JP4615481B2 - Umami seasoning and its production method - Google Patents

Umami seasoning and its production method Download PDF

Info

Publication number
JP4615481B2
JP4615481B2 JP2006161314A JP2006161314A JP4615481B2 JP 4615481 B2 JP4615481 B2 JP 4615481B2 JP 2006161314 A JP2006161314 A JP 2006161314A JP 2006161314 A JP2006161314 A JP 2006161314A JP 4615481 B2 JP4615481 B2 JP 4615481B2
Authority
JP
Japan
Prior art keywords
month
residue
soy sauce
koji
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006161314A
Other languages
Japanese (ja)
Other versions
JP2007325566A (en
Inventor
賢一 川▲崎▼
泰之 塚正
正史 安藤
哲男 村上
みゆき 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP2006161314A priority Critical patent/JP4615481B2/en
Publication of JP2007325566A publication Critical patent/JP2007325566A/en
Application granted granted Critical
Publication of JP4615481B2 publication Critical patent/JP4615481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Seasonings (AREA)

Description

本発明は、出汁取り(出汁抽出)後の残渣を利用する旨味調味料およびその製造法に関する。   The present invention relates to an umami seasoning that uses a residue after soup removal (extraction extraction) and a method for producing the same.

近年、我が国では合わせ調味料の消費が増加している。使用される節類は、全国で約8万トンであり、その中の約5万トンが削り節として出汁を取るのに使用される(農林水産省統計2000)。出汁取り後、一部は飼肥料に用いられるが、ほぼ全量が残渣として廃棄される。例えば、ある企業では2t/日の残渣が廃棄される。残渣にはタンパク質等が残されるため、回収し再利用が可能であるが、現在の再利用方法は、いわゆる「おかか」の原料だけであり利用量にも限度がある。
特許文献1には、節類の出汁取り後の残渣の有効利用を図るために、残渣を醤油麹で所定条件下、短時間発酵させ、さらに紅麹由来のリボ核酸分解酵素で処理する旨味調味料の製造法が開示されている。
特開平6−86653号公報
In recent years, consumption of seasonings has increased in Japan. There are about 80,000 tons of knots used nationwide, of which about 50,000 tons are used to take the soup stock as shaving knots (Ministry of Agriculture, Forestry and Fisheries Statistics 2000). After removing the soup, some of it is used as a fertilizer, but almost all of it is discarded as a residue. For example, in a certain company, 2 t / day of residue is discarded. Since proteins and the like remain in the residue, they can be recovered and reused. However, the current recycling method is only a so-called “oka” raw material, and the amount of use is limited.
In Patent Document 1, in order to make effective use of the residue after removing the soup of koji, the residue is fermented in soy sauce cake under a predetermined condition for a short time, and further processed with ribonucleolytic enzyme derived from red yeast rice. A method of manufacturing the material is disclosed.
JP-A-6-86653

本発明は、より簡単な手段で、節類等の出汁取り後の残渣の有効利用を図ることを目的とする。   An object of this invention is to aim at the effective utilization of the residue after taking out soups, such as koji, by simpler means.

上記目的を達成するため、本発明者らは鋭意研究を重ねた結果、醤油麹または味噌麹、特に、大豆を必須の成分とする基質で製麹した麹で自然発酵させることにより、非常に良好な旨味を有する魚醤油状や、魚醤(魚味噌)状の旨味調味料が得られることを見出し、本発明を完成するに至った。   In order to achieve the above object, as a result of intensive research, the inventors of the present invention are very good by natural fermentation with soy sauce koji or miso, especially koji made with a substrate containing soybean as an essential ingredient. The present inventors have found that a fish soy oily taste and a fish soy (fish miso) -like umami seasoning can be obtained, and the present invention has been completed.

すなわち、本発明は、
(1)節類または節類と昆布の出汁取り後の残渣を、5〜25重量%の塩濃度にて醤油麹または味噌麹で自然発酵させて得られる旨味調味料、
(2)麹が、大豆、米、小麦および大麦から選ばれる少なくとも1種の穀類を基質として製麹した麹である上記(1)記載の旨味調味料、
(3)基質が、大豆と、他の少なくとも1種の穀類とを含む上記(3)記載の旨味調味料、
(4)節類の出汁取り後の残渣を自然発酵させて得られる上記(1)〜(3)項いずれか1項記載の旨味調味料、
(5)節類の出汁取り後の残渣と、昆布の出汁取り後の残渣の混合物を自然発酵させて得られる上記(1)〜(3)いずれか1項記載の旨味調味料、
(6)発酵醪(諸味)を固液分離して得られる液体調味料である上記(1)〜(5)いずれか1項記載の旨味調味料、
(7)発酵醪を固液分離して得られるペースト状〜固体の調味料である上記(1)〜(5)いずれか1項記載の旨味調味料、
(8)節類または節類の出汁取り後の残渣を、5〜25重量%の塩濃度にて醤油麹または味噌麹で自然発酵させることを特徴とする旨味調味料の製造法、
(9)発酵醪が、少なくとも外観上液となじむまで発酵を続ける上記(8)記載の製造法、
(10)3〜6ヶ月間発酵を続ける上記(8)記載の製造法、
(11)発酵後に、固液分離する上記(8)記載の製造法、
(12)固液分離した液体を火入れする上記(11)記載の製造法などを提供するものである。
That is, the present invention
(1) An umami seasoning obtained by spontaneously fermenting koji or koji and kombu residue after soy sauce or miso at a salt concentration of 5 to 25% by weight,
(2) The umami seasoning according to the above (1), wherein the koji is koji made from at least one cereal selected from soybeans, rice, wheat and barley as a substrate,
(3) The umami seasoning according to (3) above, wherein the substrate contains soybean and at least one other cereal grain,
(4) The umami seasoning according to any one of (1) to (3) above, which is obtained by spontaneously fermenting the residue after taking the soup stock of knots,
(5) The umami seasoning according to any one of (1) to (3) above, which is obtained by spontaneously fermenting a mixture of the residue after removing the soup stock of koji and the residue after removing the soup stock of kelp,
(6) The umami seasoning according to any one of (1) to (5) above, which is a liquid seasoning obtained by solid-liquid separation of fermented koji (moromi),
(7) The umami seasoning according to any one of (1) to (5) above, which is a paste-solid seasoning obtained by solid-liquid separation of the fermented koji,
(8) A method for producing an umami seasoning, characterized by fermenting koji or the residue after taking soup of koji with soy sauce koji or miso at a salt concentration of 5 to 25% by weight,
(9) The production method according to the above (8), wherein fermentation continues until at least the fermented koji is compatible with the liquid in appearance.
(10) The production method according to (8), wherein fermentation is continued for 3 to 6 months,
(11) The production method according to (8) above, wherein solid-liquid separation is performed after fermentation,
(12) The manufacturing method according to the above (11), in which the solid-liquid separated liquid is fired.

節類や節類と昆布の出汁取り後の残渣を、大豆、米等の単体の基質で調製した麹を用いると、それぞれ旨味や、匂いが良好になり、大豆と、米等の他の穀類とを組み合わせると、旨味も匂いも良い魚醤油や魚醤状の調味料が得られる。かくして、本発明によれば、このような穀類を基質とする醤油麹や味噌麹を用い、出汁取り後の残渣を自然発酵させることにより、タンパク系の旨味だけでなく、麹由来の有機酸や糖類、アルコール、エステルなどが生成し、これらが混在することでいろいろな味が複合して、旨味系アミノ酸を引き立て、窒素量が少なくても味のよい調味料が簡単な操作で製造できる。発酵醪は、そのまま、適宜均質化して調味料とすることも可能であるが、発酵醪から固液分離して得られた液体は、大豆醤油に比べて濃度の薄い魚醤油状で、調味料として好適であり、また、色が薄く、味のバランスが良く、香りが良いことから、合わせ調味料の原料としても好適である。さらに、固液分離して残った、ペースト状〜固体残渣は、旨味と香りの良い成分が残存し、多くの未分解のタンパク質が残っており、魚味噌や醤として利用できる。さらにまた、必要により、ペースト状〜固体状残渣を脱塩処理に付し、飼料等に利用することもできる。これにより、現在廃棄されている残渣の全てを有効利用することが可能となる。   Using koji prepared with a single substrate such as soybeans and rice for the residue after taking soup of koji and koji and kombu, the umami and smell will be better respectively, soy and other grains such as rice When combined with the above, fish soy sauce and fish sauce-like seasonings with good taste and smell can be obtained. Thus, according to the present invention, by using soy sauce koji and miso using such cereals as a substrate, and naturally fermenting the residue after removing the soup stock, not only protein-based umami, but also organic acids derived from koji Saccharides, alcohols, esters, and the like are produced, and when these are mixed, various flavors are combined to enhance umami-based amino acids, and a seasoning with good taste can be produced with a simple operation even if the amount of nitrogen is small. The fermented koji can be homogenized as it is to make a seasoning, but the liquid obtained by solid-liquid separation from the fermented koji is a fish soy oil with a lower concentration than soybean soy sauce. It is also suitable as a raw material for combined seasonings because of its light color, good balance of taste and good fragrance. Furthermore, the paste-solid residue remaining after solid-liquid separation has components with good umami and fragrance, and many undegraded proteins remain, which can be used as fish miso or soy sauce. Furthermore, if necessary, a paste-solid residue can be subjected to a desalting treatment and used for feed or the like. This makes it possible to effectively use all the residues that are currently discarded.

