JP4620435B2 - Pattern matching method - Google Patents

Pattern matching method Download PDF

Info

Publication number
JP4620435B2
JP4620435B2 JP2004342519A JP2004342519A JP4620435B2 JP 4620435 B2 JP4620435 B2 JP 4620435B2 JP 2004342519 A JP2004342519 A JP 2004342519A JP 2004342519 A JP2004342519 A JP 2004342519A JP 4620435 B2 JP4620435 B2 JP 4620435B2
Authority
JP
Japan
Prior art keywords
area
value
pattern
density
similarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004342519A
Other languages
Japanese (ja)
Other versions
JP2006153581A (en
Inventor
和彦 福田
勝 田ノ下
義則 山
雅之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004342519A priority Critical patent/JP4620435B2/en
Publication of JP2006153581A publication Critical patent/JP2006153581A/en
Application granted granted Critical
Publication of JP4620435B2 publication Critical patent/JP4620435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Coins (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

この発明は、金属プレス加工品や樹脂成形品など自動的に大量に生産され凹凸および濃淡をもつ、例えば記念メダル等の良否判定を行なう検査装置に適用されるパターンマッチング方式に関する。   The present invention relates to a pattern matching method that is applied to an inspection apparatus that automatically determines a quality of, for example, a medal or the like, which is automatically produced in large quantities such as a metal stamped product or a resin molded product and has unevenness and shading.

従来、この種の検査として、未知パターンの標準パターンとの整合の度合いからパターン判別を行なうもの(特許文献1参照)や、連結性解析により形状の輪郭を追跡・抽出するもの(特許文献2参照)など、種々のものがある。
特開平04−024749号公報(第1−2頁、図4) 特開平04−049150号公報(第4−6頁、図1)
Conventionally, as this type of inspection, a pattern is discriminated based on the degree of matching of an unknown pattern with a standard pattern (see Patent Document 1), or a shape contour is tracked and extracted by connectivity analysis (see Patent Document 2). Etc.).
Japanese Patent Laid-Open No. 04-024749 (page 1-2, FIG. 4) Japanese Patent Laid-Open No. 04-049150 (page 4-6, FIG. 1)

しかし、上記いずれの方式も、平面上に記録された文字,図形等の特徴を検査するもので、メダル等のように凹凸と濃淡の両方をもつ対象物の検査には、認識のアルゴリズムそのものを部分的には利用することはできるとしても、効率の良い高精度な検査ができないという問題がある。
したがって、この発明の課題は、凹凸と濃淡の両方をもつ対象物の良否を効率良く高精度に検査できるようにすることにある。
However, each of the above methods inspects the characteristics of characters, figures, etc. recorded on a flat surface, and the recognition algorithm itself is used to inspect objects with both unevenness and shading, such as medals. Even though it can be partially used, there is a problem that an efficient and highly accurate inspection cannot be performed.
Therefore, the subject of this invention is enabling it to test | inspect the quality of the target object which has both unevenness | corrugation and lightness efficiently and with high precision.

このような課題を解決するため、請求項1の発明では、凹凸と濃淡のある対象物を撮像し、その撮像された画像を画素単位に分割し画素ごとに濃度値を求めてパターンマッチングにより対象物の検査を行なうパターンマッチング方式において、
前記対象物を含む領域を外周領域,模様領域,無地領域および文字領域を含む複数の小領域に分割し、各小領域ごとに基準となるマスタ画素との類似度,濃度比を演算するとともに、濃度の分散値を演算し、類似度は所定の設定値にマージンを考慮した値以上か否か、濃度比および濃度分散の各々は所定の上,下限値にそれぞれマージンを考慮した範囲内にあるか否かによりその良否判定を行ない、前記類似度の設定値、前記濃度比と濃度分散の各上下限値およびマージンは追加学習により更新して行くとともに、模様を僅かに含む無地領域については、この領域を模様が或る値以下になる位置まで移動させ、移動させた小領域を新たな小領域として前記各種演算を行なうことを特徴とする。
In order to solve such a problem, in the invention of claim 1, an object having unevenness and shading is imaged, the captured image is divided into pixel units, a density value is obtained for each pixel, and an object is obtained by pattern matching. In pattern matching method to inspect things,
The area including the object is divided into a plurality of small areas including an outer peripheral area, a pattern area, a plain area, and a character area, and a similarity and a density ratio with a master pixel serving as a reference are calculated for each small area, The density dispersion value is calculated, and whether the similarity is equal to or greater than a value that takes a margin into consideration for a predetermined set value, and each of the density ratio and density variance is within a range that takes a margin into consideration for a predetermined upper and lower limit value, respectively. whether by have rows that quality determination, the similarity of the set value, together with the concentration ratio and the upper limit value and the margin of concentration dispersion is gradually updated by additional learning, the solid area slightly containing a pattern Is characterized in that this region is moved to a position where the pattern becomes a certain value or less, and the various operations are performed with the moved small region as a new small region .

この発明によれば、
1)2値化に比べて検査物表面の濃淡変動の影響を受け難い。
2)背景の明るさによる変動の影響が少ない。
3)位置変動や回転変動に追従しやすい。
などの理由から、高精度の検査が可能になるという利点が得られる。
According to this invention,
1) Compared to binarization, it is less susceptible to variations in shade on the surface of the inspection object.
2) The influence of fluctuation due to the brightness of the background is small.
3) Easy to follow position fluctuation and rotation fluctuation.
Therefore, there is an advantage that high-precision inspection is possible.

図1はこの発明が適用される装置を示すブロック図である。これは、メダル等の前面用と後面用に各画像処理装置1A,1Bが設けられた例で、これに対応してカメラ2A,2B、照明器3A,3Bおよび照明電源E1,E2等が設けられている。さらには、後面表示用としてLCDモニタ7B、前面と後面表示用としてCRTモニタ7Aが設けられ、前面と後面の表示切替がビデオスイッチ6にて行なわれるようになっている。前面と後面の画像データの分配は、分配器5により行なわれる。8はビデオを印刷するためのビデオプリンタである。4は機械的な部分の動作を司るシーケンサであり、また、PC(パーソナルコンピュータ:パソコン)9、モニタ10およびプリンタ11等により、画像処理装置1A,1Bに接続されるデータ処理装置が構成されている。   FIG. 1 is a block diagram showing an apparatus to which the present invention is applied. This is an example in which the image processing apparatuses 1A and 1B are provided for the front side and the rear side of a medal or the like. Correspondingly, cameras 2A and 2B, illuminators 3A and 3B, illumination power sources E1 and E2, etc. are provided. It has been. Furthermore, an LCD monitor 7B is provided for rear display, a CRT monitor 7A is provided for front and rear display, and display switching between the front and rear is performed by the video switch 6. Distribution of the image data of the front surface and the rear surface is performed by the distributor 5. Reference numeral 8 denotes a video printer for printing video. Reference numeral 4 denotes a sequencer that controls the operation of the mechanical portion, and a data processing apparatus connected to the image processing apparatuses 1A and 1B is configured by a PC (personal computer: personal computer) 9, a monitor 10, a printer 11, and the like. Yes.

図2はこの発明の実施の形態を説明するフローチャートである。
まず、カメラを介して画像の取り込みを行なう(ステップS1)。画像処理装置は撮像画像を、例えば480×512の画素に分割し画素ごとに2値化する。ステップS2では、メダル等が表か裏かを判別する。これは、表か裏かによって基準となるマスタが異なるためである。表か裏かが決まったら、その画像の位置決めのための画素を探し、マスタ画像(辞書画像)と一致するように位置,角度を補正する(ステップS3,S4)。
FIG. 2 is a flowchart for explaining the embodiment of the present invention.
First, an image is captured through the camera (step S1). The image processing apparatus divides the captured image into, for example, 480 × 512 pixels and binarizes each pixel. In step S2, it is determined whether the medal or the like is front or back. This is because the reference master differs depending on whether it is front or back. When the front or back is determined, a pixel for positioning the image is searched, and the position and angle are corrected so as to coincide with the master image (dictionary image) (steps S3 and S4).

