熱交換部に隣接する他の熱交換部側に位置する複数の偏平中空体における2つの流路が相互に連通している側の端部どうしの間に、第2のスペーサが配置され、第2スペーサに伝熱量減少部が形成されている上記6)記載の一体型熱交換装置。 7) In a heat exchanging section provided with a flat hollow body having a U-shaped flow path, two flow paths in a plurality of flat hollow bodies located on the side of another heat exchanging section adjacent to the heat exchanging section communicate with each other. The integrated heat exchange device according to 6) above, wherein a second spacer is disposed between the end portions on the side where the heat transfer is performed, and a heat transfer amount reducing portion is formed in the second spacer.

8)第2スペーサの伝熱量減少部が、第2スペーサに形成された貫通穴からなる上記7)記載の一体型熱交換装置。 8) The integrated heat exchange device according to 7) above, wherein the heat transfer amount reducing portion of the second spacer is a through hole formed in the second spacer.

9)第2スペーサの伝熱量減少部となる貫通穴が偏平中空体の幅方向に伸びている上記8)記載の一体型熱交換装置。 9) The integrated heat exchange device according to 8) above, wherein the through-hole serving as the heat transfer amount reducing portion of the second spacer extends in the width direction of the flat hollow body.

10)第2スペーサの貫通穴の内周面に、貫通穴の長さ方向に伸びる複数の凸部および/または凹部が形成されている上記9)記載の一体型熱交換装置。 10) The integrated heat exchange device according to 9) above, wherein a plurality of convex portions and / or concave portions extending in the length direction of the through hole are formed on the inner peripheral surface of the through hole of the second spacer.

11)隣接する2つの熱交換部のうちの一方がオイルクーラ、アフタークーラおよびラジエータのうちのいずれか1つであり、同他方がオイルクーラ、アフタークーラおよびラジエータのうちの他のいずれか1つである上記1)〜10)のうちのいずれかに記載の一体型熱交換装置。 11) One of the two adjacent heat exchangers is one of an oil cooler, an aftercooler, and a radiator, and the other is any one of the other of the oil cooler, the aftercooler, and the radiator. The integrated heat exchange device according to any one of 1) to 10) above.

12)上記1)〜11)のうちのいずれかに記載された一体型熱交換装置を備えているコンプレッサ。 12) A compressor including the integrated heat exchange device according to any one of 1) to 11) above .

13)上記1)〜11)のうちのいずれかに記載された一体型熱交換装置を備えている工作機械。 13) A machine tool comprising the integrated heat exchange device according to any one of 1) to 11) above .

14)上記1)〜11)のうちのいずれかに記載されている一体型熱交換装置を備えている油圧機器。 14) A hydraulic device comprising the integrated heat exchange device described in any one of 1) to 11) above .

上記1)の一体型熱交換装置によれば、隣接する2つの熱交換部のうちいずれか一方の熱交換部の高温流体の流れが止まり、同他方の熱交換部での高温流体の流れが止まっていない場合にも、スペーサの伝熱量減少部の働きにより、高温流体の流れが止まっていない作動側熱交換部から高温流体の流れが止まった停止側熱交換部への伝熱量が、従来の一体型熱交換装置に比べて少なくなる。したがって、停止側熱交換部における作動側熱交換部側の端部に位置する偏平中空体の長方形状壁部に発生する熱歪みが小さくなり、その結果この長方形状壁部に発生する応力も小さくなって破損が防止される。 According to the integrated heat exchange device of 1) above, the flow of the high-temperature fluid in one of the two adjacent heat exchange units stops and the flow of the high-temperature fluid in the other heat exchange unit Even when the heat transfer is not stopped, the heat transfer amount of the spacer reduces the amount of heat transfer from the operating heat exchange section where the flow of high-temperature fluid is not stopped to the stop heat exchange section where the flow of high-temperature fluid stops. Compared to the integrated heat exchange device. Therefore, the thermal strain generated in the rectangular wall portion of the flat hollow body located at the end of the operation side heat exchange portion in the stop side heat exchange portion is reduced, and as a result, the stress generated in the rectangular wall portion is also reduced. This prevents damage.

上記1)の一体型熱交換装置によれば、熱交換部の偏平中空体内を流れる高温の流体を冷却する流体、たとえば冷却風がスペーサの伝熱量減少部となる貫通穴内を流れるので、作動側熱交換部からスペーサに伝わった熱が、貫通穴内を流れる冷却風により奪われ、停止側熱交換部に伝わる熱量が一層少なくなる。したがって、停止側熱交換部における作動側熱交換部側の端部に位置する偏平中空体を構成する長方形状壁部に発生する熱歪みが一層小さくなり、その結果この長方形状壁部の破損が確実に防止される。 According to the integrated heat exchange device of 1) above, the fluid that cools the high-temperature fluid that flows through the flat hollow body of the heat exchange part, for example, the cooling air flows through the through-hole that becomes the heat transfer reduction part of the spacer. The heat transferred from the heat exchange part to the spacer is taken away by the cooling air flowing in the through hole, and the amount of heat transferred to the stop side heat exchange part is further reduced. Accordingly, the thermal strain generated in the rectangular wall portion constituting the flat hollow body located at the end of the operation side heat exchange portion in the stop side heat exchange portion is further reduced, and as a result, the rectangular wall portion is not damaged. It is surely prevented.

上記2)の一体型熱交換装置によれば、作動側熱交換部からスペーサに伝わった熱は、貫通穴内を流れる冷却風により一層効率良く奪われ、停止側熱交換部に伝わる熱量が一層少なくなる。したがって、停止側熱交換部における作動側熱交換部側の端部に位置する偏平中空体を構成する長方形状壁部に発生する熱歪みが一層小さくなり、その結果この長方形状壁部の破損を防止する効果がさらに向上する。 According to the integrated heat exchange device of 2) above, the heat transferred from the operating side heat exchanging part to the spacer is more efficiently taken away by the cooling air flowing in the through hole, and the amount of heat transferred to the stop side heat exchanging part is further reduced. Become. Therefore, the thermal strain generated in the rectangular wall portion constituting the flat hollow body located at the end of the operation side heat exchange portion in the stop side heat exchange portion is further reduced, and as a result, the rectangular wall portion is prevented from being damaged. The effect of preventing is further improved.

上記3)の一体型熱交換装置のように、少なくとも1つの熱交換部の偏平中空体が、互いに間隔をおいて設けられた2つの長方形状壁部と、両長方形状壁部の周縁間に跨る周壁部と、内部を偏平中空体の長さ方向に伸びる2つの流路に区切る仕切壁部とよりなり、両長方形状壁部の一端部における仕切壁部の両側部分に、それぞれ両流路を外部に通じさせる2つの貫通穴が偏平中空体の幅方向に間隔をおいて形成され、仕切壁部における貫通穴とは反対側の端部が切除されて2つの流路が相互に連通させられてU字状流路が形成され、連通部材に両長方形状壁部の2つの貫通穴に通じる2つの貫通穴が形成されている場合、この熱交換部における隣接する熱交換部側の端部に位置する偏平中空体の長方形状壁部には、上述した熱歪みが顕著に発生する傾向にある。しかしながら、この場合であっても、上記1)または2)のように構成されていると、この熱歪みの発生を抑制することができ、その結果長方形状壁に発生する応力も小さくなって破損が防止される。 As in the integrated heat exchange apparatus of 3) above, the flat hollow body of at least one heat exchange part is provided between two rectangular wall parts spaced apart from each other and the peripheral edges of both rectangular wall parts. It consists of a peripheral wall part straddling and a partition wall part that divides the inside into two flow paths extending in the length direction of the flat hollow body, and both flow paths are provided on both sides of the partition wall part at one end of both rectangular wall parts. Are formed at intervals in the width direction of the flat hollow body, and the end of the partition wall opposite to the through hole is cut away so that the two flow paths communicate with each other. When a U-shaped flow path is formed and two through holes are formed in the communication member so as to communicate with the two through holes of both rectangular wall portions, the end on the side of the adjacent heat exchange unit in this heat exchange unit The rectangular wall portion of the flat hollow body located in the section is prominently subjected to the above-described thermal distortion. They tend to be. However, even in this case, if configured as in the above 1) or 2) , it is possible to suppress the occurrence of this thermal distortion, resulting in less stress generated in the rectangular wall and breakage Is prevented.

上記4)の一体型熱交換装置の場合にも、上記3)で述べたのと同様に、U字状流路を有する偏平中空体を有する熱交換部における隣接する熱交換部側の端部に位置する偏平中空体の平板には、上述した熱歪みが顕著に発生する傾向にある。しかしながら、この場合であっても、上記1)または2)のように構成されていると、この熱歪みの発生を抑制することができ、その結果この平板に発生する応力も小さくなって破損が防止される。 Also in the case of the integrated heat exchange device of 4) , as described in 3) above, the end on the side of the adjacent heat exchange section in the heat exchange section having a flat hollow body having a U-shaped flow path The flat plate of the flat hollow body located at the position tends to generate the above-mentioned thermal strain significantly. However, even in this case, if it is configured as in the above 1) or 2) , it is possible to suppress the occurrence of this thermal strain, and as a result, the stress generated in this flat plate becomes smaller and breakage occurs. Is prevented.

上記5)の一体型熱交換装置によれば、偏平中空体を比較的簡単に製造することができる。 According to the integrated heat exchange device of 5) above, a flat hollow body can be produced relatively easily.