本発明の旨味調味料の原料となる節類または昆布は、特に限定するものではなく、出汁取り用に使用するものいずれでもよい。例えば、節類としては、カツオ節や、イワシ節、サバ節、メジカ節等の雑節、これらとカツオ節の混合物が挙げられる。ペースト状〜固体状の調味料が所望の場合は、節類の残渣と昆布の残渣の両方を使用することが好ましい。
節類残渣と昆布残渣を使用する場合の両者の比率は特に特定するものではないが、通常、湿潤重量として昆布残渣を節類残渣の30重量%以下、好ましくは20〜10%程度使用する。
出汁取り後の残渣は、そのまま、または破砕、細刻等により適宜の大きさとして使用することができる。
The knots or kelp used as the raw material for the umami seasoning of the present invention are not particularly limited, and any of those used for collecting soup stock may be used. For example, the nodules include bonito, sardines, mackerel, medaka, and a mixture of these and bonito. When a paste-to-solid seasoning is desired, it is preferable to use both koji residue and kelp residue.
The ratio of both of the nodule residue and the kelp residue is not particularly specified, but usually the kelp residue is used as a wet weight of 30% by weight or less, preferably about 20 to 10% of the nodule residue.
The residue after removing the soup can be used as it is or in an appropriate size by crushing, chopping, or the like.

出汁取り後の残渣の発酵は、醤油麹または味噌麹を用いて行う。例えば、麹菌(Aspergillus oryzae、Aspergillus sojae)を大豆、米、小麦および大麦から選ばれる少なくとも1種の穀類を基質として製麹した麹を使用して行う。特に、旨味、香りの両方を向上できることから、大豆と他の穀類を組み合わせることが望ましい。この際の大豆と他の穀類との比率は適宜選択できるが、通常、大豆:他の穀類の重量比1:0.5〜5、好ましくは1:1〜2程度である。製麹自体は、常法に従って行うことができ、例えば、下記する実施例に示すような方法で行うことができる。   Fermentation of the residue after removing the soup is performed using soy sauce cake or miso. For example, the koji mold (Aspergillus oryzae, Aspergillus sojae) is used using a koji made from at least one cereal selected from soybean, rice, wheat and barley as a substrate. In particular, it is desirable to combine soybean and other cereals because both umami and aroma can be improved. In this case, the ratio of soybeans to other cereals can be selected as appropriate, but the weight ratio of soybeans: other cereals is usually 1: 0.5 to 5, preferably about 1: 1 to 2. The iron making itself can be performed according to a conventional method, for example, by a method as shown in the following examples.

出汁取り後の残渣に、麹、水および食塩を加えて自然発酵させる。添加する麹、水、食塩の割合は、所望の発酵が行えるように、適宜選択できるが、通常、出汁取り後の残渣に対して、麹は8〜30重量%程度、麹と同量程度ないし残渣と麹の合計量と同量程度の水を使用する。食塩は、腐敗を防止するため、発酵温度に応じて終濃度が5〜25重量%、好ましくは7〜20重量%となるように添加する。食塩量は、発酵温度が低い場合は少なくて良いが、発酵温度が高くなる場合は多くする。   To the residue after removing the soup, add koji, water and salt to allow natural fermentation. The ratios of koji, water, and salt to be added can be appropriately selected so that the desired fermentation can be performed. Usually, koji is about 8 to 30% by weight, or about the same amount as koji, with respect to the residue after taking out the broth. Use about the same amount of water as the total amount of residue and straw. In order to prevent spoilage, salt is added so that the final concentration is 5 to 25% by weight, preferably 7 to 20% by weight, depending on the fermentation temperature. The amount of salt may be small when the fermentation temperature is low, but is increased when the fermentation temperature is high.

本発明における自然発酵は、醪を適当な間隔で攪拌して円滑な発酵を促しながら、温度が低下しすぎたり、上昇しすぎたりした場合は、要すれば、適宜温度調節をしながら、所望の発酵醪が得られるまで行う。例えば、少なくとも、醪が外観上液となじむまで、すなわち、当初のpHの低下が止まり、pHが上昇し始める時点(例、pHが5〜4.5程度まで低下した時点からpHが5.5以上に上昇する時点)まで発酵を続ける。通常、3〜6ヶ月で所望の発酵醪が得られる。   In the natural fermentation in the present invention, the koji is stirred at an appropriate interval to promote smooth fermentation, and if the temperature is too low or too high, if necessary, the temperature is adjusted appropriately. Until fermented rice cake is obtained. For example, at least until the wrinkles become familiar with the liquid in appearance, that is, the time when the initial pH decrease stops and the pH starts to increase (eg, when the pH decreases to about 5 to 4.5, the pH is 5.5). Fermentation is continued until it rises above. Usually, a desired fermented koji is obtained in 3 to 6 months.

得られた醪は、そのまま、公知の方法で均質化して本発明の旨味調味料とすることもできるが、好ましくは、固液分離して魚醤油様の液体調味料と、魚醤様のペースト状〜固体調味料に分けることが好ましい。
固液分離は、濾過、圧搾、遠心分離等、常法に従って行うことができる。
液体調味料は、常法により、例えば、黴、酵母、雑菌の殺菌ができる程度、例えば、中心温度が75〜90℃に達するまで加熱して火入れをして保存性を高めてもよい。
また、ペースト状〜固体の調味料は、要すれば、均質化して使用することができる。
The obtained salmon can be homogenized by a known method as it is to obtain the umami seasoning of the present invention. Preferably, the liquid soy sauce-like liquid seasoning and the fish sauce-like paste are separated by solid-liquid separation. It is preferable to divide it into a state-solid seasoning.
Solid-liquid separation can be performed according to a conventional method such as filtration, pressing, and centrifugation.
The liquid seasoning may be heated in a conventional manner until the center temperature reaches 75 to 90 ° C., for example, to an extent that can kill potatoes, yeasts, and germs, and may improve the storage stability.
Moreover, if necessary, the pasty to solid seasoning can be used after homogenization.

得られた旨味調味料は、アミノ酸やペプチドを多く含むので、旨味が強く、食塩含量が高くても、塩カドが取れたまろやかな味となっている。また、通常の魚醤油や魚醤と比べてトリメチルアミンや揮発性酸類が少ないので、より日本人に適した調味料となっている。
以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。実施例中の%は、特に断らない限り重量%を意味する。
実施例中の分析は、以下の方法で行った。
Since the obtained umami seasoning contains a lot of amino acids and peptides, the umami seasoning has a strong taste and a mellow taste with salty salt removed even when the salt content is high. In addition, since it has less trimethylamine and volatile acids than normal fish soy sauce and fish sauce, it is a seasoning more suitable for Japanese.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples. Unless otherwise indicated,% in an Example means weight%.
Analysis in the examples was performed by the following method.

(1)色度(財団法人日本醤油研究所編、しょうゆ試験法、財団法人日本醤油研究所(1985))
日本醤油検査協会が定めた醤油標準色と比色し測定した。色の薄い試料は醤油標準色(No.40)を希釈して比較した。
(2)pHの測定
ガラス電極pHメーターで測定した。
(3)塩分量の測定
ホルファルト法(日本薬学会編、衛生試験法・注解、金原出版株式会社(1990))で行った。試料200μlに0.2N硝酸銀水溶液20mlおよび硝酸20mlを加えた。15分加熱後冷却し指示薬として硫酸アンモニウム鉄水溶液2mlを加えて0.2Nアンモニウムチオシアネート溶液で滴定し算出した。
(4)糖度(Brix)
手持ち屈折計(ATAGO製)で測定した。
(5)無塩可溶性固形分の測定
屈折計示度(Brix)から食塩分を差し引いて求めた。
(1) Chromaticity (Japan Soy Sauce Research Institute, Soy Sauce Test Method, Japan Soy Sauce Research Institute (1985))
Colorimetric measurements were taken with the standard soy sauce color established by the Japan Soy Sauce Inspection Association. The light color sample was diluted with a soy sauce standard color (No. 40) for comparison.
(2) Measurement of pH It measured with the glass electrode pH meter.
(3) Measurement of salt content The salt content was measured by the forphalt method (edited by Japan Pharmaceutical Association, Sanitary Test Method / Commentary, Kanehara Publishing Co., Ltd. (1990)). To 200 μl of a sample, 20 ml of 0.2N silver nitrate aqueous solution and 20 ml of nitric acid were added. The mixture was heated for 15 minutes, cooled, added with 2 ml of an aqueous ammonium iron sulfate solution as an indicator, and titrated with a 0.2N ammonium thiocyanate solution.
(4) Sugar content (Brix)
Measured with a hand-held refractometer (manufactured by ATAGO).
(5) Measurement of salt-free soluble solid content It was determined by subtracting the salt content from the refractometer reading (Brix).

(6)全窒素量の測定(財団法人日本醤油研究所編、しょうゆ試験法、財団法人日本醤油研究所(1985))
ケルダール法で行った。試料1mlに分解促進剤、硫酸10mlおよび過酸化水素5mlを加え加熱分解した。蒸留後、1/14N水酸化ナトリウムで滴定し総窒素量を算出した。
(7)酸度IおよびIIの測定
試料10mlに水40mlを加えpH7.0に中和した。用いた1/10N水酸化ナトリウム溶液の液量から酸度Iを求めた。さらに続けて滴下しpH7.0〜8.3までに用いた液量から酸度IIを算出した。酸度Iおよび酸度IIの合計を滴定酸度とした。
(8)水分および灰分の測定(前田安彦編著、初学者のための食品分析法(2001)弘学出版)
水分は常圧加熱乾燥法(105℃)で、灰分は直接灰化法(600℃)で一夜加熱し、それぞれ測定した。
(9)脂肪の測定
試料10gにクロロホルム・メタノール(2:1)15mlを加え、混合後吸引濾過した。分液ロートで一夜放置後、下層のクロロホルムを回収し無水硫酸ナトリウムを加え脱水した。クロロホルムを気化させ脂質を濃縮し、窒素ガスでクロロホルムを完全除去し脂肪量を算出した。
(6) Measurement of total nitrogen (Japan Soy Sauce Research Institute, Soy Sauce Test Method, Japan Soy Sauce Research Institute (1985))
The Kjeldahl method was used. A decomposition accelerator, 10 ml of sulfuric acid and 5 ml of hydrogen peroxide were added to 1 ml of the sample for thermal decomposition. After distillation, the total nitrogen amount was calculated by titration with 1 / 14N sodium hydroxide.
(7) Measurement of acidity I and II The sample was neutralized to pH 7.0 by adding 40 ml of water to 10 ml of the sample. The acidity I was determined from the liquid volume of the 1 / 10N sodium hydroxide solution used. Further, the acidity II was calculated from the amount of liquid continuously added dropwise and used up to pH 7.0 to 8.3. The sum of acidity I and acidity II was defined as titration acidity.
(8) Measurement of moisture and ash (edited by Yasuhiko Maeda, food analysis method for beginners (2001) Kogaku Publishing)
Water was measured by a normal pressure heating drying method (105 ° C.) and ash was heated overnight by a direct ashing method (600 ° C.).
(9) Measurement of fat 15 ml of chloroform / methanol (2: 1) was added to 10 g of the sample, mixed and suction filtered. After leaving overnight in a separatory funnel, the lower chloroform layer was collected and dehydrated by adding anhydrous sodium sulfate. Chloroform was evaporated to concentrate the lipid, and chloroform was completely removed with nitrogen gas to calculate the fat mass.

(10)遊離アミノ酸分析
試料800μlにエタノール3.2mlを加え撹拌した。12,000rpmで3分間遠心分離後、上澄み2mlを遠心濃縮し0.02N塩酸4mlを加え1日静置した。その後、12,000rpmで3分間遠心分離しフィルター濾過後に自動アミノ酸分析器で測定した。アミノ酸組成は、アミノ酸総量と甘味系、苦味系および旨味・酸味系アミノ酸量に分類した(藤井建夫、魚の発酵食品、ベルソーブックス003、成山堂書店2002)。
(11)アンモニア・アミン類分析
遊離アミノ酸の数値から算出した。
(12)有機酸分析(舩津保浩ら、日水誌、66:1026−1035(2000))
魚醤油を水で10倍に希釈し,セルロースアセテートフィルター(0.45μm)で濾過した液を島津製HPLC有機酸分析システムで分析した。カラム:Shimpack SCR-102H (8mmI.D.×300mmL.)、移動層:p−トルエンスルホン酸(5mM)、液量:0.8ml/min、カラム温度:40℃とした。
(13)糖分析
魚醤油を水で20倍に希釈した液をセルロースアセテートフィルター(0.45μm)で濾過し、Dionex製イオンクロマトグラフで分析した。カラム:Carbopac PA-1(Dionex製)、緩衝液:A=50mM NaOH,B=50mM NaOH−0.5M CHCOONaのリニアグラディエント方式、検出機:電気化学検出器(Dionex製)で行った。
(10) Free amino acid analysis 3.2 ml of ethanol was added to 800 μl of a sample and stirred. After centrifugation at 12,000 rpm for 3 minutes, 2 ml of the supernatant was concentrated by centrifugation, 4 ml of 0.02N hydrochloric acid was added, and the mixture was allowed to stand for 1 day. Thereafter, the mixture was centrifuged at 12,000 rpm for 3 minutes, filtered and measured with an automatic amino acid analyzer. The amino acid composition was classified into the total amount of amino acids and the amount of sweet, bitter and umami / sour amino acids (Takeo Fujii, Fermented Fish Food, Berso Books 003, Naruyamado Shoten 2002).
(11) Ammonia / amine analysis Calculated from the value of free amino acids.
(12) Organic acid analysis (Yasuhiro Awazu et al., Nissui Magazine, 66 : 1026-1035 (2000))
Fish soy sauce was diluted 10 times with water, and the solution filtered through a cellulose acetate filter (0.45 μm) was analyzed with a Shimadzu HPLC organic acid analysis system. Column: Shimpack SCR-102H (8 mm ID × 300 mm L.), moving bed: p-toluenesulfonic acid (5 mM), liquid volume: 0.8 ml / min, column temperature: 40 ° C.
(13) Sugar analysis A solution obtained by diluting fish soy with water 20 times was filtered through a cellulose acetate filter (0.45 μm) and analyzed by an ion chromatograph manufactured by Dionex. Column: Carbopac PA-1 (manufactured by Dionex), buffer solution: A = 50 mM NaOH, B = 50 mM NaOH-0.5 M CH 3 COONa linear gradient system, detector: electrochemical detector (manufactured by Dionex).

(14)揮発性成分分析(舩津保活ら、日水誌、67:489−496(2001))
1)揮発性成分の補集
テフロン製バイアル瓶に各試料を正確に1ml取り、Carboxen/ポリジメチルシロキサン(75μm部分架橋型)を吸着剤とした固層マイクロ抽出(SPME)ファイバーをバイアル内に挿入し、ヘッドスペースの揮発性成分を40℃で1時間かけて補集後直ちに吸着した成分をガスクロマトグラフ分析に供した。
2)ガスクロマトグラフフィー/マススペクトロメトリー(GC−MS)分析
固相マイクロ抽出SPME法により40℃で吸着した揮発性成分をGC−MSで分析した。分析条件は以下の通りである。装置:ガスクロマトグラフHewlett Packard社製6890型、質量分析計:Hewlett Packard社製5973型、カラム:PTA-5 Supelco社製、直径:0.32mm、長さ:30mおよび膜厚:1.5μm、カラム温度:40(2min)‐250℃(23min)、キャリアガス:He、注入口温度:250℃、注入法:スプリットレス(流速:1.5mL/min)、昇温速度:10℃/分、GC/MSインターフェース:ダイレクトカップリング(280℃)、イオン源温度:230℃、イオン化電圧:70eV。
揮発性成分は、標準マスライブラリデータ(NISTマススペクトルデータベース)、化学物質総合情報提供システム(独立行政法人製品評価基盤技術機構)のCAS番号検索および文献から推定した。
(15)官能検査
濾過前に醪形状を確認した。濾過後に味および香りを検査した。常温で香りを嗅ぎ強弱を評価した。また、甘味、旨味、酸味、苦味、えぐみ、渋みおよび塩味を検査した。製品段階である3ヶ月と6ヶ月目の試料は、上記の他に評点法による官能検査も行った。近畿大学農学部水産学科学生と、ある企業の社員計15名で構成されたパネルにより調味料の官能検査を行った。評価方法は、SD法を用いた(古川秀子、おいしさを測る 食品官能検査の実際:41、42、61〜64(1994)幸書房)。反対語を両端に位置づけた6段階の評価尺度により、試料に対する印象を各尺度上に評定した。平均値から各試料の特性を読み取った。また、調味料にとって、最も大切だと考えられる項目(香りの良悪および旨味の強弱)を軸にし、散布図にした。評点法による2元配置法を用いて解析を行った。さらに、各麹の評価尺度の3と6ヶ月目でt−検定による有意差検定を行った。
(14) Analysis of volatile components (Awazu Hojutsu et al., Nissui Magazine, 67 : 489-496 (2001))
1) Collection of volatile components Accurately take 1 ml of each sample in a Teflon vial, and insert a solid-layer microextraction (SPME) fiber using Carboxen / polydimethylsiloxane (75 μm partially crosslinked) as an adsorbent. The components adsorbed immediately after collecting the volatile components in the headspace at 40 ° C. over 1 hour were subjected to gas chromatographic analysis.
2) Gas chromatographic / mass spectrometry (GC-MS) analysis The volatile components adsorbed at 40 ° C. by solid phase microextraction SPME method were analyzed by GC-MS. The analysis conditions are as follows. Equipment: Gas chromatograph Hewlett Packard 6890, mass spectrometer: Hewlett Packard 5973, Column: PTA-5 Supelco, Diameter: 0.32 mm, Length: 30 m, Film thickness: 1.5 μm, Column Temperature: 40 (2 min) -250 ° C. (23 min), carrier gas: He, inlet temperature: 250 ° C., injection method: splitless (flow rate: 1.5 mL / min), heating rate: 10 ° C./min, GC / MS interface: direct coupling (280 ° C.), ion source temperature: 230 ° C., ionization voltage: 70 eV.
Volatile components were estimated from standard mass library data (NIST mass spectrum database), CAS number search of the comprehensive chemical information provision system (Independent Administrative Institution Product Evaluation Fundamental Technology Organization) and literature.
(15) Sensory test The ridge shape was confirmed before filtration. Taste and aroma were examined after filtration. The smell was smelled at room temperature and the strength was evaluated. In addition, sweetness, umami, acidity, bitterness, gummy, astringency and salty taste were examined. In addition to the samples described above, the sensory test by the scoring method was also performed on the samples at the 3rd and 6th months in the product stage. A sensory test of the seasoning was conducted using a panel of 15 students from the Kinki University Faculty of Agriculture and fisheries and a company. The SD method was used as the evaluation method (Hideko Furukawa, actual food sensory test for measuring deliciousness: 41, 42, 61-64 (1994) Koshobo). The impression on the sample was rated on each scale by a 6-level scale with the antonym positioned at both ends. The characteristics of each sample were read from the average value. In addition, for the seasoning, a scatter diagram was used, focusing on the items that are considered to be the most important (fragrance quality and umami strength). The analysis was performed using a two-way layout method based on the rating method. Further, a significant difference test by t-test was performed at the 3rd and 6th month of the evaluation scale of each cage.

ある企業の出汁製造工程から出た雑節残渣(イワシ節、サバ節、メジカ節およびカツオ節の混合物)を使用して調味料を製造した。使用した雑節残渣の成分組成を表1に示す。

Figure 0004615481
Seasoning was produced using knot residue (mixture of sardine, mackerel, medaka and bonito) from a company's soup production process. The component composition of the used knot residue is shown in Table 1.
Figure 0004615481

製麹
米、大麦および大豆を水に浸漬、吸水させた後、高温蒸気で蒸し、冷却後に麹菌(Aspergillus oryzae)を植菌し30〜42℃で48時間の培養を行い、それぞれ米麹(Rice Koji:RK)、大麦麹(Barley Koji:BK)および大豆麹(Soybean Koji:SK)として用いた。小麦と大豆麹(Wheat-Soybean Koji:WSK)は、小麦と大豆とを水に浸漬、吸水後、高温蒸気で蒸し冷却後に麹菌(Aspergillus oryzae)を植菌し、30〜42℃で48時間の培養を行い作成した.また、米と大麦麹(Rice-Barley Koji:RBK)は、米麹と大麦麹を半分ずつ混ぜたものを用いた。
Rice-making Rice, barley and soybeans are soaked in water and absorbed, steamed with high-temperature steam, cooled, inoculated with Aspergillus oryzae, cultured at 30-42 ° C. for 48 hours, and rice rice (Rice It was used as Koji: RK, Barley Koji (BK) and Soybean Koji (SK). Wheat-soybean koji (WSK) is soaked with wheat and soybeans in water, absorbed water, steamed with high-temperature steam, cooled and inoculated with Aspergillus oryzae for 48 hours at 30-42 ° C. Prepared by culturing. In addition, rice-barley koji (RBK) was prepared by mixing half of rice bran and barley koji.

発酵
上記残渣、残渣の15%の麹、残渣と麹の重さと等量の水に、それぞれ終濃度が15%になるように塩を加え混合し発酵させた。発酵を円滑に行うため1回/10日毎に混合し、空気に接触させるため1回/1ヶ月毎に封を開け混合した。
発酵直後から1カ月毎に6ヶ月まで試料を採材し、吸引濾過後の液体調味料(以下、魚醤油と称する)を分析に供した。魚醤油は最低3ヶ月で発酵するため、3ヶ月目以降の濾過後の残渣は発酵残渣として、さらに6ヶ月目の試料は製品として火入れ後にも分析に供した。
Fermentation Salt was added to the above residue, 15% of the residue, and the same amount of water as the weight of the residue and the residue, and the mixture was fermented by adding salt to a final concentration of 15%. The mixture was mixed once every 10 days for smooth fermentation, and the mixture was opened once every month for mixing with air.
Samples were collected from immediately after fermentation until 6 months every month, and the liquid seasoning after suction filtration (hereinafter referred to as fish soy sauce) was subjected to analysis. Since fish soy sauce ferments in a minimum of 3 months, the residue after filtration after the 3rd month was subjected to analysis as a fermentation residue, and the sample of the 6th month was subjected to analysis as a product after burning.

魚醤油の性状
(1)色度
魚醤油色度の結果を表2に示す。

Figure 0004615481
BKおよびRBKは変化しなかった。RKはNo.40−10から8とやや濃くなった。SKおよびWSKは、No.40−8〜6の範囲で推移した。
(2)pH
魚醤油pHの経時変化を図1に示す。
図1に示すごとく、SKは3ヶ月目まで漸次低下した後上昇した。RBKは変化しなかった。その他は3ヶ月目まで低下し、4.7〜5.0の範囲で推移した。
(3)塩分量
魚醤油塩分量は、全麹で17〜18%の範囲で推移した。
(4)糖度(Brix)
魚醤油糖度の経時変化を図2に示す。
図2に示すごとく、SKとWSKは1ヶ月目まで増加後29〜30%で推移した。他は1ヶ月目まで増加後26〜27%で推移した。
(5)無塩可溶性固形分
魚醤油の無塩可溶性固形分量の経時変化を図3に示す。
図3に示すごとく、BKおよびWSKは1ヶ月目まで増加後11〜13%で推移した。他は1ヶ月目まで増加後8〜9%で推移した。 Properties of Fish Soy Sauce (1) Chromaticity Table 2 shows the results of fish soy sauce chromaticity.
Figure 0004615481
BK and RBK did not change. RK is No. It became slightly darker from 40-10 to 8. SK and WSK are no. It changed in the range of 40-8-6.
(2) pH
The time course of fish soy sauce pH is shown in FIG.
As shown in FIG. 1, SK increased after gradually decreasing until the third month. RBK did not change. Others decreased to the third month and remained in the range of 4.7 to 5.0.
(3) Salinity The fish soy sauce salinity ranged from 17% to 18% in whole bowl.
(4) Sugar content (Brix)
The time course of the fish soy sugar content is shown in FIG.
As shown in FIG. 2, SK and WSK remained at 29-30% after increasing until the first month. The others remained at 26-27% after increasing until the first month.
(5) Salt-free soluble solid content The time-dependent change of the salt-free soluble solid content of fish soy sauce is shown in FIG.
As shown in FIG. 3, BK and WSK remained at 11 to 13% after increasing until the first month. The others remained at 8-9% after the increase until the first month.

(6)総窒素量
魚醤油の総窒素量の経時変化を図4に示す。
図4に示すごとく、SKおよびWSKは漸次増加した。他は3ヶ月目まで増加後0.6g前後で推移した。
(7)酸度
魚醤油の酸度Iの経時変化を図5に示す。
図5に示すごとく、SKは3ヶ月目まで増加した後減少し6ヶ月目で2.08mlとなった。WSKは2ヶ月目まで増加し、その後漸次減少し6ヶ月目で7.24mlとなった。BKは2ヶ月目まで増加し、その後ほぼ一定だった。RKは4ヶ月目まで増加した後減少した。RBKは3ヶ月目まで増加後4ml前後で推移した。
魚醤油の酸度IIの経時変化を図6に示す。
図6に示すごとく、SKは発酵開始時から2ヶ月目まで増加後13〜14mlで推移した。WSKは3ヶ月目まで増加後12〜13mlで推移した。RKおよびRBKは、2ヶ月目まで増加後一定だった。BKは3ヶ月目まで増加後7〜8mlで推移した。
(8)滴定酸度
魚醤油の滴定酸度の経時変化を図7に示す。SKは3ヶ月目まで漸次増加しその後減少した。WSKは2ヶ月目まで増加し6ヶ月目で減少した。他は2ヶ月目まで増加しその後変化がなかった。
(6) Total nitrogen amount The time-dependent change of the total nitrogen amount of fish soy sauce is shown in FIG.
As shown in FIG. 4, SK and WSK gradually increased. The others remained around 0.6 g after increasing until the third month.
(7) Acidity The time course of acidity I of fish soy sauce is shown in FIG.
As shown in FIG. 5, SK increased to 3rd month and then decreased to 2.08ml at 6th month. WSK increased until the 2nd month, and then gradually decreased to 7.24 ml at the 6th month. BK increased until the second month and was almost constant thereafter. RK increased after 4 months and then decreased. RBK remained at around 4 ml after increasing until the third month.
The time course of acidity II of fish soy sauce is shown in FIG.
As shown in FIG. 6, SK changed from 13 to 14 ml after increasing from the start of fermentation to the second month. WSK remained at 12-13 ml after increasing until the third month. RK and RBK remained constant after increasing until the second month. BK remained at 7-8 ml after increasing until the third month.
(8) Titration acidity The time-dependent change of the titration acidity of fish soy sauce is shown in FIG. SK gradually increased until the third month and then decreased. WSK increased to the second month and decreased at the sixth month. Others increased until the second month and remained unchanged.

(9)遊離アミノ酸
魚醤油の遊離アミノ酸総量の経時変化を図8に示す。SK、WSKおよびRBKは5ヶ月目まで増加後6ヶ月目で減少した。RKおよびBKは3ヶ月目まで増加後一定だった。
Gly、Hypro、Ala、Thr、Pro、Ser、LysおよびGlnの総計を甘味系アミノ酸量とし、その経時変化を測定したところ、SKとWSKは5ヶ月目まで漸次増加後6ヶ月目で減少した。他も同様に推移したが、SKおよびWSKより低い値で推移した。
Phe、Trp、Arg、Ile、Leu、Val、MetおよびHisの総計を苦味系アミノ酸量とし、その経時変化を測定したところ、SKおよびWSKは5ヶ月目で急に増加しその後減少した。RKおよびBKは3ヶ月目まで増加後減少し、5ヶ月目で再び増加した。RBKは5ヶ月目まで増加し6ヶ月目で減少した。
Glu、AspおよびAsnの総量を旨味・酸味系アミノ酸量とし、その経時変化を測定したところ、全麹で6ヶ月まで漸次増加した。
味に関するアミノ酸の量の経時変化は、SKおよびSWKは、RK、BK、RBKに比べてアミノ酸総量が多かった。全麹で、甘味系および苦味系アミノ酸量が同じくらいであり、旨味・酸味系アミノ酸量は少なかった。
アミノ酸組成の変化は、全麹で甘味系アミノ酸はAlaとLysが、苦味系アミノ酸はIle、LeuおよびValが多かった。旨味・酸味系アミノ酸はGluが6ヶ月目まで増加した。
(10)アンモニア・アミン類量
魚醤油のアンモニア、尿素(UREA)、ホスホエタノールアミンおよびエタノールアミンの経時変化を図9〜図12に示す。
図9に示すごとく、アンモニアは全麹で6ヶ月目まで増加した。
図10に示すごとく、UREAは全麹で発酵開始時には検出しなかった。SKとWSKは増減を繰り返し減少した。RKは4ヶ月目で発生し増減を繰り返し減少した。BKは2、4および6ヶ月目で検出した。RBKは2ヶ月目から検出し、増減を繰り返しながら減少した。
図11に示すごとく、ホスホエタノールアミンは、SKおよびWSKは開始時に多量に検出し、2ヶ月目で減少した後10mg以下で推移した。RKは1ヶ月目で検出した後検出されなかった。BKは1、2ヶ月目で検出した後検出されず、6ヶ月目で再度検出した。RBKは1ヶ月目から検出し2ヶ月目で増加した後検出されず、4ヶ月目から再度検出したが減少した。
図12 に示すごとく、エタノールアミンは、SKは3ヶ月目まで増加した後減少し、6ヶ月目では検出されなかった。他の麹は、3ヶ月目まで増加後5ヶ月目で減少したが6ヶ月目で再び増加した。
(11)有機酸
魚醤油の有機酸は、全麹でリン酸、乳酸と酢酸が多く検出された。RBK以外はクエン酸が減少し乳酸が増加した。
(12)糖量
発酵開始1ヶ月目の魚醤油において、全麹でグルコースが検出された。基質として大豆を用いたものにフルクトースが、大麦を用いたものにスクロースがそれぞれ検出された。
(9) Free amino acid The time-dependent change of the free amino acid total amount of fish soy sauce is shown in FIG. SK, WSK and RBK increased until the 5th month and decreased after the 6th month. RK and BK remained constant after increasing until the third month.
When the total amount of Gly, Hypro, Ala, Thr, Pro, Ser, Lys, and Gln was determined as the amount of sweetening-type amino acid, and the change with time was measured, SK and WSK gradually increased until the 5th month and decreased at the 6th month. Others changed in the same manner, but remained at lower values than SK and WSK.
When the total amount of Phe, Trp, Arg, Ile, Leu, Val, Met, and His was used as the amount of bitter amino acid and the change with time was measured, SK and WSK increased rapidly at 5 months and then decreased. RK and BK increased after 3 months and decreased again at 5 months. RBK increased until the 5th month and decreased at the 6th month.
The total amount of Glu, Asp and Asn was determined as the amount of umami and sour amino acids, and the changes over time were measured. As a result, the total amount gradually increased up to 6 months.
With respect to the change in the amount of amino acids related to taste, SK and SWK had more total amino acids than RK, BK and RBK. The whole amount of sweet and bitter amino acids was almost the same, and the amount of umami and sour amino acids was small.
As for the changes in amino acid composition, Ala and Lys were common in sweet amino acids, and Ile, Leu and Val were many in bitter amino acids. Glu increased in umami and sour amino acids until the sixth month.
(10) Ammonia / Amine Amounts Time-dependent changes in ammonia, urea (UREA), phosphoethanolamine and ethanolamine in fish soy sauce are shown in FIGS.
As shown in FIG. 9, ammonia increased up to the sixth month in all cases.
As shown in FIG. 10, UEA was not detected at the start of fermentation in all rice cakes. SK and WSK repeatedly decreased and increased. RK occurred in the 4th month and decreased and increased repeatedly. BK was detected at 2, 4 and 6 months. RBK was detected from the second month and decreased while repeating the increase and decrease.
As shown in FIG. 11, in phosphoethanolamine, SK and WSK were detected in large amounts at the start, and decreased at the second month, and then remained at 10 mg or less. RK was not detected after detection at 1 month. BK was not detected after detection at the 1st and 2nd months, but was detected again at the 6th month. RBK was detected from the first month and was not detected after increasing in the second month, but it was detected again from the fourth month but decreased.
As shown in FIG. 12, ethanolamine decreased after SK increased to the third month and was not detected at the sixth month. Other wrinkles increased until the third month, then decreased at the fifth month, but increased again at the sixth month.
(11) Organic acid As for the organic acid of fish soy sauce, phosphoric acid, lactic acid, and acetic acid were detected in large amounts in the whole bowl. Except for RBK, citric acid decreased and lactic acid increased.
(12) Sugar amount Glucose was detected in whole rice in the fish soy sauce in the first month of fermentation. Fructose was detected when soybean was used as a substrate, and sucrose was detected when barley was used.

(13)揮発性成分
揮発性成分の分析の結果、81のピークが検出され、合計45種類の揮発性成分(酸類6、アルデヒド類6、含窒素化合物2、アルコール類15、炭化水素類4、ケトン類4、エステル類2およびフェノール類6)が同定された。
アルコール類はRK、BKおよびRBKが大豆を用いた麹に比べて多く検出した。酸類はSKとWSKで多く検出された。SKはイソ吉草酸と酢酸が1、3ヶ月目で多く検出された。WSKはイソ吉草酸が1、3ヶ月目で増加した。フェノール類はBKを除いて検出され発酵により減少した。フェノールは全麹で検出された。エステル類のうち乳酸エチルは、6ヶ月目でBKとWSKで検出された。アルデヒド類は、2−フランカルボキシアルデヒドとベンズアルデヒドが全麹で検出された。
(14)官能検査
官能検査の結果、全麹で発酵により節の形状が変化(液化)した。
RKは香りが発酵により最も強くなり、6ヶ月目ではフルーティーですっきりした香りとなった。BKは3ヶ月目でRKに次いで香りが強かったがその後香りが弱くなり、6ヶ月目ではRKより香りは弱いもののフルーティーですっきりした香りとなった。RBKはフルーティーな香りとアルコール臭を混ぜたような香りがあり、6ヶ月目でフルーティーな香りとなった。SKは香りが強いものの発酵により渋みが強く淡白な香りとなり、6ヶ月目では苦味が強く香りは劣った。WSKは発酵により香りが強くなり醤油特有の香りとなった。
味は、RKおよびBKは塩味、苦味と渋みが強くあっさりとしていた。RBKは塩味と苦味がやや強くすっきりとした。SKは1ヶ月目から旨味が最も強く、6ヵ月目には旨味が強く味に「こく」があった。WSKは1ヵ月目に旨味がSKに次いで強くなり6ヶ月目には醤油感が強く大豆よりすっきりしたが旨味が強かった。
官能検査の結果、特に、大豆と他の穀類を組み合わせた基質で製麹すると旨味調味料として望ましい魚醤油が得られることが判明した。
(13) Volatile component As a result of analysis of the volatile component, 81 peaks were detected, and a total of 45 types of volatile components (acids 6, aldehydes 6, nitrogen-containing compound 2, alcohols 15, hydrocarbons 4, Ketones 4, esters 2 and phenols 6) were identified.
Alcohols were detected more in RK, BK, and RBK than in straw using soybeans. Many acids were detected in SK and WSK. In SK, isovaleric acid and acetic acid were frequently detected in the first and third months. In WSK, isovaleric acid increased in the first and third months. Phenols were detected except for BK and decreased by fermentation. Phenol was detected in all rabbits. Of the esters, ethyl lactate was detected by BK and WSK at 6 months. As for the aldehydes, 2-furancarboxaldehyde and benzaldehyde were detected in all.
(14) Sensory test As a result of the sensory test, the shape of the knot was changed (liquefied) by fermentation in whole rice bran.
RK became the strongest aroma by fermentation, and became fruity and refreshing in the 6th month. BK had the strongest scent after RK at the third month, but then the scent was weaker. At the sixth month, the scent was weaker than RK, but it became a fruity scent. RBK has a fruity fragrance mixed with an alcoholic odor and became fruity in the sixth month. Although SK has a strong scent, it has a strong astringency due to fermentation, and has a pale aroma. WSK became stronger by fermentation and became unique to soy sauce.
As for the taste, RK and BK had a strong salty taste, bitterness and astringency, and were light. RBK had a slightly strong and clean salty taste and bitterness. SK had the strongest umami from the first month and strong umami in the sixth month. In WSK, umami became stronger after SK in the first month, and in the sixth month, the soy sauce feeling was strong and clearer than soybeans, but the umami was stronger.
As a result of the sensory test, it was found that fish soy sauce that is desirable as an umami seasoning can be obtained especially when the soybean is made with a substrate combining soybeans and other grains.

火入れ
発酵6ヶ月目の魚醤油を、中心温度が90℃に達するまで加熱して火入れしたところ、全麹で火入れ前後の化学成分、アミノ酸組成および官能検査とも変化なかった。
When the soy sauce of the 6th month of fermentation was heated and heated until the center temperature reached 90 ° C., the chemical composition, amino acid composition, and sensory test before and after the firing were not changed in the whole bowl.

発酵残渣の性状
(1)一般成分
6ヶ月目の発酵残渣一般成分の結果を表3に示す。
水分は全麹で50〜54%だった。灰分は13〜14%、また、脂肪はSKで10%と多かったが、他の麹は6〜7%であった。

Figure 0004615481
(2)塩分量
発酵残渣の塩分量は、発酵期間を通して全麹で12〜13%で推移した。
(3)総窒素量
発酵残渣の総窒素量は、発酵期間を通して全麹で3〜4g/100gで推移した。
(4)遊離アミノ酸
発酵残渣の遊離アミノ酸総量の経時変化を図13に示す。
図13に示すごとく、全麹で5ヶ月目までほぼ変化がなく、6ヶ月目で減少した。
甘味系アミノ酸量は、SKおよびWSKで3、4ヶ月目は変化なく、5ヶ月目に増加し6ヶ月目に減少した。他は5ヶ月目まで一定で、6ヶ月目でやや減少した。苦味系アミノ酸量は、SK、WSK、RKおよびRBKは、3、4ヶ月目であまり変化がなく、5ヶ月目に増加し6ヶ月目で減少した。BKは5ヶ月目まで漸次増加後6ヶ月目で減少した。旨味・酸味系アミノ酸量は、SKおよびWSKは5ヶ月目まで増加し6ヶ月目で減少した。他は変化がなかった。
発酵残渣は、発酵を続けると味に関係するアミノ酸が生じる。遊離アミノ酸は、SK、WSKで多く、次いでRK、BKおよびRBK同様に含まれていた。量的には魚醤油に含まれる遊離アミノ酸総量に比べて低いもの、旨味・酸味系アミノ酸は、RK、BKおよびRBKで魚醤油より若干低かったが、SKおよびWSKでは、魚醤油よりも多い。甘味系および苦味系アミノ酸量が魚醤油に比べて若干低いものの、上記の魚醤油で、例えば4倍程度に希釈して、ホモゲナイザー等で均質化すれば、旨味・酸味に関しては、魚醤油以上であり、魚醤(魚味噌)のような、旨味調味料となる。
また、発酵残渣を水で洗浄して脱塩すれば、飼料としても利用でき、脱塩水は、節類の残渣と混合して発酵に供することにより再利用できる。 Properties of Fermentation Residue (1) General Components Table 3 shows the results of the 6-month fermentation residue general components.
The total water content was 50-54%. The ash content was 13-14%, and the fat was SK as much as 10%, but the other cocoons were 6-7%.
Figure 0004615481
(2) Salinity The amount of salt in the fermentation residue was 12-13% in whole straw throughout the fermentation period.
(3) Total nitrogen amount The total nitrogen amount of the fermentation residue was changed to 3-4 g / 100 g in whole straw throughout the fermentation period.
(4) Free amino acids FIG. 13 shows the change over time in the total amount of free amino acids in the fermentation residue.
As shown in FIG. 13, there was almost no change up to the fifth month in all the cats, and it decreased in the sixth month.
The amount of sweet amino acids was unchanged in SK and WSK at 3 and 4 months, increasing at 5 months and decreasing at 6 months. The others remained constant until the 5th month and decreased slightly at the 6th month. The amount of bitter amino acids in SK, WSK, RK and RBK did not change much at the 3rd and 4th months, and increased at the 5th month and decreased at the 6th month. BK gradually increased until the 5th month and decreased at the 6th month. The amount of umami and sour amino acids increased for SK and WSK until the 5th month and decreased for the 6th month. The others were unchanged.
A fermentation residue produces an amino acid related to taste when fermentation is continued. Free amino acids were abundant in SK and WSK, and then included as well as RK, BK and RBK. Quantitatively, the amount of free amino acids contained in fish soy sauce, umami and sour amino acids, was slightly lower in RK, BK and RBK than in fish soy sauce, but more in SK and WSK than in fish soy sauce. Although the amount of sweet and bitter amino acids is slightly lower than that of fish soy sauce, if diluted with the above fish soy sauce, for example, about 4 times and homogenized with a homogenizer, etc. Yes, it is an umami seasoning like fish sauce (fish miso).
In addition, if the fermentation residue is washed with water and desalted, it can also be used as feed, and the desalted water can be reused by mixing it with the residue of koji and subjecting it to fermentation.

実施例1で用いたと同様な節類の出汁取り残渣と、同様に出汁取りに使用した昆布残渣を使用して調味料を製造した。
発酵
節類残渣と節類残渣の20%または10%の重さの昆布残渣、これらの残渣の15%の重さのRSK、これらの残渣と麹の重さと等量の水、終濃度が15%になるように食塩を加え、よく混合した後ペースト状にし発酵を開始した。対照として、昆布残渣を加えないものも作成した。発酵を円滑に行うために、実施例1と同様に混合した。
濾過
発酵開始直後から1ヶ月毎に3ヶ月まで試料を取り出し、濾過した液体(以下、魚醤油と称する)と濾過後残渣(以下、醤と称する)を分析に供した。
A seasoning was produced using the same koji mash residue used in Example 1 and the kelp residue used for the mash removal as well.
Fermentation Nodular residue and kelp residue weighing 20% or 10% of nodular residue, RSK weighing 15% of these residues, water equivalent to the weight of these residues and straw, final concentration 15 % Salt was added and mixed well, after which it was made into a paste and fermentation was started. As a control, one without the kelp residue was also prepared. In order to carry out the fermentation smoothly, mixing was carried out in the same manner as in Example 1.
Filtration Samples were taken every month from the start of fermentation for up to 3 months, and the filtered liquid (hereinafter referred to as fish soy sauce) and the residue after filtration (hereinafter referred to as soy sauce) were subjected to analysis.

魚醤の性状
(1)色度
魚醤油の色度は、全魚醤油で3ヶ月目にNo.40−8となった。
(2)pH
魚醤油のpHの経時変化を図14に示す。
図14に示すごとく、昆布残渣無添加、添加共に発酵開始時からpHが低下し、3ヶ月目で4.7以下となった。
(3)塩分量
魚醤油の塩分量は、全魚醤油で変化はなく、17〜18%で推移した。
(4)糖度(Brix)
魚醤油の糖度の経時変化を図15に示す。
図15に示すごとく、昆布残渣無添加は1ヶ月目で増加し、その後ほぼ一定で変化がなかった。昆布残渣2割添加は、1ヶ月目で増加し2ヶ月目で減少し、昆布残渣s1割添加は、1ヶ月目で減少後2ヶ月目で増加したが3ヶ月目で一定となった。
(5)無塩可溶性固形分
魚醤油の無塩可溶性固形分の経時変化を図16に示す。
図16に示すごとく、昆布残渣無添加は3ヶ月目まで漸次増加した。昆布残渣2割添加は1ヶ月目で増加後減少し、昆布残渣1割添加は2ヶ月目まで増加した。
Properties of fish soy (1) Chromaticity The color of fish soy sauce is No. 3 in the whole fish soy sauce. 40-8.
(2) pH
The change with time of the pH of the fish soy sauce is shown in FIG.
As shown in FIG. 14, the pH decreased from the start of fermentation for both no addition and addition of kelp residue, and became 4.7 or less in the third month.
(3) Salinity The amount of salt in fish soy sauce was 17% to 18% with no change in whole fish soy sauce.
(4) Sugar content (Brix)
FIG. 15 shows the change over time in the sugar content of fish soy sauce.
As shown in FIG. 15, the addition of no kombu residue increased in the first month, and thereafter remained almost constant and remained unchanged. The addition of kelp residue 20% increased in the first month and decreased in the second month, and the addition of kelp residue s10% increased in the second month after decreasing in the first month, but became constant in the third month.
(5) Salt-free soluble solid content The time-dependent change of the salt-free soluble solid content of fish soy sauce is shown in FIG.
As shown in FIG. 16, the addition of no kombu residue gradually increased until the third month. The addition of 20% kelp residue decreased after increasing in the first month, and the addition of 10% kelp residue increased until the second month.

(6)総窒素量
魚醤油の総窒素量の経時変化を図17に示す。
図17に示すごとく、昆布残渣無添加および昆布残渣1割添加は、2ヶ月目まで増加後3ヶ月目で減少した。昆布残渣2割添加は、3ヶ月目まで増加した。
(7)酸度
魚醤油の酸度Iの経時変化を図18に示す。
図18に示すごとく、昆布残渣無添加は、3ヵ月目で急激に増加した。昆布残渣1割添加は3ヶ月目まで漸次増加した。昆布残渣2割添加は、1ヶ月目から増加した。
魚醤油の酸度IIの経時変化を図19に示す。
図19に示すごとく、発酵開始時から1ヶ月目で増加し、3ヶ月目まで漸次増加した。
(8)滴定酸度
魚醤油の滴定酸度の経時変化を図20に示す。
図20に示すごとく、昆布残渣無添加は、3ヶ月目で急激に増加した。昆布残渣2割添加および1割添加は、3ヶ月目まで漸次増加した。
(6) Total nitrogen amount The time-dependent change of the total nitrogen amount of fish soy sauce is shown in FIG.
As shown in FIG. 17, the addition of kelp residue and the addition of 10% of kelp residue decreased to the second month and then decreased in the third month. The addition of 20% kelp residue increased until the third month.
(7) Acidity The time course of acidity I of fish soy sauce is shown in FIG.
As shown in FIG. 18, the addition of no kelp residue increased rapidly in the third month. The addition of 10% of kelp residue gradually increased until the third month. The addition of 20% kelp residue increased from the first month.
The time course of acidity II of the fish soy sauce is shown in FIG.
As shown in FIG. 19, it increased in the first month from the start of fermentation and gradually increased to the third month.
(8) Titration acidity The time-dependent change of the titration acidity of fish soy sauce is shown in FIG.
As shown in FIG. 20, the addition of no kelp residue increased rapidly in the third month. The addition of 20% kelp residue and 10% addition gradually increased until the third month.

(9)遊離アミノ酸総量
魚醤油の遊離アミノ酸総量は図21に示すごとく、全魚醤油で3ヶ月目まで漸次増加した。このうち、甘味系アミノ酸量および旨味・酸味系アミノ酸量は、全魚醤油で3ヶ月目まで漸次増加し、苦味系アミノ酸量は、全魚醤油で2ヶ月目まで増加した。

味に関するアミノ酸は、昆布残渣1割添加で若干アミノ酸量が多いものの、1から3ヶ月目でアミノ酸量は増加した。甘味系、苦味系および旨味・酸味系の割合は、昆布添加の有無に関わらず同じであった。
(10)アンモニア・アミン類量
魚醤油のアンモニア、尿素(UREA)、ホスホエタノールアミンおよびエタノールアミンの経時変化を図22〜図25に示す。
図22に示すごとく、アンモニア量は全魚醤油で3ヶ月目まで漸次増加後、昆布残渣無添加で50mg/100ml、2割添加で70mg、1割添加で78mgとなった。
図23に示すごとく、UREA量は無添加では1と3ヶ月目で検出された。2割添加では3ヶ月目まで検出しなかった。1割添加は、2ヶ月目で検出後3ヶ月目で減少し19mgとなった。
図24に示すごとく、ホスホエタノールアミン量は、無添加では1ヶ月目で減少後2ヶ月目で増加、3ヶ月目で減少し4mgとなった。2割添加は発酵開始時に検出されたがその後検出されなかった。1割添加は、1ヶ月目で検出されなかったが、その他は2〜3mgで推移した。
図25に示すごとく、エタノーアミン量は、全魚醤油で3ヶ月目まで増加し、無添加では10mg、2割添加では9mg、1割添加では10mgとなった。
(11)官能検査
官能検査の結果、昆布残渣無添加は2ヶ月目で淡白な大豆の香りとなった。昆布残渣を添加したものは、1ヶ月目で香りが強くなり(磯の香り)、2ヶ月目ではすっきりとした昆布の香りとなった。魚醤油の味は昆布残渣無添加では、2ヶ月目で甘味と苦味が感じられ、旨味は非常に強かった。昆布残渣を添加したものは、2ヶ月目で塩味と旨味が強く、昆布残渣添加量が多い程旨味が強く、苦味と渋みも感じられた。
魚醤油の香りと味は、昆布残渣を添加する程旨味が増し、香りも良く、すっきりとした昆布の香りとなった。昆布残渣の添加なしに、RSKで発酵させると、実施例1のWSKと同様な良好な発酵が進むが、昆布残渣を添加することでさらに味が良くなる傾向が示された。
(9) Total amount of free amino acids As shown in FIG. 21, the total amount of free amino acids in fish soy sauce gradually increased until the third month in whole fish soy sauce. Among these, the amount of sweet amino acids and the amount of umami / sour amino acids gradually increased until the third month in whole fish soy sauce, and the amount of bitter amino acids increased up to the second month in whole fish soy sauce.

Amino acids related to taste increased slightly in the first to third months, although the amino acid content was slightly higher with 10% addition of kelp residue. The proportions of sweet, bitter and umami / sour systems were the same regardless of the presence or absence of kelp.
(10) Ammonia / Amine Amounts The changes over time of ammonia, urea (UREA), phosphoethanolamine and ethanolamine in fish soy sauce are shown in FIGS.
As shown in FIG. 22, the amount of ammonia gradually increased until the third month in whole fish soy sauce, and then 50 mg / 100 ml without addition of kelp residue, 70 mg with 20% addition, and 78 mg with 10% addition.
As shown in FIG. 23, the amount of UREA was detected at 1 and 3 months without addition. It was not detected until the third month when 20% was added. The addition of 10% decreased to 19 mg in the third month after detection in the second month.
As shown in FIG. 24, the amount of phosphoethanolamine was decreased in the first month, increased in the second month, and decreased in the third month to 4 mg without addition. 20% addition was detected at the start of fermentation, but not thereafter. 10% addition was not detected in the first month, but the others remained at 2-3 mg.
As shown in FIG. 25, the amount of ethanolamine increased to the third month with whole fish soy sauce, 10 mg without addition, 9 mg with addition of 20%, and 10 mg with addition of 10%.
(11) Sensory test As a result of the sensory test, the addition of kelp residue resulted in a light white soybean aroma in the second month. In the case of adding the kelp residue, the scent became stronger in the first month (scent of strawberry), and in the second month, it became a refreshing scent of kelp. The taste of fish sauce was sweet and bitter in the second month without the addition of kelp residue, and the umami was very strong. In the case where the kelp residue was added, the salty taste and umami were strong in the second month, and the greater the amount of kelp residue added, the stronger the taste and the bitterness and astringency were also felt.
The aroma and taste of fish sauce increased with the addition of kelp residue. When fermented with RSK without addition of kelp residue, the same good fermentation as WSK in Example 1 progressed, but the addition of kelp residue tended to improve the taste.

醤(魚味噌)の性状
(1)一般成分
醤の水分は、各発酵残渣ともに50〜56%で推移した。
灰分は、各発酵残渣ともに13〜14%で推移した。
脂肪は、昆布無添加は、10%で推移し、昆布残渣添加では8〜9%で推移した。
(2)総窒素量
醤の総窒素量は、全発酵残渣とも3〜4g/100gで推移した。
(3)塩分量
醤の塩分量は、全発酵残渣が12〜13%で推移した。
(4)遊離アミノ酸
醤のアミノ酸総量の経時変化を図26に示す。
図26に示すごとく、全ての醤の遊離アミノ酸は、発酵開始時から2ヶ月目まで増加後、3ヶ月目で少し減少し、昆布残渣無添加では1974.8mg/100ml、昆布残渣2割添加では2059.3mg/100ml、昆布残渣1割添加では2082.2mg/100mlとなった。
甘味系アミノ酸量は、全ての醤で3ヶ月目まで増加した。苦味系アミノ酸量は、全ての醤で、2ヶ月目まで増加し、3ヶ月目で減少した。旨味・酸味系アミノ酸量は、全ての醤で3ヶ月目まで増加した。
Properties of soy (fish miso) (1) General ingredients The water content of soy was between 50 and 56% for each fermentation residue.
The ash content was 13-14% for each fermentation residue.
The fat was 10% when no kelp was added, and 8-9% when the kelp residue was added.
(2) Total nitrogen amount The total nitrogen amount of soy was 3-4 g / 100 g for all fermentation residues.
(3) Salt content The total fermentation residue was 12 to 13% in the soy salt content.
(4) Free amino acids FIG. 26 shows the change over time in the total amount of amino acids in soy.
As shown in FIG. 26, the free amino acids in all soy sauces increased from the beginning of fermentation to the second month and then decreased slightly in the third month. In the case of no addition of kelp residue, 1974.8 mg / 100 ml, and in the addition of kelp residue 20% When the amount of 2059.3 mg / 100 ml and the kelp residue 10% was added, the result was 2082.2 mg / 100 ml.
The amount of sweet amino acids increased up to the third month in all soy sauces. The amount of bitter amino acids increased up to the second month and decreased in the third month in all soy sauces. The amount of umami and sour amino acids increased up to the third month in all soy sauces.

(5)官能検査
官能検査の結果、昆布残渣無添加および1割添加では塩味が非常に強く、2割添加では、塩味が強いが、旨味が最もあった。
昆布残渣添加、無添加に関わらず、発酵を続けると、発酵残渣から味に関与するアミノ酸が溶出する。昆布残渣添加で無添加に比べて旨味が増加し、魚醤油と同様な官能検査結果となり、醤(魚味噌)として十分利用できる。
(5) Sensory test As a result of the sensory test, the salty taste was very strong when the kelp residue was not added and when 10% was added, and when 20% was added, the salty taste was strong, but the umami was the most.
Regardless of the addition or non-addition of kelp residue, when fermentation is continued, amino acids involved in taste are eluted from the fermentation residue. Addition of kelp residue increases umami compared to no addition, results in a sensory test similar to fish soy sauce, and can be used as a soy sauce (fish miso).

本発明によれば、廃棄されている節類等の出汁取り後の残渣を有効利用して、魚醤油や魚醤状の良好な風味を有する旨味調味料を得ることができ、ゼロエミッションとして環境にも優しい有用な技術が提供できる。   According to the present invention, it is possible to obtain an umami seasoning having a good flavor of fish soy sauce or fish soy by effectively utilizing the residue after taking out the stock of dumplings and the like that have been discarded. Can provide useful and friendly technology.

実施例1における魚醤油のpHの経時変化を示すグラフである。2 is a graph showing changes in pH of fish soy sauce over time in Example 1; 実施例1における魚醤油の糖度の経時変化を示すグラフである。2 is a graph showing changes over time in sugar content of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の無塩可溶性固形分の経時変化を示すグラフである。2 is a graph showing a change with time of a salt-free soluble solid content of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の総窒素量の経時変化を示すグラフである。2 is a graph showing changes over time in the total nitrogen amount of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の酸度Iの経時変化を示すグラフである。2 is a graph showing changes with time in acidity I of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の酸度IIの経時変化を示すグラフである。2 is a graph showing changes over time in acidity II of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の滴定酸度の経時変化を示すグラフである。2 is a graph showing changes with time of titrated acidity of fish soy sauce in Example 1. FIG. 実施例1における魚醤油の遊離アミノ酸総量の経時変化を示すグラフである。2 is a graph showing changes over time in the total amount of free amino acids in fish soy sauce in Example 1. FIG. 実施例1における魚醤油のアンモニアの経時変化を示すグラフである。2 is a graph showing changes over time in ammonia in fish soy sauce in Example 1. FIG. 実施例1における魚醤油の尿素の経時変化を示すグラフである。2 is a graph showing the change over time of urea in fish soy sauce in Example 1. FIG. 実施例1における魚醤油のホスホエタノールアミンの経時変化を示すグラフである。2 is a graph showing changes with time of phosphoethanolamine in fish soy sauce in Example 1. FIG. 実施例1における魚醤油のエタノールアミンの経時変化を示すグラフである。2 is a graph showing the change over time of ethanolamine in fish soy sauce in Example 1. FIG. 実施例1における発酵残渣の遊離アミノ酸総量の経時変化を示すグラフである。2 is a graph showing changes over time in the total amount of free amino acids in fermentation residues in Example 1. FIG. 実施例2における魚醤油のpHの経時変化を示すグラフである。It is a graph which shows a time-dependent change of pH of the fish soy sauce in Example 2. FIG. 実施例2における魚醤油の糖度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the sugar content of the fish soy sauce in Example 2. FIG. 実施例2における魚醤油の無塩可溶性固形分の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the salt-free soluble solid content of the fish soy sauce in Example 2. 実施例2における魚醤油の総窒素量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the total nitrogen amount of the fish soy sauce in Example 2. 実施例2における魚醤油の酸度Iの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the acidity I of the fish soy sauce in Example 2. 実施例2における魚醤油の酸度IIの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the acidity II of the fish soy sauce in Example 2. 実施例2における魚醤油の滴定酸度の経時変化を示すグラフである。3 is a graph showing changes over time in titrated acidity of fish soy sauce in Example 2. 実施例2における魚醤油の遊離アミノ酸総量の経時変化を示すグラフである。3 is a graph showing changes over time in the total amount of free amino acids in fish soy sauce in Example 2. 実施例2における魚醤油のアンモニアの経時変化を示すグラフである。It is a graph which shows the time-dependent change of ammonia of the fish soy sauce in Example 2. 実施例2における魚醤油の尿素の経時変化を示すグラフである。It is a graph which shows a time-dependent change of urea of the fish soy sauce in Example 2. 実施例2における魚醤油のホスホエタノールアミンの経時変化を示すグラフである。6 is a graph showing changes with time of phosphoethanolamine in fish soy sauce in Example 2. FIG. 実施例2における魚醤油のエタノールアミンの経時変化を示すグラフである。It is a graph which shows a time-dependent change of the ethanolamine of the fish soy sauce in Example 2. 実施例2における醤の遊離アミノ酸総量の経時変化を示すグラフである。3 is a graph showing changes over time in the total amount of free amino acids in soy sauce in Example 2.

Claims (10)

節類の出汁取り後の残渣と、昆布の出汁取り後の残渣の混合物を、5〜25重量%の塩濃度にて醤油麹または味噌麹で自然発酵させて得られる旨味調味料。 An umami seasoning obtained by naturally fermenting a mixture of residue after taking koji stock and residue after taking kombu stock at a salt concentration of 5 to 25% by weight with soy sauce koji or miso. 麹が、大豆、米、小麦および大麦から選ばれる少なくとも1種の穀類を基質として製麹した麹である請求項1記載の旨味調味料。   The umami seasoning according to claim 1, wherein the koji is koji made from at least one cereal selected from soybeans, rice, wheat and barley as a substrate. 基質が、大豆と、他の少なくとも1種の穀類とを含む請求項記載の旨味調味料。 The umami seasoning according to claim 2 , wherein the substrate contains soybean and at least one other cereal. 発酵醪を固液分離して得られる液体調味料である請求項1〜いずれか1項記載の旨味調味料。 The umami seasoning according to any one of claims 1 to 3, which is a liquid seasoning obtained by solid-liquid separation of fermented koji. 発酵醪を固液分離して得られるペースト状〜固体の調味料である請求項1〜いずれか1項記載の旨味調味料。 The umami seasoning according to any one of claims 1 to 4, which is a paste-solid seasoning obtained by solid-liquid separation of the fermented koji. 類の出汁取り後の残渣と、昆布の出汁取り後の残渣の混合物を、5〜25重量%の塩濃度にて醤油麹または味噌麹で自然発酵させることを特徴とする旨味調味料の製造法。 And residue after soup up sections such, the mixture of residue after soup up kelp, production of umami seasonings for causing naturally fermented soy sauce koji or miso koji at 5-25 wt% of the salt concentration Law. 発酵醪が、少なくとも外観上液となじむまで発酵を続ける請求項記載の製造法。 The production method according to claim 6, wherein the fermentation is continued until at least the appearance of the fermented rice is compatible with the liquid. 3〜6ヶ月間発酵を続ける請求項記載の製造法。 The production method according to claim 7, wherein the fermentation is continued for 3 to 6 months. 発酵後に、固液分離する請求項記載の製造法。 The method according to claim 8 , wherein solid-liquid separation is performed after fermentation. 固液分離した液体を火入れする請求項記載の製造法。 The production method according to claim 9, wherein the solid-liquid separated liquid is fired.
JP2006161314A 2006-06-09 2006-06-09 Umami seasoning and its production method Expired - Fee Related JP4615481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161314A JP4615481B2 (en) 2006-06-09 2006-06-09 Umami seasoning and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161314A JP4615481B2 (en) 2006-06-09 2006-06-09 Umami seasoning and its production method

Publications (2)

Publication Number Publication Date
JP2007325566A JP2007325566A (en) 2007-12-20
JP4615481B2 true JP4615481B2 (en) 2011-01-19

Family

ID=38926508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161314A Expired - Fee Related JP4615481B2 (en) 2006-06-09 2006-06-09 Umami seasoning and its production method

Country Status (1)

Country Link
JP (1) JP4615481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388102B2 (en) * 2009-01-27 2014-01-15 株式会社にんべん Seasoning production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300872A (en) * 1988-05-26 1989-12-05 Osaka Gas Co Ltd Preparation of broth
JPH0646793A (en) * 1992-07-29 1994-02-22 Kikkoman Corp Preparation of seasoning
JPH0686653A (en) * 1992-08-13 1994-03-29 Choko Shoyu Miso Giyoudoukumiai Production of taste seasoning using stock refuse
JP2001149033A (en) * 1999-11-24 2001-06-05 Takara Shuzo Co Ltd Seasoning
JP2004129542A (en) * 2002-10-09 2004-04-30 Murayo Honten:Kk Seasoning material highly containing peptide and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300872A (en) * 1988-05-26 1989-12-05 Osaka Gas Co Ltd Preparation of broth
JPH0646793A (en) * 1992-07-29 1994-02-22 Kikkoman Corp Preparation of seasoning
JPH0686653A (en) * 1992-08-13 1994-03-29 Choko Shoyu Miso Giyoudoukumiai Production of taste seasoning using stock refuse
JP2001149033A (en) * 1999-11-24 2001-06-05 Takara Shuzo Co Ltd Seasoning
JP2004129542A (en) * 2002-10-09 2004-04-30 Murayo Honten:Kk Seasoning material highly containing peptide and method for producing the same

Also Published As

Publication number Publication date
JP2007325566A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
Shukla et al. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang)
Jurado et al. Effect of ripening time and rearing system on amino acid-related flavour compounds of Iberian ham
Sun et al. Changes of flavor compounds of hydrolyzed chicken bone extracts during Maillard reaction
Verma et al. Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: a comprehensive review
Wang et al. Characterization of flavor fingerprinting of red sufu during fermentation and the comparison of volatiles of typical products
Paolo et al. Impact of drying techniques, seasonal variation and organic growing on flavor compounds profiles in two Italian tomato varieties
Zhang et al. Analysis of volatile flavor compounds of corn under different treatments by GC-MS and GC-IMS
CN101299932A (en) Method for production of fish sauce
Ramtekey et al. Extraction, characterization, quantification, and application of volatile aromatic compounds from Asian rice cultivars
Sánchez-Rodríguez et al. Flavors and aromas
Hu et al. Change in volatiles, soluble sugars and fatty acids of glutinous rice, japonica rice and indica rice during storage
Wu et al. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose
Balcázar-Zumaeta et al. Metabolomics during the spontaneous fermentation in cocoa (Theobroma cacao L.): An exploraty review
Liu et al. Metabolomics investigation on the volatile and non-volatile composition in enzymatic hydrolysates of Pacific oyster (Crassostrea gigas)
KR101806812B1 (en) Method for producing water-clear Makgeolli using shiitake, cinnamon, plum and ginger
Qiao et al. A review on flavor of Baijiu and other world-renowned distilled liquors
Dong et al. Association between Baijiu chemistry and taste change: Constituents, sensory properties, and analytical approaches
Zhang et al. Comprehensive fruit quality assessment and identification of aroma-active compounds in green pepper (Capsicum annuum L.)
JP4615481B2 (en) Umami seasoning and its production method
Shen et al. Unveiling the aromatic differences of low-salt Chinese horse bean-chili-paste using metabolomics and sensomics approaches
Liu et al. Characterization and comparison of flavors in fresh and aged fermented peppers: Impact of different varieties
JP6949339B1 (en) Foods containing specific aroma components and their manufacturing methods
JP4417430B1 (en) Vinegar and its miscellaneous taste control method, food containing vinegar
Zhang et al. Baijiu
Yu et al. Unraveling the difference in flavor characteristics of Huangjiu fermented with different rice varieties using dynamic sensory evaluation and comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees