JP4613437B2 - Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace - Google Patents

Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace Download PDF

Info

Publication number
JP4613437B2
JP4613437B2 JP2001105513A JP2001105513A JP4613437B2 JP 4613437 B2 JP4613437 B2 JP 4613437B2 JP 2001105513 A JP2001105513 A JP 2001105513A JP 2001105513 A JP2001105513 A JP 2001105513A JP 4613437 B2 JP4613437 B2 JP 4613437B2
Authority
JP
Japan
Prior art keywords
bunker
weight
influence coefficient
pressure
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001105513A
Other languages
Japanese (ja)
Other versions
JP2002302707A (en
Inventor
淳 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001105513A priority Critical patent/JP4613437B2/en
Publication of JP2002302707A publication Critical patent/JP2002302707A/en
Application granted granted Critical
Publication of JP4613437B2 publication Critical patent/JP4613437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、並列バンカ型ベルレス高炉におけるバンカ重量測定方法に関し、特に、測定した重量をバンカ間で補正する際の補正に適用する影響係数の補正に関する。
【0002】
【従来の技術】
図1に示すように、高炉14の炉頂装入設備1は、原料設備2でバッチ単位に秤量された原料(鉱石、コークス等)を、装入コンベア3を介して受け入れて高炉14の炉内に装入する設備である。
高炉炉内は、通常、250kPa前後の高圧に保って操業されている。一方、原料は、大気圧中で炉頂装入ホッパ11に装入されている。そのため、並列バンカのいずれかのバンカ5へ原料を投入する際には、均圧/排圧配管12を介して当該バンカ5の排圧が行われ、バンカ圧を大気圧と等しくしてから上部シール弁4を開けて原料受入が行われる。
【0003】
バンカ5に原料が装入された後は、再び高炉炉内の圧力と等しくなるように均圧され、下部シール弁10を開けて排出ゲート8を介して高炉14炉内に排出、すなわち、炉内への装入が行われる。なお、排出ゲート8と下部シール弁10の間には、伸縮自在のエキスパンション9が介装されている。
炉内に送給された原料は、分配シュート13によって炉内挿入位置の制御を行いながら分配投入される。この分配投入に際しては、排出ゲート8の開度によって原料の投入速度が制御されている。
【0004】
この投入速度は、バンカ5に設けたバンカ重量計(ロードセル)7で測定したバンカ重量をベースにして決められる。更に、このバンカ重量計(ロードセル)7は、原料投入完了の検出用、あるいはまた、原料設備から炉頂装入設備の間での原料漏出の検知用等にも用いられている。
すなわち、並列バンカの各バンカ重量を正確に測定することは、原料の炉内への投入速度制御において極めて重要であり、その重量を高精度に測定することが求められる。また、この重量測定は、炉頂機器のシーケンス制御、設備診断からも極めて重要である。
【0005】
炉頂設備として単独バンカを有するベルレス高炉では、従来から、バンカ内原料重量の測定に際し、ロードセル等で風袋重量を除いたバンカ重量Wを測定する一方、圧力計等でバンカ内圧力Pを測定し、下記(1)式に基づき、バンカ内原料重量Wo を求めることが行われてきた。
o =W+k×P …(1)
ここで、kは、バンカに接続された均圧配管、シール弁部エキスパンション等の取付位置と径、および、それらの鉛直方向に対する取付角度等から一意的に求められる係数である。
【0006】
一方、並列バンカ型ベルレス高炉におけるそれぞれのバンカ重量測定も、上記と同様にして行われてきた。
なお、以下では、説明を簡単にするため、並列バンカの台数を3台として説明する。また、それぞれのバンカを No.1〜3とナンバリングする。ただし、バンカの台数は3台に限定されるものではなく、2台以上、何台であっても良いことは言うまでもない。
【0007】
並列バンカにおいて、3台のバンカ内原料重量Wo1、Wo2、Wo3は、単独バンカの場合と同様に、
o1=W1 +k1 ×P1 …(1a )
o2=W2 +k2 ×P2 …(1b )
o3=W3 +k3 ×P3 …(1c )
として与えられる。
【0008】
ところが、並列バンカの各バンカは、それぞれ 100t前後の原料を受け入れるため、その重量によってバンカを支える構造物の弾性変形、すなわち、撓みが生じ、また、その伸縮のためエキスパンションに反力変動が生じる。
そのため、あるバンカの原料受け入れ時に、原料を受け入れていないバンカの測定重量値まで変動することになり、バンカ内原料の測定を精度良く行うことができなかったのが実状である。
【0009】
その結果、炉内原料分布制御上重要である投入速度制御の精度が低下し、また、原料投入完了の正確な検出ができなくなり、炉頂機器全体の運転シーケンス制御が順調に進行しなくなり、しばしば渋滞を発生させて操業に支障を来す原因となっていた。
これを解決する手段として、例えば、特公平7-33529 号公報では、並列バンカの互いのバンカ重量、バンカ圧力を用いて、相互に重量補正する方法が提案されている。
【0010】
この方法では、バンカ相互の重量と圧力の影響係数を行列化し、下記(2)式を用いて測定した重量を補正し、バンカ内原料重量Wo1、Wo2、Wo3を求めるものである。
【0011】
【数1】

Figure 0004613437
【0012】
ここで、Wi は、風袋重量を除いたNo.iバンカの重量であり、Pi は、No.iバンカの内部圧力である。また、Aijは、No.iとNo.jのバンカ間の重量影響係数であり、Bijは、No.iとNo.jのバンカ間の圧力影響係数である。
ここで、Aij、Bijは、実原料受け入れ、均圧実施等の負荷試験を個別に実施してあらかじめ求めていた。特公平7-33529 号公報では、上記(2)式の補正式によって、原料重量による撓み等の影響を相殺することが可能となり、バンカ内の原料重量を正確に求めることができるようになったとしている。
【0013】
【発明が解決しようとする課題】
ところが、バンカ間の影響度は、エキスパンションの熱負荷等の操業状態、経年的な特性変化等によっても大きく変化する。また、摩耗・損耗等の補修を目的とした構成部材の取り替えに起因する変化分も考慮することが必要となる。
ところが、特公平7-33529 号公報に開示の方法では、このような特性変化に対応することはできず、バンカ内原料の重量を正確に測定することができなくなり、上述のような、高炉への原料投入速度制御の制御異常や運転シーケンス制御の渋滞等の各種の支障が生じていた。
【0014】
しかしながら、従来は、この変化してしまった影響係数(Aij、Bij)の修正を、高炉の休風時等の定期メンテナンス時まで実施することができなかった。そのため、休風時まで手動介入操作をするなどして操業をしのがざるを得なくなり、オペレータに大きな負担がかかる一因となっていた。
本発明は、操業中においても影響係数の見直しを可能とすることで、影響係数見直しのチャンスフリー化を実現し、オペレータの手動介入操作を一切不要とするものである。また、バンカ内原料重量の測定精度の低下を防止可能とし、原料投入速度制御を高精度に維持し、炉内原料分布を適正にして安定操業を可能とする。
【0015】
【課題を解決するための手段】
本発明は、炉頂装入設備として並列バンカを有するベルレス高炉において、いずれか一つのバンカと他のバンカ間の重量影響係数を補正するベルレス高炉用並列バンカの重量補正に適用する影響係数の補正方法であって、バンカへの原料受け入れ前に、あらかじめ各バンカを排圧しておき、前記の一つのバンカへの原料受け入れの前後に、各バンカ重量を測定し、測定した各重量値から、前記一つのバンカへの原料受け入れ前後の各バンカ重量値の変化率を演算し、演算して求めたそれらの変化率から、原料を受け入れた前記一つのバンカと他のバンカとの重量影響係数を演算し、該重量影響係数を、それまでの重量影響係数と置き換えることを特徴とするベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法によって上記課題を解決した。
【0016】
また、本発明は、炉頂装入設備として並列バンカを有するベルレス高炉において、いずれか一つのバンカと他のバンカ間の圧力影響係数を補正するベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法であって、バンカへの原料受け入れ前に、あらかじめ前記の他のバンカを排圧/均圧しておき、前記一つのバンカの排圧/均圧の前後に、当該一つのバンカのバンカ重量とバンカ圧力とを測定し、更に、前記他のバンカのバンカ重量を測定し、測定した各重量値と圧力値から、前記一つのバンカの排圧/均圧前後の各バンカの重量値の変化率と、前記一つのバンカの圧力値の変化率を演算し、演算して求めたそれらの変化率から、排圧/均圧した前記一つのバンカと前記他のバンカとの圧力影響係数を演算し、該圧力影響係数を、それまでの圧力影響係数と置き換えることを特徴とするベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法によって上記課題を解決した。
【0017】
【発明の実施の形態】
本発明のベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法における好適な実施の形態の代表的な処理フローを図2〜3に示す。なお、バンカ内原料重量の測定は、上記(2)式を適用して実施する。
図2は、重量影響の補正を行う処理フロー図であり、 No.1バンカの原料受入に伴う重量影響係数Ai1の補正を行う場合のフローを示している。
【0018】
ここで、 No.1バンカの原料受入前後の No.1〜3バンカの重量値と圧力値の変化は、図4に示すようになる。但し、この場合、 No.1〜3バンカを排圧状態としておき、圧力値が変化しないようにしておく。
図2のフローについて説明する。
測定開始の指令が与えられると、まず、 No.1バンカから炉内に原料を装入(205 )して空にし、炉頂装入待ち(210 )の状態とする。そして、 No.1〜3バンカを排圧(215 )して大気圧とする。この状態で原料設備から炉頂設備へ原料排出が開始(220 )されて原料が炉頂に到達(225 )する。この時点が、 No.1バンカの原料受入直前の状態である。本発明では、この時点で、 No.1〜3バンカ重量読み込み(230 )を行い、読込値W1b、W2b、W3bを得ることを特徴とする。
【0019】
そして、 No.1バンカの原料受入終了(235 )後、再度 No.1〜3バンカ重量読み込み(240 )を行い、読込値W1a、W2a、W3aを得る。
次に、No.1〜3バンカそれぞれについて重量変化率計算(245 )を行い、変化率ΔW1 〜ΔW3 を求め、それらの変化率から重量影響係数を演算(250 )してAi1′をもとめ、係数書き換え(255 )処理で、そのAi1′をAi1に上書きして新しい係数とする。その後、 No.1〜3バンカを均圧(260 )し、炉頂装入待ち状態を解除(265 )して一連のフローを完了する。
【0020】
なお、ここでは説明を省略するが、同様の処理を No.2〜3バンカに対しても行い、以上の一連の処理によって、重量影響係数の更新が完了する。
次に、図3の圧力影響係数の補正について説明する。図3は、 No.1バンカの排圧前後の測定値に応じ、圧力影響係数Bi1の補正を行うものである。ここで、No. 1バンカの排圧前後における No.1〜3バンカの重量値と圧力値の変化は、図5に示すようになる。図5において、 No.2〜3バンカはあらかじめ排圧しているため、その圧力値は一定である。また、 No.1バンカの排圧が No.2〜3バンカの重量測定値に与える影響は比較的小さいため、図5に示すスケールではその変化が図示されない。
【0021】
図3のフローについて説明する。
測定開始の指令が与えられると、まず、 No.1バンカから炉内に原料を装入(305 )し、炉頂装入待ち(310 )の状態とする。そして、 No.2〜3バンカを排圧(315 )し、大気圧に等しくする。この状態で No.1〜3バンカの重量読み込みと No.1バンカの圧力読込(320 )を行い、読込値W1b、W2b、W3b、P1bを得る。
【0022】
そして、 No.1バンカ排圧を開始(325 )し、 No.1バンカ排圧完了(330 )時点で、再度 No.1〜3バンカの重量読み込みと No.1バンカの圧力読込(335 )を行い、読込値W1a、W2a、W3a、P1aを得る。
次に、No.1〜3バンカ重量変化率計算(340 )を行い、変化率ΔW1 〜ΔW3 とΔP1 を求め、それらの変化率から影響係数を演算(345 )してBi1′を求め、係数書き換え(350 )処理で、そのBi1′をBi1に上書きして新しい係数とする。
【0023】
その後、 No.1〜3バンカを均圧(355 )し、炉頂装入待ち状態を解除(360 )して一連のフローを完了する。
ここでは説明を省略するが、同様の処理を No.2〜3バンカに対しても行うことで、圧力影響係数の更新が完了する。
なお、以上では、排圧前後での変化率から圧力影響係数算出を実施したが、均圧前後での変化率からも同様に圧力影響係数を算出することができる。
【0024】
【実施例】
並列バンカ型ベルレス高炉において適用される上記(2)式における影響係数の補正方法として、本発明の補正方法を適用した。
本発明では、本発明の補正方法による自動補正が8週間に1度自動的に実施されるように設定した。一方、本発明適用前の従来例では、初期状態で影響係数を調整した後は、そのままの係数が継続して使用され、休風時まで変更が実施されることはない。
【0025】
図6に、本発明適用前と、適用後の両方について、1週間当たりのシーケンス渋滞発生回数を時系列的に示す。図6に示すように、本発明を適用する前はシーケンス渋滞が頻繁に発生していたが、本発明の適用によってシーケンス渋滞が大幅に減少している。
なお、本発明適用後も、時間の経過に伴いシーケンス渋滞がわずかに発生するが、8週毎の自動調整が行われることによって、そのわずかの渋滞発生も解消されている。
【0026】
【発明の効果】
本発明によって、並列バンカの重量測定の誤差を解消し、正確な重量測定が可能となり、オペレータの手動介入操作を不要とするとともに、原料投入速度制御を高精度に維持し、かつ、炉内原料分布を適正にして安定操業を可能とすることができた。
【図面の簡単な説明】
【図1】本発明を適用するベルレス高炉の炉頂装入設備の模式図である。
【図2】本発明において重量影響の補正を行う処理フロー図である。
【図3】本発明において圧力影響の補正を行う処理フロー図である。
【図4】並列バンカの各バンカ重量の変化を模式的に示すグラフである。
【図5】並列バンカの各バンカ圧力と重量の変化を模式的に示すグラフである。
【図6】本発明実施前後のシーケンス渋滞発生回数の推移を示すグラフである。
【符号の説明】
1 炉頂装入設備
2 原料設備
3 装入コンベア
4 上部シール弁
5 バンカ
6 バンカ圧力計
7 バンカ重量計(ロードセル)
8 排出ゲート
9 エキスパンション
10 下部シール弁
11 炉頂装入ホッパ
12 均圧/排圧配管
13 分配シュート
14 ベルレス高炉[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bunker weight measuring method in a parallel bunker type bell-less blast furnace, and more particularly to correction of an influence coefficient applied to correction when correcting a measured weight between bunkeres.
[0002]
[Prior art]
As shown in FIG. 1, the furnace top charging facility 1 of the blast furnace 14 receives the raw materials (ores, coke, etc.) weighed in batch units in the raw material facility 2 through the charging conveyor 3 and It is equipment to be charged inside.
The inside of the blast furnace furnace is usually operated at a high pressure of around 250 kPa. On the other hand, the raw material is charged into the furnace top charging hopper 11 at atmospheric pressure. Therefore, when the raw material is introduced into any of the bunker 5 of the parallel bunker, the bunker 5 is exhausted through the pressure equalizing / exhaust pressure piping 12, and the bunker pressure is made equal to the atmospheric pressure before the upper part. The seal valve 4 is opened and the raw material is received.
[0003]
After the raw material is charged into the bunker 5, the pressure is equalized again so as to be equal to the pressure in the blast furnace, and the lower seal valve 10 is opened and discharged into the blast furnace 14 through the discharge gate 8, that is, the furnace The inside is charged. An expandable / expandable expansion 9 is interposed between the discharge gate 8 and the lower seal valve 10.
The raw material fed into the furnace is distributed and fed while the distribution position is controlled by the distribution chute 13. At the time of this distribution charging, the raw material charging speed is controlled by the opening of the discharge gate 8.
[0004]
This charging speed is determined based on the bunker weight measured by a bunker weigh scale (load cell) 7 provided in the bunker 5. Further, the bunker weigh scale (load cell) 7 is used for detecting the completion of raw material charging, or for detecting the leakage of raw material between the raw material equipment and the furnace top charging equipment.
That is, accurately measuring the weight of each bunker of the parallel bunker is extremely important in controlling the charging speed of the raw material into the furnace, and it is required to measure the weight with high accuracy. This weight measurement is also extremely important from the sequence control of the furnace top equipment and equipment diagnosis.
[0005]
In the bellless blast furnace having a single bunker as the furnace top equipment, when measuring the bunker material weight, the bunker weight W excluding the tare weight is measured with a load cell or the like, while the bunker pressure P is measured with a pressure gauge or the like. Based on the following formula (1), the material weight W o in the bunker has been obtained.
W o = W + k × P ... (1)
Here, k is a coefficient uniquely obtained from the mounting position and diameter of the pressure equalizing pipe connected to the bunker, the seal valve portion expansion, and the like, the mounting angle with respect to the vertical direction, and the like.
[0006]
On the other hand, each bunker weight measurement in the parallel bunker type bell-less blast furnace has been performed in the same manner as described above.
In the following description, the number of parallel bunkers is assumed to be three in order to simplify the description. Also, number each bunker with No. 1-3. However, the number of bunker is not limited to three, and it goes without saying that it may be two or more.
[0007]
In the parallel bunker, the raw material weights W o1 , W o2 , and W o3 in the three bunker are the same as in the case of a single bunker.
W o1 = W 1 + k 1 × P 1 (1a)
W o2 = W 2 + k 2 × P 2 (1b)
W o3 = W 3 + k 3 × P 3 (1c)
As given.
[0008]
However, each bunker of the parallel bunker accepts a raw material of about 100 t, so that the structure supporting the bunker is elastically deformed, that is, bent due to its weight, and the reaction force fluctuates due to the expansion and contraction.
For this reason, when the raw material of a certain bunker is received, the measured weight value of the bunker that does not receive the raw material fluctuates, and the actual measurement of the raw material in the bunker has failed.
[0009]
As a result, the accuracy of the charging speed control, which is important for controlling the distribution of raw materials in the furnace, is reduced, the accurate detection of the completion of the charging of raw materials cannot be performed, and the operation sequence control of the entire furnace equipment does not proceed smoothly. It caused traffic jams and hindered operations.
As means for solving this, for example, Japanese Patent Publication No. 7-33529 proposes a method of mutually correcting the weight by using the bunker weight and the bunker pressure of the parallel bunker.
[0010]
In this method, the influence coefficients of the weight and pressure between the bunker are formed into a matrix, and the weight measured using the following equation (2) is corrected to obtain the bunker raw material weights W o1 , W o2 and W o3 .
[0011]
[Expression 1]
Figure 0004613437
[0012]
Here, W i is the weight of the No. i bunker excluding the tare weight, and P i is the internal pressure of the No. i bunker. A ij is a weight influence coefficient between the No. i and No. j bunker, and B ij is a pressure influence coefficient between the No. i and No. j bunker.
Here, A ij and B ij were obtained in advance by individually performing load tests such as acceptance of actual raw materials and pressure equalization. In Japanese Examined Patent Publication No. 7-33529, the correction formula (2) above can cancel the influence of deflection due to the raw material weight, and the raw material weight in the bunker can be accurately obtained. It is said.
[0013]
[Problems to be solved by the invention]
However, the degree of influence between bunker varies greatly depending on the operating condition such as the thermal load of expansion, changes in characteristics over time, and the like. In addition, it is necessary to consider changes caused by replacement of components for the purpose of repairing wear and wear.
However, the method disclosed in Japanese Examined Patent Publication No. 7-33529 cannot cope with such a characteristic change, and cannot accurately measure the weight of the raw material in the bunker. Various problems such as abnormal control of raw material charging speed control and traffic jam of operation sequence control have occurred.
[0014]
However, conventionally, it has been impossible to correct the changed influence coefficients (A ij , B ij ) until regular maintenance such as when the blast furnace is closed. For this reason, there is no choice but to perform a manual intervention operation until the wind is off, causing a heavy burden on the operator.
The present invention makes it possible to review the influence coefficient even during operation, thereby realizing a chance-free review of the influence coefficient and eliminating the need for any manual intervention by the operator. In addition, it is possible to prevent the measurement accuracy of the raw material weight in the bunker from being lowered, maintain the raw material input speed control with high accuracy, make the raw material distribution in the furnace appropriate, and enable stable operation.
[0015]
[Means for Solving the Problems]
The present invention relates to a bellless blast furnace having a parallel bunker as a furnace top charging facility, and correction of an influence coefficient applied to a weight correction of a parallel bunker for a bellless blast furnace that corrects a weight influence coefficient between any one bunker and another bunker. In this method, before receiving the raw material into the bunker, each bunker is depressurized in advance, before and after receiving the raw material into the one bunker, each bunker weight is measured, and from each measured weight value, Calculate the change rate of each bunker weight value before and after receiving the raw material to one bunker, and calculate the weight influence coefficient between the one bunker that received the raw material and the other bunker from the calculated change rate Then, the weight influence coefficient is replaced by the weight influence coefficient applied to the measured weight correction of the parallel bunker for bell-less blast furnace, characterized in that the weight influence coefficient is replaced with the previous weight influence coefficient. Issues were resolved.
[0016]
In addition, the present invention is a bellless blast furnace having a parallel bunker as a furnace top charging facility, and is applied to the measurement weight correction of the parallel bunker for bellless blast furnace that corrects the pressure influence coefficient between any one bunker and the other bunker. A coefficient correction method, in which the other bunker is discharged / equalized in advance before receiving the raw material into the bunker, and before and after the discharge / equalized pressure of the one bunker, The bunker weight and the bunker pressure are measured, and further, the bunker weight of the other bunker is measured. From the measured weight value and pressure value, the weight value of each bunker before and after exhaust pressure / equalization of the one bunker is measured. Of the pressure value of the one bunker and the other bunker that have been exhausted / equalized from the rate of change of the pressure value and the rate of change of the pressure value of the one bunker. To calculate the effect of pressure The number was the above-mentioned problems are eliminated by the correction method of influence coefficient to be applied to it until the measured weight correction of bell-less blast furnace parallel bunker, characterized in that to replace the pressure influence coefficient.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A typical processing flow of a preferred embodiment of the correction method of the influence coefficient applied to the measurement weight correction of the bell-less blast furnace parallel bunker of the present invention is shown in FIGS. In addition, the measurement of the raw material weight in a bunker is implemented by applying the above equation (2).
FIG. 2 is a processing flow chart for correcting the weight influence, and shows a flow in the case of correcting the weight influence coefficient A i1 associated with the raw material acceptance of the No. 1 bunker.
[0018]
Here, changes in the weight value and pressure value of No. 1 to 3 bunker before and after receiving the raw material of No. 1 bunker are as shown in FIG. However, in this case, No. 1 to 3 bunker are set in the exhaust pressure state so that the pressure value does not change.
The flow of FIG. 2 will be described.
When a measurement start command is given, first, the raw material is charged into the furnace from the No. 1 bunker (205) and emptied, and a state of waiting for furnace top charging (210) is made. Then, No. 1 to 3 bunker are exhausted (215) to atmospheric pressure. In this state, discharge of the raw material from the raw material facility to the furnace top facility is started (220), and the raw material reaches the furnace top (225). This is the state just before receiving the raw material for No.1 bunker. The present invention is characterized in that, at this point, No. 1 to 3 bunker weights are read (230) to obtain read values W 1b , W 2b and W 3b .
[0019]
And after completion of raw material acceptance of No. 1 bunker (235), No. 1 to 3 bunker weights are read again (240) to obtain read values W 1a , W 2a and W 3a .
Next, the weight change rate calculation (245) is performed for each of No. 1 to 3 bunkers, the change rates ΔW 1 to ΔW 3 are obtained, and the weight influence coefficient is calculated (250) from these change rates to calculate A i1 ′ In the coefficient rewriting (255) process, A i1 ′ is overwritten on A i1 to obtain a new coefficient. After that, pressure equalization (260) is applied to No. 1 to 3 bunker, and the state of waiting for furnace top charging is released (265) to complete a series of flows.
[0020]
Although the description is omitted here, the same processing is performed for the No. 2 to 3 bunker, and the update of the weight influence coefficient is completed by the above series of processing.
Next, correction of the pressure influence coefficient in FIG. 3 will be described. FIG. 3 corrects the pressure influence coefficient B i1 according to the measured values before and after the exhaust pressure of the No. 1 bunker. Here, changes in the weight value and pressure value of No. 1 to 3 bunker before and after the exhaust pressure of No. 1 bunker are as shown in FIG. In FIG. 5, since the No. 2 to 3 bunker is exhausted in advance, the pressure value is constant. Further, since the influence of the exhaust pressure of the No. 1 bunker on the weight measurement values of the No. 2 and 3 bunker is relatively small, the change is not shown in the scale shown in FIG.
[0021]
The flow of FIG. 3 will be described.
When a measurement start command is given, first, the raw material is charged from the No. 1 bunker into the furnace (305), and the state is waiting for the furnace top charging (310). Then, the No. 2 to 3 bunker is exhausted (315) and made equal to the atmospheric pressure. In this state, the weight readings of No. 1 to 3 bunker and the pressure reading (320) of No. 1 bunker are performed to obtain read values W 1b , W 2b , W 3b and P 1b .
[0022]
Then, start No.1 bunker exhaust pressure (325), and when No.1 bunker exhaust pressure is completed (330), read the weights of No.1 to 3 bunker and read the pressure of No.1 bunker (335) again. The read values W 1a , W 2a , W 3a , and P 1a are obtained.
Next, No. 1 to 3 bunker weight change rate calculation (340) is performed to obtain change rates ΔW 1 to ΔW 3 and ΔP 1 , and an influence coefficient is calculated from these change rates (345) to calculate B i1 ′. In the coefficient rewriting (350) process, B i1 ′ is overwritten on B i1 to obtain a new coefficient.
[0023]
After that, equalize (355) the No. 1 to 3 bunker, release the state of waiting for furnace top loading (360), and complete a series of flows.
Although the explanation is omitted here, the update of the pressure influence coefficient is completed by performing the same processing for the No. 2 to 3 bunker.
In the above, the pressure influence coefficient is calculated from the change rate before and after the exhaust pressure, but the pressure influence coefficient can be calculated similarly from the change rate before and after the pressure equalization.
[0024]
【Example】
The correction method of the present invention was applied as the correction method of the influence coefficient in the above equation (2) applied in the parallel bunker type bell-less blast furnace.
In the present invention, the automatic correction by the correction method of the present invention is set to be automatically performed once every eight weeks. On the other hand, in the conventional example before the application of the present invention, after the influence coefficient is adjusted in the initial state, the coefficient is continuously used as it is, and the change is not carried out until the wind is off.
[0025]
FIG. 6 shows the number of occurrences of sequence congestion per week in a time series both before and after application of the present invention. As shown in FIG. 6, sequence congestion frequently occurred before the application of the present invention, but the sequence congestion is greatly reduced by the application of the present invention.
Even after application of the present invention, a slight sequence congestion occurs with the passage of time, but the occurrence of the slight congestion is eliminated by performing automatic adjustment every 8 weeks.
[0026]
【The invention's effect】
According to the present invention, errors in weight measurement of the parallel bunker are eliminated, accurate weight measurement is possible, manual intervention by the operator is unnecessary, raw material charging speed control is maintained with high accuracy, and the raw material in the furnace The distribution was made appropriate and stable operation was possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a bell top blast furnace top charging facility to which the present invention is applied.
FIG. 2 is a processing flow diagram for correcting weight influence in the present invention.
FIG. 3 is a process flow diagram for correcting pressure influence in the present invention.
FIG. 4 is a graph schematically showing changes in the weight of each bunker of parallel bunker.
FIG. 5 is a graph schematically showing changes in each bunker pressure and weight of the parallel bunker.
FIG. 6 is a graph showing the transition of the number of occurrences of sequence congestion before and after the implementation of the present invention.
[Explanation of symbols]
1 Furnace top charging equipment 2 Raw material equipment 3 Loading conveyor 4 Upper seal valve 5 Bunker 6 Bunker pressure gauge 7 Bunker weigh scale (load cell)
8 Discharge gate 9 Expansion
10 Lower seal valve
11 Furnace top charging hopper
12 Equal pressure / exhaust pressure piping
13 Distribution chute
14 Berless Blast Furnace

Claims (2)

炉頂装入設備として並列バンカを有するベルレス高炉において、いずれか一つのバンカと他のバンカ間の重量影響係数を補正するベルレス高炉用並列バンカの重量補正に適用する影響係数の補正方法であって、
バンカへの原料受け入れ前に、あらかじめ各バンカを排圧しておき、
前記の一つのバンカへの原料受け入れの前後に、各バンカ重量を測定し、測定した各重量値から、前記一つのバンカへの原料受け入れ前後の各バンカ重量値の変化率を演算し、
演算して求めたそれらの変化率から、原料を受け入れた前記一つのバンカと他のバンカとの重量影響係数を演算し、
該重量影響係数を、それまでの重量影響係数と置き換えることを特徴とするベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法。
In a bell-less blast furnace having a parallel bunker as a furnace top charging facility, a correction method of an influence coefficient applied to the weight correction of a parallel bunker for a bell-less blast furnace that corrects a weight influence coefficient between any one bunker and another bunker. ,
Before accepting raw materials to the bunker, drain each bunker in advance,
Before and after receiving the raw material into the one bunker, measure the weight of each bunker, and from each measured weight value, calculate the rate of change of each bunker weight value before and after receiving the raw material into the one bunker,
From the rate of change obtained by calculation, the weight influence coefficient between the one bunker and the other bunker that received the raw material is calculated,
A method for correcting an influence coefficient applied to correction of a measured weight of a parallel bunker for a bell-less blast furnace, wherein the weight influence coefficient is replaced with a weight influence coefficient obtained so far.
炉頂装入設備として並列バンカを有するベルレス高炉において、いずれか一つのバンカと他のバンカ間の圧力影響係数を補正するベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法であって、
バンカへの原料受け入れ前に、あらかじめ前記の他のバンカを排圧/均圧しておき、
前記一つのバンカの排圧/均圧の前後に、当該一つのバンカのバンカ重量とバンカ圧力とを測定し、更に、前記他のバンカのバンカ重量を測定し、測定した各重量値と圧力値から、前記一つのバンカの排圧/均圧前後の各バンカの重量値の変化率と、前記一つのバンカの圧力値の変化率を演算し、
演算して求めたそれらの変化率から、排圧/均圧した前記一つのバンカと前記他のバンカとの圧力影響係数を演算し、
該圧力影響係数を、それまでの圧力影響係数と置き換えることを特徴とするベルレス高炉用並列バンカの測定重量補正に適用する影響係数の補正方法。
In the bell-less blast furnace with a parallel bunker as the top charging equipment, this is a correction method for the influence coefficient applied to the measurement weight correction of the parallel bunker for bell-less blast furnace to correct the pressure influence coefficient between any one bunker and the other bunker. And
Before receiving the raw material into the bunker, discharge / equalize the other bunker in advance,
Before and after the exhaust pressure / equal pressure of the one bunker, the bunker weight and the bunker pressure of the one bunker are measured, the bunker weight of the other bunker is further measured, and the measured weight values and pressure values are measured. From the above, the change rate of the weight value of each bunker before and after the exhaust pressure / equalization of the one bunker and the change rate of the pressure value of the one bunker are calculated,
From the rate of change obtained by calculation, the pressure influence coefficient between the one bunker exhausted / equalized and the other bunker is calculated,
A method for correcting an influence coefficient applied to a measurement weight correction of a parallel bunker for a bell-less blast furnace, wherein the pressure influence coefficient is replaced with a previous pressure influence coefficient.
JP2001105513A 2001-04-04 2001-04-04 Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace Expired - Lifetime JP4613437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105513A JP4613437B2 (en) 2001-04-04 2001-04-04 Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105513A JP4613437B2 (en) 2001-04-04 2001-04-04 Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace

Publications (2)

Publication Number Publication Date
JP2002302707A JP2002302707A (en) 2002-10-18
JP4613437B2 true JP4613437B2 (en) 2011-01-19

Family

ID=18958200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105513A Expired - Lifetime JP4613437B2 (en) 2001-04-04 2001-04-04 Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace

Country Status (1)

Country Link
JP (1) JP4613437B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101985669B (en) * 2010-11-18 2012-05-23 中冶南方工程技术有限公司 Method for automatically correcting differential-pressure compensation factors of weighing of top charging bucket
JP5664306B2 (en) * 2011-02-09 2015-02-04 Jfeスチール株式会社 Blast furnace raw material charging method and blast furnace raw material charging equipment
CN103173583B (en) * 2011-12-20 2014-08-27 上海梅山钢铁股份有限公司 Blast furnace burden distribution controlling method
CN102559966B (en) * 2012-02-28 2014-04-09 中冶南方工程技术有限公司 Charging bucket weighing differential pressure compensation method for serial bell-less furnace top
CN102559975B (en) * 2012-02-28 2013-10-30 中冶南方工程技术有限公司 Charging bucket-weighing and differential pressure-compensating system for serial-type bell-less top
CN104444383B (en) * 2014-12-02 2017-01-11 新奥科技发展有限公司 High-pressure dense-phase transportation metering method and device
CN104692127B (en) * 2015-01-23 2017-02-22 新奥科技发展有限公司 Dense-phase conveying control method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733529B2 (en) * 1990-05-25 1995-04-12 川崎製鉄株式会社 Raw material load calculation method and raw material charging method in bellless top charging device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733529B2 (en) * 1990-05-25 1995-04-12 川崎製鉄株式会社 Raw material load calculation method and raw material charging method in bellless top charging device

Also Published As

Publication number Publication date
JP2002302707A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
CN102494753B (en) Method for calibrating electronic belt scale
JP4613437B2 (en) Correction method of influence coefficient applied to measurement weight correction of parallel bunker for bell-less blast furnace
US7788964B2 (en) Method and device for calibrating a weighing system of a blast furnace top hopper
JP2005509151A (en) Method and apparatus for weight distribution of bulk material
JP2016160524A (en) Granular material feeding device, and charging apparatus at bell-less furnace top
JPS63309821A (en) Control of differential distribution scale especially for bulk load and differential distribution scale for executing the same
CN101748227B (en) Weighing device and weighing method for blast furnace top weighing pot
WO2008059920A1 (en) Material metering system
US7742891B2 (en) System for compensating for creep and hysteresis in a load cell
CN113932894B (en) Segmented zero-point modular belt scale based on tension detection and compensation
TWI796041B (en) Dynamic Pressure Compensation Method for Weighing System of Blast Furnace Roof Bunker
JP5664306B2 (en) Blast furnace raw material charging method and blast furnace raw material charging equipment
JPS59229407A (en) Method for controlling opening degree of flow regulating gate of bell-less blast furnace
JP2773610B2 (en) Automatic control method of cutout amount of coke dry fire extinguishing equipment
JPS62151722A (en) Method and instrument for measuring weight of raw material in equalizing hopper
CN114959144B (en) Weighing compensation method and system
JPH0733529B2 (en) Raw material load calculation method and raw material charging method in bellless top charging device
JPS5910965B2 (en) Blast furnace operation method
JPS61245026A (en) Granular body feeder
CN110763575B (en) Method for rapidly detecting residual elongation strength
CN114018382B (en) Control method for improving weighing precision of weightless scale for batching
JP2942349B2 (en) Blast furnace feed control method
CN117187457A (en) Furnace top charging bucket weighing compensation method, system and equipment
JPH02254111A (en) Method for controlling bellless charging equipment in blast furnace
JPS62156527A (en) Method and device for weighing raw material of furnace top charging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Ref document number: 4613437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term