上記3)〜5)のうちのいずれかに記載の一体型熱交換装置においては、U字状流路を有する偏平中空体を備えた熱交換部における隣接する他の熱交換部側の端部に位置する偏平中空体の2つの流路が相互に連通している側の端部の長方形状壁部に、上述した熱歪みが顕著に発生する傾向にある。しかしながら、この場合であっても、上記6)のように構成されていると、この熱歪みの発生を抑制することができ、その結果長方形状壁に発生する応力も小さくなって破損が防止される。 In the integrated heat exchange device according to any one of the above 3) to 5) , an end portion on the side of another adjacent heat exchange portion in the heat exchange portion provided with a flat hollow body having a U-shaped flow path There is a tendency that the above-described thermal distortion is prominently generated in the rectangular wall portion at the end portion on the side where the two flow paths of the flat hollow body located at each other communicate with each other. However, even in this case, if configured as in the above 6) , it is possible to suppress the occurrence of this thermal distortion, and as a result, the stress generated in the rectangular wall is also reduced and damage is prevented. The

上記7)〜10)の一体型熱交換装置によれば、U字状流路を有する偏平中空体を備えた熱交換部における隣接する他の熱交換部側の端部に位置する偏平中空体の長方形状壁部への上述した熱歪みの発生を一層抑制することができる。したがって、長方形状壁部に発生する応力も小さくなって破損が確実に防止される。 According to the integrated heat exchange device of 7) to 10) above, the flat hollow body located at the end of the adjacent heat exchange section in the heat exchange section provided with the flat hollow body having the U-shaped flow path The generation of the above-described thermal strain on the rectangular wall portion can be further suppressed. Therefore, the stress generated in the rectangular wall portion is also reduced, and damage is reliably prevented.

以下、この発明の実施形態を、図面を参照して説明する。以下の説明において、図1の上下、左右をそれぞれ上下、左右というものとし、隣り合う偏平中空体間を流れかつ偏平中空体内を流れる高温流体と熱交換する低温流体の流れ方向の下流側、すなわち図1および図13に矢印Xで示す方向を前、これと反対側を後というものとする。なお、上下、左右および前後は、便宜上定義したものであって、上下、左右および前後はそれぞれ入れ替わる場合もある。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the upper and lower sides and the left and right sides in FIG. 1 are referred to as the upper and lower sides and the left and right sides, respectively, and the downstream side in the flow direction of the low-temperature fluid that exchanges heat with the high-temperature fluid that flows between the adjacent flat bodies The direction indicated by the arrow X in FIGS. 1 and 13 is the front, and the opposite side is the rear. Note that the top, bottom, left and right and front and rear are defined for convenience, and the top and bottom, left and right, and front and back may be interchanged.

図1はこの発明による一体型熱交換装置の全体構成を示し、図2〜図11はその要部の構成を示す。   FIG. 1 shows the overall configuration of an integrated heat exchange apparatus according to the present invention, and FIGS.

なお、この実施形態は、この発明による一体型熱交換装置をコンプレッサにおける高温オイルを冷却するオイルクーラおよび高温圧縮空気を冷却するアフタークーラに適用したものである。ここで、コンプレッサとしては、たとえばロードコンプレッサ、ガスタービンに用いられるコンプレッサ、鉄道車両用ブレーキに用いられるコンプレッサなどが挙げられる。   In this embodiment, the integrated heat exchange device according to the present invention is applied to an oil cooler for cooling high-temperature oil in a compressor and an after-cooler for cooling high-temperature compressed air. Here, examples of the compressor include a road compressor, a compressor used for a gas turbine, and a compressor used for a railway vehicle brake.

図1において、一体型熱交換装置(1)は、高温オイルを冷却するオイルクーラ(2)と高温圧縮空気を冷却するアフタークーラ(3)とが、前者が下方に来るように同一垂直面内に設けられ、オイルクーラ(2)とアフタークーラ(3)の左右両端部どうしの間にそれぞれスペーサ(4)が配置されたものである。   In FIG. 1, the integrated heat exchanger (1) has an oil cooler (2) that cools high-temperature oil and an after-cooler (3) that cools high-temperature compressed air in the same vertical plane so that the former is below. The spacer (4) is disposed between the left and right end portions of the oil cooler (2) and the aftercooler (3).

オイルクーラ(2)は、上下方向に間隔をおいて並列状に配されかつ左右方向に伸びるアルミニウム製の高温オイル流通用偏平中空体(5)と、上下に隣り合う偏平中空体(5)の左端部間に配されて偏平中空体(5)にろう付されかつ隣り合う偏平中空体(5)内どうしを通じさせるアルミニウム押出形材製連通部材(6)と、上下に隣り合う偏平中空体(5)の右端部間に配されて偏平中空体(5)にろう付された前後方向に伸びるアルミニウム押出形材製バー(7)と、連通部材(6)およびバー(7)間において隣り合う偏平中空体(5)間の通風間隙(8)に配されかつ偏平中空体(5)にろう付されたアルミニウム製コルゲートフィン(9)とを備えている。   The oil cooler (2) includes a flat hollow body (5) for high-temperature oil circulation made of aluminum and arranged in parallel in the vertical direction and extending in the left-right direction, and a flat hollow body (5) adjacent to the top and bottom. An aluminum extruded profile connecting member (6) disposed between the left end portions and brazed to the flat hollow body (5) and passing between the adjacent flat hollow bodies (5), and a flat hollow body adjacent to the top and bottom ( The aluminum extruded bar (7) extending in the front-rear direction disposed between the right ends of 5) and brazed to the flat hollow body (5) is adjacent to the communicating member (6) and the bar (7). An aluminum corrugated fin (9) disposed in the ventilation gap (8) between the flat hollow bodies (5) and brazed to the flat hollow bodies (5) is provided.

オイルクーラ(2)の下端の偏平中空体(5)の左端部下側に、連通部材(6)と同じ厚みおよび大きさであるアルミニウム押出形材製入出部材(11)が配されて偏平中空体(5)にろう付され、同じく右端部下側に、偏平中空体(5)間のバー(7)と同じバー(7)が配されて偏平中空体(5)にろう付されている。また、左右方向に長いアルミニウム製下サイドプレート(12)の左端部が入出部材(11)の下面右端部に、同じく右端部がバー(7)の下面全体にそれぞれろう付されており、この下サイドプレート(12)と下端の偏平中空体(5)との間も通風間隙(8)となされるとともに、この通風間隙(8)にもコルゲートフィン(9)が配されて下サイドプレート(12)および偏平中空体(5)にろう付されている。下サイドプレート(12)は、上面にろう材層を有するアルミニウムブレージングシートからなる。   An aluminum extruded profile input / output member (11) having the same thickness and size as the communication member (6) is arranged below the left end of the flat hollow body (5) at the lower end of the oil cooler (2), thereby forming a flat hollow body. The same bar (7) as the bar (7) between the flat hollow bodies (5) is also brazed to (5) and brazed to the flat hollow body (5). The left end of the aluminum lower side plate (12) that is long in the left-right direction is brazed to the right end of the lower surface of the input / output member (11), and the right end is also brazed to the entire lower surface of the bar (7). A ventilation gap (8) is also formed between the side plate (12) and the flat hollow body (5) at the lower end, and a corrugated fin (9) is also arranged in the ventilation gap (8) so that the lower side plate (12 ) And the flat hollow body (5). The lower side plate (12) is made of an aluminum brazing sheet having a brazing filler metal layer on the upper surface.

図2および図3に示すように、偏平中空体(5)は、左右方向に長い平らな上下壁(13)(長方形状壁部)と、上下壁(13)の周縁間に跨る周壁(14)(周壁部)と、内部を左右方向に伸びる前後2つの流路(15)(16)に区切る仕切壁(17)(仕切壁部)とよりなり、上下壁(13)の左端部における仕切壁(17)の前後両側部分に、それぞれ両流路(15)(16)を外部に通じさせる2つの貫通穴(18)(19)が前後方向に間隔をおいて形成されている。また、仕切壁(17)の右端部が切除されて2つの流路(15)(16)が相互に連通させられている。連通部を(21)で示す。このような偏平中空体(5)は、両面にろう材層を有するアルミニウムブレージングシートよりなりかつ上下方向に間隔をおいて配された左右方向に長い2枚の長方形状平板(22)(23)と、上下両平板(22)(23)間に配されかつ両平板(22)(23)にろう付されたアルミニウム押出形材製流路形成体(24)とよりなる。   As shown in FIGS. 2 and 3, the flat hollow body (5) includes a flat upper and lower wall (13) (rectangular wall portion) that is long in the left-right direction and a peripheral wall (14) extending between the peripheral edges of the upper and lower walls (13). ) (Peripheral wall) and a partition wall (17) (partition wall) that divides the interior into two front and rear flow paths (15) and (16) extending in the left-right direction. The partition at the left end of the upper and lower walls (13) Two through-holes (18) and (19) are formed in the front and rear side portions of the wall (17) at intervals in the front-rear direction so as to allow the passages (15) and (16) to communicate with the outside. Further, the right end portion of the partition wall (17) is cut away so that the two flow paths (15) and (16) communicate with each other. The communication part is indicated by (21). Such a flat hollow body (5) is composed of two rectangular flat plates (22) (23) made of an aluminum brazing sheet having a brazing filler metal layer on both sides and long in the left-right direction and spaced apart in the vertical direction. And an extruded aluminum channel member (24) disposed between the upper and lower flat plates (22) and (23) and brazed to the flat plates (22) and (23).

両平板(22)(23)の左端部の前後両側部分に、それぞれ貫通穴(18)(19)が形成されている。また、両平板(22)(23)の右端部は、それぞれ互いに他の平板(23)(22)側、すなわち上側の平板(22)においては下方、下側の平板(23)においては上方に曲げられ、これらの屈曲部(22a)(23a)が相互に重ね合わされてろう付されている(図4参照)。そして、両平板(22)(23)により上下壁(13)が形成され、両平板(22)(23)の屈曲部(22a)(23a)により周壁(14)の右側短壁部(14a)が形成されている。   Through holes (18) and (19) are formed in both front and rear side portions of the left end portions of both flat plates (22) and (23). In addition, the right end portions of both flat plates (22) and (23) are respectively on the other flat plate (23) and (22) side, that is, on the lower flat plate (23), on the upper flat plate (22) and on the upper side. The bent portions (22a) and (23a) are overlapped with each other and brazed (see FIG. 4). The upper and lower walls (13) are formed by the flat plates (22) and (23), and the right short wall portion (14a) of the peripheral wall (14) is formed by the bent portions (22a) and (23a) of the flat plates (22) and (23). Is formed.

流路形成体(24)は、上下両平板(22)(23)の前後両側縁部間にそれぞれ配されかつ左右方向に伸びる2つの直線状サイドバー(25)と、両サイドバー(25)間にこれらと間隔をおいて配されかつ左右方向に伸びる1つの中間バー(26)と、両サイドバー(25)および中間バー(26)に跨って高さの中間部に一体に設けられた2つの伝熱面積拡大部(27)と、両サイドバー(25)の左端にそれぞれ一体に設けられて前後方向内方に伸び、かつ先端が中間バー(26)の左端部の前後両側面に当接させられてろう付されたエンドバー(28)とよりなる。両サイドバー(25)、中間バー(26)および両エンドバー(28)は上下両平板(22)(23)にろう付されている。中間バー(26)の左端部は、両平板(22)(23)における両貫通穴(18)(19)の間の部分にろう付されている。中間バー(26)の右端部は、連通部(21)を形成するように、所定長さにわたって切除されている。また、両伝熱面積拡大部(27)の左端部は、ここに両平板(22)(23)の貫通穴(18)(19)に合致する貫通穴が形成されるように、所定長さにわたって切除されている。そして、流路形成体(24)の両サイドバー(25)により周壁(14)の前後両長側壁部(14b)が形成され、流路形成体(24)の両エンドバー(28)により周壁(14)の左側短壁部(14c)が形成されている。   The flow path forming body (24) includes two linear side bars (25) arranged between the front and rear side edges of the upper and lower flat plates (22) and (23) and extending in the left and right directions, and both side bars (25). One intermediate bar (26) which is arranged with a gap between them and extends in the left-right direction, and is provided integrally in the middle part of the height across both side bars (25) and intermediate bar (26) Two heat transfer area expansion sections (27) and left and right ends of both side bars (25) are integrally provided and extend inward in the front-rear direction, and the front ends are on both front and rear sides of the left end of the intermediate bar (26). And an end bar (28) brazed to be brought into contact. Both side bars (25), intermediate bar (26) and both end bars (28) are brazed to upper and lower flat plates (22) and (23). The left end portion of the intermediate bar (26) is brazed to a portion between the through holes (18) and (19) in the flat plates (22) and (23). The right end portion of the intermediate bar (26) is cut out over a predetermined length so as to form a communication portion (21). Further, the left end portion of both heat transfer area enlarged portions (27) has a predetermined length so that a through hole that matches the through holes (18) and (19) of both flat plates (22) and (23) is formed here. Has been excised. Then, both side bars (25) of the flow path forming body (24) form both front and rear long side wall portions (14b) of the peripheral wall (14), and both end bars (28) of the flow path forming body (24) The left short wall portion (14c) of 14) is formed.

伝熱面積拡大部(27)は、上方突出屈曲部(29a)と下方突出屈曲部(29b)とが、水平部(29c)を介して左右方向に交互に設けられてなる波状帯板部(29)が、前後方向に複数並べられかつ水平部(29c)において相互に一体に連結されることにより形成されたものである。また、伝熱面積拡大部(27)において、前後方向に隣接する波状帯板部(29)の上方突出屈曲部(29a)どうしおよび下方突出屈曲部(29b)どうしはそれぞれ左右方向にずれて形成されている。なお、伝熱面積拡大部(27)の各波状帯板部(29)における左右方向に隣接する上方突出屈曲部(29a)と下方突出屈曲部(29b)との間には水平部(29c)が存在し、前後方向に隣接する波状帯板部(29)どうしは水平部(29c)において相互に一体に連結されているが、水平部(29c)は必ずしも必要としない。この場合、隣接する波状帯板部(29)における上方突出屈曲部(29a)から下方突出屈曲部(29b)に切り替わる部分が交差することになるので、この部分において相互に一体に連結される。   The heat transfer area expanding portion (27) is a corrugated band plate portion in which an upward protruding bent portion (29a) and a downward protruding bent portion (29b) are alternately provided in the left-right direction via a horizontal portion (29c) ( 29) are formed by being arranged in the front-rear direction and integrally connected to each other at the horizontal portion (29c). Further, in the heat transfer area enlarged portion (27), the upper protruding bent portion (29a) and the lower protruding bent portion (29b) of the corrugated strip portion (29) adjacent in the front-rear direction are formed so as to be shifted in the left-right direction. Has been. The horizontal portion (29c) between the upper protruding bent portion (29a) and the lower protruding bent portion (29b) adjacent to each other in the left-right direction in each corrugated strip (29) of the heat transfer area expanding portion (27). The wavy strips (29) adjacent in the front-rear direction are integrally connected to each other at the horizontal part (29c), but the horizontal part (29c) is not necessarily required. In this case, the portions of the adjacent corrugated strips (29) that switch from the upper protruding bent portion (29a) to the lower protruding bent portion (29b) intersect with each other, and are thus integrally connected to each other.

流路形成体(24)は、図5および図6に示すようにして製造される。すなわち、前後方向に間隔をおいて設けられかつ左右方向に伸びる2つの直線状サイドバー(25)と、両サイドバー(25)間にこれらと間隔をおいて設けられかつ左右方向に伸びる中間バー(26)と、両サイドバー(25)および中間バー(26)に跨って高さの中間部に一体に設けられた平板状部(31)とよりなるアルミニウム押出形材製流路形成体用素材(32)を製造する(図5(a)および図6(a)参照)。ついで、中間バー(26)の左右両端部を所定長さにわたって切除するとともに、両平板状部(31)の左端部をそれぞれ中間バー(26)の左端部の切除長さよりも長くなるように切除する(図5(b)および図6(b)参照)。ついで、両平板状部(31)にプレス加工を施すことにより伝熱面積拡大部(27)を形成する(図5(c)および図6(c)参照)。その後、両サイドバー(25)の左端部を前後方向内側に曲げて先端を中間バー(26)の右端部の前後両側面に当接させ(図5(d)参照)、その先端を中間バー(26)にろう付することにより両エンドバー(28)が形成される。なお、両エンドバー(28)先端の中間バー(26)へのろう付は、後述する一体型熱交換装置(1)の製造の際に、平板(22)(23)から溶け出した溶融ろう材により行われる。   The flow path forming body (24) is manufactured as shown in FIGS. That is, two linear side bars (25) provided in the front-rear direction and extending in the left-right direction, and an intermediate bar provided between the two side bars (25) and spaced in the left-right direction. (26) for a flow path forming body made of an extruded aluminum material comprising a flat plate-like part (31) integrally provided at an intermediate part of the height across both side bars (25) and the intermediate bar (26) The material (32) is manufactured (see FIG. 5 (a) and FIG. 6 (a)). Next, the left and right ends of the intermediate bar (26) are cut out over a predetermined length, and the left end portions of both flat plate portions (31) are cut out to be longer than the cut lengths of the left end portions of the intermediate bar (26). (See FIG. 5 (b) and FIG. 6 (b)). Next, the heat transfer area enlarged portion (27) is formed by pressing the flat plate portions (31) (see FIGS. 5 (c) and 6 (c)). Then, the left end of both side bars (25) is bent inward in the front-rear direction and the tip is brought into contact with both front and rear sides of the right end of the intermediate bar (26) (see FIG. 5 (d)). Both end bars (28) are formed by brazing (26). Note that brazing to the intermediate bar (26) at the tip of both end bars (28) is a molten brazing material that has melted from the flat plates (22) (23) during the manufacture of the integrated heat exchange device (1) described later. Is done.

各連通部材(6)には、図2に示すように、偏平中空体(5)の上下壁(13)の2つの貫通穴(18)(19)に通じる2つの垂直貫通穴(33)(34)が、平面から見て貫通穴(18)(19)と合致するように形成されている。そして、すべての偏平中空体(5)の左端部の前側部分およびすべての連通部材(6)の前側部分により入口側ヘッダ部(30A)が形成され(図12参照)、入口側ヘッダ部(30A)において、すべての偏平中空体(5)の前側流路(15)の左端部と、すべての連通部材(6)の前側垂直貫通穴(33)とが上下壁(13)の前側貫通穴(18)により通じさせられている。また、すべての偏平中空体(5)の左端部の後側部分およびすべての連通部材(6)の後側部分により出口側ヘッダ部(30B)が形成され(図12参照)、出口側ヘッダ部(30B)において、すべての偏平中空体(5)の後側流路(16)の左端部と、すべての連通部材(6)の後側垂直貫通穴(34)とが上下壁(13)の後側貫通穴(19)により通じさせられている。   As shown in FIG. 2, each communicating member (6) has two vertical through-holes (33) (34) communicating with the two through-holes (18) and (19) of the upper and lower walls (13) of the flat hollow body (5). 34) is formed so as to coincide with the through holes (18) and (19) when viewed from above. The front side portion of the left end portion of all the flat hollow bodies (5) and the front side portion of all the communication members (6) form the inlet side header portion (30A) (see FIG. 12), and the inlet side header portion (30A ), The left end of the front flow path (15) of all the flat hollow bodies (5) and the front vertical through holes (33) of all the communication members (6) are front through holes (upper and lower walls (13) ( 18). Further, an outlet-side header portion (30B) is formed by the rear portion of the left end portion of all the flat hollow bodies (5) and the rear portion of all the communication members (6) (see FIG. 12), and the outlet-side header portion. (30B), the left end of the rear flow path (16) of all the flat hollow bodies (5) and the rear vertical through holes (34) of all the communication members (6) are connected to the upper and lower walls (13). It is made to communicate by the rear side through hole (19).

図7に示すように、入出部材(11)には、下端の偏平中空体(5)の下壁(13)の2つの貫通穴(18)(19)に通じる2つの垂直貫通穴(35)(36)が形成されている。これらの垂直貫通穴(35)(36)の内周面にはそれぞれめねじ(35a)(36a)が形成されている。   As shown in FIG. 7, the input / output member (11) has two vertical through holes (35) communicating with the two through holes (18) and (19) of the lower wall (13) of the flat hollow body (5) at the lower end. (36) is formed. Female threads (35a) and (36a) are formed on the inner peripheral surfaces of these vertical through holes (35) and (36), respectively.

