JP4616896B2 - High-pressure hydrogen gas seal - Google Patents

High-pressure hydrogen gas seal Download PDF

Info

Publication number
JP4616896B2
JP4616896B2 JP2008111471A JP2008111471A JP4616896B2 JP 4616896 B2 JP4616896 B2 JP 4616896B2 JP 2008111471 A JP2008111471 A JP 2008111471A JP 2008111471 A JP2008111471 A JP 2008111471A JP 4616896 B2 JP4616896 B2 JP 4616896B2
Authority
JP
Japan
Prior art keywords
seal
shaft
sealing
hydrogen gas
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008111471A
Other languages
Japanese (ja)
Other versions
JP2008180393A (en
Inventor
浩史 青柴
康司 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2008111471A priority Critical patent/JP4616896B2/en
Publication of JP2008180393A publication Critical patent/JP2008180393A/en
Application granted granted Critical
Publication of JP4616896B2 publication Critical patent/JP4616896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)

Description

本発明は、高圧水素ガスを密封するためのシールに関する。   The present invention relates to a seal for sealing high-pressure hydrogen gas.

最近、水素ガス燃料電池車の研究開発が進展しているが、燃料の高圧水素ガスを送る配管途中に、レギュレータ電磁弁等の弁類が用いられ、このような高圧水素ガス用の弁類に適応できる密封用シールとして、従来、適切なものがなかった。   Recently, research and development of hydrogen gas fuel cell vehicles has progressed, but valves such as regulator solenoid valves are used in the middle of piping for sending high-pressure hydrogen gas for fuel. Conventionally, no suitable sealing seal has been available.

一般的な流体用弁類のシールとしては、図9に示すように、ゴム製Oリング41が、使用され、スプール(軸)42に一体に形成された凹周溝43───いわゆる一体溝───に、2点鎖線にて示す如くOリング41を弾性的に拡径しつつ基本径端部44を超えて、装着していた。なお、45は弁本体(ハウジング又はボディとも呼ぶ)であり、その孔部45aの内周面にOリング41が接触(摺接)する。   As shown in FIG. 9, a rubber O-ring 41 is used as a seal for a general fluid valve, and a concave circumferential groove 43 formed integrally with a spool (shaft) 42 is a so-called integral groove. As shown by the two-dot chain line, the O-ring 41 was elastically expanded and installed beyond the basic diameter end 44. Reference numeral 45 denotes a valve main body (also referred to as a housing or a body), and the O-ring 41 comes into contact (sliding contact) with the inner peripheral surface of the hole 45a.

上述の一体溝とする理由は、分割溝構造とした場合には、図9の基本径端部を別部品としてネジやボルトやスナップリング等で止着するため、スペース的に大きくなって、弁類の容積が増大する等の問題があるからである。
しかしながら、被密封用流体が上記水素ガス燃料電池車であると、例えば50MPaと高圧となり、弁類のON−OFF作動時で圧力変動もあって、上述のゴム製Oリング41ではブリスタを発生する虞があった。
また、金属(メタル)製Oリングは、一体溝構造では、図9の2点鎖線のように拡径(引き伸ばし)ができないので装着できない。かつ、スプール(軸)42が(僅小寸法)軸心方向に往復動するため、孔部45aの摩耗及び金属製Oリングの摩耗が著しく、使用に適さない。
The reason for the above-mentioned integral groove is that when the split groove structure is adopted, the end portion of the basic diameter in FIG. 9 is fixed as a separate part with a screw, bolt, snap ring, etc. This is because there is a problem such as an increase in the volume of the kind.
However, if the fluid to be sealed is the hydrogen gas fuel cell vehicle, the pressure becomes high, for example, 50 MPa, and there is a pressure fluctuation when the valves are turned on and off. There was a fear.
Also, the metal O-ring cannot be mounted in the integral groove structure because the diameter cannot be expanded (stretched) as shown by the two-dot chain line in FIG. Further, since the spool (shaft) 42 reciprocates in the axial direction (small size), wear of the hole 45a and wear of the metal O-ring are remarkably unsuitable for use.

そこで、本発明は、上述のような自動車用燃料の高圧水素ガスの圧力制御を行うレギュレータ電磁弁等の弁類に適用可能であって、従来の前記ブリスタが発生せず、高圧水素ガスの外部漏洩が僅少で、かつ、長い寿命を有するシールを提供することを、目的とする。   Therefore, the present invention can be applied to valves such as a regulator solenoid valve for controlling the pressure of the high-pressure hydrogen gas of the automobile fuel as described above, and the conventional blister is not generated, and the outside of the high-pressure hydrogen gas is not generated. It is an object to provide a seal with little leakage and a long life.

本発明に係る高圧水素ガス用シールは、内リップ部と外リップ部によって軸心一方向に開口溝部を形成した軸に外嵌状に装着される樹脂製シール本体と、該開口溝部内に設けられたバネと、から成る高圧水素ガス用シールに於て、上記シール本体の材質を変性PTFEとし、かつ、上記シール本体の開口溝部の奥側の底壁部の肉厚寸法を、上記シール本体の軸心方向寸法の35%〜50%に設定し、上記内リップ部のシール用突起を帯状に上記軸に接触するように形成し、しかも、上記バネの横断面形状をU字型とし、上記軸心一方向に開口端部が向くように上記開口溝部内に設けられて該バネの上記開口端部が上記内外リップ部に接触して弾発的に押圧して上記開口溝部を開口方向に弾発付勢する軸心方向作用位置と、上記内リップ部のシール用突起の少なくとも一部と、上記外リップ部のシール用突起の頂部の軸心方向位置を、一致させたものである。 A seal for high-pressure hydrogen gas according to the present invention is provided in a resin seal body that is fitted on a shaft having an opening groove portion formed in one axial direction by an inner lip portion and an outer lip portion, and is fitted in the opening groove portion. In the high-pressure hydrogen gas seal comprising the above-described spring, the material of the seal body is modified PTFE, and the thickness of the bottom wall portion on the back side of the opening groove portion of the seal body is defined as the seal body. Is set to 35% to 50% of the axial direction dimension, and the sealing projection of the inner lip portion is formed to contact the shaft in a strip shape, and the cross-sectional shape of the spring is U-shaped, Provided in the opening groove so that the opening end faces in one axial direction, the opening end of the spring contacts the inner and outer lip portions and elastically presses to open the opening groove. Axial-direction acting position that elastically urges and seals the inner lip At least a part of the protrusion is made to coincide with the axial direction position of the top of the sealing protrusion of the outer lip portion.

本発明は上述の構成により、次のような著大な効果を奏する。
本発明に係る高圧水素ガス用シールは、被密封流体としての水素ガスの圧力が、例えば、50MPaと高くても、底壁部を通してのガス透過を十分低く抑えることができる。しかも、不必要にシール本体が大きくなることも防いでいる。
さらに、バネの弾発付勢力が有効にシール用突起に伝達される。これによって、軸の外周面、ハウジング孔部の内周面に対する、接触面圧を十分に高めて、確実にシール性能を発揮する。
かつ、充填材入りPTFEに比べて、漏れ量が一層減少する。しかも、例えば50MPaもの高圧の水素ガスに適用可能となり、漏れが極力少なく、耐クリープ性にも優れている。
The present invention has the following remarkable effects by the above-described configuration.
The high-pressure hydrogen gas seal according to the present invention can sufficiently suppress gas permeation through the bottom wall even when the pressure of the hydrogen gas as the sealed fluid is as high as 50 MPa, for example. In addition, the seal body is prevented from becoming unnecessarily large.
Further, the spring urging force of the spring is effectively transmitted to the sealing projection. As a result, the contact surface pressure with respect to the outer peripheral surface of the shaft and the inner peripheral surface of the housing hole is sufficiently increased, and the sealing performance is reliably exhibited.
In addition, the amount of leakage is further reduced as compared with PTFE containing filler. Moreover, for example, it can be applied to high-pressure hydrogen gas as high as 50 MPa, leakage is minimized, and the creep resistance is excellent.

以下、図示の実施の形態に基づき本発明を詳説する。
図1〜図3に本発明と関係が深い参考例を示し、図2は自由状態のシールSの断面図であり、図3は装着(使用)箇所を例示する断面図であり、図1は、このシールSと装着(使用)箇所との位置関係及び寸法関係を説明する図である。
シールSは、内リップ部1と外リップ部2を有し、この内外リップ部1,2によって軸心一方向に開口溝部3を形成した横断面略U字型形状の樹脂製シール本体4と、この開口溝部3内に設けられた横断面略U字型のバネ5と、から構成される。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
1 to 3 show a reference example having a close relation with the present invention, FIG. 2 is a cross-sectional view of the seal S in a free state, FIG. 3 is a cross-sectional view illustrating a mounting (use) portion, and FIG. FIG. 5 is a diagram for explaining a positional relationship and a dimensional relationship between the seal S and a mounting (use) place.
The seal S has an inner lip portion 1 and an outer lip portion 2, and a resin seal main body 4 having a substantially U-shaped cross section in which an opening groove portion 3 is formed in one axial direction by the inner and outer lip portions 1 and 2. , And a spring 5 having a substantially U-shaped cross section provided in the opening groove 3.

高圧水素ガスを制御するレギュレータ電磁弁や、その他、切換弁や流量制御弁等の弁類のハウジング(ボディ)6の孔部7と、スプールや弁棒(弁本体)等の軸8との間に形成された収納凹所9に、上記シールSが装着される。
この軸8は、収納凹所9の低圧側の奥底面を形成する段付面10が形成され、上記孔部7よりも僅かに小さい外径寸法D0 の大径部(ランド部)11と、上記内リップ部1が摺接(接触)する小径部12が、上記段付面10にて区画形成されている。
Between the regulator solenoid valve that controls the high-pressure hydrogen gas, the hole 7 of the housing (body) 6 of valves such as a switching valve and a flow control valve, and the shaft 8 such as the spool and valve stem (valve body) The seal S is mounted in the storage recess 9 formed in the above.
The shaft 8 is formed with a stepped surface 10 that forms a deep bottom surface on the low-pressure side of the housing recess 9, and a large-diameter portion (land portion) 11 having an outer diameter D 0 slightly smaller than the hole portion 7. A small-diameter portion 12 with which the inner lip portion 1 is slidably contacted (contacted) is defined by the stepped surface 10.

シールSの軸心方向寸法Hよりも僅かに大きい軸心方向寸法H0 だけ、段付面10から離れた位置に、シール抜け止め用小凸条13を、軸8の外周面8aに、一体に形成する。具体的には、この小凸条13は、小径部12の外周面に突出状に一体形成された略不等辺三角形状であって、小径部12の先端面14側は、緩やかなテーパ面(傾斜面)13aであり、段付面10側は軸8の軸心15と略直交方向乃至急な勾配面若しくは小アール状とした係止面13bである。 A small protruding strip 13 for retaining the seal is integrated with the outer peripheral surface 8 a of the shaft 8 at a position away from the stepped surface 10 by an axial direction dimension H 0 slightly larger than the axial direction dimension H of the seal S. To form. Specifically, the small ridge 13 has a substantially unequal triangular shape integrally formed in a protruding manner on the outer peripheral surface of the small diameter portion 12, and the tip surface 14 side of the small diameter portion 12 has a gently tapered surface ( (Inclined surface) 13a, and the stepped surface 10 side is a locking surface 13b in a direction substantially perpendicular to the axis 15 of the shaft 8 or a steeply inclined surface or a small round shape.

上記軸心方向寸法H0 は、この係止面13bから、段付面10までの間隔寸法を指すものとする。そして、次式(1) が成立するように、軸心方向寸法H0 を設定する。
1.10×H≦H0 ≦1.25×H (1)
言い換えると、このシールSは、軸8の軸心方向の動きに対してルーズであって余裕がある。
The axial center direction dimension H 0 indicates a distance dimension from the locking surface 13b to the stepped surface 10. Then, the axial dimension H 0 is set so that the following expression (1) is satisfied.
1.10 × H ≦ H 0 ≦ 1.25 × H (1)
In other words, the seal S is loose with respect to the movement of the shaft 8 in the axial direction and has a margin.

そして、シール抜け止め用小凸条13の外径寸法D13を、上記軸8が収納凹所9の内周面を形成する部位の外径寸法D12の 104%〜 125%に設定する。特に、 105%〜 110%が望ましい。
これを式で示せば、次式(2)(3)のようになる。
1.04×D12≦D13≦1.25×D12 (2)
望ましくは、
1.05×D12≦D13≦1.10×D12 (3)
なお、上述の軸8が収納凹所9の内周面を形成する部位とは、具体的には、小径部12が相当している。
Then, the outer diameter D 13 of the small protrusion 13 for preventing the seal from coming off is set to 104% to 125% of the outer diameter D 12 where the shaft 8 forms the inner peripheral surface of the housing recess 9. In particular, 105% to 110% is desirable.
This can be expressed by the following equations (2) and (3).
1.04 × D 12 ≦ D 13 ≦ 1.25 × D 12 (2)
Preferably
1.05 x D 12 ≤ D 13 ≤ 1.10 x D 12 (3)
In addition, the site | part in which the above-mentioned axis | shaft 8 forms the internal peripheral surface of the storage recess 9 specifically, the small diameter part 12 is equivalent.

ところで、シールSについて詳しく説明すると、シール本体4の材質としては、変性PTFEが好ましく、バネ5の材質としてはNi−Cr系の耐食合金が好ましい。   By the way, the seal S will be described in detail. The material of the seal body 4 is preferably modified PTFE, and the material of the spring 5 is preferably a Ni—Cr corrosion resistant alloy.

本発明に於て、変性PTFEとは、テトラフルオロエチレンとパーフルオロ(アルキルビニルエーテル)との共重量体を意味するものとする。このような変性PTFEの一例としては、一般式R−O−CF=CF2 で表されるパーフルオロ(アルキルビニルエーテル)の少なくとも1種とテトラフルオロエチレンとの共重合体が用いられる。またパーフルオロ(アルキルビニルエーテル)としては、上記式中のRが炭素数3〜4のパーフルオロアルキル基であるもの、例えばパーフルオロ(プロピルビニルエーテル)、パーフルオロ(ブチルビニルエーテル)などが好ましい。さらにパーフルオロ(アルキルビニルエーテル)を 0.1〜10重量%、好ましくは 0.5〜5重量%含有するのが好ましい。 In the present invention, modified PTFE means a co-weight of tetrafluoroethylene and perfluoro (alkyl vinyl ether). As an example of such modified PTFE, a copolymer of at least one perfluoro (alkyl vinyl ether) represented by the general formula R—O—CF═CF 2 and tetrafluoroethylene is used. Further, as perfluoro (alkyl vinyl ether), those in which R in the above formula is a C 3-4 perfluoroalkyl group, such as perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether) and the like are preferable. Further, it is preferable to contain 0.1 to 10% by weight, preferably 0.5 to 5% by weight of perfluoro (alkyl vinyl ether).

そして、充填材を混入させない材質が望ましい。その理由は、例えば50MPa等の高圧水素ガスの圧力が作用すると、充填材入りPTFEでは、内外リップ部1,2の表面が粗くなり(微小凹凸が生じ)、軸8の外周面及び孔部7の内周面に接触する部位(接面)から高圧水素ガスが漏れ易くなる。   And the material which does not mix a filler is desirable. The reason is that when the pressure of high-pressure hydrogen gas such as 50 MPa is applied, the surfaces of the inner and outer lip portions 1 and 2 become rough (fine irregularities occur) in the PTFE containing filler, and the outer peripheral surface of the shaft 8 and the hole 7 The high-pressure hydrogen gas is likely to leak from a portion (contact surface) that contacts the inner peripheral surface.

バネ5に適用するNi−Cr系の耐食合金としては、Ni76%,Cr16%,Fe8%の耐食合金インコネル(登録商標)が水素ガスに対する耐食性の点で優れている。   As a Ni-Cr corrosion resistant alloy applied to the spring 5, a corrosion resistant alloy Inconel (registered trademark) of Ni 76%, Cr 16% and Fe 8% is excellent in terms of corrosion resistance to hydrogen gas.

そして、内リップ部1はシール用突起16と、軸8の小径部12の小凸条13の係止面13bに係止可能な係止用突起17を、有する。
係止用突起17は、内リップ部1の先端面18と連続平坦面状に形成された軸心直交面と、シール本体4の厚肉の底壁部19側へしだいに拡径する勾配面20と、を有する三角山型である。
The inner lip portion 1 has a sealing projection 16 and a locking projection 17 that can be locked to the locking surface 13 b of the small protrusion 13 of the small diameter portion 12 of the shaft 8.
The locking protrusion 17 is a sloped surface that gradually expands toward the thick walled bottom wall 19 side of the seal body 4 and an axially orthogonal surface formed in a continuous flat surface with the tip surface 18 of the inner lip portion 1. 20 is a triangular mountain type.

シール用突起16は、軸心直交面21と、底壁部19側へしだいに拡径する勾配面22と、を有する三角山形である。両突起16, 17はその内径寸法を相互に同一に設定し、先端面18寄りの突起17は、図1の状態のように軸心方向に余裕をもってルーズに収納凹所9に装着された状態で、シール本体4が抜け出ようとした場合に、軸8(小径部12)のシール抜け止め用小凸条13の係止面13bに、係止して、確実に抜け止めされる。かつ、この係止用突起17は、隣接されたシール用突起16と同様にシール(密封)作用もはたす。言い換えれば、シール本体4は内周面側に、2重シールリップ(シール突起)を備えている。   The sealing projection 16 has a triangular mountain shape having an axial orthogonal surface 21 and a sloped surface 22 that gradually increases in diameter toward the bottom wall portion 19 side. Both protrusions 16 and 17 are set to have the same inner diameter, and the protrusion 17 near the distal end face 18 is loosely mounted in the housing recess 9 with sufficient margin in the axial direction as shown in FIG. Thus, when the seal main body 4 is about to come out, the seal main body 4 is locked to the locking surface 13b of the small protrusion 13 for preventing the seal from being removed from the shaft 8 (small diameter portion 12), and is securely prevented from coming off. In addition, the locking projections 17 provide a sealing (sealing) action in the same manner as the adjacent sealing projections 16. In other words, the seal body 4 includes a double seal lip (seal protrusion) on the inner peripheral surface side.

他方、外リップ部2は、頂点から先端と基端方向へ緩やかな勾配面を有する低三角形状のシール用突起23を有する。図2から分かるように、外リップ部2側のシール用突起23と、内リップ部1側のシール用突起16は、軸心15と直交する同一平面上に配設され、さらに、開口溝部3を開口方向に弾発付勢するバネ5の軸心方向作用位置と、両シール用突起16,23の頂部(頂点)の軸心方向位置を、一致させている。   On the other hand, the outer lip portion 2 has a low-triangular sealing projection 23 having a gently inclined surface from the apex to the distal end and the proximal direction. As can be seen from FIG. 2, the sealing protrusion 23 on the outer lip portion 2 side and the sealing protrusion 16 on the inner lip portion 1 side are disposed on the same plane orthogonal to the axis 15, and the opening groove portion 3. The axially acting position of the spring 5 that elastically urges the opening in the opening direction coincides with the axial direction position of the top portions (vertices) of the seal projections 16 and 23.

バネ5は横断面U字型であって、先端側───高圧水素ガス収納空室24側───へ開口状となるように、シール本体4の開口溝部3へ組込まれている。横断面U字型の開口端部25,25が内外リップ部1,2に接触して弾発的に押圧する軸心方向位置が、前記軸心方向作用位置であり、結局、軸心15と直交する一平面上に、バネ5の作用位置(開口端部25,25)、及び、内外のシール用突起16, 23の頂部(頂点)が、配設される。
これによって、バネ5の弾発付勢力が、直接的かつ有効に、シール用突起16, 23の相手部材───軸8の外周面及び孔部7内周面───への接触面圧増大に寄与できて、高い密封(シール)性を発揮する。
The spring 5 has a U-shaped cross section, and is incorporated in the opening groove 3 of the seal body 4 so as to be open to the tip side --- the high-pressure hydrogen gas storage space 24 side--. The axial direction position where the open end portions 25, 25 having a U-shaped cross section come into contact with the inner and outer lip portions 1, 2 and elastically press is the axial direction acting position. On one orthogonal plane, the operating position of the spring 5 (open end portions 25, 25) and the top portions (vertices) of the inner and outer sealing projections 16, 23 are arranged.
As a result, the elastic urging force of the spring 5 is directly and effectively applied to the contact surface pressure of the sealing protrusions 16 and 23 on the mating member-the outer peripheral surface of the shaft 8 and the inner peripheral surface of the hole 7. Can contribute to increase, and exhibits high sealing performance.

また、図1と図2に示すように、軸8の段付面10に対応(対面)するシール本体4の底壁部19の肉厚寸法Tを、シール本体4の軸心方向寸法Hの35%〜50%と十分に(他の部分よりも)厚く設定する。即ち、次式のように設定する。
0.35 ×H≦T≦0.50×H (4)
上記式(4) に於て、下限値未満であると急激に気体(高圧水素ガス)の透過量が増大する。逆に、上限値を越すと、シールとしての不必要な部分が増加し、材料の無駄が生ずる。
Further, as shown in FIGS. 1 and 2, the thickness T of the bottom wall portion 19 of the seal body 4 corresponding to (facing to) the stepped surface 10 of the shaft 8 is set to the axial dimension H of the seal body 4. Set 35% to 50% thick enough (than other parts). That is, the following equation is set.
0.35 x H ≤ T ≤ 0.50 x H (4)
In the above formula (4), if it is less than the lower limit value, the permeation amount of gas (high-pressure hydrogen gas) increases rapidly. On the other hand, when the upper limit is exceeded, unnecessary portions as a seal increase, and material is wasted.

図1〜3の参考例に於て、シール抜け止め用小凸条13の外径寸法D13は前記(3) 式のように、十分小さく設定されているので、シール本体4の内リップ部1は、軽く弾性変形しつつ容易に、収納凹所9内へ装着でき、収納凹所9内で内リップ部1───特にシール用突起16と係止用突起17───は弾性復元力が損なわれることなく、従って、十分なシール用接触面圧が得られて、優れたシール性能を発揮できる。
このとき、緩やかなテーパ面(傾斜面)13aによって、一層、軽くかつ容易に、シールSが小凸条13を越えることが可能となる。かつ、係止面13bは、軸心15に直交する略平面状であるので、一旦装着されたシールSはその係止用突起17が確実に係止して、シールSが収納凹所9から抜け出ない(飛び出さない)という利点がある。
At a reference example of FIG. 1-3, the outer diameter D 13 is the seal retaining the small ridges 13 (3) as in equation because it is set sufficiently small, the inner lip portion of the seal body 4 1 is lightly elastically deformed and can be easily mounted in the storage recess 9, and the inner lip 1 in the storage recess 9, especially the sealing protrusion 16 and the locking protrusion 17, is elastically restored. Therefore, a sufficient contact surface pressure for sealing can be obtained without impairing the force, and excellent sealing performance can be exhibited.
At this time, the gentle taper surface (inclined surface) 13a makes it possible for the seal S to exceed the small ridges 13 more lightly and easily. Further, since the locking surface 13b has a substantially planar shape orthogonal to the shaft center 15, the locking projection 17 is securely locked by the locking projection 17 so that the seal S is removed from the storage recess 9. There is an advantage that it does not come out (does not jump out).

そして、前記(3) 式に於て、外径寸法D13が下限値未満であると、多数のシールSの内で、使用条件によって、小凸条13を乗り越えて、収納凹所9から抜け出るものが、急に増加する。逆に、上限値を越すと、シール装着時に小凸条13によって、内リップ部1のシール用突起16が損傷を受け、あるいは、上述の樹脂材質ではシール用突起16が拡径方向に塑性変形してしまって、高圧水素ガスの漏洩量が、急激に増加する。 In the expression (3), if the outer diameter D 13 is less than the lower limit value, the small ridges 13 are overcome by the use conditions in a large number of seals S and come out of the storage recess 9. Things suddenly increase. On the contrary, if the upper limit is exceeded, the seal protrusion 16 of the inner lip portion 1 is damaged by the small protrusion 13 when the seal is mounted, or the seal protrusion 16 is plastically deformed in the diameter increasing direction with the above-mentioned resin material. As a result, the amount of high-pressure hydrogen gas leakage increases rapidly.

次に、図4、図5、図6は各々他の参考例を示す。
図4と図5に於て、(図2と比較すれば明らかなように、)内リップ部1のシール用突起26が、外リップ部2のシール用突起23と同様の低三角山型とした場合であって、かつ、軸8のシール抜け止め用小凸条13の外径寸法D13が、軸8の外径寸法12に対して、比較的大きい場合を示す。
Next, FIGS. 4, 5 and 6 show the each other Example.
4 and 5, the seal projection 26 of the inner lip portion 1 is a low triangular mountain shape similar to the seal projection 23 of the outer lip portion 2 (as is apparent when compared with FIG. 2). This is a case where the outer diameter D 13 of the small protrusion 13 for preventing the seal from coming off of the shaft 8 is relatively larger than the outer diameter 12 of the shaft 8.

図6に於て、内リップ部1のシール用突起27を、シール本体4の内リップ部1の先端面と一致した位置とし、従って、シール抜け止め用小凸条13に、この突起27が係止して、抜け止めの役目も兼ねる構造である。   In FIG. 6, the sealing protrusion 27 of the inner lip portion 1 is set to a position coincident with the tip surface of the inner lip portion 1 of the seal body 4. It is a structure that locks and also serves as a retainer.

図7は本発明の実施の一形態を示す。図7に於て、内リップ部1のシール用突起(接触部)28を、軸心方向に小さな幅のある面状とし、バネ5の開口端部25の弾発付勢力が、シール用突起(接触部)28に伝わり易くした構成である。即ち、図6ではバネ5の開口端部25の軸心方向位置と、シール用突起27の位置とが、僅かにずれていたのを、図7では、面状のシール用突起(接触部)28の少なくとも一部を、バネ5の開口端部25の軸心方向位置と一致させて、バネ5の弾発付勢力を、有効に軸との接触面圧増加に、活用している。 FIG. 7 shows an embodiment of the present invention. In FIG. 7, the sealing protrusion (contact part) 28 of the inner lip 1 is formed into a surface with a small width in the axial direction, and the elastic biasing force of the opening end 25 of the spring 5 is the sealing protrusion. (Contact portion) 28 is easy to be transmitted to. That is, in FIG. 6, the axial center position of the opening end 25 of the spring 5 and the position of the seal projection 27 are slightly shifted. In FIG. 7, the planar seal projection (contact portion) is shown. At least a part of 28 is made to coincide with the axial direction position of the open end 25 of the spring 5, and the elastic urging force of the spring 5 is effectively utilized to increase the contact surface pressure with the shaft.

図8は、既述の図1〜図3の参考例を、図4〜図7と比較のために改めて図示したものであり、図7の面状に接触するシール用突起28を、線状に近く、接触する三角形状のシール用突起16とすると共に、図6に示したシール兼係止用の突起27を、別途、先端側の突起17として、付設した構成である。
この図4〜8は、以下に述べる実施例、参考例、及びその漏れ試験の実測結果に対応する。
FIG. 8 shows the reference example of FIGS. 1 to 3 described above for comparison with FIGS. 4 to 7. The sealing protrusion 28 that contacts the surface of FIG. In addition to the triangular sealing projection 16 that is in contact with the projection, the sealing and locking projection 27 shown in FIG. 6 is additionally provided as a projection 17 on the distal end side.
4 to 8 correspond to the following examples , reference examples, and actual measurement results of the leak test.

参考例1,2,3,4は夫々図4,図5,図6,図8に対応し、バネ5を装着前の自由状態のシールSの径方向寸法(厚さ寸法)Wは全て 1.7mm、軸心方向寸法Hは全て 2.7mm、底壁部19の肉厚寸法Tを 1.0mm、底壁部19の内径d1 、外径d2 を夫々 3.1mm、 5.9mmとし、シール本体4の材質を前述の変性PTFE、バネ5の材質をインコネル(登録商標)を用いた。 Reference examples 1, 2, 3 , and 4 correspond to FIGS. 4, 5, 6, and 8 , respectively, and the radial dimension (thickness dimension) W of the seal S in the free state before the spring 5 is mounted is all. and 1.7 mm, all axial dimension H is 2.7 mm, 1.0 mm and thickness dimension T of the bottom wall portion 19, the inner diameter d 1 of the bottom wall portion 19, the outer diameter d 2 respectively 3.1 mm, and 5.9 mm, the seal body The above-mentioned modified PTFE was used as the material 4 and Inconel (registered trademark) was used as the material of the spring 5.

他方、軸8の小径部12の(基本)外径寸法D12は全て 3.0mmとし、シール抜け止め用小凸条13の外径寸法D13は、図4では 3.8mm(1.27×D12)、図5では 3.6mm(1.20×D12)、図6〜図8では 3.2mm(1.07×D12)とする。また、ハウジング孔部7の内径寸法は、全て 6.0mmとした。
漏れ試験用流体として、20kgf/cm2 の窒素ガスを用いて、漏れ量を測定した結果を、次の表1に示す。
On the other hand, the (basic) outer diameter D 12 of the small-diameter portion 12 of the shaft 8 is all set to 3.0 mm, and the outer diameter D 13 of the small protrusion 13 for retaining the seal is 3.8 mm (1.27 × D 12 ) in FIG. 5 is 3.6 mm (1.20 × D 12 ), and FIGS. 6 to 8 is 3.2 mm (1.07 × D 12 ). The inner diameter of the housing hole 7 was all 6.0 mm.
Table 1 shows the results of measuring the leakage using 20 kgf / cm 2 of nitrogen gas as the leakage test fluid.

Figure 0004616896
Figure 0004616896

上記表1から次のことが分かる。
シール抜け止め用小凸条13の外径寸法D13の軸外径寸法D12に対する比が、 125%を越すと急激に漏れ量Qが増加する(参考例1)。その理由は、装着時にシール本体4の内リップ部1が大きく拡径した状態で小凸条13を乗り越えるため、シール用突起26が装着後も拡径状態となって十分な軸との接触面圧が得られないためと考えられる。
The following can be seen from Table 1 above.
Ratio axis diameter D 12 of the outer diameter D 13 of the sealing stopper for a small ridges 13, rapidly leak amount Q increases it exceeds 125% (Example 1). The reason for this is that when the inner lip portion 1 of the seal body 4 is greatly expanded in diameter when mounted, the small protrusion 13 is passed over, so that the seal projection 26 is expanded in diameter even after mounting, and a sufficient contact surface with the shaft. This is probably because the pressure cannot be obtained.

そこで、図5(参考例2)のように、(D13/D12)の百分率を 120%とすれば、漏れ量が約1/10に急に改善されることが分かる。
さらに、図6(参考例3)のように、(D13/D12)の百分率を 107%と低減し、シール装着時の拡径(引き伸ばし)の度合を低く抑えると共に、シール用突起27を(図6のように)先端面18に形成すると、 4.8mL/min に減少している。
Therefore, as shown in FIG. 5 ( Reference Example 2), it is understood that when the percentage of (D 13 / D 12 ) is 120%, the leakage amount is suddenly improved to about 1/10.
Furthermore, as shown in FIG. 6 ( Reference Example 3), the percentage of (D 13 / D 12 ) is reduced to 107%, the degree of diameter expansion (stretching) when the seal is mounted is kept low, and the sealing protrusion 27 is provided. When formed on the tip surface 18 (as in FIG. 6), it is reduced to 4.8 mL / min.

図7(実施例)のように、(D13/D12)の百分率をそのままで、シール用突起28を帯状(面状)に軸8に接触するようにし、バネ5の弾発力がその接触する部位に伝わり易くすると、 1.4mL/min まで漏れは減少する。
次に、図8(参考例4)の如く、軸8に対して、線接触状に接触するようなシール用突起16を変更し、かつ、先端に係止用突起17を付加すると、漏れは 0.3mL/min と、著しく減少していることが分かる。
As shown in FIG. 7 (Example 1 ), the percentage of (D 13 / D 12 ) is kept as it is, the sealing projection 28 is brought into contact with the shaft 8 in a band shape (planar shape), and the elasticity of the spring 5 is increased. Leakage is reduced to 1.4 mL / min if it is easily transmitted to the contact area.
Next, as shown in FIG. 8 ( Reference Example 4 ), if the seal projection 16 is changed so as to come into line contact with the shaft 8, and the locking projection 17 is added to the tip, the leakage will occur. It can be seen that it is significantly reduced to 0.3 mL / min.

なお、(D13/D12)の百分率を 107%未満とした試作品でも漏れ試験を行ったところ、シールが収納凹所9から抜け出る(飛び出す)ことが発生する。このようにシールが収納凹所9から抜け出ない13/D12)の下限値が、 107%である。 In addition, when a leakage test was performed even on a prototype in which the percentage of (D 13 / D 12 ) was less than 107%, the seal would come out (jump out) from the storage recess 9. In this way, the lower limit value ( D 13 / D 12 ) at which the seal does not come out of the storage recess 9 is 107%.

上述のように、内リップ部1と外リップ部2によって軸心一方向に開口溝部3を形成した樹脂製シール本体4と、開口溝部3内に設けられたバネ5と、から成るシールSを、ハウジング孔部7と軸8との間に形成された収納凹所9に装着した密封構造に於て、シール本体4の材質を変性PTFEとし、かつ、軸8には、収納凹所9の奥底面を形成する段付面10が形成され、シールSの軸心方向寸法Hよりも大きい寸法H0 だけ段付面10から離れた位置に、シール抜け止め用小凸条13を軸8の外周面8aに、一体に形成し、さらに、シール抜け止め用小凸条13は、軸8の先端側にしだいに縮径する緩やかなテーパ面13aを有すると共に段付面10側は軸心15に略直交する係止面13bを有する略不等辺三角形状であって、シール抜け止め用小凸条13の外径寸法D13を、軸8が収納凹所9の内周面を形成する部位の外径寸法D12の 105%〜 110%に設定したことによって、構造が簡素で、高圧水素ガス密封構造の容積が増加せず、コンパクトであって、軸8の端部又はハウジング孔部7に抜け止め部材をネジ等で取付ける必要がない。そして、シールSの収納凹所9への装着作業も容易かつ迅速に行い得る。従って、水素ガス燃料電池車のレギュレータ電磁弁等の弁類に好適な密封構造であるといえる。 As described above, the seal S comprising the resin seal body 4 in which the opening groove portion 3 is formed in one axial direction by the inner lip portion 1 and the outer lip portion 2, and the spring 5 provided in the opening groove portion 3 is provided. In the sealing structure attached to the housing recess 9 formed between the housing hole 7 and the shaft 8, the material of the seal body 4 is modified PTFE, and the shaft 8 includes the housing recess 9. A stepped surface 10 that forms the bottom surface is formed, and a small convex strip 13 for retaining the seal is attached to the shaft 8 at a position separated from the stepped surface 10 by a dimension H 0 that is larger than the axial dimension H of the seal S. The small protrusion 13 that is formed integrally with the outer peripheral surface 8a and further has a gently tapered surface 13a that gradually decreases in diameter at the tip end side of the shaft 8, and the stepped surface 10 side has an axis 15 The outer surface of the small convex strip 13 for retaining the seal is a substantially irregular triangle having a locking surface 13b substantially orthogonal to Law D 13, by the shaft 8 is set to 105% to 110% of the outer diameter D 12 of the portions forming the inner peripheral surface of the housing recess 9, the structure is simple, the volume of the high-pressure hydrogen gas seal structure Therefore, it is compact, and it is not necessary to attach a retaining member to the end of the shaft 8 or the housing hole 7 with a screw or the like. And the mounting | wearing operation | work to the storage recess 9 of the seal | sticker S can also be performed easily and rapidly. Therefore, it can be said that the sealing structure is suitable for valves such as a regulator electromagnetic valve of a hydrogen gas fuel cell vehicle.

さらに、シールSを収納凹所9へ装着する際、シール本体4(の内リップ部1)の引き伸ばしを抑えることができて、使用状態で流体漏れを微量に抑えることができる。しかも、装着後(使用状態)において、圧力変動あるいは軸8と孔部7の相対的動きに伴って、シールSが収納凹所9から抜け出ることも、防止できる。特に、シール抜け止め用小凸条13は緩やかなテーパ面13aを有する略不等辺三角形状として軸8に一体形成されているので、シールSが、軽くかつ容易に小凸条13を越えることが可能となる。しかも、小凸条13は軸心15に略直交する係止面13bを有するので、一旦装着されたシールSは収納凹所9から抜け出ない(飛び出さない)。   Furthermore, when the seal S is mounted in the storage recess 9, the expansion of the seal body 4 (the inner lip portion 1) can be suppressed, and a fluid leakage can be suppressed in a very small amount in use. Moreover, it is possible to prevent the seal S from coming out of the housing recess 9 due to pressure fluctuation or relative movement of the shaft 8 and the hole 7 after mounting (in use). In particular, the small protrusion 13 for preventing the seal from coming off is integrally formed with the shaft 8 as a substantially unequal triangular shape having a gently tapered surface 13a. It becomes possible. Moreover, since the small ridge 13 has a locking surface 13b substantially orthogonal to the shaft center 15, the seal S once mounted does not come out (do not jump out) from the storage recess 9.

また、上述のように、内リップ部1と外リップ部2と底壁部19によって軸心一方向に開口溝部3を形成した樹脂製シール本体4と、開口溝部3内に設けられたバネ5と、から成る高圧水素ガス用シールに於て、内リップ部1が、シール用突起16と、軸8の外周面8aに形成されたシール抜け止め用小凸条13に係止可能な係止用突起17を有し、シール用突起16は、軸心直交面21と、底壁部19側へしだいに拡径する勾配面22と、を有する三角山型であり、さらに、係止用突起17は、内リップ部1の先端面18と連続平坦面状に形成された軸心直交面と、底壁部19側へしだいに拡径する勾配面20と、を有する三角山型であるので、内リップ部1が軸8に直接的に接触する部分が、シール用突起16と係止用突起17の2重の構造であるので、シール(密封)性が極めて高い。
また、係止用突起17によって、確実にシールSの抜け出ることを防止できる。かつ、シール用突起16の軸8への接触面圧も十分に高め得て、優れたシール(密封)性を発揮できる。
Further, as described above, the resin seal main body 4 in which the opening groove portion 3 is formed in one axial center direction by the inner lip portion 1, the outer lip portion 2 and the bottom wall portion 19, and the spring 5 provided in the opening groove portion 3. In the high-pressure hydrogen gas seal, the inner lip portion 1 can be engaged with the seal protrusion 16 and the seal protrusion preventing small protrusion 13 formed on the outer peripheral surface 8a of the shaft 8. The projection 16 for sealing, and the sealing projection 16 is a triangular mountain shape having an axial center orthogonal surface 21 and a sloped surface 22 that gradually increases in diameter toward the bottom wall portion 19 side. 17 is a triangular mountain shape having a tip surface 18 of the inner lip portion 1, an axially orthogonal surface formed in a continuous flat surface shape, and a gradient surface 20 that gradually increases in diameter toward the bottom wall portion 19 side. The portion where the inner lip portion 1 directly contacts the shaft 8 has a double structure of the sealing projection 16 and the locking projection 17 so that the sealing (sealing) performance is extremely high. Is expensive.
Further, the locking projection 17 can surely prevent the seal S from coming out. In addition, the contact surface pressure of the seal projection 16 to the shaft 8 can be sufficiently increased, and excellent sealing (sealing) performance can be exhibited.

また、上述のように、内リップ部1と外リップ部2によって軸心一方向に開口溝部3を形成した軸8に外嵌状に装着される樹脂製シール本体4と、開口溝部3内に設けられたバネ5と、から成る高圧水素ガス用シールに於て、シール本体4の材質を変性PTFEとし、かつ、シール本体4の開口溝部3の奥側の底壁部19の肉厚寸法Tを、シール本体4の軸心方向寸法Hの35%〜50%に設定し、しかも、バネ5の横断面形状をU字型とし、軸心一方向に開口端部25,25が向くように開口溝部3内に設けられてバネ5の開口端部25,25が内外リップ部1,2に接触して弾発的に押圧して開口溝部3を開口方向に弾発付勢する軸心方向作用位置と、内リップ部1のシール用突起16及び外リップ部2のシール用突起23の頂部の軸心方向位置を、一致させたので、被密封流体としての水素ガスの圧力が、例えば、50MPaと高くても、底壁部19を通してのガス透過を十分低く抑えることができる。しかも、不必要にシール本体4が大きくなることも防いでいる。
さらに、バネ5の弾発付勢力が有効にシール用突起16, 23に伝達される。これによって、軸8の外周面、ハウジング孔部7の内周面に対する、接触面圧を十分に高めて、確実にシール性能を発揮する。
かつ、充填材入りPTFEに比べて、漏れ量が一層減少する。しかも、例えば50MPaもの高圧の水素ガスに適用可能となり、漏れが極力少なく、耐クリープ性にも優れている。
Further, as described above, the resin seal main body 4 mounted on the shaft 8 in which the opening groove portion 3 is formed in one axial center direction by the inner lip portion 1 and the outer lip portion 2 and fitted in the opening groove portion 3. In the high-pressure hydrogen gas seal comprising the provided spring 5, the seal body 4 is made of modified PTFE, and the wall thickness T of the bottom wall portion 19 on the back side of the opening groove 3 of the seal body 4 Is set to 35% to 50% of the axial dimension H of the seal body 4, and the cross-sectional shape of the spring 5 is U-shaped so that the opening ends 25, 25 are oriented in one axial direction. Axial direction in which the opening end portions 25 and 25 of the spring 5 come into contact with the inner and outer lip portions 1 and 2 and are elastically pressed to elastically bias the opening groove portion 3 in the opening direction. The operating position is matched with the axial position of the top of the sealing protrusion 16 of the inner lip 1 and the sealing protrusion 23 of the outer lip 2. , The pressure of hydrogen gas as the sealed fluid, for example, be as high as 50 MPa, can be suppressed sufficiently low gas permeation through the bottom wall portion 19. Moreover, it is possible to prevent the seal body 4 from becoming unnecessarily large.
Further, the elastic urging force of the spring 5 is effectively transmitted to the sealing protrusions 16 and 23. As a result, the contact surface pressure with respect to the outer peripheral surface of the shaft 8 and the inner peripheral surface of the housing hole 7 is sufficiently increased, and the sealing performance is reliably exhibited.
In addition, the amount of leakage is further reduced as compared with PTFE containing filler. Moreover, for example, it can be applied to high-pressure hydrogen gas as high as 50 MPa, leakage is minimized, and the creep resistance is excellent.

本発明と関係が深い参考例に係る高圧ガス用シールの一形態の使用構造及び位置関係及び寸法関係を説明する図である。It is a figure explaining the use structure of one form of the seal | sticker for high pressure gas which has a close relationship with this invention , a positional relationship, and a dimensional relationship. シールの断面図である。It is sectional drawing of a seal | sticker. シールが装着される箇所の説明断面図である。It is explanatory sectional drawing of the location where a seal | sticker is mounted | worn. 他の参考例を示す説明図である。It is explanatory drawing which shows the other reference example . 別の参考例を示す説明図である。It is explanatory drawing which shows another reference example . さらに他の参考例を示す説明図である。It is explanatory drawing which shows the other reference example . 本発明の実施の形態を示す説明図である。It is explanatory drawing which shows one Embodiment of this invention . 図1〜図3の参考例を他と比較のために示す説明図である。 FIG. 4 is an explanatory diagram showing a reference example of FIGS. 1 to 3 for comparison with others. 従来例を示す断面説明図である。It is sectional explanatory drawing which shows a prior art example.

1 内リップ部
2 外リップ部
4 シール本体
5 バネ
6 ハウジング(ボディ)
7 孔部
8 軸
8a 外周面
9 収納凹所
10 段付面
13 シール抜け止め用小凸条
15 軸心
17 係止用突起
18 先端面
19 底壁部
20 勾配面
21 軸心直交面
22 勾配面
23 シール用突起
25 開口端部
28 シール用突起
S シール
T 肉厚寸法
0 ,D12,D13 外径寸法
0 ,H1 軸心方向寸法
1 inner lip 2 outer lip 4 seal body 5 spring 6 housing (body)
7 hole 8 shaft 8a outer peripheral surface 9 storage recess
10 Stepped surface
13 Small convex strip for retaining seal
15 axis
17 Locking protrusion
18 Tip surface
19 Bottom wall
20 Inclined surface
21 Axis orthogonal plane
22 Inclined surface
23 Seal projection
25 Open end
28 Seal projection S Seal T Wall thickness D 0 , D 12 , D 13 Outer diameter H 0 , H 1 Axial dimension

Claims (1)

内リップ部(1)と外リップ部(2)によって軸心一方向に開口溝部(3)を形成した軸(8)に外嵌状に装着される樹脂製シール本体(4)と、該開口溝部(3)内に設けられたバネ(5)と、から成る高圧水素ガス用シールに於て、上記シール本体(4)の材質を変性PTFEとし、かつ、上記シール本体(4)の開口溝部(3)の奥側の底壁部(19)の肉厚寸法(T)を、上記シール本体(4)の軸心方向寸法(H)の35%〜50%に設定し、上記内リップ部(1)のシール用突起(28)を帯状に上記軸(8)に接触するように形成し、しかも、上記バネ(5)の横断面形状をU字型とし、上記軸心一方向に開口端部 (25)(25) が向くように上記開口溝部(3)内に設けられて該バネ(5)の上記開口端部 (25)(25) が上記内外リップ部 (1)(2) に接触して弾発的に押圧して上記開口溝部(3)を開口方向に弾発付勢する軸心方向作用位置と、上記内リップ部(1)のシール用突起(28)の少なくとも一部と、上記外リップ部(2)のシール用突起(23)の頂部の軸心方向位置を、一致させたことを特徴とする高圧水素ガス用シール。 A resin seal body (4) mounted on the shaft (8) having an opening groove (3) formed in one axial center direction by the inner lip portion (1) and the outer lip portion (2), and the opening In the high-pressure hydrogen gas seal comprising a spring (5) provided in the groove (3), the material of the seal body (4) is modified PTFE, and the opening groove of the seal body (4) The thickness (T) of the bottom wall part (19) on the back side of (3) is set to 35% to 50% of the axial direction dimension (H) of the seal body (4), and the inner lip part The sealing projection (28) of (1) is formed in a band shape so as to contact the shaft (8), and the cross-sectional shape of the spring (5) is U-shaped and opens in one direction of the axis. The opening (25) (25) of the spring (5) is provided in the opening groove (3) so that the end (25) (25) faces, and the inner and outer lip (1) (2) In An axially acting position that contacts and elastically presses and elastically biases the opening groove (3) in the opening direction, and at least a part of the sealing protrusion (28) of the inner lip (1) When high-pressure hydrogen gas seal, characterized in that the axial position of the top of the sealing projection (23) of the outer lip portion (2), were matched.
JP2008111471A 2008-04-22 2008-04-22 High-pressure hydrogen gas seal Expired - Lifetime JP4616896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111471A JP4616896B2 (en) 2008-04-22 2008-04-22 High-pressure hydrogen gas seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111471A JP4616896B2 (en) 2008-04-22 2008-04-22 High-pressure hydrogen gas seal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002239100A Division JP4198954B2 (en) 2002-08-20 2002-08-20 High-pressure hydrogen gas sealing structure and seal

Publications (2)

Publication Number Publication Date
JP2008180393A JP2008180393A (en) 2008-08-07
JP4616896B2 true JP4616896B2 (en) 2011-01-19

Family

ID=39724424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111471A Expired - Lifetime JP4616896B2 (en) 2008-04-22 2008-04-22 High-pressure hydrogen gas seal

Country Status (1)

Country Link
JP (1) JP4616896B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057403B2 (en) * 2010-08-27 2017-01-11 国立研究開発法人産業技術総合研究所 seal
JP6204711B2 (en) * 2013-06-19 2017-09-27 タカハタプレシジョンジャパン株式会社 Rotating body support structure and manufacturing method
DE102015221315A1 (en) * 2014-12-05 2016-06-09 Schaeffler Technologies AG & Co. KG Seal for a hydraulic actuating means for a friction clutch or a brake cylinder and hydraulic actuating means with a corresponding seal
KR101889719B1 (en) * 2016-06-21 2018-08-20 주식회사프라임 Sealing structure for convection fan motor of steam convection oven
CN110762146B (en) * 2019-10-30 2021-05-11 北京裕泰行新材料科技有限公司 H-shaped spring and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191571A (en) * 1990-11-26 1992-07-09 Mitsubishi Cable Ind Ltd Seal for low temperature
JPH0882372A (en) * 1994-09-09 1996-03-26 Mitsubishi Cable Ind Ltd U-shaped seal
JPH11108193A (en) * 1997-10-09 1999-04-20 Mitsubishi Cable Ind Ltd Molten fluororesin made seal ring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04191571A (en) * 1990-11-26 1992-07-09 Mitsubishi Cable Ind Ltd Seal for low temperature
JPH0882372A (en) * 1994-09-09 1996-03-26 Mitsubishi Cable Ind Ltd U-shaped seal
JPH11108193A (en) * 1997-10-09 1999-04-20 Mitsubishi Cable Ind Ltd Molten fluororesin made seal ring

Also Published As

Publication number Publication date
JP2008180393A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4616896B2 (en) High-pressure hydrogen gas seal
JP5096285B2 (en) Ball valve
JP6522746B2 (en) Trunnion type ball valve and valve seal structure and packing for valve
US7942423B2 (en) Lip type seal
JP2005299808A (en) Seal for pump
KR20080018909A (en) Lip type seal
WO2011086887A1 (en) Sealed structure
CA2902069C (en) Composite dynamic valve seal assembly for high temperature control valves
JP4198954B2 (en) High-pressure hydrogen gas sealing structure and seal
JP4636281B2 (en) Sealing device
US20110023810A1 (en) Cylinder Head Assembly for an Internal Combustion Engine
JP4226406B2 (en) Ball valve
JP4243120B2 (en) High pressure gas sealed structure
JP2008531940A (en) Lower strength material for MLS layer
US5467966A (en) Seals
EP2112337B1 (en) Valve stem seal
JP2012013141A (en) Trunnion type ball valve
JP2005273555A (en) Regulator for high-pressure fluid
JP2023077130A (en) Check valve
JP7262764B2 (en) Ball valve
JP3155483B2 (en) Valve stem seal
JP5373522B2 (en) Seal structure
JP2005023791A (en) Sealing device
JP5110252B2 (en) Valve seal structure
JP5126462B2 (en) Fuel cell seal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R150 Certificate of patent or registration of utility model

Ref document number: 4616896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term