JP4610478B2 - Optical module and optical connector provided with the same - Google Patents

Optical module and optical connector provided with the same Download PDF

Info

Publication number
JP4610478B2
JP4610478B2 JP2005367375A JP2005367375A JP4610478B2 JP 4610478 B2 JP4610478 B2 JP 4610478B2 JP 2005367375 A JP2005367375 A JP 2005367375A JP 2005367375 A JP2005367375 A JP 2005367375A JP 4610478 B2 JP4610478 B2 JP 4610478B2
Authority
JP
Japan
Prior art keywords
light
holder
optical
photoelectric element
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005367375A
Other languages
Japanese (ja)
Other versions
JP2007171427A (en
Inventor
隆行 中村
努 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2005367375A priority Critical patent/JP4610478B2/en
Publication of JP2007171427A publication Critical patent/JP2007171427A/en
Application granted granted Critical
Publication of JP4610478B2 publication Critical patent/JP4610478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive optical module suitable for mass production without increasing the number of components and capable of adjusting the power of light and to provide an optical connector furnished with the optical module. <P>SOLUTION: The end part of an optical fiber 10 is fit into the end part fitting hole 7 of a holder 3, a photoelectric conversion element 2 is arranged on a straight line 11 which intersects with the axis line 6 direction of the holder 3, and a light reflecting means 12 is arranged at the intersection of the axis line 6 of the holder 3 and the straight line 11 to convert the advancing direction of parallel light from the optical fiber 10 side to the photoelectric conversion element 2 side or convert parallel light from the photoelectric conversion element 2 side to the optical fiber 10 side. The holder 3 is formed of a material having excellent light transmissivity. The light reflecting means 12 is the boundary face between the holder 3 and air and provided with a reflecting face part 25 which converts the advancing direction of light by totally reflecting the light and light transmitting face parts 23 and 24 which pass the light, wherein the transmitting light quantity and the reflected light quantity are adjusted by the areal ratio of the reflecting face part 25 and the light transmitting faces 23 and 24. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、光伝送路と光電素子との間の光結合を行う光モジュール及びこの光モジュールを備えた光コネクタに関するものである。   The present invention relates to an optical module that performs optical coupling between an optical transmission line and a photoelectric element, and an optical connector including the optical module.

光通信用の光モジュールは、光伝送路としての光ファイバと光電変換素子(光電素子)とを光学的に結合させるために使用されるものである。   The optical module for optical communication is used for optically coupling an optical fiber as an optical transmission path and a photoelectric conversion element (photoelectric element).

図9は、このような光モジュールに使用される光半導体装置100を示すものである。この図9に示す光半導体装置100は、基板101上に発光部としての第1の光電変換素子(半導体チップ)102を配置すると共に受光部としての第2の光電変換素子(半導体チップ)103を配置し、これらを光透過性材料製の封止体104の下部に収容するようになっている。そして、この光半導体装置100の封止体104は、第1の光電変換素子102から図9の上方へ向けて発せられた光を図9の水平方向(図中右側方向)へ反射する反射面(空気との境界面)105を形成し、その第1の光電変換素子102から出射された光を封止体104の図中右側の側面106から取り出すようになっている。また、この光半導体装置100の封止体104は、図9の右側側面から水平方向(図中左側方向)に向かう光を取り入れ、その水平方向の光を反射面105によって図の下方へ向けて反射し、その反射光を第2の光電変換素子103に照射するようになっている(特許文献1参照)。   FIG. 9 shows an optical semiconductor device 100 used in such an optical module. In the optical semiconductor device 100 shown in FIG. 9, a first photoelectric conversion element (semiconductor chip) 102 as a light emitting unit is arranged on a substrate 101, and a second photoelectric conversion element (semiconductor chip) 103 as a light receiving unit is arranged. These are arranged and accommodated in the lower part of the sealing body 104 made of a light transmitting material. The sealing body 104 of the optical semiconductor device 100 reflects the light emitted from the first photoelectric conversion element 102 upward in FIG. 9 in the horizontal direction in FIG. 9 (right side in the figure). (Boundary surface with air) 105 is formed, and light emitted from the first photoelectric conversion element 102 is extracted from the right side surface 106 of the sealing body 104 in the drawing. Further, the sealing body 104 of the optical semiconductor device 100 takes in light from the right side surface in FIG. 9 in the horizontal direction (left side in the figure), and directs the light in the horizontal direction downward in the figure by the reflecting surface 105. The light is reflected and the reflected light is applied to the second photoelectric conversion element 103 (see Patent Document 1).

尚、このような光半導体装置100において、封止体104の側面106から取り出された光は、図示しない光ファイバによって第1の光電変換素子102から離れた位置に光伝送したり、封止体104の側面106から封止体104内部に導入する光は、第2の光電変換素子103から離れた位置にある発光部から図示しない光ファイバによって封止体104の側面106に光伝送することも可能である。また、図9に関連する従来技術としては、例えば、特許文献2に挙げられるものが知られている。   In such an optical semiconductor device 100, the light extracted from the side surface 106 of the sealing body 104 is optically transmitted to a position away from the first photoelectric conversion element 102 by an optical fiber (not shown). The light introduced from the side surface 106 of the sealing body 104 into the sealing body 104 may be optically transmitted to the side surface 106 of the sealing body 104 by an optical fiber (not shown) from a light emitting portion located away from the second photoelectric conversion element 103. Is possible. Moreover, as a prior art relevant to FIG. 9, what is mentioned, for example in patent document 2 is known.

特開2000−4067号公報(特に、図1、段落番号0027乃至0032、図12、段落番号0058参照)。JP 2000-4067 A (refer to FIG. 1, paragraph numbers 0027 to 0032, FIG. 12, paragraph number 0058 in particular). 特開2001−174671号公報(特に、図1乃至3参照)。Japanese Patent Application Laid-Open No. 2001-174671 (see in particular FIGS. 1 to 3).

しかしながら、光モジュールは、安全上の問題、受光素子の特性、又は通信規格に適合させるため、伝送する光のパワー(光量)を調整しなければならない場合がある。このような場合、図9に示す従来の光モジュール(光半導体装置100)は、封止体104の側面106と図示しない光ファイバとの間に光のパワーを調整するための別部品(フィルタやアパーチャー)を配置しなければならず、部品点数が多くなると共に組み立て工程が増加し、製品コストが嵩むという問題が生じる。しかも、光のパワーを調整するための別部品としてアパーチャーを使用した場合には、発光素子から発せられる光の拡がり角のばらつきの影響を受けて通信規格を満足できない場合を生じる虞がある。   However, the optical module may have to adjust the power (light quantity) of light to be transmitted in order to conform to safety problems, characteristics of the light receiving element, or communication standards. In such a case, the conventional optical module (optical semiconductor device 100) shown in FIG. 9 has another component (such as a filter or a filter) for adjusting the light power between the side surface 106 of the sealing body 104 and an optical fiber (not shown). Apertures have to be arranged, and the number of parts increases, the assembly process increases, and the product cost increases. In addition, when an aperture is used as another component for adjusting the power of light, there is a possibility that the communication standard may not be satisfied due to the influence of variation in the spread angle of light emitted from the light emitting element.

そこで、本発明は、部品点数を増やすことなく、量産性に優れ且つ安価に光のパワー調整を行うことができる光モジュール及びこれを備えた光コネクタを提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical module that is excellent in mass productivity and can perform optical power adjustment at a low cost without increasing the number of components, and an optical connector including the same.

請求項1の発明は、ホルダの端部取付部に光伝送路の端部を嵌合し、前記ホルダの光電素子取付部に光電素子を配置し、前記光伝送路側からの光の進行方向を前記光電素子側に変えるか、又は前記光電素子側からの光を前記光伝送路側に変える光反射手段を、前記端部取付部と前記光電素子取付部との間の光路中に配置してなる光モジュールに関するものである。この光モジュールにおいて、前記光電素子取付部が前記ホルダの軸線方向と交差する直線上に形成され、前記光伝送路側からの光と前記光電素子側からの光が直交するようになっている。そして、前記光反射手段は、前記ホルダと前記ホルダ以外の媒体との境界面であって、前記ホルダの軸線と前記直線の交差部に位置するように前記ホルダに形成されている。また、前記光反射手段としての前記境界面は、(1)前記光伝送路側からの光及び前記光電素子側からの光に45度の傾斜角度で交差して、前記光伝送路側からの光を前記光電素子側に向けて反射するか、又は光電素子側からの光を前記光伝送路側に向けて反射する反射面部と、(2)前記光伝送路側からの光に直交するように前記反射面部の一端側に位置し、前記光伝送路側からの光の一部を透過する第1の透過面部と、(3)前記光電素子側からの光に直交するように前記反射面部の他端側に位置し、前記光電素子側からの光の一部を透過する第2の透過面部と、を有しており、これら反射面部、第1の透過面部及び第2の透過面部とで突起又は窪みを形作っている。 In the first aspect of the present invention, the end of the optical transmission path is fitted to the end mounting portion of the holder, the photoelectric element is disposed in the photoelectric element mounting portion of the holder, and the traveling direction of light from the optical transmission path side is determined. A light reflecting means for changing to the photoelectric element side or changing the light from the photoelectric element side to the optical transmission path side is disposed in the optical path between the end attachment portion and the photoelectric element attachment portion. The present invention relates to an optical module. In this optical module, the photoelectric element mounting portion is formed on a straight line that intersects the axial direction of the holder, and light from the optical transmission path side and light from the photoelectric element side are orthogonal to each other. The light reflecting means is formed on the holder so as to be located at a boundary surface between the holder and a medium other than the holder and at an intersection of the axis of the holder and the straight line. Further, the boundary surface as the light reflecting means (1) intersects the light from the optical transmission path side and the light from the photoelectric element side at an inclination angle of 45 degrees, and allows the light from the optical transmission path side to A reflective surface portion that reflects toward the photoelectric element side or reflects light from the photoelectric element side toward the optical transmission path side; and (2) the reflective surface section orthogonal to the light from the optical transmission path side. A first transmission surface portion that transmits a part of the light from the optical transmission line side, and (3) on the other end side of the reflection surface portion so as to be orthogonal to the light from the photoelectric element side. And a second transmission surface portion that transmits a part of the light from the photoelectric element side, and a projection or a depression is formed on the reflection surface portion, the first transmission surface portion, and the second transmission surface portion. Forming.

請求項の発明は、請求項1の発明に係る光モジュールのホルダに特徴を有するものである。すなわち、前記ホルダは、前記光伝送路側から前記光反射手段側へ進行する光を平行光に変換し、前記光反射手段側から前記光伝送路側へ進行する光を前記光伝送路に光結合する第1レンズと、前記光電素子側から前記光反射手段側へ進行する光を平行光に変換し、前記光反射手段側から前記光電素子側へ進行する光を前記光電素子に光結合する第2レンズと、を備えたことを特徴としている。 The invention of claim 2 is characterized by the holder of the optical module according to the invention of claim 1 . That is, the holder converts light traveling from the light transmission path side to the light reflection means side into parallel light, and optically couples light traveling from the light reflection means side to the light transmission path side to the light transmission path. A first lens that converts light traveling from the photoelectric element side to the light reflecting unit side into parallel light, and optically couples light traveling from the light reflecting unit side to the photoelectric element side to the photoelectric element; And a lens.

請求項の発明は、請求項1又は2の発明に係る光モジュールと、この光モジュールを収容保持するハウジングと、を備えたことを特徴とする光コネクタに関するものである。 A third aspect of the present invention relates to an optical connector comprising the optical module according to the first or second aspect of the present invention and a housing that accommodates and holds the optical module.

本発明によれば、ホルダに形成した境界面の反射面部と透過面部の面積比を変えることにより、光伝送に必要な光量(光のパワー)を調整できるため、光量調整用のフィルタ等の別部品を光路途中に設ける必要がなく、光量調整用の部品点数を増やす必要がない。したがって、本発明は、構造の複雑化や組み立て工数の増加を生じることがない、光量調整が可能な光モジュール及びこれを備えた光コネクタを安価に提供できる。   According to the present invention, the amount of light (light power) required for light transmission can be adjusted by changing the area ratio between the reflecting surface portion and the transmitting surface portion of the boundary surface formed on the holder. There is no need to provide a part in the middle of the optical path, and there is no need to increase the number of parts for light quantity adjustment. Therefore, the present invention can provide an optical module capable of adjusting the amount of light and an optical connector equipped with the optical module without causing a complicated structure and an increase in assembly man-hours.

以下、本発明の実施形態を図面に基づき詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1乃至図2は、本発明の実施形態に係る光モジュール1を説明するための図である。このうち、図1は、光モジュール1の縦断面図を示すものであり、光電変換素子(光電素子)2が発光部である場合を示す光モジュール1の縦断面図である。また、図2は、光電変換素子2が受光部である場合を示す光モジュール1の縦断面図である。
(First embodiment)
1 and 2 are diagrams for explaining an optical module 1 according to an embodiment of the present invention. Among these, FIG. 1 shows a longitudinal sectional view of the optical module 1, and is a longitudinal sectional view of the optical module 1 showing a case where the photoelectric conversion element (photoelectric element) 2 is a light emitting portion. FIG. 2 is a longitudinal sectional view of the optical module 1 showing a case where the photoelectric conversion element 2 is a light receiving portion.

図1乃至図2に示すように、光モジュール1は、ホルダ3を基板4上に取り付けて、このホルダ3の底面側取付穴(光電素子取付部)5内に基板4上の光電変換素子2を収容し、ホルダ3の軸線6方向一端側に形成した端部取付穴7にフェルール8を収容してある。そして、フェルール8の中心に保持された光ファイバ10の軸線(ホルダ3の軸線6)と光電変換素子2から延びてホルダ3の軸線6に直交する直線11との交差部に光反射手段12が配置されている。この光反射手段12は、図1に示すように、光電変換素子2が発光手段である場合に、光電変換素子2から発せられた光(矢印a)の一部(矢印a1)を透過させ、光電変換素子2から発せられた光(矢印a)の他部(矢印a2)を光ファイバ10側へ向けて反射するようになっている。また、光反射手段12は、図2に示すように、光電変換素子2が受光手段である場合に、光ファイバ10側から発せられた(伝送された)光(矢印b)の一部(矢印b1)を透過させ、光ファイバ10側から発せられた光(矢印b)の他部(矢印b2)を光電変換素子2側に向けて反射するようになっている。尚、光電変換素子2は、半導体レーザ等の発光手段及び/又はフォトダイオード等の受光手段を備えて構成される。 As shown in FIGS. 1 and 2, the optical module 1 has a holder 3 mounted on a substrate 4, and a photoelectric conversion element 2 on the substrate 4 in a bottom surface side mounting hole (photoelectric element mounting portion) 5 of the holder 3. The ferrule 8 is accommodated in the end attachment hole 7 formed on one end side in the axis 6 direction of the holder 3. The light reflecting means 12 is provided at the intersection between the axis of the optical fiber 10 held at the center of the ferrule 8 (the axis 6 of the holder 3) and the straight line 11 extending from the photoelectric conversion element 2 and perpendicular to the axis 6 of the holder 3. Has been placed. As shown in FIG. 1, when the photoelectric conversion element 2 is a light emitting means, the light reflecting means 12 transmits a part (arrow a1) of light (arrow a) emitted from the photoelectric conversion element 2, The other part (arrow a2) of the light (arrow a) emitted from the photoelectric conversion element 2 is reflected toward the optical fiber 10 side. Further, as shown in FIG. 2, when the photoelectric conversion element 2 is a light receiving means, the light reflecting means 12 is a part (arrow b) of light (arrow b) emitted (transmitted) from the optical fiber 10 side. b1) is transmitted, and the other part (arrow b2) of the light (arrow b) emitted from the optical fiber 10 side is reflected toward the photoelectric conversion element 2 side. The photoelectric conversion element 2 includes a light emitting unit such as a semiconductor laser and / or a light receiving unit such as a photodiode.

図3乃至図6は、本発明の光モジュール1を構成するホルダ3を示す図である。このうち、図3(a)がホルダ3の上面図、図3(b)がホルダ3の側面図、図3(c)がホルダ3の下面図である。また、図4は、図3(a)に示すホルダ3の正面図である。また、図5は、図3(b)のA−A線に沿って切断して示すホルダ3の断面図(縦断面図)である。また、図6は、図5のホルダ3の光反射手段12近傍を拡大して示す部分拡大断面図である。   3 to 6 are views showing the holder 3 constituting the optical module 1 of the present invention. 3A is a top view of the holder 3, FIG. 3B is a side view of the holder 3, and FIG. 3C is a bottom view of the holder 3. FIG. 4 is a front view of the holder 3 shown in FIG. FIG. 5 is a cross-sectional view (longitudinal cross-sectional view) of the holder 3 cut along the line AA in FIG. FIG. 6 is a partially enlarged cross-sectional view showing the vicinity of the light reflecting means 12 of the holder 3 of FIG.

これらの図に示すホルダ3は、光透過性の樹脂材料(例えば、PEI,PC,PMMA等)を射出成形することにより安価に且つ高精度に一体的に形成されている。そして、このホルダ3の軸線6に沿った方向の一端側には、フェルール8を着脱可能に係合する端部取付穴7が形成されている。この端部取付穴7は、ホルダ3の軸線6に沿った方向の一端側(図3(a)及び図5の左端側)に開口する有底筒状の穴であり、その内部にフェルール8が収容保持されるようになっている(図1参照)。また、端部取付穴7は、フェルール8と係合するフェルール収容穴部13と、フェルール8(フェルール収容穴部13)よりも小径で且つフェルール8とは係合しない逃がし穴部14とを備えている。そして、端部取付穴7(逃がし穴部14)の底部には、ホルダ3内を軸線6に沿って進行する平行光(図1の矢印a2)を光ファイバ10の先端に収束させると共に、光ファイバ10の先端から発せられた光を平行光(図2の矢印b)としてホルダ3内部に取り入れる第1レンズ部15が形成されている。   The holder 3 shown in these drawings is integrally formed at a low cost and with high accuracy by injection molding a light transmissive resin material (for example, PEI, PC, PMMA, etc.). An end attachment hole 7 for removably engaging the ferrule 8 is formed on one end side in the direction along the axis 6 of the holder 3. This end mounting hole 7 is a bottomed cylindrical hole that opens on one end side (the left end side in FIGS. 3A and 5) in the direction along the axis 6 of the holder 3, and has a ferrule 8 inside thereof. Is accommodated and held (see FIG. 1). The end mounting hole 7 includes a ferrule housing hole 13 that engages with the ferrule 8 and a relief hole 14 that is smaller in diameter than the ferrule 8 (ferrule housing hole 13) and does not engage with the ferrule 8. ing. Then, parallel light (arrow a2 in FIG. 1) traveling along the axis 6 in the holder 3 is converged on the tip of the optical fiber 10 at the bottom of the end mounting hole 7 (release hole 14), A first lens portion 15 is formed that takes light emitted from the tip of the fiber 10 into the holder 3 as parallel light (arrow b in FIG. 2).

また、ホルダ3は、図3(a)及び図5に示すように、端部取付穴7の底部よりも図中右側部分の底面16に、矩形形状の凹みである底面側取付穴5が形成されている(図3(c)参照)。この底面側取付穴5の上面(穴の底面)5aには、光電変換素子2の発光部17(図1参照)又は受光部18(図2参照)に対応する位置に、光電変換素子2の発光部17から発せられた光(矢印a)をホルダ3の内部に取り入れるか、又は光反射手段12によって反射されてホルダ3内を直線11に沿って進行する(図2の下方に進行する)光(矢印b2)を光電変換素子2の受光部18に収束させる第2レンズ部20が形成されている(図1及び図2参照)。ホルダ3内を通過する光は平行光であることが望ましい。   Further, as shown in FIGS. 3A and 5, the holder 3 has a bottom-side mounting hole 5 that is a rectangular recess formed on the bottom surface 16 in the right side of the figure than the bottom of the end mounting hole 7. (See FIG. 3C). The upper surface (bottom surface of the hole) 5a of the bottom surface side mounting hole 5 is located at a position corresponding to the light emitting portion 17 (see FIG. 1) or the light receiving portion 18 (see FIG. 2) of the photoelectric conversion element 2. The light (arrow a) emitted from the light emitting unit 17 is taken into the holder 3 or reflected by the light reflecting means 12 and travels along the straight line 11 in the holder 3 (travels downward in FIG. 2). A second lens unit 20 that converges light (arrow b2) on the light receiving unit 18 of the photoelectric conversion element 2 is formed (see FIGS. 1 and 2). The light passing through the holder 3 is preferably parallel light.

また、ホルダ3は、ホルダ3の軸線(光ファイバ10の中心の軸線)6と光電変換素子2の発光部17又は受光部18の中心から延びる直線11との交差部に光反射手段12が形成されている(図1,図2,図5及び図6参照)。この光反射手段12は、ホルダ3の右側端部の上面21に形成された上面開口穴22の底部に形成されており、ホルダ3と空気の境界面である(図5及び図6参照)。なお、上部開口穴22の開口縁の形状は、図3(b)に示すように、四角形状でもよいし、円形形状でもよい。   In the holder 3, the light reflecting means 12 is formed at the intersection of the axis 6 of the holder 3 (axis of the center of the optical fiber 10) and the straight line 11 extending from the center of the light emitting portion 17 or the light receiving portion 18 of the photoelectric conversion element 2. (See FIG. 1, FIG. 2, FIG. 5 and FIG. 6). The light reflecting means 12 is formed at the bottom of an upper surface opening hole 22 formed in the upper surface 21 of the right end portion of the holder 3, and is a boundary surface between the holder 3 and air (see FIGS. 5 and 6). In addition, as shown in FIG.3 (b), the shape of the opening edge of the upper opening hole 22 may be square shape, and circular shape may be sufficient as it.

また、光反射手段12は、図6に詳細を示すように、ホルダ3の軸線6に沿って進行する平行光(図2の矢印b)に直交する平面である第1の透過面部23と、光電変換素子2から発せられてホルダ3内を図中上方へ向かう平行光(図1の矢印a)に直交する平面である第2の透過面部24と、ホルダ3の軸線6に沿って進行する平行光及びホルダ6内を図中上方へ向かう平行光に45度の傾斜角度で交差する平面である反射面部25とを備えている。そして、この光反射手段12は、反射面部25の一端側に第1の透過面部23が位置し、反射面部25の他端側に第2の透過面部24が位置し、これら第1の透過面部23,反射面部25及び第2の透過面部24によって等脚台形形状の突起になっており、基準傾斜面(図6中の二点鎖線で示す傾斜面)26に複数形成されている。その結果、図5及び図6に示すように、上部開口穴22の底部の断面形状が略ステップ形状になっている。なお、基準傾斜面26は、ホルダ3の軸線6と光電変換素子2から延びる直線11の交点に位置し、これらホルダ3の軸線6及び光電変換素子2からの直線11に対して45度の傾斜角で交差する仮想の平面である。   As shown in detail in FIG. 6, the light reflecting means 12 includes a first transmission surface portion 23 that is a plane orthogonal to parallel light (arrow b in FIG. 2) that travels along the axis 6 of the holder 3, and Advancing along the second transmission surface portion 24, which is a plane perpendicular to parallel light (arrow a in FIG. 1) emitted from the photoelectric conversion element 2 and traveling upward in the figure in the holder 3, and the axis 6 of the holder 3. The reflecting surface 25 is a plane that intersects the parallel light and the parallel light traveling upward in the figure at an inclination angle of 45 degrees. In the light reflecting means 12, the first transmission surface portion 23 is located on one end side of the reflection surface portion 25, the second transmission surface portion 24 is located on the other end side of the reflection surface portion 25, and these first transmission surface portions. 23, the reflecting surface portion 25 and the second transmitting surface portion 24 form an isosceles trapezoidal protrusion, and a plurality of protrusions are formed on the reference inclined surface (inclined surface indicated by a two-dot chain line in FIG. 6). As a result, as shown in FIGS. 5 and 6, the cross-sectional shape of the bottom of the upper opening hole 22 is substantially stepped. The reference inclined surface 26 is located at the intersection of the axis 6 of the holder 3 and the straight line 11 extending from the photoelectric conversion element 2, and is inclined at 45 degrees with respect to the axis 6 of the holder 3 and the straight line 11 from the photoelectric conversion element 2. It is a virtual plane that intersects at a corner.

このような光反射手段12の第1の透過面部23は、光ファイバ10から発せられた光(ホルダ3の軸線6に沿って図6の図中右側方向へ進行する平行光であり、図1の矢印bの光)の一部(図1の矢印b1の平行光)を透過する。また、光反射手段12の第2の透過面部24は、光電変換素子2から発せられた光(ホルダ3内を直線11に沿って図6の上方へ進行する平行光であり、図1の矢印aの光)の一部(図1の矢印a1の平行光)を透過する。また、光反射手段12の反射面部25は、光ファイバ10からの光(図2の矢印bで示す平行光)を光電変換素子2に向けて光(図2の矢印b2)を反射するか、又は光電変換素子2からの光(図1の矢印aで示す平行光)を光ファイバ10に向けて光(図1の矢印a2)を反射する。   The first transmitting surface portion 23 of such a light reflecting means 12 is light emitted from the optical fiber 10 (parallel light traveling in the right direction in FIG. 6 along the axis 6 of the holder 3). Part of light (parallel light of arrow b1 in FIG. 1). The second transmission surface portion 24 of the light reflecting means 12 is light emitted from the photoelectric conversion element 2 (parallel light traveling in the holder 3 along the straight line 11 in FIG. a part of light (parallel light indicated by an arrow a1 in FIG. 1) is transmitted. Further, the reflection surface portion 25 of the light reflecting means 12 reflects light (arrow b2 in FIG. 2) by directing light (parallel light indicated by arrow b in FIG. 2) from the optical fiber 10 toward the photoelectric conversion element 2, or Alternatively, light (parallel light indicated by an arrow a in FIG. 1) from the photoelectric conversion element 2 is directed toward the optical fiber 10 to reflect the light (arrow a2 in FIG. 1).

図7は、本実施形態の光モジュール1の作用を模式化して示す図である。この図7の模式図に示すように、光ファイバ10から発せられた光bは、第1のレンズ部15によって平行光としてホルダ3内に取り入れられ(図2参照)、ホルダ3の軸線6に沿って進行した後、その一部(b1)が光反射手段12の第1の透過面部23を透過して直進し、その残部(b2)が光反射手段12の反射面部25によって光電変換素子2側に向けて(真下に向けて)反射され、その反射された平行光が第2のレンズ部20によって光電変換素子2の受光部18に収束され、その収束された光(b2)が光電変換素子2の受光部18に入射する。ここで、光電変換素子2に入射する光の光量(光のパワー)は、ホルダ3に入射した光ファイバ10からの光の光量をL0とし、第1の透過面部23の面積をS1とし、反射面部25の軸線6方向への投影面積をS0とすると、反射面部25と第1の透過面部23のメッシュ数にもよるが、L0×(S0/(S0+S1))程度となる。光束の強度分布を考慮した形状最適化とメッシュ数が多ければほぼ正確な値が計算できる。すなわち、本実施形態の光モジュール1は、反射面部25と第1の透過面部23の面積比によって、光反射手段12を透過する光(b1)の光量と光反射手段12で反射される光(b2)の光量がほぼ調整されることになる。   FIG. 7 is a diagram schematically showing the operation of the optical module 1 of the present embodiment. As shown in the schematic diagram of FIG. 7, the light b emitted from the optical fiber 10 is taken into the holder 3 as parallel light by the first lens portion 15 (see FIG. 2), and enters the axis 6 of the holder 3. Then, a part (b1) of the light reflecting means 12 passes through the first transmitting surface portion 23 and goes straight, and the remaining part (b2) of the light reflecting means 12 is reflected by the reflecting surface portion 25 of the photoelectric conversion element 2. The reflected parallel light is reflected toward the side (directly below), and the reflected parallel light is converged on the light receiving unit 18 of the photoelectric conversion element 2 by the second lens unit 20, and the converged light (b2) is photoelectrically converted. The light enters the light receiving portion 18 of the element 2. Here, the amount of light (light power) incident on the photoelectric conversion element 2 is L0, the amount of light incident on the holder 3 from the optical fiber 10, and the area of the first transmission surface portion 23 is S1. Assuming that the projected area of the surface portion 25 in the direction of the axis 6 is S0, it is about L0 × (S0 / (S0 + S1)) although it depends on the number of meshes of the reflecting surface portion 25 and the first transmitting surface portion 23. If the shape optimization considering the intensity distribution of the light beam and the number of meshes are large, an almost accurate value can be calculated. That is, the optical module 1 of the present embodiment has a light amount (b1) that passes through the light reflecting means 12 and light reflected by the light reflecting means 12 (depending on the area ratio between the reflecting surface portion 25 and the first transmitting surface portion 23). The amount of light b2) is almost adjusted.

また、図7の模式図に示すように、光電変換素子2から発せられた光aは、第2のレンズ部20によって平行光としてホルダ3内に取り入れられ(図1参照)、直線11に沿って進行した後、その一部(a1)が光反射手段12の第2の透過面部24を透過して直進し、その残部(a2)が光反射手段12の反射面部25によって光ファイバ10側に向けて(真横に向けて)反射され、その反射された平行光(a2)が第1のレンズ部15によって光ファイバ10の先端に収束され、その収束された光が光ファイバ10に入射する。ここで、光ファイバ10に入射する光の光量(光のパワー)は、ホルダ3に入射した光電変換素子2からの光の光量をL1とし、第2の透過面部24の面積をS2とし、反射面部25の直線11方向への投影面積をS0とすると、反射面部25と第2の透過面部24のメッシュ数にもよるが、L1×(S0/(S0+S2))程度となる。光束の強度分布を考慮した形状最適化とメッシュ数が多ければほぼ正確な値が計算できる。すなわち、本実施形態の光モジュール1は、反射面部25と第2の透過面部24の面積比によって、光反射手段12を透過する光の光量と光反射手段12で反射される光の光量がほぼ調整されることになる。 Further, as shown in the schematic diagram of FIG. 7, the light a emitted from the photoelectric conversion element 2 is taken into the holder 3 as parallel light by the second lens unit 20 (see FIG. 1), and along the straight line 11. Then, a part (a1) of the light reflecting means 12 passes through the second transmitting surface portion 24 and goes straight, and the remaining part (a2) is moved to the optical fiber 10 side by the reflecting surface portion 25 of the light reflecting means 12. The reflected parallel light (a2) is converged on the tip of the optical fiber 10 by the first lens unit 15, and the converged light is incident on the optical fiber 10. Here, the amount of light (light power) incident on the optical fiber 10 is L1, the amount of light incident from the photoelectric conversion element 2 incident on the holder 3, and the area of the second transmission surface portion 24 is S2. Assuming that the projected area of the surface 25 in the direction of the straight line 11 is S0, it is about L1 × (S0 / (S0 + S2)) although it depends on the number of meshes of the reflecting surface 25 and the second transmitting surface 24. If the shape optimization considering the intensity distribution of the light beam and the number of meshes are large, an almost accurate value can be calculated. That is, in the optical module 1 of the present embodiment, the amount of light transmitted through the light reflecting means 12 and the amount of light reflected by the light reflecting means 12 are approximately equal to each other depending on the area ratio between the reflecting surface portion 25 and the second transmitting surface portion 24. Will be adjusted.

以上のように、本実施形態によれば、ホルダ3に形成した光反射手段12の反射面部25と透過面部(第1の透過面部23又は第2の透過面部24)の面積比を変えることにより、光伝送に必要な光量(光のパワー)を調整できるため、光量調整用のフィルタ等の別部品を光路途中に設ける必要がなく、光量調整用の部品点数を増やす必要がない。したがって、本実施形態は、構造の複雑化や組み立て工数の増加を生じることがなく、光量調整が可能な光モジュール1を安価に提供できる。   As described above, according to the present embodiment, by changing the area ratio between the reflection surface portion 25 and the transmission surface portion (the first transmission surface portion 23 or the second transmission surface portion 24) of the light reflecting means 12 formed on the holder 3. Since the amount of light (light power) required for optical transmission can be adjusted, there is no need to provide another component such as a filter for adjusting the amount of light in the middle of the optical path, and there is no need to increase the number of components for adjusting the amount of light. Therefore, this embodiment can provide the optical module 1 capable of adjusting the amount of light at a low cost without causing a complicated structure and an increase in assembly man-hours.

尚、図1又は図2に示す光モジュール1は、例えば、図8に示すように、発光用の光モジュール1又は受光用の光モジュール1として、ハウジング27内に収容され、光コネクタ28を構成する。   The optical module 1 shown in FIG. 1 or FIG. 2 is housed in a housing 27 as a light emitting optical module 1 or a light receiving optical module 1 as shown in FIG. To do.

(第2実施形態)
本実施形態は、前述の第1実施形態における光モジュール1の変形例について説明するものである。本実施形態において、第1実施形態と実質同一の構成部分には同一の符号を付し、第1実施形態と重複する説明を省略する。
(Second Embodiment)
In the present embodiment, a modification of the optical module 1 in the first embodiment will be described. In the present embodiment, components that are substantially the same as those in the first embodiment are denoted by the same reference numerals, and descriptions that are the same as those in the first embodiment are omitted.

本実施形態における光反射手段12は、上部開口穴22の開口側から見て、第1の透過面部23、反射面部25及び第2の透過面部24による等脚台形形状の窪みになっており、基準傾斜面26に複数形成されている。このように、光反射手段12を光モジュール1に窪み形状として形成することで、第1実施形態と同様の作用効果が得られ、且つ、光モジュール1の1個当たりの樹脂材料の使用量を削減することができる。このため、本実施形態の光モジュール1は、簡単な構造で、前述した第1実施形態の光モジュールと比べて更なる低コスト化が図れる。   The light reflecting means 12 in the present embodiment is an isosceles trapezoidal depression formed by the first transmitting surface portion 23, the reflecting surface portion 25, and the second transmitting surface portion 24 when viewed from the opening side of the upper opening hole 22. A plurality of reference inclined surfaces 26 are formed. In this way, by forming the light reflecting means 12 in the optical module 1 as a hollow shape, the same effect as in the first embodiment can be obtained, and the amount of resin material used per optical module 1 can be reduced. Can be reduced. For this reason, the optical module 1 of the present embodiment has a simple structure and can be further reduced in cost as compared with the optical module of the first embodiment described above.

尚、本発明は、前述した第1及び第2の実施形態に限定されるものではなく、必要に応じて種々の変更が可能である。例えば、前述した第1及び第2の実施形態では光反射手段12の突起部又は窪み部を3個形成したが、突起部又は窪み部を1個又は複数個形成し、光ファイバと光電変換素子の間の光量をある任意の効率(損失)に制御してもよい。また、光反射手段12は、突起部及び窪み部を組み合わせて構成し、光モジュールに一体成形してもよい。   The present invention is not limited to the first and second embodiments described above, and various modifications can be made as necessary. For example, in the first and second embodiments described above, three projections or depressions of the light reflecting means 12 are formed, but one or more projections or depressions are formed, and an optical fiber and a photoelectric conversion element are formed. The amount of light in between may be controlled to some arbitrary efficiency (loss). Further, the light reflecting means 12 may be configured by combining a projecting portion and a recessed portion, and may be integrally formed with the optical module.

また、光反射手段12、光ファイバ10と光電変換素子2との間の光束の全てに対して適用するものに限らず、一部の光束について適用するように上部開口穴22の底部の所定箇所に形成してホルダ3を一体成形してもよい。また、反射面部25、第1の透過面部23及び第2の透過面部24を光の光束に対して同心円状に成形したり、微細なメッシュ状に成形して、光モジュール1を構成してもよい。   Further, the light reflecting means 12 is not limited to the one applied to all the light beams between the optical fiber 10 and the photoelectric conversion element 2, but a predetermined portion at the bottom of the upper opening hole 22 so as to be applied to a part of the light beams. The holder 3 may be integrally formed. Further, the optical module 1 may be configured by forming the reflection surface portion 25, the first transmission surface portion 23, and the second transmission surface portion 24 concentrically with respect to the light beam or by forming into a fine mesh shape. Good.

さらに、光ファイバ10と光電変換素子2との間の光結合には、反射面部25を用いるものに限らず、第1及び第2の透過面部23,24を用いるように光モジュール1を構成してもよい。ホルダ3の底面側取付穴5の開口形状及び凹み形状は、矩形状に限らず、基板4及び基板4に搭載される光電変換素子2に適合するように、多角形、円形、楕円形等の形状にするとよい。また、ホルダ3の上部開口穴22の開口形状及び凹み形状についても、矩形状に限らず、多角形、円形、楕円形等の形状として形成することができる。   Further, the optical coupling between the optical fiber 10 and the photoelectric conversion element 2 is not limited to the one using the reflecting surface portion 25, and the optical module 1 is configured to use the first and second transmitting surface portions 23 and 24. May be. The opening shape and the recessed shape of the bottom surface side mounting hole 5 of the holder 3 are not limited to a rectangular shape, but may be a polygon, a circle, an ellipse, or the like so as to be compatible with the substrate 4 and the photoelectric conversion element 2 mounted on the substrate 4. Shape it. Further, the opening shape and the recessed shape of the upper opening hole 22 of the holder 3 are not limited to a rectangular shape, and can be formed as a polygonal shape, a circular shape, an elliptical shape, or the like.

本発明を適用した光モジュールの縦断面図を示すものであり、光電変換素子(光電素子)が発光部である場合を示す光モジュールの縦断面図である。The longitudinal cross-sectional view of the optical module to which this invention is applied is shown, and it is a longitudinal cross-sectional view of the optical module which shows the case where a photoelectric conversion element (photoelectric element) is a light emission part. 本発明を適用した光モジュールの縦断面図を示すものであり、光電変換素子が受光部である場合を示す光モジュールの縦断面図である。The longitudinal cross-sectional view of the optical module to which this invention is applied is shown, and it is a longitudinal cross-sectional view of the optical module which shows the case where a photoelectric conversion element is a light-receiving part. 図3(a)がホルダの上面図、図3(b)がホルダの側面図、図3(c)がホルダの下面図である。3A is a top view of the holder, FIG. 3B is a side view of the holder, and FIG. 3C is a bottom view of the holder. 図3(a)に示すホルダの正面図である。It is a front view of the holder shown to Fig.3 (a). 図3(b)のA−A線に沿って切断して示すホルダの断面図(縦断面図)である。It is sectional drawing (longitudinal sectional view) of the holder cut and shown along the AA line of FIG.3 (b). 図5のホルダの光反射手段近傍を拡大して示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view showing the vicinity of the light reflecting means of the holder of FIG. 5 in an enlarged manner. 本発明に係る光モジュールの作用を模式化して示す図である。It is a figure which shows typically the effect | action of the optical module which concerns on this invention. 本発明の光モジュールを使用する光コネクタを簡略的に示す図である。It is a figure which shows simply the optical connector which uses the optical module of this invention. 従来例である光半導体装置を示す図であり、図9(a)がその平面図、図9(b)が図9(a)のB−B線に沿って切断して示す断面図、図9(c)が図9(a)のC−C線に沿って切断して示す断面図である。It is a figure which shows the optical semiconductor device which is a prior art example, FIG. 9 (a) is the top view, FIG.9 (b) is sectional drawing which cut | disconnects and shows along the BB line of FIG. FIG. 9C is a cross-sectional view taken along line CC in FIG.

符号の説明Explanation of symbols

1……光モジュール、2……光電変換素子(光電素子)、3……ホルダ、6……軸線、7……端部取付穴、8……フェルール(光伝送路としての光ファイバの端部)、10……光ファイバ(光伝送路)、11……直線、12……光反射手段、23……第1の透過面部(透過面部)、24……第2の透過面部(透過面部)、25……反射面部、27……ハウジング、28……光コネクタ   DESCRIPTION OF SYMBOLS 1 ... Optical module, 2 ... Photoelectric conversion element (photoelectric element), 3 ... Holder, 6 ... Axis, 7 ... End mounting hole, 8 ... Ferrule (end of optical fiber as optical transmission line) ) 10... Optical fiber (optical transmission line) 11... Straight line 12... Light reflecting means 23... First transmission surface portion (transmission surface portion) 24 24 second transmission surface portion (transmission surface portion) 25 ... Reflective surface part, 27 ... Housing, 28 ... Optical connector

Claims (3)

ホルダの端部取付部に光伝送路の端部を嵌合し、
前記ホルダの光電素子取付部に光電素子を配置し、
前記光伝送路側からの光の進行方向を前記光電素子側に変えるか、又は前記光電素子側からの光を前記光伝送路側に変える光反射手段を、前記端部取付部と前記光電素子取付部との間の光路中に配置してなる光モジュールにおいて、
前記光電素子取付部が前記ホルダの軸線方向と交差する直線上に形成され、
前記光伝送路側からの光と前記光電素子側からの光が直交するようになっており、
前記光反射手段は、前記ホルダと前記ホルダ以外の媒体との境界面であって、前記ホルダの軸線と前記直線の交差部に位置するように前記ホルダに形成され、
前記光反射手段としての前記境界面は、
(1)前記光伝送路側からの光及び前記光電素子側からの光に45度の傾斜角度で交差して、前記光伝送路側からの光を前記光電素子側に向けて反射するか、又は光電素子側からの光を前記光伝送路側に向けて反射する反射面部と、(2)前記光伝送路側からの光に直交するように前記反射面部の一端側に位置し、前記光伝送路側からの光の一部を透過する第1の透過面部と、(3)前記光電素子側からの光に直交するように前記反射面部の他端側に位置し、前記光電素子側からの光の一部を透過する第2の透過面部と、を有し、
これら反射面部、第1の透過面部及び第2の透過面部とで突起又は窪みを形作る、
ことを特徴とする光モジュール。
Fit the end of the optical transmission path to the end mounting part of the holder,
A photoelectric element is arranged on the photoelectric element mounting portion of the holder,
The light reflection means for changing the traveling direction of light from the optical transmission path side to the photoelectric element side or changing the light from the photoelectric element side to the optical transmission path side is provided with the end mounting section and the photoelectric element mounting section. In an optical module arranged in the optical path between
The photoelectric element mounting portion is formed on a straight line that intersects the axial direction of the holder,
The light from the optical transmission line side is orthogonal to the light from the photoelectric element side,
The light reflecting means is a boundary surface between the holder and a medium other than the holder, and is formed on the holder so as to be located at an intersection of the axis of the holder and the straight line,
The boundary surface as the light reflecting means is
(1) The light from the optical transmission line side and the light from the photoelectric element side intersect at an inclination angle of 45 degrees, and the light from the optical transmission line side is reflected toward the photoelectric element side, or photoelectric (2) a reflection surface portion that reflects light from the element side toward the optical transmission path side; and (2) located on one end side of the reflection surface section so as to be orthogonal to the light from the optical transmission path side, and from the optical transmission path side. A first transmission surface portion that transmits a part of the light; and (3) a portion of the light from the photoelectric element side that is positioned on the other end side of the reflection surface portion so as to be orthogonal to the light from the photoelectric element side. And a second transmission surface portion that transmits
Protrusions or depressions are formed by these reflecting surface portions, the first transmitting surface portion, and the second transmitting surface portion.
An optical module characterized by that.
前記ホルダは、前記光伝送路側から前記光反射手段側へ進行する光を平行光に変換し、前記光反射手段側から前記光伝送路側へ進行する光を前記光伝送路に光結合する第1レンズと、前記光電素子側から前記光反射手段側へ進行する光を平行光に変換し、前記光反射手段側から前記光電素子側へ進行する光を前記光電素子に光結合する第2レンズと、を備えたことを特徴とする請求項1に記載の光モジュール。 The holder converts light traveling from the light transmission path side to the light reflection means side into parallel light, and optically couples light traveling from the light reflection means side to the light transmission path side to the light transmission path. A second lens that converts light traveling from the photoelectric element side to the light reflecting means side into parallel light, and optically couples light traveling from the light reflecting means side to the photoelectric element side to the photoelectric element; the optical module according to claim 1, characterized in that with a. 前記請求項1又は2に記載の光モジュールと、前記光モジュールを収容保持するハウジングと、を備えたことを特徴とする光コネクタ。An optical connector comprising: the optical module according to claim 1; and a housing that accommodates and holds the optical module.
JP2005367375A 2005-12-21 2005-12-21 Optical module and optical connector provided with the same Active JP4610478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367375A JP4610478B2 (en) 2005-12-21 2005-12-21 Optical module and optical connector provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367375A JP4610478B2 (en) 2005-12-21 2005-12-21 Optical module and optical connector provided with the same

Publications (2)

Publication Number Publication Date
JP2007171427A JP2007171427A (en) 2007-07-05
JP4610478B2 true JP4610478B2 (en) 2011-01-12

Family

ID=38298097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367375A Active JP4610478B2 (en) 2005-12-21 2005-12-21 Optical module and optical connector provided with the same

Country Status (1)

Country Link
JP (1) JP4610478B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345408A (en) * 2013-07-23 2015-02-11 恩普乐股份有限公司 Optical receptacle and optical module
CN106950658A (en) * 2017-04-26 2017-07-14 华为技术有限公司 Optical transceiver module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867898B2 (en) * 2007-11-14 2012-02-01 日立電線株式会社 Optical module, optical block reinforcement and optical block
JP5127546B2 (en) * 2008-04-18 2013-01-23 株式会社フジクラ Optical connector
JP5625893B2 (en) 2010-12-24 2014-11-19 株式会社オートネットワーク技術研究所 Optical connector
JP5920813B2 (en) * 2011-12-02 2016-05-18 株式会社エンプラス Optical module
JP6134934B2 (en) * 2011-12-02 2017-05-31 株式会社エンプラス Optical receptacle and optical module having the same
JP5605382B2 (en) * 2012-02-20 2014-10-15 住友電気工業株式会社 Optical module
JP2013200347A (en) * 2012-03-23 2013-10-03 Enplas Corp Optical receptacle and optical module including the same
JP5282988B2 (en) * 2012-09-21 2013-09-04 株式会社フジクラ Optical connector
TWI461775B (en) 2012-09-26 2014-11-21 Delta Electronics Inc Optical module and optical coupling method using the same
JP6353196B2 (en) * 2013-05-15 2018-07-04 株式会社エンプラス Optical receptacle and optical module
JP5491658B2 (en) * 2013-05-27 2014-05-14 株式会社フジクラ Manufacturing method of optical path conversion type optical connector
US9470857B2 (en) * 2014-06-13 2016-10-18 Sumitomo Electric Industries, Ltd. Optical module with beam splitter on reflecting surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326810U (en) * 1986-08-05 1988-02-22
JP2001174671A (en) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd Optical element module
JP2001188148A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communication device
JP2004246279A (en) * 2003-02-17 2004-09-02 Seiko Epson Corp Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326810U (en) * 1986-08-05 1988-02-22
JP2001174671A (en) * 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd Optical element module
JP2001188148A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communication device
JP2004246279A (en) * 2003-02-17 2004-09-02 Seiko Epson Corp Optical module and its manufacturing method, optical communication device, optical and electric mixed integrated circuit, circuit board, electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345408A (en) * 2013-07-23 2015-02-11 恩普乐股份有限公司 Optical receptacle and optical module
CN106950658A (en) * 2017-04-26 2017-07-14 华为技术有限公司 Optical transceiver module

Also Published As

Publication number Publication date
JP2007171427A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4610478B2 (en) Optical module and optical connector provided with the same
TWI601992B (en) Optical receptacle and optical module
JP5025695B2 (en) Optical module
TWI609205B (en) Optical socket and light module with it
US9971106B2 (en) Optical receptacle and optical module
EP3425436A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
TW201508365A (en) Optical receptacle and optical module
WO2017068843A1 (en) Optical path conversion element, optical interface apparatus, and optical transmission system
JP2018109656A (en) Optical module
US10739537B2 (en) Optical receptacle and optical module
US10591686B2 (en) Optical receptacle and optical module
US11921331B2 (en) Optical receptacle and optical module
TWI608263B (en) Optical socket and light module with it
WO2015045863A1 (en) Light receptacle and light module
US11921332B2 (en) Optical receptacle and optical module
US20210302673A1 (en) Optical receptacle and optical module
JP2005164665A (en) Light emission module
JP6494711B2 (en) Optical module
JP2005189757A (en) Optical module
WO2017038534A1 (en) Transmission-side optical communication module and optical communication device
JP2011123121A (en) Bidirectional optical module
JP2007115975A (en) Optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250