次に、ステップS5で、判定対象領域を例えば20×20画素程度の小領域に分割する(確定を含む)。この各小領域は、メダル等の外周部(外周領域)、模様のある部分(模様領域)、模様や文字などのない部分(無地領域)および特に細かい判定をしたい文字部分(指定領域)のいずれかに分類される。そして、この小領域ごとにステップS8,9,10の各種演算を行なうが、その前に外径の計測(ステップS6)、および穴あきのものについては、その穴径の計測(ステップS7)が行なわれる。   Next, in step S5, the determination target area is divided into small areas of about 20 × 20 pixels (including determination). Each of these small areas includes an outer peripheral part (peripheral area) such as a medal, a part with a pattern (pattern area), a part without a pattern or character (plain area), and a character part (designated area) for which a fine determination is to be made. It is classified into crab. Then, for each small region, various calculations in steps S8, 9, and 10 are performed. Before that, the outer diameter is measured (step S6), and for those with holes, the hole diameter is measured (step S7). It is.

類似度演算(濃度正規化相関係数:類似度0〜100%)は、次の(1)式により行なわれる。
類似度(濃度正規化相関係数)=
マスタ画像と検査対象画像の相互相関係数/マスタ画像と検査対象画像の自己相関係数
={N・Σ(B・G)−ΣB・ΣG}/〔{N・ΣB2−(ΣB)2}・{N・ΣG2−(ΣG)21/2 …(1)
なお、N:小領域の画素数、G:マスタ画像の小領域内の画素濃度(0〜255階調)、
B:検査対象画像の小領域内の画素濃度(0〜255階調)
である。
The similarity calculation (concentration normalized correlation coefficient: similarity 0 to 100%) is performed by the following equation (1).
Similarity (concentration normalized correlation coefficient) =
Cross correlation coefficient between master image and inspection object image / autocorrelation coefficient between master image and inspection object image = {N · Σ (B · G) −ΣB · ΣG} / [{N · ΣB 2 − (ΣB) 2 } · {N · ΣG 2 − (ΣG) 2 } 1/2 (1)
N: number of pixels in the small area, G: pixel density (0 to 255 gradations) in the small area of the master image,
B: Pixel density in a small area of the inspection target image (0 to 255 gradations)
It is.

ステップS9の分散値は、例えば次の(2)式により求める。
分散値=〔{ΣB2−(ΣB)2/N}/(N−1)〕1/2 …(2)
なお、N:小領域の画素数、B:検査対象画像の小領域内の画素濃度(0〜255階調)を示すのは、(1)式の場合と同じである。
The variance value in step S9 is obtained by the following equation (2), for example.
Dispersion value = [{ΣB 2 − (ΣB) 2 / N} / (N−1)] 1/2 (2)
Note that N: the number of pixels in the small area, and B: the pixel density (0 to 255 gradations) in the small area of the image to be inspected are the same as in the case of equation (1).

ステップS10では、対象とする小領域におけるマスタと比較した明暗の程度を示す濃度値(濃度比)を演算する。
画像濃度値 = K・A/B
ここで、
A : 対象画像の該当小領域の分散値/濃度平均値
B : マスタの該当小領域の分散値/濃度平均値
K : 係数
In step S10, a density value (density ratio) indicating the degree of lightness and darkness compared with the master in the target small region is calculated.
Image density value = K / A / B
here,
A: dispersion value / density average value of corresponding small area of target image B: dispersion value / density average value of corresponding small area of master K: coefficient

以上のように求めた類似度,分散および濃度により、良品か不良品かを判定する。
ステップS11は類似度の判定ステップで、ここでは例えば(マスタ(設定)値−マージン(余裕))以上であれば良品、未満であれば不良品とする。
また、ステップS12,13の分散および濃度判定については、例えば(下限値−マージン)〜(上限値−マージン)の範囲内ならば良品、超えていれば不良品とする。
さらに、ステップS14では小領域全てについて判定し、小領域全てがOKのときのみ良品と判定する。
Whether the product is good or defective is determined based on the similarity, dispersion, and concentration obtained as described above.
Step S11 is a similarity determination step. Here, for example, if it is equal to or greater than (master (setting) value−margin (margin)), a non-defective product is determined.
For the dispersion and density determination in steps S12 and S13, for example, a non-defective product is determined if it is within the range of (lower limit value−margin) to (upper limit value−margin), and a defective product is determined if exceeding the range.
Further, in step S14, the determination is made for all the small areas, and the non-defective product is determined only when all the small areas are OK.

マスタ画像は、適当数の正常品を撮像して取り込むが(基本マスタ)、以後は装置で自動的に判定許容値を演算し、マスタを更新するようにしている。また、正答率が向上しないときは、更なる追加学習を行なうことが望ましい。また、マスタ更新の際に、模様領域を僅かに含む領域については、該当領域をいずれか前後,左右,斜めの8方向へずらして、模様が或る値以下となる位置を新たな小領域とみなし、以後はその位置の小領域で各種演算を行なうことにより、判定の不安定さを低減させるようにしている。   The master image captures and captures an appropriate number of normal products (basic master), but thereafter, the apparatus automatically calculates a determination allowable value and updates the master. Further, when the correct answer rate does not improve, it is desirable to perform further additional learning. In addition, when the master is updated, for an area that slightly includes the pattern area, the corresponding area is shifted in any of the front, rear, left, and right directions, and the position where the pattern becomes a certain value or less is set as a new small area. Assuming that, after that, various operations are performed in a small area at that position, thereby reducing the instability of the determination.

なお、メダル等の凹凸と濃淡の両方を効率よく抽出するためには、その照明の仕方にもそれなりの工夫が必要であるが、この点については別途提出することとする。また、以上では、主としてメダルの良否検査について説明したが、この発明は硬貨の場合にも同様にして適用できるのは勿論である。   In addition, in order to efficiently extract both unevenness and shading of medals etc., it is necessary to devise a certain way in the lighting method, but this point will be submitted separately. In the above description, the merit / defective inspection of medals has been mainly described. However, it goes without saying that the present invention can be similarly applied to coins.

この発明が適用される装置を示すブロック図Block diagram showing an apparatus to which the present invention is applied この発明の実施の形態を示すフローチャートFlowchart showing an embodiment of the present invention

符号の説明Explanation of symbols

1A,1B…画像処理装置、2A,2B…カメラ、3A,3B…照明器、4…メカ部シーケンサ、5…分配器、6…ビデオスイッチ、7A,7B,10…モニタ、8…ビデオプリンタ、9…PC(パーソナルコンピュータ)、11…プリンタ、E1,E2…照明電源。

DESCRIPTION OF SYMBOLS 1A, 1B ... Image processing apparatus, 2A, 2B ... Camera, 3A, 3B ... Illuminator, 4 ... Mechanical part sequencer, 5 ... Distributor, 6 ... Video switch, 7A, 7B, 10 ... Monitor, 8 ... Video printer, 9 ... PC (personal computer), 11 ... printer, E1, E2 ... illumination power supply.

Claims (1)

凹凸と濃淡のある対象物を撮像し、その撮像された画像を画素単位に分割し画素ごとに濃度値を求めてパターンマッチングにより対象物の検査を行なうパターンマッチング方式において、
前記対象物を含む領域を外周領域,模様領域,無地領域および文字領域を含む複数の小領域に分割し、各小領域ごとに基準となるマスタ画素との類似度,濃度比を演算するとともに、濃度の分散値を演算し、類似度は所定の設定値にマージンを考慮した値以上か否か、濃度比および濃度分散の各々は所定の上,下限値にそれぞれマージンを考慮した範囲内にあるか否かによりその良否判定を行ない、前記類似度の設定値、前記濃度比と濃度分散の各上下限値およびマージンは追加学習により更新して行くとともに、模様を僅かに含む無地領域については、この領域を模様が或る値以下になる位置まで移動させ、移動させた小領域を新たな小領域として前記各種演算を行なうことを特徴とするパターンマッチング方式。
In a pattern matching method that images an object with unevenness and shading, divides the captured image into pixel units, obtains a density value for each pixel, and inspects the object by pattern matching,
The area including the object is divided into a plurality of small areas including an outer peripheral area, a pattern area, a plain area, and a character area, and a similarity and a density ratio with a master pixel serving as a reference are calculated for each small area, The density variance value is calculated, and whether the similarity is equal to or greater than a value that takes a margin into consideration for a predetermined set value, and each of the density ratio and density variance is within a range that takes a margin into consideration for the upper and lower limits. whether by have rows that quality determination, the similarity of the set value, together with the concentration ratio and the upper limit value and the margin of concentration dispersion is gradually updated by additional learning, the solid area slightly containing a pattern Is a pattern matching method characterized in that this region is moved to a position where the pattern becomes a certain value or less, and the various operations are performed using the moved small region as a new small region .
JP2004342519A 2004-11-26 2004-11-26 Pattern matching method Active JP4620435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342519A JP4620435B2 (en) 2004-11-26 2004-11-26 Pattern matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342519A JP4620435B2 (en) 2004-11-26 2004-11-26 Pattern matching method

Publications (2)

Publication Number Publication Date
JP2006153581A JP2006153581A (en) 2006-06-15
JP4620435B2 true JP4620435B2 (en) 2011-01-26

Family

ID=36632081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342519A Active JP4620435B2 (en) 2004-11-26 2004-11-26 Pattern matching method

Country Status (1)

Country Link
JP (1) JP4620435B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612548A (en) * 1992-06-25 1994-01-21 Glory Ltd Coin discriminating device
JPH09231433A (en) * 1996-02-23 1997-09-05 Oki Electric Ind Co Ltd Coin discrimination device
JPH1125275A (en) * 1997-06-30 1999-01-29 Ricoh Co Ltd Image evaluating device
JP2000149019A (en) * 1998-11-10 2000-05-30 Omron Corp Circular object discriminating device
JP2000322579A (en) * 1999-05-13 2000-11-24 Sankyo Seiki Mfg Co Ltd Image recognizing device
JP2001331837A (en) * 2000-05-19 2001-11-30 Nippon Conlux Co Ltd Method and device for discriminating coin
JP2002303587A (en) * 2001-04-03 2002-10-18 Nec Kansai Ltd Visual inspection method and device
JP2003187289A (en) * 2001-12-21 2003-07-04 Sankyo Seiki Mfg Co Ltd Method for identifying circular body to be detected
JP2004157727A (en) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd Pattern identifying device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612548A (en) * 1992-06-25 1994-01-21 Glory Ltd Coin discriminating device
JPH09231433A (en) * 1996-02-23 1997-09-05 Oki Electric Ind Co Ltd Coin discrimination device
JPH1125275A (en) * 1997-06-30 1999-01-29 Ricoh Co Ltd Image evaluating device
JP2000149019A (en) * 1998-11-10 2000-05-30 Omron Corp Circular object discriminating device
JP2000322579A (en) * 1999-05-13 2000-11-24 Sankyo Seiki Mfg Co Ltd Image recognizing device
JP2001331837A (en) * 2000-05-19 2001-11-30 Nippon Conlux Co Ltd Method and device for discriminating coin
JP2002303587A (en) * 2001-04-03 2002-10-18 Nec Kansai Ltd Visual inspection method and device
JP2003187289A (en) * 2001-12-21 2003-07-04 Sankyo Seiki Mfg Co Ltd Method for identifying circular body to be detected
JP2004157727A (en) * 2002-11-06 2004-06-03 Matsushita Electric Ind Co Ltd Pattern identifying device

Also Published As

Publication number Publication date
JP2006153581A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US7978903B2 (en) Defect detecting method and defect detecting device
US7689029B2 (en) Apparatus and method for inspecting pattern
CN108520514B (en) Consistency detection method for electronic elements of printed circuit board based on computer vision
JP4150390B2 (en) Appearance inspection method and appearance inspection apparatus
JP4725298B2 (en) Visual inspection method using images
CN110658198A (en) Optical detection method, optical detection device and optical detection system
CN109584202A (en) Image processing apparatus, method and non-transitory computer-readable storage media
JP6317725B2 (en) System and method for determining clutter in acquired images
JP2002513193A (en) Method and system for detecting errors in sample images
CN115100166A (en) Welding spot defect detection method and device
KR101642897B1 (en) Inspection method
JPH11125514A (en) Bending angle detecting device
US6845178B1 (en) Automatic separation of subject pixels using segmentation based on multiple planes of measurement data
JP2002163637A (en) Device and method for examining image
JP4620435B2 (en) Pattern matching method
JPH11306325A (en) Method and device for object detection
JPH0993443A (en) Color-monochromatic image conversion method and edge position detection method for object to be inspected
JP2005252451A (en) Image quality inspection method and image quality inspection apparatus
JP2000046749A (en) Method for inspecting connection quality of part
KR101383827B1 (en) System and method for automatic extraction of soldering regions in pcb
JP4084257B2 (en) Printed circuit board inspection equipment
JP2004219072A (en) Method and apparatus for detecting streak defect of screen
Zuraiyah et al. Quran Tajweed Extraction and Segmentation Based on HSV Color Space Model
KR101736060B1 (en) Inspection method
JPH10232931A (en) Image processing method and image processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250