アフタークーラ(3)は、上下方向に間隔をおいて並列状に配されかつ左右方向に伸びるアルミニウム製の高温圧縮空気流通用偏平中空体(37)と、上下に隣り合う偏平中空体(37)の左右両端部間に配されて偏平中空体(37)にろう付されかつ隣り合う偏平中空体(5)内どうしを通じさせるアルミニウム押出形材製連通部材(38)と、左右の連通部材(38)間において隣り合う偏平中空体(37)間の通風間隙(39)に配されかつ偏平中空体(37)にろう付されたアルミニウム製コルゲートフィン(41)とを備えている。偏平中空体(37)の数は、オイルクーラ(2)の偏平中空体(5)よりも少なくなっている。   The aftercooler (3) is a flat hollow body (37) for high-temperature compressed air circulation made of aluminum that is arranged in parallel in the vertical direction and extends in the left-right direction, and a flat hollow body (37) that is adjacent vertically. A communication member (38) made of an extruded aluminum material that is disposed between the left and right ends of the two and brazed to the flat hollow body (37) and passes between the adjacent flat hollow bodies (5), and left and right communication members (38 ) Between the flat hollow bodies (37) adjacent to each other, and an aluminum corrugated fin (41) brazed to the flat hollow bodies (37). The number of flat hollow bodies (37) is smaller than that of the flat hollow bodies (5) of the oil cooler (2).

アフタークーラ(3)の上端の偏平中空体(37)の右端部上側に連通部材(38)と同じ厚みおよび大きさであるアルミニウム押出形材製入口部材(42)が、同じく左端部上側に連通部材(38)と同じ厚みおよび大きさであるアルミニウム押出形材製出口部材(43)が、それぞれ配されて偏平中空体(5)にろう付されている。また、左右方向に長いアルミニウム製上サイドプレート(44)の右端部が入口部材(42)の上面左端部に、同じく左端部が出口部材(43)の上面右端部にそれぞれろう付されており、上サイドプレート(44)と上端の偏平中空体(37)との間も通風間隙(39)となされるとともに、この通風間隙(39)にもコルゲートフィン(41)が配されて上サイドプレート(44)および偏平中空体(37)にろう付されている。上サイドプレート(44)は、下面にろう材層を有するアルミニウムブレージングシートからなる。   An inlet member (42) made of an extruded aluminum material having the same thickness and size as the communicating member (38) is connected to the upper side of the left end part, on the upper right side of the flat hollow body (37) at the upper end of the aftercooler (3). An aluminum extruded profile outlet member (43) having the same thickness and size as the member (38) is disposed and brazed to the flat hollow body (5). In addition, the right end of the aluminum upper side plate (44) long in the left-right direction is brazed to the upper left end of the upper surface of the inlet member (42), and the left end is also brazed to the upper right end of the outlet member (43). A ventilation gap (39) is also formed between the upper side plate (44) and the flat hollow body (37) at the upper end, and corrugated fins (41) are also arranged in the ventilation gap (39) to form the upper side plate ( 44) and a flat hollow body (37). The upper side plate (44) is made of an aluminum brazing sheet having a brazing filler metal layer on the lower surface.

図8に示すように、アフタークーラ(3)の偏平中空体(37)は、左右方向に長い平らな上下壁(45)(長方形状壁部)と、上下壁(45)の周縁間に跨る周壁(46)(周壁部)とよりなり、内部に1つの流路(47)が形成され、上下壁(45)の左右両端部に、それぞれ流路(47)を外部に通じさせる前後方向に長い1つの貫通穴(48)が形成されている。このような偏平中空体(37)は、両面にろう材層を有するアルミニウムブレージングシートよりなりかつ上下方向に間隔をおいて配された左右方向に長い2枚の長方形状平板(51)と、両平板(51)間に配されかつ両平板(51)にろう付されたアルミニウム押出形材製製流路形成体(52)とよりなる。両平板(51)の左右両端部に、それぞれ前後方向に長い貫通穴(48)が形成されている。   As shown in FIG. 8, the flat hollow body (37) of the aftercooler (3) straddles between the flat upper and lower walls (45) (rectangular wall portion) long in the left-right direction and the peripheral edges of the upper and lower walls (45). It consists of a peripheral wall (46) (peripheral wall part), and one flow path (47) is formed inside, and the left and right ends of the upper and lower walls (45) are connected to the flow path (47) in the front-rear direction. One long through hole (48) is formed. Such a flat hollow body (37) includes two rectangular flat plates (51) made of an aluminum brazing sheet having a brazing filler metal layer on both sides and long in the vertical direction, and both It consists of a flow path forming body (52) made of an extruded aluminum material that is disposed between the flat plates (51) and brazed to both flat plates (51). Through holes (48) that are long in the front-rear direction are formed in the left and right ends of both flat plates (51).

流路形成体(52)は、両平板(51)の前後両側縁部間に配されかつ左右方向に伸びる2つの直線状サイドバー(53)と、両サイドバー(53)に跨って高さの中間部に一体に設けられた伝熱面積拡大部(54)と、両サイドバー(53)の左右両端にそれぞれ一体に設けられて前後方向内方に伸び、かつ先端が相互に当接させられてろう付されたエンドバー(55)とよりなる。両サイドバー(53)およびすべてのエンドバー(55)は上下両平板(51)にろう付されている。また、伝熱面積拡大部(54)の左右両端部は、ここに両平板(51)の貫通穴(48)に合致する貫通穴が形成されるように、それぞれ所定長さにわたって切除されている。そして、両平板(51)により上下壁(45)が形成され、流路形成体(52)の両サイドバー(53)により周壁(46)の前後両長側壁部(46a)が形成され、流路形成体(52)の左右両端部の両エンドバー(55)により左右両短側壁部(46b)が形成されている。伝熱面積拡大部(54)は、左右方向に並んで一体に形成された複数の横断面略菱形状管状部(54a)よりなる。   The flow path forming body (52) has two linear side bars (53) disposed between the front and rear side edges of both flat plates (51) and extending in the left-right direction, and the height across the side bars (53). The heat transfer area expansion part (54) provided integrally in the middle part of the two and the left and right ends of both side bars (53) are provided integrally with each other and extend inward in the front-rear direction, and the tips are in contact with each other. It consists of a brazed end bar (55). Both side bars (53) and all end bars (55) are brazed to upper and lower flat plates (51). In addition, the left and right end portions of the heat transfer area expanding portion (54) are cut out over a predetermined length so that through holes matching the through holes (48) of both flat plates (51) are formed here. . Then, the upper and lower walls (45) are formed by both flat plates (51), and the front and rear long side wall portions (46a) of the peripheral wall (46) are formed by both side bars (53) of the flow path forming body (52). Left and right short side wall portions (46b) are formed by both end bars (55) at both left and right end portions of the path forming body (52). The heat transfer area enlarging portion (54) is composed of a plurality of cross-section substantially rhombic tubular portions (54a) that are integrally formed side by side in the left-right direction.

流路形成体(52)は、図9に示すようにして製造される。すなわち、前後方向に間隔をおいて設けられかつ左右方向に伸びる2つの直線状サイドバー(53)と、両サイドバー(53)に跨って高さの中間部に一体に設けられかつサイドバー(53)の全長にわたる伝熱面積拡大部(54)とよりなるアルミニウム押出形材製流路形成体用素材(56)を製造する(図9(a)参照)。ついで、伝熱面積拡大部(54)の両端部をそれぞれ所定長さにわたって切除し(図9(b)参照)する。その後、両サイドバー(53)の両端部を前後方向内側に曲げて先端どうしを突き合わせるとともに(図9(c)参照)、相互にろう付することによりエンドバー(55)が形成される。なお、両エンドバー(55)の先端どうしのろう付は、後述する一体型熱交換装置(1)の製造の際に、平板(51)から溶け出した溶融ろう材により行われる。   The flow path forming body (52) is manufactured as shown in FIG. That is, two linear side bars (53) provided at intervals in the front-rear direction and extending in the left-right direction, and an intermediate part of the height across the side bars (53) and the side bar ( 53) A material (56) for an aluminum extruded shape channel forming body comprising a heat transfer area expanding portion (54) over the entire length of 53) is manufactured (see FIG. 9 (a)). Next, both end portions of the heat transfer area expansion portion (54) are cut out over a predetermined length (see FIG. 9B). Thereafter, both end portions of both side bars (53) are bent inward in the front-rear direction so that the ends are brought into contact with each other (see FIG. 9 (c)), and the end bars (55) are formed by brazing each other. Note that the ends of both end bars (55) are brazed to each other with a molten brazing material that has melted from the flat plate (51) during the production of the integrated heat exchange device (1) described later.

アフタークーラ(3)の連通部材(38)はオイルクーラ(2)の連通部材(6)と同じ構成であり、前後2つの垂直貫通穴(57)(58)を有している。そして、すべての偏平中空体(37)の右端部と、すべての右側連通部材(38)とにより入口側ヘッダ部(40A)が形成され(図12参照)、すべての偏平中空体(37)の左端部と、すべての左側連通部材(38)により出口側ヘッダ部(40B)が形成され(図12参照)、入口側ヘッダ部(40A)および出口側ヘッダ部(40B)において、すべての偏平中空体(37)の流路(47)とすべての連通部材(38)の前後垂直貫通穴(57)(58)とが上下壁(45)の貫通穴(48)により通じさせられている。   The communication member (38) of the after cooler (3) has the same configuration as the communication member (6) of the oil cooler (2), and has two front and rear vertical through holes (57) and (58). The right end portion of all the flat hollow bodies (37) and all the right communication members (38) form the inlet side header portion (40A) (see FIG. 12), and all the flat hollow bodies (37) The left end portion and all the left side communication members (38) form an outlet side header portion (40B) (see FIG. 12). In the inlet side header portion (40A) and the outlet side header portion (40B), all flat hollow portions are formed. The flow path (47) of the body (37) and the front and rear vertical through holes (57) and (58) of all the communication members (38) are communicated with each other through the through holes (48) of the upper and lower walls (45).

図10に示すように、入口部材(42)には、上端の偏平中空体(37)の上壁(45)の右側貫通穴(48)に通じる垂直貫通穴(59)が形成されており、出口部材(43)には上端の偏平中空体(37)の上壁(45)の左側貫通穴(48)に通じる垂直貫通穴(61)が形成されている。これらの垂直貫通穴(59)(61)の内周面にはそれぞれめねじ(59a)(61a)が形成されている。   As shown in FIG. 10, the inlet member (42) is formed with a vertical through hole (59) communicating with the right through hole (48) of the upper wall (45) of the flat hollow body (37) at the upper end, The outlet member (43) is formed with a vertical through hole (61) communicating with the left through hole (48) of the upper wall (45) of the flat hollow body (37) at the upper end. Female threads (59a) (61a) are formed on the inner peripheral surfaces of these vertical through holes (59) (61), respectively.

図11に示すように、オイルクーラ(2)およびアフタークーラ(3)の左右両端部どうしの間に配置されたスペーサ(4)には、前後方向に伸びる複数の貫通穴(62)が左右方向に並んで形成されており、これにより伝熱量減少部が形成されている。これらのスペーサ(4)はオイルクーラ(2)の上端の偏平中空体(5)およびアフタークーラ(3)の下端の偏平中空体(37)にろう付されている。また、両スペーサ(4)間において、オイルクーラ(2)の上端の偏平中空体(5)とアフタークーラ(3)の下端の偏平中空体(37)との間も通風間隙(63)となされており、ここにもアフタークーラ(3)と同じアルミニウム製コルゲートフィン(41)が配されて両偏平中空体(37)にろう付されている。   As shown in FIG. 11, the spacer (4) disposed between the left and right ends of the oil cooler (2) and the aftercooler (3) has a plurality of through holes (62) extending in the front-rear direction. These are formed side by side, whereby a heat transfer amount reducing portion is formed. These spacers (4) are brazed to a flat hollow body (5) at the upper end of the oil cooler (2) and a flat hollow body (37) at the lower end of the aftercooler (3). Between the spacers (4), the air gap (63) is also formed between the flat hollow body (5) at the upper end of the oil cooler (2) and the flat hollow body (37) at the lower end of the after cooler (3). Here, the same aluminum corrugated fins (41) as the aftercooler (3) are arranged and brazed to both flat hollow bodies (37).

一体型熱交換装置(1)は、アルミニウムブレージングシート製平板(22)(23)(51)と、流路形成体(24)(52)と、連通部材(6)(38)と、バー(7)と、コルゲートフィン(9)(41)と、アルミニウムブレージングシート製下サイドプレート(12)および上サイドプレート(44)と、スペーサ(4)とを所定の順序で重ね合わせて適当な手段により仮止めし、これらを一括してろう付することにより製造される。 このとき、平板(22)(23)から溶け出した溶融ろう材により、前述した流路形成体(24)のエンドバー(28)と中間バー(26)、および流路形成体(52)のエンドバー(55)どうしがろう付される。   The integrated heat exchange device (1) includes an aluminum brazing sheet flat plate (22) (23) (51), a flow path forming body (24) (52), a communication member (6) (38), a bar ( 7), corrugated fins (9), (41), aluminum brazing sheet lower side plate (12) and upper side plate (44), and spacer (4) are overlaid in a predetermined order by appropriate means. It is manufactured by temporarily fixing and brazing these together. At this time, the end bar (28) and the intermediate bar (26) of the flow path forming body (24) and the end bar of the flow path forming body (52) are formed by the molten brazing material melted from the flat plates (22) and (23). (55) They are brazed together.

上述した一体型熱交換装置(1)において、高温のオイルは、図12に矢印Yで示すように、入出部材(11)の前側垂直貫通穴(35)から入口側ヘッダ部(30A)内に流入し、ついですべての偏平中空体(5)に分岐してその前側流路(15)内を右方に流れ、さらに連通部(21)を通って後側流路(16)内に入り、後側流路(16)内を左方に流れて出口側ヘッダ部(30B)内に流入し、入出部材(11)の後側垂直貫通穴(36)から流出する。そして、すべての偏平中空体(5)の前側流路(15)および後側流路(16)を流れている間に、通風間隙(8)(63)を前方に(矢印X参照)流れる低温の冷却風と熱交換して冷却される。   In the integrated heat exchanger (1) described above, high-temperature oil enters the inlet-side header portion (30A) from the front vertical through hole (35) of the input / output member (11) as indicated by an arrow Y in FIG. Inflow, then branched into all flat hollow bodies (5) and flowed to the right in the front flow path (15), and further into the rear flow path (16) through the communication portion (21), It flows leftward in the rear channel (16), flows into the outlet header (30B), and flows out from the rear vertical through hole (36) of the input / output member (11). Then, while flowing through the front flow path (15) and the rear flow path (16) of all the flat hollow bodies (5), the low temperature that flows forward (see arrow X) through the ventilation gaps (8) and (63) It is cooled by exchanging heat with the cooling air.

一方、高温の圧縮空気は、図12に矢印Zで示すように、入口部材(42)の垂直貫通穴(59)から入口側ヘッダ部(40A)内に流入し、ついですべての偏平中空体(37)に分岐して流路(47)内を左方に流れて出口側ヘッダ部(40B)に流入し、出口部材(43)の垂直貫通穴(61)から流出する。そして、すべての偏平中空体(37)内を流れている間に、通風間隙(39)(63)を前方に(矢印X参照)流れる低温の冷却風と熱交換して冷却される。   On the other hand, the hot compressed air flows into the inlet side header portion (40A) from the vertical through hole (59) of the inlet member (42) as shown by an arrow Z in FIG. 37), flows leftward in the flow path (47), flows into the outlet header (40B), and flows out from the vertical through hole (61) of the outlet member (43). And while flowing through all the flat hollow bodies (37), it is cooled by exchanging heat with the low-temperature cooling air flowing forward (see arrow X) through the ventilation gaps (39, 63).

ここで、オイルクーラ(2)の高温オイルおよびアフタークーラ(3)の高温圧縮空気のうちのいずれか一方の流れ、たとえば高温オイルの流れのみが止まった場合、オイルクーラ(2)とアフタークーラ(3)との温度差が大きくなり、アフタークーラ(3)からオイルクーラ(2)に熱が伝わる。しかしながら、スペーサ(4)における複数の貫通穴(62)からなる伝熱量減少部の働きにより、アフタークーラ(3)からオイルクーラ(2)への伝熱量は低減される。しかも、冷却風がスペーサ(4)の貫通穴(62)内を流れるので、アフタークーラ(3)からスペーサ(4)に伝わった熱はこの冷却風により奪われ、これによってもアフタークーラ(3)からオイルクーラ(2)への伝熱量は低減される。したがって、オイルクーラ(2)の上端の偏平中空体(5)を構成する2つの平板(22)(23)に発生する熱歪みが小さくなり、その結果これらの平板(22)(23)に発生する応力も小さくなって破損が防止される。   Here, if only one of the high temperature oil of the oil cooler (2) and the high temperature compressed air of the after cooler (3), for example, the flow of the high temperature oil stops, the oil cooler (2) and the after cooler ( The temperature difference from 3) increases, and heat is transferred from the aftercooler (3) to the oil cooler (2). However, the amount of heat transfer from the after cooler (3) to the oil cooler (2) is reduced by the action of the heat transfer amount reducing portion including the plurality of through holes (62) in the spacer (4). Moreover, since the cooling air flows in the through holes (62) of the spacer (4), the heat transferred from the after cooler (3) to the spacer (4) is taken away by this cooling air, and this also causes the after cooler (3). Heat transfer from the oil cooler to the oil cooler (2). Therefore, the thermal strain generated in the two flat plates (22) and (23) constituting the flat hollow body (5) at the upper end of the oil cooler (2) is reduced, and as a result, generated in these flat plates (22) and (23). The stress to be reduced is also reduced and damage is prevented.

図13はこの発明による一体型熱交換装置の他の実施形態を示す。   FIG. 13 shows another embodiment of the integrated heat exchange device according to the present invention.

図13に示す一体型熱交換装置(70)の場合、オイルクーラ(2)の上端の偏平中空体(5)と、上から2番目の偏平中空体(5)との間の右端部にもスペーサ(4)が配されて両偏平中空体(5)にろう付されている。その他の構成は、上述した第1の実施形態の一体型熱交換装置と同じである。なお、オイルクーラ(2)の上端の偏平中空体(5)と、上から2番目の偏平中空体(5)との間の左端部にもスペーサ(4)が配されて両偏平中空体(5)にろう付されていてもよい。   In the case of the integrated heat exchanger (70) shown in FIG. 13, the right end portion between the flat hollow body (5) at the upper end of the oil cooler (2) and the second flat hollow body (5) from the top is also provided. Spacers (4) are arranged and brazed to both flat hollow bodies (5). Other configurations are the same as those of the integrated heat exchange device of the first embodiment described above. A spacer (4) is also arranged at the left end between the flat hollow body (5) at the upper end of the oil cooler (2) and the second flat hollow body (5) from the top, so that both flat hollow bodies ( It may be brazed to 5).

この一体型熱交換装置(70)において、オイルクーラ(2)の高温オイルおよびアフタークーラ(3)の高温圧縮空気のうちのいずれか一方の流れ、たとえば高温オイルの流れのみが止まった際における上述したアフタークーラ(3)からオイルクーラ(2)への伝熱量は、上記第1の実施形態の場合よりも一層低減される。したがって、オイルクーラ(2)の上端の偏平中空体(5)を構成する2つの平板(22)(23)に発生する熱歪みが一層小さくなり、その結果これらの平板(22)(23)に発生する応力も一層小さくなって破損が確実に防止される。   In this integrated heat exchanger (70), the flow of either one of the high-temperature oil in the oil cooler (2) and the high-temperature compressed air in the after-cooler (3), for example, when only the flow of the high-temperature oil stops is described above. The amount of heat transfer from the aftercooler (3) to the oil cooler (2) is further reduced as compared with the case of the first embodiment. Therefore, the thermal strain generated in the two flat plates (22) and (23) constituting the flat hollow body (5) at the upper end of the oil cooler (2) is further reduced. As a result, these flat plates (22) and (23) The generated stress is further reduced and damage is reliably prevented.

上述した2つの実施形態において、左端部のスペーサ(4)は必ずしも必要とせず、このスペーサ(4)の代わりに、穴を有さないアルミニウム製のブロックが配置されていてもよい。   In the two embodiments described above, the spacer (4) at the left end is not necessarily required, and instead of the spacer (4), an aluminum block having no holes may be disposed.

また、上記2つの実施形態において、図14に示すように、スペーサ(4)の貫通穴(62)の内周面に前後方向に伸びる複数の凸部(75)を形成しておいてもよい。この場合、スペーサ(4)から冷却風への伝熱面積が増大し、オイルクーラ(2)の高温オイルの流れが止まった際にアフタークーラ(3)からスペーサ(4)に伝わった熱を、貫通穴(62)内を流れる冷却風により奪う効果が一層向上する。なお、凸部(75)に代えて、あるいは凸部(75)に加えて、貫通穴(62)の内周面に前後方向に伸びる複数の凹部を形成しておいてもよい。   In the above two embodiments, as shown in FIG. 14, a plurality of convex portions (75) extending in the front-rear direction may be formed on the inner peripheral surface of the through hole (62) of the spacer (4). . In this case, the heat transfer area from the spacer (4) to the cooling air increases, and the heat transferred from the after cooler (3) to the spacer (4) when the flow of high-temperature oil in the oil cooler (2) stops, The effect of taking away by the cooling air flowing through the through hole (62) is further improved. Instead of the convex portion (75) or in addition to the convex portion (75), a plurality of concave portions extending in the front-rear direction may be formed on the inner peripheral surface of the through hole (62).

上記すべての実施形態においては、この発明による一体型熱交換装置はロードコンプレッサに用いられるものであって、オイルクーラとアフタークーラとが一体化されているが、これに限定されるものではなく、ロードコンプレッサ、ガスタービン用コンプレッサ、鉄道車両用コンプレッサなどにおけるアフタークーラ、オイルクーラおよびラジエータのうちの2または3の熱交換部が一体化されることもあり、またアフタークーラ、オイルクーラおよびラジエータなどの単体として適用されることもある。   In all the above embodiments, the integrated heat exchange device according to the present invention is used for a load compressor, and an oil cooler and an aftercooler are integrated, but the present invention is not limited to this. Two or three of the aftercoolers, oil coolers, and radiators in road compressors, gas turbine compressors, railway vehicle compressors, etc. may be integrated, and aftercoolers, oil coolers, radiators, etc. Sometimes applied as a single unit.

さらに、この発明による一体型熱交換装置は、クレーン単体、デッキクレーン、クレーン車、ショベルカーなどの油圧機器や、工作機械に用いられるオイルを冷却するオイルクーラとして用いられる。   Furthermore, the integrated heat exchange device according to the present invention is used as an oil cooler for cooling oil used in hydraulic equipment such as a crane alone, a deck crane, a crane truck, and a shovel car, or a machine tool.

次に、この発明の具体的実施例について説明する。   Next, specific examples of the present invention will be described.

実施例1
オイルクーラ(2)の偏平中空体(5)の本数が7本、アフタークーラ(3)の偏平中空体(37)の本数が3本、オイルクーラ(2)における連通部材(6)とバー(7)との間隔であるコア幅が550mm、アフタークーラ(3)における両連通部材(38)間の間隔であるコア幅が500mm、前後方向の幅が100mmであり、図1に示す構成の一体型熱交換装置(1)を用意した。但し、オイルクーラ(2)における上端の偏平中空体(5)と上から2番目の偏平中空体(5)との間の通風間隙(8)に配されたコルゲートフィン(9)の右端部は所定長さにわたって切除しておいた。そして、図15に示すように、オイルクーラ(2)の上端の偏平中空体(5)における下面の右端部、すなわちコルゲートフィン(9)が切除された部分の前後両端部に、それぞれ応力測定装置(80)および温度測定装置(81)を、前者が前後方向内側に来るように取り付けた。なお、前後の応力測定装置(80)の偏平中空体(5)の前後両側縁からの距離はそれぞれ10mmである。
Example 1
The number of flat hollow bodies (5) in the oil cooler (2) is 7, the number of flat hollow bodies (37) in the after cooler (3) is 3, and the communication member (6) and bar (3) in the oil cooler (2) The core width, which is the distance to 7), is 550 mm, the core width, which is the distance between the two communication members 38 in the aftercooler (3), is 500 mm, and the width in the front-rear direction is 100 mm. A body heat exchanger (1) was prepared. However, the right end of the corrugated fin (9) arranged in the ventilation gap (8) between the flat hollow body (5) at the upper end of the oil cooler (2) and the second flat hollow body (5) from above is It was excised over a predetermined length. Then, as shown in FIG. 15, stress measuring devices are respectively provided at the right end portion of the lower surface of the flat hollow body (5) at the upper end of the oil cooler (2), that is, the front and rear end portions of the portion where the corrugated fin (9) is cut off. (80) and the temperature measuring device (81) were attached so that the former was inside in the front-rear direction. The distance from the front and rear side edges of the flat hollow body (5) of the front and rear stress measuring device (80) is 10 mm.

ついで、温度110℃のオイルを、流量50l/minとなるようにオイルクーラ(2)の入出部材(11)の前側垂直貫通穴(35)から供給するとともに、温度110℃のオイルを、流量4.8l/minとなるようにアフタークーラ(3)の入口部材(42)の垂直貫通穴(59)から供給し、さらに温度30℃の冷却風を、流量38m/minとなるように後方から前方に流した。オイルクーラ(2)の入出部材(11)の後側垂直貫通穴(36)から流出してきたオイルの温度は95℃であり、アフタークーラ(3)の出口部材(43)の垂直貫通穴(61)から流出してきたオイルの温度は75度であった。 Next, oil at a temperature of 110 ° C. is supplied from the front vertical through hole (35) of the inlet / outlet member (11) of the oil cooler (2) at a flow rate of 50 l / min, and oil at a temperature of 110 ° C. is supplied at a flow rate of 4 Supplied from the vertical through hole (59) of the inlet member (42) of the aftercooler (3) so as to be 8 l / min, and cooling air at a temperature of 30 ° C. is supplied from the rear so that the flow rate is 38 m 3 / min. I shed it forward. The temperature of the oil flowing out from the rear vertical through hole (36) of the inlet / outlet member (11) of the oil cooler (2) is 95 ° C., and the vertical through hole (61 of the outlet member (43) of the after cooler (3) The temperature of the oil that spilled out from the tank was 75 degrees.

そして、オイルクーラ(2)にオイルを流すON状態およびオイルを流さないOFF状態と、アフタークーラ(3)にオイルを流すON状態およびオイルを流さないOFF状態とを、表1に示すようにして切り換えつつ、応力測定装置(80)および温度測定装置(81)により偏平中空体(5)の下壁(13)の応力変化および温度変化を測定した。なお、上記ON状態およびOFF状態の切り換えは、応力および温度が定常状態になったときに行った。その結果を図16に示す。   Table 1 shows the ON state in which oil flows to the oil cooler (2) and the OFF state in which oil does not flow, and the ON state in which oil flows to the aftercooler (3) and the OFF state in which no oil flows. While switching, the stress change and temperature change of the lower wall (13) of the flat hollow body (5) were measured by the stress measurement device (80) and the temperature measurement device (81). The switching between the ON state and the OFF state was performed when the stress and temperature were in a steady state. The result is shown in FIG.

また、偏平中空体(5)の下壁(13)に最大応力が発生した際の上記ON状態およびOFF状態を表2に示す。

Figure 0004621487
Table 2 shows the ON state and the OFF state when the maximum stress is generated in the lower wall (13) of the flat hollow body (5).
Figure 0004621487

Figure 0004621487
Figure 0004621487

実施例2
図17に示すように、オイルクーラ(2)の上端の偏平中空体(5)と上から2番目の偏平中空体(5)の右端部どうしの間にもスペーサ(4)を配置して両偏平中空体(5)にろう付したこと、ならびに上から2番目の偏平中空体(5)と上から3番目の偏平中空体(5)との間の通風間隙(8)に配されたコルゲートフィン(9)の右端部を所定長さにわたって切除し、上から2番目の偏平中空体(5)の下面における右端部の前後両端部に、それぞれ応力測定装置(80)および温度測定装置(81)を取り付けたことを除いては、上記実施例1と同様にして、応力測定装置(80)および温度測定装置(81)により偏平中空体(5)の下壁(13)の応力変化および温度変化を測定した。その結果を図18に示す。
Example 2
As shown in FIG. 17, a spacer (4) is disposed between the right ends of the flat hollow body (5) at the upper end of the oil cooler (2) and the second flat hollow body (5) from above. Corrugation arranged in the ventilation gap (8) between the flat hollow body (5) second from the top and the third flat hollow body (5) from the top. The right end of the fin (9) is cut out over a predetermined length, and a stress measuring device (80) and a temperature measuring device (81 are respectively attached to the front and rear ends of the right end on the lower surface of the second flat hollow body (5) from above. ), And the stress change and temperature of the lower wall (13) of the flat hollow body (5) by the stress measurement device (80) and the temperature measurement device (81) in the same manner as in Example 1 above. Changes were measured. The result is shown in FIG.

また、偏平中空体(5)の下壁(13)に最大応力が発生した際の上記ON状態およびOFF状態を表2に示す。   Table 2 shows the ON state and the OFF state when the maximum stress is generated in the lower wall (13) of the flat hollow body (5).

比較例
図19に示すように、スペーサ(4)に代えて、貫通穴を有さないアルミニウム製ブロック(85)を用いたことを除いては、上記実施例1と同様にして、応力測定装置(80)および温度測定装置(81)により偏平中空体(5)の下壁(13)の応力変化および温度変化を測定した。その結果を図20に示す。
Comparative Example As shown in FIG. 19, the stress measuring device was the same as Example 1 except that an aluminum block (85) having no through hole was used instead of the spacer (4). (80) and a temperature measuring device (81) were used to measure the stress change and temperature change of the lower wall (13) of the flat hollow body (5). The result is shown in FIG.

また、偏平中空体(5)の下壁(13)に最大応力が発生した際の上記ON状態およびOFF状態を表2に示す。   Table 2 shows the ON state and the OFF state when the maximum stress is generated in the lower wall (13) of the flat hollow body (5).

なお、図16、図18および図20において、+側の応力は引張方向であり、−側の応力は圧縮方向である。また、表2の最大応力の欄において、○印は発生した最大応力が、下壁(13)を形成する平板(23)の繰り返し数10回における疲労強度よりも小さいことを示し、×印は発生した最大応力が、下壁(13)を形成する平板(23)の繰り返し数10回における疲労強度よりも大きいことを示す。 In FIGS. 16, 18 and 20, the stress on the + side is the tensile direction, and the stress on the − side is the compression direction. Further, in the column of maximum stress in Table 2, a circle indicates that the generated maximum stress is smaller than the fatigue strength at 10 7 repetitions of the flat plate (23) forming the lower wall (13). It indicates that the maximum stress generated is greater than the fatigue strength at repeated several 10 7 times of the plate (23) forming a lower wall (13).

実施例1〜2および比較例から、実施例1および2においては、発生した最大応力は下壁(13)を形成する平板(23)の繰り返し数10回における疲労強度よりも小さくなるのに対し、比較例においては、最大応力は下壁(13)を形成する平板(23)の繰り返し数10回における疲労強度よりも大きくなることが判明した。 From Examples 1 and 2 and the comparative example, in Examples 1 and 2, the generated maximum stress is smaller than the fatigue strength at 10 7 repetitions of the flat plate (23) forming the lower wall (13). contrast, in the comparative example, the maximum stress was found to be greater than the fatigue strength at repeated several 10 7 times of the plate (23) forming a lower wall (13).

この発明による一体型熱交換装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the integrated heat exchange apparatus by this invention. オイルクーラの一部分を示す分解斜視図である。It is a disassembled perspective view which shows a part of oil cooler. オイルクーラの偏平中空体を示す伝熱面積拡大部を省略した一部切り欠き斜視図である。It is a partially-cutaway perspective view which abbreviate | omitted the heat-transfer area expansion part which shows the flat hollow body of an oil cooler. オイルクーラの偏平中空体の右端部を拡大して示す垂直断面図である。It is a vertical sectional view which expands and shows the right end part of the flat hollow body of an oil cooler. オイルクーラの偏平中空体の流路形成体の製造方法を示す左端部の部分斜視図である。It is a fragmentary perspective view of the left end part which shows the manufacturing method of the flow-path formation body of the flat hollow body of an oil cooler. オイルクーラの偏平中空体の流路形成体の製造方法を示す右端部の部分斜視図である。It is a fragmentary perspective view of the right end part which shows the manufacturing method of the flow-path formation body of the flat hollow body of an oil cooler. オイルクーラの下端部を示す分解斜視図である。It is a disassembled perspective view which shows the lower end part of an oil cooler. アフタークーラの一部分を示す分解斜視図である。It is a disassembled perspective view which shows a part of aftercooler. アフタークーラの偏平中空体の流路形成体の製造方法を示す左端部の部分斜視図である。It is a fragmentary perspective view of the left end part which shows the manufacturing method of the flow-path formation body of the flat hollow body of an aftercooler. アフタークーラの上端部を示す分解斜視図である。It is a disassembled perspective view which shows the upper end part of an aftercooler. オイルクーラとアフタークーラとの境界部分を示す分解斜視図である。It is a disassembled perspective view which shows the boundary part of an oil cooler and an aftercooler. 一体型熱交換装置におけるオイルおよび圧縮空気の流れ方を示す図である。It is a figure showing how oil and compressed air flow in an integrated heat exchange device. この発明による一体型熱交換装置の他の実施形態の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of other embodiment of the integrated heat exchange apparatus by this invention. スペーサの変形例を示す斜視図である。It is a perspective view which shows the modification of a spacer. 実施例1に用いた一体型熱交換装置に応力測定装置および温度測定装置を取り付けた状態を示し、(a)は部分正面図、(b)は下方から見た水平断面図である。The state which attached the stress measuring apparatus and the temperature measuring apparatus to the integrated heat exchange apparatus used for Example 1 is shown, (a) is a partial front view, (b) is a horizontal sectional view seen from below. 実施例1の応力変化および温度変化を示すグラフである。4 is a graph showing stress changes and temperature changes in Example 1. 実施例2に用いた一体型熱交換装置に応力測定装置および温度測定装置を取り付けた状態を示す部分正面図である。It is a partial front view which shows the state which attached the stress measuring device and the temperature measuring apparatus to the integrated heat exchange apparatus used for Example 2. FIG. 実施例2の応力変化および温度変化を示すグラフである。It is a graph which shows the stress change and temperature change of Example 2. FIG. 比較例に用いた一体型熱交換装置に応力測定装置および温度測定装置を取り付けた状態を示す部分正面図である。It is a partial front view which shows the state which attached the stress measuring device and the temperature measuring apparatus to the integrated heat exchange apparatus used for the comparative example. 比較例の応力変化および温度変化を示すグラフである。It is a graph which shows the stress change and temperature change of a comparative example.

(1):一体型熱交換装置
(2):オイルクーラ(熱交換部)
(3):アフタークーラ(熱交換部)
(4):スペーサ
(5):偏平中空体
(6):連通部材
(13):上下壁(長方形状壁部)
(14):周壁(周壁部)
(14a):右側端壁部
(14b):前後両長側壁部
(14c):左側短側壁部
(15)(16):流路
(17):仕切壁(仕切壁部)
(18)(19):貫通穴
(21):連通部
(22)(23):平板
(22a)(23a):屈曲部
(24):流路形成体
(25):サイドバー
(26):中間バー
(27):伝熱面積拡大部
(28):エンドバー
(33)(34):垂直貫通穴
(37):偏平中空体
(38):連通部材
(45):上下壁(長方形状壁部)
(46):周壁(周壁部)
(47):流路
(62):貫通穴
(75):凸部
(1): Integrated heat exchanger
(2): Oil cooler (heat exchanger)
(3): After cooler (heat exchanger)
(4): Spacer
(5): Flat hollow body
(6): Communication member
(13): Upper and lower walls (rectangular walls)
(14): Peripheral wall (peripheral wall)
(14a): Right end wall
(14b): Front and rear long side walls
(14c): Left short side wall
(15) (16): Channel
(17): Partition wall (partition wall)
(18) (19): Through hole
(21): Communication part
(22) (23): Flat plate
(22a) (23a): Bending part
(24): Channel formation body
(25): Sidebar
(26): Intermediate bar
(27): Heat transfer area expansion section
(28): End bar
(33) (34): Vertical through hole
(37): Flat hollow body
(38): Communication member
(45): Upper and lower walls (rectangular wall)
(46): Perimeter wall (peripheral wall)
(47): Flow path
(62): Through hole
(75): Convex part

Claims (14)

相互に間隔をおいて並列状に設けられかつ内部に流路を有する複数の偏平中空体と、隣り合う偏平中空体の少なくとも一端部どうしの間に配置されかつ隣り合う偏平中空体の流路どうしを通じさせる連通部材とを備えた複数の熱交換部が、偏平中空体の厚さ方向に並べられており、偏平中空体が、互いに対向する2つの長方形状壁部と、両長方形状壁部の周縁部間に跨る周壁部とを有しており、隣り合う2つの熱交換部の近接した偏平中空体間にスペーサが配置され、スペーサに貫通穴からなる伝熱量減少部が形成され、各熱交換部の隣り合う偏平中空体間を偏平中空体の幅方向に低温流体が流れるようになされ、スペーサの伝熱量減少部となる貫通穴が偏平中空体の幅方向に伸びている一体型熱交換装置。 A plurality of flat hollow bodies that are provided in parallel and spaced apart from each other, and a flow path between adjacent flat hollow bodies that are disposed between at least one end of adjacent flat hollow bodies. A plurality of heat exchanging portions provided with a communicating member that is passed through are arranged in the thickness direction of the flat hollow body, and the flat hollow body includes two rectangular wall portions facing each other, and two rectangular wall portions has a peripheral wall portion that spans between the peripheral portion, the spacer is arranged between the flat hollow body adjacent the two heat exchange portion adjacent heat transfer amount reduction unit consisting of the through hole in the spacer is formed, the heat Integrated heat exchange in which low-temperature fluid flows in the width direction of the flat hollow body between the adjacent flat hollow bodies of the exchange section, and the through-hole serving as the heat transfer amount reducing portion of the spacer extends in the width direction of the flat hollow body apparatus. スペーサの伝熱量減少部となる貫通穴の内周面に、貫通穴の長さ方向に伸びる複数の凸部および/または凹部が形成されている請求項1記載の一体型熱交換装置。 The integrated heat exchange device according to claim 1 , wherein a plurality of convex portions and / or concave portions extending in a length direction of the through hole are formed on an inner peripheral surface of the through hole serving as a heat transfer amount reducing portion of the spacer . 少なくとも1つの熱交換部の偏平中空体が、互いに間隔をおいて設けられた2つの長方形状壁部と、両長方形状壁部の周縁間に跨る周壁部と、内部を偏平中空体の長さ方向に伸びる2つの流路に区切る仕切壁部とよりなり、両長方形状壁部の一端部における仕切壁部の両側部分に、それぞれ両流路を外部に通じさせる2つの貫通穴が偏平中空体の幅方向に間隔をおいて形成され、仕切壁部における貫通穴とは反対側の端部が切除されて2つの流路が相互に連通させられてU字状流路が形成され、連通部材に両長方形状壁部の2つの貫通穴に通じる2つの貫通穴が形成されている請求項1または2記載の一体型熱交換装置。 The flat hollow body of at least one heat exchange part has two rectangular wall parts provided at intervals, a peripheral wall part straddling between the peripheral edges of both rectangular wall parts, and the length of the flat hollow body inside It is composed of a partition wall section that is divided into two flow paths extending in the direction, and two through-holes that respectively lead both flow paths to the outside are formed into flat hollow bodies on both side portions of the partition wall section at one end of both rectangular wall sections. The end of the partition wall on the side opposite to the through hole is cut off to connect the two flow paths to each other to form a U-shaped flow path. The integrated heat exchange device according to claim 1 or 2, wherein two through-holes communicating with the two through-holes in both rectangular wall portions are formed . U字状流路を有する偏平中空体が、互いに間隔をおいて配置された長方形状平板と、両平板の両長側縁部間に配された2つの直線状サイドバーと、両サイドバー間にこれらと間隔をおいて配された1つの中間バーと、両サイドバーおよび中間バーに跨って高さの中間部に一体に設けられた2つの伝熱面積拡大部と、両サイドバーの一端にそれぞれ一体に設けられて内方に伸び、かつ先端が中間バーの一端部の両側面に当接させられてろう付されたエンドバーとよりなり、中間バーの他端部が切除され、両伝熱面積拡大部におけるエンドバー側の端部がそれぞれ切除され、両平板におけるエンドバー側の端部における中間バーの両側部分にそれぞれ貫通穴が形成されており、両平板により両長方形状壁部が形成され、両平板におけるエンドバーとは反対側の端部をそれぞれ互いに他の平板側に曲げるとともにこれらの屈曲部を相互に重ね合わせてろう付することにより周壁部における一方の短側壁部が形成され、流路形成体の両サイドバーにより周壁部の2つの長側壁部が形成され、流路形成体のエンドバーにより周壁部の他方の短側壁部が形成されている請求項3記載の一体型熱交換装置。 A flat hollow body having a U-shaped channel is formed between a rectangular flat plate spaced from each other, two linear side bars arranged between both long side edges of both flat plates, and the side bars. One intermediate bar spaced apart from these, two sidebars, two heat transfer area enlarged portions integrally provided at the height intermediate portion across the intermediate bars, and one end of each sidebar And an end bar which is brazed by being in contact with both side surfaces of one end portion of the intermediate bar, and the other end portion of the intermediate bar is cut off. The end portions on the end bar side in the thermal area expansion portion are respectively cut off, and through holes are formed in both side portions of the intermediate bar at the end bar side ends in both flat plates, and both rectangular wall portions are formed by both flat plates. End bars on both plates Is bent to the other flat plate side, and the bent portions are overlapped with each other and brazed to form one short side wall portion on the peripheral wall portion. The integrated heat exchange device according to claim 3, wherein two long side wall portions of the peripheral wall portion are formed by the bar, and the other short side wall portion of the peripheral wall portion is formed by the end bar of the flow path forming body . 両平板がそれぞれアルミニウムブレージングシートからなり、流路形成体がアルミニウム押出形材よりなる請求項4記載の一体型熱交換装置。 5. The integrated heat exchange device according to claim 4, wherein both flat plates are each made of an aluminum brazing sheet, and the flow path forming body is made of an aluminum extruded profile . U字状流路を有する偏平中空体を備えた熱交換部と、これに隣接する熱交換部との間に配置されるスペーサが、U字状流路を有する偏平中空体における2つの流路が相互に連通している側の端部に配置されている請求項3〜5のうちのいずれかに記載の一体型熱交換装置。 Two flow paths in a flat hollow body having a U-shaped flow path, in which a spacer disposed between the heat exchange section having a flat hollow body having a U-shaped flow path and a heat exchange section adjacent thereto is provided. The integrated heat exchange device according to any one of claims 3 to 5, wherein the heat exchanger is disposed at an end portion on a side where they are in communication with each other . U字状流路を有する偏平中空体を備えた熱交換部において、この熱交換部に隣接する他の熱交換部側に位置する複数の偏平中空体における2つの流路が相互に連通している側の端部どうしの間に、第2のスペーサが配置され、第2スペーサに伝熱量減少部が形成されている請求項6記載の一体型熱交換装置。 In the heat exchanging part provided with the flat hollow body having the U-shaped flow path, the two flow paths in the plurality of flat hollow bodies located on the other heat exchanging part side adjacent to the heat exchanging part communicate with each other. The integrated heat exchanger according to claim 6 , wherein a second spacer is disposed between the adjacent end portions, and a heat transfer amount reducing portion is formed in the second spacer . 第2のスペーサの伝熱量減少部が、第2スペーサに形成された貫通穴からなる請求項7記載の一体型熱交換装置。 The integrated heat exchange device according to claim 7, wherein the heat transfer amount reducing portion of the second spacer comprises a through hole formed in the second spacer . 第2スペーサの伝熱量減少部となる貫通穴が偏平中空体の幅方向に伸びている請求項8記載の一体型熱交換装置。 The integrated heat exchange device according to claim 8 , wherein a through hole serving as a heat transfer amount reducing portion of the second spacer extends in the width direction of the flat hollow body . 第2スペーサの伝熱量減少部となる貫通穴の内周面に、貫通穴の長さ方向に伸びる複数の凸部および/または凹部が形成されている請求項9記載の一体型熱交換装置。 The integrated heat exchange device according to claim 9 , wherein a plurality of convex portions and / or concave portions extending in a length direction of the through hole are formed on an inner peripheral surface of the through hole serving as a heat transfer amount reducing portion of the second spacer . 隣接する2つの熱交換部のうちの一方がオイルクーラ、アフタークーラおよびラジエータのうちのいずれか1つであり、同他方がオイルクーラ、アフタークーラおよびラジエータのうちの他のいずれか1つである請求項1〜10のうちのいずれかに記載の一体型熱交換装置。 One of the two adjacent heat exchanging portions is one of an oil cooler, an aftercooler, and a radiator, and the other is any one of the oil cooler, the aftercooler, and the radiator. The integrated heat exchange device according to any one of claims 1 to 10 . 請求項1〜11のうちのいずれかに記載された一体型熱交換装置を備えているコンプレッサ The compressor provided with the integrated heat exchange apparatus in any one of Claims 1-11 . 請求項1〜11のうちのいずれかに記載された一体型熱交換装置を備えている工作機械 A machine tool comprising the integrated heat exchange device according to any one of claims 1 to 11 . 請求項1〜11のうちのいずれかに記載された一体型熱交換装置を備えている油圧機器 The hydraulic equipment provided with the integrated heat exchange apparatus in any one of Claims 1-11 .
JP2004347955A 2003-12-02 2004-12-01 Integrated heat exchanger Expired - Fee Related JP4621487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347955A JP4621487B2 (en) 2003-12-02 2004-12-01 Integrated heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003402795 2003-12-02
JP2004347955A JP4621487B2 (en) 2003-12-02 2004-12-01 Integrated heat exchanger

Publications (2)

Publication Number Publication Date
JP2005188920A JP2005188920A (en) 2005-07-14
JP4621487B2 true JP4621487B2 (en) 2011-01-26

Family

ID=34797491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347955A Expired - Fee Related JP4621487B2 (en) 2003-12-02 2004-12-01 Integrated heat exchanger

Country Status (1)

Country Link
JP (1) JP4621487B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247976A (en) * 2006-03-16 2007-09-27 Showa Denko Kk Heat exchanger
CN101949657A (en) * 2010-09-21 2011-01-19 宁波瑞易电器科技发展有限公司 Heat recovery heat exchanger
US20170081040A1 (en) * 2015-09-21 2017-03-23 Hamilton Sundstrand Corporation Heat exchanger and cooling system for generator electronics cooling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989477A (en) * 1995-09-21 1997-04-04 Showa Alum Corp Manufacture of heat exchanger
JPH10213382A (en) * 1997-01-30 1998-08-11 Showa Alum Corp Composite heat exchanger
JP2000018880A (en) * 1998-06-23 2000-01-18 Showa Alum Corp Integrated heat exchanger
JP2002250596A (en) * 2001-02-22 2002-09-06 Showa Denko Kk Method for manufacturing stacked heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989477A (en) * 1995-09-21 1997-04-04 Showa Alum Corp Manufacture of heat exchanger
JPH10213382A (en) * 1997-01-30 1998-08-11 Showa Alum Corp Composite heat exchanger
JP2000018880A (en) * 1998-06-23 2000-01-18 Showa Alum Corp Integrated heat exchanger
JP2002250596A (en) * 2001-02-22 2002-09-06 Showa Denko Kk Method for manufacturing stacked heat exchanger

Also Published As

Publication number Publication date
JP2005188920A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4724594B2 (en) Heat exchanger
JP4724433B2 (en) Heat exchanger
JP2005326135A (en) Heat exchanger
US7219720B2 (en) Flat hollow body for passing fluid therethrough, heat exchanger comprising the hollow body and process for fabricating the heat exchanger
WO2007088850A1 (en) Heat exchanger for vehicle
JP4898341B2 (en) Heat exchanger
US8726507B2 (en) Method for manufacturing a heat exchanger and exchanger obtained by the method
JP4621487B2 (en) Integrated heat exchanger
JP2014214897A (en) Heat exchanger
CN100414245C (en) Heat exchanger and process for fabricating same
JP2005207726A (en) Heat exchanger and manufacturing method therefor
JP4350390B2 (en) Heat exchanger and manufacturing method thereof
JP2008082672A (en) Heat exchanger
JP5140803B2 (en) Heat exchanger and manufacturing method thereof
JP2007032993A (en) Heat exchanger
JP2007024440A (en) Heat exchanger
JP2007178017A (en) Heat exchanger
JP4225744B2 (en) Heat exchanger
JP2010032145A (en) Heat exchanger
JP2010266174A (en) Heat exchanger
JP2004198004A (en) Heat exchanger and manufacturing method thereof
JP2007187435A (en) Heat exchanger
CN100368755C (en) Flat hollow body for passing fluid therethrough, heat exchanger comprising the hollow body and process for fabricating the heat exchanger
JP2011021847A (en) Heat exchanger
JP2007247976A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees