JP4616951B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP4616951B2
JP4616951B2 JP25823399A JP25823399A JP4616951B2 JP 4616951 B2 JP4616951 B2 JP 4616951B2 JP 25823399 A JP25823399 A JP 25823399A JP 25823399 A JP25823399 A JP 25823399A JP 4616951 B2 JP4616951 B2 JP 4616951B2
Authority
JP
Japan
Prior art keywords
etching
microwave
etching chamber
wafer
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25823399A
Other languages
Japanese (ja)
Other versions
JP2001085399A (en
Inventor
宗雄 古瀬
誠 縄田
秀之 数見
正道 坂口
謙一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25823399A priority Critical patent/JP4616951B2/en
Publication of JP2001085399A publication Critical patent/JP2001085399A/en
Application granted granted Critical
Publication of JP4616951B2 publication Critical patent/JP4616951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、プラズマ処理装置に係り、特にウエハにエッチング等のプラズマ処理を施す際に、エッチング速度の均一性向上に好適な、プラズマ処理装置のエッチング等の処理を行うエッチング処理室およびマイクロ波の供給部に関するものである。
【0002】
【従来の技術】
従来のプラズマ処理装置では、例えば、エッチング処理室外部からエッチング処理室中にマイクロ波を供給するプラズマ処理装置では、半導体プラズマプロセス技術(菅野卓雄 編著、産業図書発行、(1980)、P139)に記載のように、マイクロ波エッチング装置の場合はマイクロ波を伝播する導波管内に石英製の放電室を有し、放電室外部に配置したコイルより発生した磁場とマイクロ波電界の作用により、エッチング処理室内でプラズマを生成させるようになっていた。また、マイクロ波以外のエッチング装置では、磁場を使用しないでエッチング処理室内でプラズマを生成させるようになっていた。そして、該プラズマを利用して半導体ウハの表面にプラズマ処理を施し、所望の性能を得るようにしていた。
【0003】
これらの装置においては、エッチング処理室以外の部分では、使用するマイクロ波の波長のλ/2の整数倍として均一性を向上するという方法が用いられていた。しかし、マイクロ波がプラズマ中に入ってからの挙動に関しては考慮されておらず、拡散によってプラズマを広げて均一にするという方法が用いられていた。その結果、エッチング処理室に生成されるプラズマは、常に処理室中央で高い密度を有する分布となり、ウエハにエッチング等の処理を行う際、中央と外周部を均一に行うことは困難であった。
【0004】
【発明が解決しようとする課題】
上記従来技術によるプラズマ処理装置では、プラズマ中でのマイクロ波の波長とエッチング処理室形状との関係は検討されていないため、ウエハにエッチング等の処理を施すと、ウエハ中央部でエッチング速度が大きくなるという傾向があった。特に、エッチング等を行う膜の厚さが薄い場合、エッチング速度の面内差が著しく大きくなる。これらの問題点を解決するために、エッチング処理室を拡大し、生成するプラズマを拡散させ、ウエハ上のプラズマを均一にするという方法もあるが、この場合も生成するプラズマは常に処理室中央で高い密度分布となる。その結果、ウエハ中央部と外周部でエッチング速度に差が生じ、均一なエッチングができなくなる。さらに、エッチング等の処理を行う膜の厚さが薄くなれば、選択比を確保しながら均一なエッチングを行うという課題を解決することは、困難であるという問題があった。
【0005】
また、エッチング等の処理を行うウエハ口径が拡大すると、ウエハ中央部と外周部のエッチング速度の差は、更に拡大するという問題があった。
【0006】
本発明は、上記従来技術の問題点を解決し、生産性の高いエッチングプロセスを可能とした、プラズマ処理装置を提供することをその目的としている。
【0007】
【課題を解決するための手段】
本発明は、プラズマ処理装置において、マイクロ波の投入部からエッチング等の処理を行うウエハまでの距離を、投入するマイクロ波の波長(λ)のλ/2の整数倍とした。また、エッチング処理室中において、入射したマイクロ波が反射する壁までの距離をマイクロ波の波長(λ)のλ/2の整数倍とした。
【0008】
さらに、エッチング処理室内に配置するアース等の、マイクロ波が反射する部材までの距離もマイクロ波の波長(λ)のλ/2の整数倍とした。マイクロ波の投入部からエッチング等の処理を行うウエハまでの距離が、マイクロ波の波長(λ)のλ/2より小さい場合、例えばマイクロ波を導入する石英窓の厚さと合わせてマイクロ波の波長(λ)のλ/2の整数倍とした。さらに、エッチング処理室、マイクロ波を導入する石英窓の厚さ、空洞部を合わせてもマイクロ波の波長(λ)のλ/2より小さい場合、導波管も含めてマイクロ波の波長(λ)のλ/2の整数倍とした。
【0009】
本発明によれば、エッチング処理室にマイクロ波の定在波が生成されるため、主にプラズマ生成するECR領域を制御することで、エッチング処理室中に均一なプラズマを生成することができる。従って、エッチング等の処理を行うウエハの処理速度を、ウエハ中央部と外周部でほぼ同じ値にすることが可能である。特に、エッチング等の処理を行うウエハの面積が、現在主に使用されている8インチから12インチまで大口径化しても、均一な処理を行うことが可能である。その結果、エッチング等の処理を行うウエハを全面で均一に処理するという当初の目的は達成される。
【0010】
【実施例】
以下、本発明の実施例を図1から図4用いて説明する。まず図1は、本発明の一実施例のプラズマ処理装置の縦断面図である。1はマグネトロンでありマイクロ波の発振源である。2はマイクロ波の導波管であり5は空気層である。これら導波管2および空気層5は、図1ないし図3に示すように、プラズマ発生装置とエッチング処理室との間に順次配設される。4はエッチング処理室であり、例えばアルミ合金で作られ、内面は対プラズマ性能向上のための表面処理が施されている。また、エッチング処理室外部は導電体であるため、マイクロ波の導波管の役目もしている。6及び7はエッチング処理室4に磁場を供給する磁場供給用コイルA及びBである。8は真空ポンプであり、エッチング処理室4接続されて真空排気される。3はエッチング処理室4を真空封止しながらマイクロ波をエッチング処理室4に供給するための石英板である。この石英板3は、図1ないし図3に示すように、エッチング処理室と空気層との間に配設される。9はプラズマ処理を行なうウエハ10を支持する試料台であり、バイアス用電源、例えばRF電源12が接続できるようになっている。13はエッチング処理室4内にエッチング、成膜等の処理を行なうガスを供給するガス供給系である。
【0011】
図1では、石英板3の下面からエッチング等の処理を行うウエハ10までの距離を、マグネトロン1から供給されるマイクロ波の波長(λ)のλ/2の整数倍の距離に設定した一例である。この図1においては、空気層5および石英板3もマイクロ波の波長(λ)のλ/2の整数倍にすることが可能である。その結果、マイクロ波を導入する導波管を含むすべてが、マイクロ波の波長(λ)のλ/2の整数倍にすることが可能となり、エッチング等の処理を行うウエハ10のウエハ面内のエッチング速度分布は均一になる。
【0012】
図2は、石英板3の下面からエッチング等の処理を行うウエハ10までの距離が、マイクロ波の波長(λ)のλ/2の整数倍にできない場合の例である。この場合は、石英板3とエッチング処理室4を通過するマイクロ波の波長を合わせて、マイクロ波の波長(λ)のλ/2の整数倍にすることが可能である。さらに、石英板3とエッチング処理室4を通過する距離を合わせてもマイクロ波の波長(λ)のλ/2の整数倍にできない場合、空気層5と石英板3とエッチング処理室4を通過するマイクロ波の波長を合わせて、マイクロ波の波長(λ)のλ/2の整数倍にすることが可能である。その結果、マイクロ波を導入する導波管を含むすべてが、マイクロ波の波長(λ)のλ/2の整数倍にすることが可能となり、エッチング等の処理を行うウエハ10のウエハ面内のエッチング速度分布は均一になる。
【0013】
図3は、エッチング処理室4内部に、入射したマイクロ波が反射するような、たとえばアース14を設置した例である。この場合も石英板3下面からアース14までの距離を、マグネトロン1から供給されるマイクロ波の波長(λ)のλ/2の整数倍の距離に設定することが可能である。その結果、マイクロ波を導入する導波管を含むすべてと、エッチング処理室4内のマイクロ波の反射端までの距離を、マイクロ波の波長(λ)のλ/2の整数倍にすることが可能となり、エッチング等の処理を行うウエハ10のウエハ面内のエッチング速度分布は均一になる。また、この反射端は、アース以外でもエッチング処理室4内でマイクロ波が反射する物であれば、すべてに適用することができる。
【0014】
図4は、実際に12インチウエハをエッチングした結果であり、石英板3の下面からエッチング等の処理を行うウエハ10までの距離を、マグネトロン1から供給されるマイクロ波の波長(λ)のλ/2の整数倍の距離に設定した場合、エッチング等の処理を行うウエハ10のウエハ面内のエッチング速度分布は均一になる。
【0015】
【発明の効果】
本発明は、以上説明したように構成されているので以下に記載されるような効果を奏する。プラズマ処理装置において、石英板3の下面からエッチング等の処理を行うウエハ10までの距離を、マグネトロン1から供給されるマイクロ波の波長(λ)のλ/2の整数倍の距離に設定すれば、エッチング等の処理を行うウエハ10のウエハ面内のエッチング速度分布は均一になる。
【図面の簡単な説明】
【図1】本発明の実施例のプラズマ処理装置の構成図。
【図2】本発明の第2の実施例のプラズマ処理装置の構成図。
【図3】本発明の第2の実施例のプラズマ処理装置の構成図。
【図4】本発明の実施例で得られたエッチング速度の分布。
【符号の説明】
1:マグネトロン、2:導波管、3:石英板、4:エッチング処理室、5:空気層、6:磁場供給用コイルA、7:磁場供給用コイルB、8:真空ポンプ、9:試料台、10:ウエハ、12:RF電源、13:ガス供給系、14:アース
[0001]
[Industrial application fields]
The present invention relates to a plasma processing apparatus, and in particular, when performing plasma processing such as etching on a wafer, an etching processing chamber for performing processing such as etching of the plasma processing apparatus, which is suitable for improving uniformity of etching speed, and a microwave It relates to the supply section.
[0002]
[Prior art]
In a conventional plasma processing apparatus, for example, in a plasma processing apparatus that supplies microwaves into the etching processing chamber from the outside of the etching processing chamber, it is described in the semiconductor plasma processing technology (edited by Takuo Kanno, published by Sangyo Tosho, (1980), P139) In the case of a microwave etching apparatus, a quartz discharge chamber is provided in a waveguide that propagates microwaves, and etching is performed by the action of a magnetic field generated by a coil disposed outside the discharge chamber and a microwave electric field. Plasma was generated in the room. Moreover, in etching apparatuses other than microwaves, plasma is generated in the etching chamber without using a magnetic field. Then, subjected to plasma treatment on the surface of the semiconductor c d c by using the plasma, it has been to obtain a desired performance.
[0003]
In these apparatuses, a method of improving the uniformity as an integral multiple of λ / 2 of the wavelength of the microwave used has been used in a portion other than the etching processing chamber. However, the behavior after the microwave enters the plasma is not considered, and a method of spreading and uniforming the plasma by diffusion has been used. As a result, plasma that will be generated et etching process chamber, always distribution with a high density in the processing chamber central, when performing processing such as etching on a wafer, it is difficult to perform the central and the peripheral portion uniformly .
[0004]
[Problems to be solved by the invention]
In the conventional plasma processing apparatus, the relationship between the wavelength of the microwave in the plasma and the shape of the etching chamber has not been studied. Therefore, when the wafer is subjected to processing such as etching, the etching rate increases at the center of the wafer. There was a tendency to become. In particular, when the thickness of the film to be etched is thin, the in-plane difference in the etching rate becomes remarkably large. In order to solve these problems, there is a method of expanding the etching process chamber, diffusing the generated plasma, and making the plasma on the wafer uniform, but in this case as well, the generated plasma is always in the center of the process chamber. High density distribution. As a result, there is a difference in etching rate between the wafer center and the outer periphery, and uniform etching cannot be performed. Further, if the thickness of the film to be processed such as etching is reduced, there is a problem that it is difficult to solve the problem of performing uniform etching while ensuring the selection ratio.
[0005]
Further, when the diameter of the wafer to be processed such as etching is enlarged, there is a problem that the difference in the etching rate between the central part and the outer peripheral part of the wafer is further enlarged.
[0006]
An object of the present invention is to provide a plasma processing apparatus that solves the above-described problems of the prior art and enables an etching process with high productivity.
[0007]
[Means for Solving the Problems]
In the present invention, in the plasma processing apparatus, the distance from the microwave input portion to the wafer on which the processing such as etching is performed is an integral multiple of λ / 2 of the wavelength (λ) of the input microwave. In the etching chamber, the distance to the wall where the incident microwave is reflected is an integral multiple of λ / 2 of the wavelength (λ) of the microwave.
[0008]
Furthermore, the distance to the member that reflects the microwave, such as the ground disposed in the etching chamber, was also an integral multiple of λ / 2 of the wavelength (λ) of the microwave. When the distance from the microwave input part to the wafer to be processed such as etching is smaller than λ / 2 of the microwave wavelength (λ), for example, the wavelength of the microwave together with the thickness of the quartz window into which the microwave is introduced It was set to an integral multiple of λ / 2 of (λ). Furthermore, if the thickness of the quartz window into which the microwave is introduced, the cavity, and the cavity portion are smaller than λ / 2 of the microwave wavelength (λ), the wavelength of the microwave (λ ) / 2 of λ / 2.
[0009]
According to the present invention, because the generated standing wave of microwaves to the etching chamber, that mainly controls the ECR region for generating plasma, it is possible to generate a uniform plasma in the etching chamber . Therefore, it is possible to set the processing speed of the wafer for performing processing such as etching to substantially the same value at the central portion and the outer peripheral portion of the wafer. In particular, even if the area of a wafer on which processing such as etching is performed is increased from 8 inches to 12 inches, which is currently used mainly, uniform processing can be performed. As a result, the initial purpose of uniformly processing a wafer to be processed such as etching on the entire surface is achieved.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a longitudinal sectional view of a plasma processing apparatus according to an embodiment of the present invention. Reference numeral 1 denotes a magnetron, which is a microwave oscillation source. 2 is a microwave waveguide, and 5 is an air layer. The waveguide 2 and the air layer 5 are sequentially disposed between the plasma generator and the etching chamber as shown in FIGS. Reference numeral 4 denotes an etching chamber, which is made of, for example, an aluminum alloy, and the inner surface is subjected to a surface treatment for improving plasma performance. Further, since the outside of the etching chamber is a conductor, it also serves as a microwave waveguide. Reference numerals 6 and 7 denote magnetic field supply coils A and B for supplying a magnetic field to the etching chamber 4. A vacuum pump 8 is connected to the etching chamber 4 and evacuated. Reference numeral 3 denotes a quartz plate for supplying microwaves to the etching chamber 4 while vacuum-sealing the etching chamber 4. As shown in FIGS. 1 to 3, the quartz plate 3 is disposed between the etching chamber and the air layer. Reference numeral 9 denotes a sample stage for supporting a wafer 10 to be subjected to plasma processing, and a bias power source, for example, an RF power source 12 can be connected thereto. A gas supply system 13 supplies a gas for performing processing such as etching and film formation into the etching processing chamber 4.
[0011]
FIG. 1 shows an example in which the distance from the lower surface of the quartz plate 3 to the wafer 10 to be etched is set to a distance that is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied from the magnetron 1. is there. In FIG. 1, the air layer 5 and the quartz plate 3 can also be an integral multiple of λ / 2 of the microwave wavelength (λ). As a result, the entire waveguide including the microwave can be made an integral multiple of λ / 2 of the wavelength (λ) of the microwave. The etching rate distribution becomes uniform.
[0012]
FIG. 2 shows an example in which the distance from the lower surface of the quartz plate 3 to the wafer 10 on which processing such as etching cannot be made an integral multiple of λ / 2 of the microwave wavelength (λ). In this case, the wavelengths of the microwaves passing through the quartz plate 3 and the etching chamber 4 can be combined to be an integral multiple of λ / 2 of the wavelength (λ) of the microwaves. Furthermore, if the distance between the quartz plate 3 and the etching chamber 4 cannot be made an integral multiple of λ / 2 of the microwave wavelength (λ), the air layer 5, the quartz plate 3 and the etching chamber 4 are passed. The wavelengths of the microwaves to be combined can be made an integral multiple of λ / 2 of the wavelength (λ) of the microwaves. As a result, the entire waveguide including the microwave can be made an integral multiple of λ / 2 of the wavelength (λ) of the microwave. The etching rate distribution becomes uniform.
[0013]
FIG. 3 shows an example in which, for example, a ground 14 is installed in the etching chamber 4 so that incident microwaves are reflected. In this case as well, the distance from the lower surface of the quartz plate 3 to the ground 14 can be set to a distance that is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied from the magnetron 1. As a result, all containing a waveguide for introducing microwaves, the distance to the reflecting end of the microwave etching treatment chamber 4, to be an integral multiple of lambda / 2 of the wavelength of the microwave (lambda) It becomes possible, and the etching rate distribution in the wafer surface of the wafer 10 which performs processing such as etching becomes uniform. Further, this reflection end can be applied to any object that reflects microwaves in the etching processing chamber 4 other than the ground.
[0014]
FIG. 4 shows the result of actually etching a 12-inch wafer. The distance from the lower surface of the quartz plate 3 to the wafer 10 on which etching or the like is performed is expressed as λ of the wavelength (λ) of the microwave supplied from the magnetron 1. When the distance is set to an integral multiple of / 2, the etching rate distribution in the wafer surface of the wafer 10 to be processed such as etching becomes uniform.
[0015]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained. In the plasma processing apparatus, if the distance from the lower surface of the quartz plate 3 to the wafer 10 to be etched is set to a distance that is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied from the magnetron 1. The etching rate distribution in the wafer surface of the wafer 10 to be processed such as etching becomes uniform.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a plasma processing apparatus according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a plasma processing apparatus according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a plasma processing apparatus according to a second embodiment of the present invention.
FIG. 4 is an etching rate distribution obtained in an example of the present invention.
[Explanation of symbols]
1: Magnetron, 2: Waveguide, 3: Quartz plate, 4: Etching chamber, 5: Air layer, 6: Magnetic field supply coil A, 7: Magnetic field supply coil B, 8: Vacuum pump, 9: Sample 10: Wafer, 12: RF power supply, 13: Gas supply system, 14: Earth

Claims (3)

プラズマ発生装置と、減圧可能なエッチング処理室と、プラズマ発生装置とエッチング処理室との間に順次配設されてエッチング処理室にマイクロ波を導く導波管および空気層と、エッチング処理室と空気層との間に配設されてエッチング処理室にマイクロ波を供給する石英板と、エッチング処理室中に磁場を供給する磁場供給装置と、エッチング処理室にガスを供給するガス供給装置と、プラズマ処理を施すウエハを支持する試料台と、試料台上に支持されたウエハに高周波を印加する装置と、真空排気装置により成るプラズマ処理装置において、マイクロ波を供給する石英板の下面からエッチングの処理を行うウエハまでの距離を、エッチング処理室中に供給されるマイクロ波の波長(λ)のλ/2の整数倍とし、更に空気層および石英板を合わせた長さもマイクロ波の波長(λ)のλ/2の整数倍とし、導波管に設けたプラズマ発生装置からウエハまでの長さをマイクロ波の波長(λ)のλ/2の整数倍としたことを特徴とするプラズマ処理装置。Plasma generator, depressurizable etching chamber, waveguide and air layer sequentially disposed between plasma generator and etching chamber and guiding microwave to etching chamber, etching chamber and air A quartz plate disposed between the layers for supplying microwaves to the etching chamber, a magnetic field supplying device for supplying a magnetic field into the etching chamber, a gas supplying device for supplying gas to the etching chamber, and plasma In a plasma processing apparatus comprising a sample stage for supporting a wafer to be processed, a device for applying a high frequency to the wafer supported on the sample stage, and a vacuum evacuation apparatus, an etching process is performed from the lower surface of a quartz plate that supplies microwaves. The distance to the wafer to be processed is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied into the etching chamber, and the air layer and quartz plate The combined length is also an integral multiple of λ / 2 of the wavelength (λ) of the microwave, and the length from the plasma generator provided in the waveguide to the wafer is an integer of λ / 2 of the wavelength (λ) of the microwave A plasma processing apparatus characterized by being doubled . 請求項1記載のプラズマ処理装置において、エッチング処理室の内部に供給されたマイクロ波を反射する反射物が設置されており、マイクロ波の供給源である石英板の下面から反射物までの距離を、エッチング処理室中に供給されるマイクロ波の波長(λ)のλ/2の整数倍としたことを特徴とするプラズマ処理装置。  The plasma processing apparatus according to claim 1, wherein a reflector that reflects the microwave supplied to the inside of the etching processing chamber is installed, and the distance from the lower surface of the quartz plate that is a microwave supply source to the reflector is set. A plasma processing apparatus characterized in that it is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied into the etching processing chamber. プラズマ発生装置と、減圧可能なエッチング処理室と、プラズマ発生装置とエッチング処理室との間に順次配設されてエッチング処理室にマイクロ波を導く導波管および空気層と、エッチング処理室と空気層との間に配設されてエッチング処理室にマイクロ波を供給する石英板と、エッチング処理室中に磁場を供給する磁場供給装置と、エッチング処理室にガスを供給するガス供給装置と、プラズマ処理を施すウエハを支持する試料台と、試料台上に支持されたウエハに高周波を印加する装置と、真空排気装置により成るプラズマ処理装置において、マイクロ波の供給源である石英板の下面からエッチング処理を行うウエハまでの距離を、エッチング処理室中に供給されるマイクロ波の波長(λ)のλ/2の整数倍にできない場合であって、エッチング処理室と石英板と空気層とを合わせた距離を、エッチング処理室中に供給されるマイクロ波の波長(λ)のλ/2の整数倍とし、導波管に設けたプラズマ発生装置からウエハまでの長さをマイクロ波の波長(λ)のλ/2の整数倍としたことを特徴とするプラズマ処理装置。Plasma generator, depressurizable etching chamber, waveguide and air layer sequentially disposed between plasma generator and etching chamber and guiding microwave to etching chamber, etching chamber and air A quartz plate disposed between the layers for supplying microwaves to the etching chamber, a magnetic field supplying device for supplying a magnetic field into the etching chamber, a gas supplying device for supplying gas to the etching chamber, and plasma Etching from the bottom surface of a quartz plate, which is a microwave supply source, in a plasma processing apparatus comprising a sample stage for supporting a wafer to be processed, a device for applying a high frequency to the wafer supported on the sample stage, and a vacuum exhaust system The distance to the wafer to be processed cannot be an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied into the etching processing chamber. The total distance of the etching chamber, the quartz plate, and the air layer is an integral multiple of λ / 2 of the wavelength (λ) of the microwave supplied into the etching chamber, and the plasma generator provided in the waveguide A plasma processing apparatus characterized in that a length to a wafer is an integral multiple of λ / 2 of a microwave wavelength (λ) .
JP25823399A 1999-09-13 1999-09-13 Plasma processing equipment Expired - Fee Related JP4616951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25823399A JP4616951B2 (en) 1999-09-13 1999-09-13 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25823399A JP4616951B2 (en) 1999-09-13 1999-09-13 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2001085399A JP2001085399A (en) 2001-03-30
JP4616951B2 true JP4616951B2 (en) 2011-01-19

Family

ID=17317380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25823399A Expired - Fee Related JP4616951B2 (en) 1999-09-13 1999-09-13 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP4616951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576291B2 (en) 2005-06-06 2010-11-04 株式会社日立ハイテクノロジーズ Plasma processing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216333A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Microwave plasma processor
JPH04361529A (en) * 1991-06-10 1992-12-15 Tokyo Electron Ltd Microwave plasma generator
JPH05152216A (en) * 1991-11-29 1993-06-18 Hitachi Ltd Plasma treatment equipment
JPH05190501A (en) * 1991-08-12 1993-07-30 Tokyo Electron Ltd Microwave plasma treatment device
JPH06104096A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Plasma treatment device
JPH08315998A (en) * 1995-05-23 1996-11-29 Hitachi Ltd Microwave plasma treatment device
JPH10255999A (en) * 1997-03-13 1998-09-25 Toshiba Corp Microwave excited plasma device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613313B2 (en) * 1990-09-26 1997-05-28 株式会社日立製作所 Microwave plasma processing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216333A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Microwave plasma processor
JPH04361529A (en) * 1991-06-10 1992-12-15 Tokyo Electron Ltd Microwave plasma generator
JPH05190501A (en) * 1991-08-12 1993-07-30 Tokyo Electron Ltd Microwave plasma treatment device
JPH05152216A (en) * 1991-11-29 1993-06-18 Hitachi Ltd Plasma treatment equipment
JPH06104096A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Plasma treatment device
JPH08315998A (en) * 1995-05-23 1996-11-29 Hitachi Ltd Microwave plasma treatment device
JPH10255999A (en) * 1997-03-13 1998-09-25 Toshiba Corp Microwave excited plasma device

Also Published As

Publication number Publication date
JP2001085399A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP3217274B2 (en) Surface wave plasma processing equipment
JP4974318B2 (en) Microwave plasma processing apparatus and processing method
JP2001338918A (en) Apparatus for plasma treatment
JP3199957B2 (en) Microwave plasma processing method
JPH09289099A (en) Plasma processing method and device
JP4616951B2 (en) Plasma processing equipment
JP2003168681A (en) Microwave plasma treatment device and treatment method
JP2951797B2 (en) Plasma generator
JP3704894B2 (en) Plasma processing method and apparatus
JPH0368771A (en) Microwave plasma treating device
JPH08315998A (en) Microwave plasma treatment device
JPH05129095A (en) Plasma treatment device
JP3082331B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2001167900A (en) Plasma treatment apparatus
JPH09293599A (en) Plasma treating method and device
JPH10294199A (en) Microwave plasma processing device
JPH0250429A (en) Plasma processing apparatus
JPH0896990A (en) Plasma treatment device and plasma treatment method
JPH08171998A (en) Micro wave plasma processing device and plasma processing method
JP2001118698A (en) Method of generating surface wave excitation plasma and plasma generating apparatus
JP2974635B2 (en) Microwave plasma generator
JP3256005B2 (en) Microwave plasma processing equipment
JP3866590B2 (en) Plasma generator
JPH0883691A (en) Microwave plasma treatment device
JP2880586B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090820

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees