JP4609697B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device Download PDF

Info

Publication number
JP4609697B2
JP4609697B2 JP2004278060A JP2004278060A JP4609697B2 JP 4609697 B2 JP4609697 B2 JP 4609697B2 JP 2004278060 A JP2004278060 A JP 2004278060A JP 2004278060 A JP2004278060 A JP 2004278060A JP 4609697 B2 JP4609697 B2 JP 4609697B2
Authority
JP
Japan
Prior art keywords
fixation target
eye
distance
refractive power
examined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004278060A
Other languages
Japanese (ja)
Other versions
JP2005125086A (en
Inventor
規二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2004278060A priority Critical patent/JP4609697B2/en
Publication of JP2005125086A publication Critical patent/JP2005125086A/en
Application granted granted Critical
Publication of JP4609697B2 publication Critical patent/JP4609697B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、被検眼の眼屈折力を測定する眼屈折力測定装置に関する。   The present invention relates to an eye refractive power measuring apparatus that measures the eye refractive power of an eye to be examined.

眼屈折力測定装置においては、被検眼に固視させる固視標を被検眼の光軸方向に移動する固視標光学系を持ち、固視標を被検眼の眼底に結像させる状態から適当なディオプタ分だけ遠方に移動することにより、被検眼に雲霧を掛けた状態で遠用屈折力を他覚的に測定している(特許文献1参照)。この固視標光学系は、近視眼及び遠視眼の遠用屈折力を測定可能とするため、固視標の呈示距離に拘わらず、固視標の視標像の見かけの大きさ(視角)をほぼ一定とする構成となっている。
特開平10−127581号公報
The eye refractive power measurement apparatus has a fixation target optical system that moves a fixation target to be fixed to the eye to be examined in the optical axis direction of the eye to be examined, and is suitable from a state in which the fixation target is imaged on the fundus of the eye to be examined. The distance refractive power is objectively measured in a state in which the subject's eye is clouded by moving far away by an appropriate diopter (see Patent Document 1). Since this fixation target optical system can measure the refractive power of the near vision and far vision eyes, the apparent size (viewing angle) of the fixation target image can be set regardless of the fixation target presentation distance. The configuration is almost constant.
Japanese Patent Laid-Open No. 10-127581

しかしながら、上記のような固視標光学系を備える眼屈折力測定装置において、遠方位置から近方位置に固視標を移動して近くを見せた状態での屈折力や調節力を自覚的又は他覚的に確認する場合、例えば、固視標を30cm相当の位置に呈示しても、固視標の見かけの大きさ(視角)が変わらないため、被検者は感覚的に近くに固視標が近づいたと感じられない。このため、近方視時の屈折力や調節力を測定、確認する際に正確性に欠けるという問題があった。   However, in the eye refractive power measuring apparatus provided with the fixation target optical system as described above, the refractive power and the adjustment power in a state where the fixation target is moved from a distant position to a near position and the vicinity thereof is shown or When objectively confirming, for example, even if the fixation target is presented at a position corresponding to 30 cm, the apparent size (viewing angle) of the fixation target does not change. I can't feel that the target is approaching. For this reason, there has been a problem that accuracy is insufficient when measuring and confirming refractive power and adjustment power in near vision.

本発明は、上記問題点を鑑み、近方視時の屈折力や調節力をより正確に測定、確認できる眼屈折力測定装置を提供することを技術課題とする。   In view of the above problems, an object of the present invention is to provide an eye refractive power measuring apparatus that can more accurately measure and confirm refractive power and accommodation power during near vision.

(1) 被検眼の屈折力を他覚的に測定する眼屈折力測定装置において、
被検眼の前眼部付近をその前側焦点位置とする対物レンズ系を介して被検眼に固視標を呈示する固視標光学系と、
被検眼に対する前記固視標の呈示距離を変える距離可変手段と、
該距離可変手段により前記固視標が遠方視の呈示距離から近方視の呈示距離に移動されるとき、固視標が近方に近づくにつれて固視標の見かけのサイズを大きくするサイズ可変手段と、
を備えることを特徴とする。
(2) (1)の眼屈折力測定装置において、該距離可変手段により前記固視標が近方視の呈示距離に移動されたとき、被検眼の近用時の屈折力を他覚的に測定する近用屈折力測定手段を備えることを特徴とする。
(3) (1)〜(2)の何れかの眼屈折力測定装置において、前記固視標光学系には被検眼の乱視状態を矯正する乱視矯正光学系が設けられ、前記固視標を近方視の呈示距離としたときに、事前に得られた被検眼の乱視屈折力データに基づいて前記乱視矯正光学系を駆動制御する制御手段を設けたことを特徴とする。

(1) In an eye refractive power measuring apparatus that objectively measures the refractive power of an eye to be examined,
A fixation target optical system for presenting a fixation target to the eye to be examined through an objective lens system having the anterior eye portion of the eye to be examined as its front focal position;
A variable distance means for changing the distance of the fixation target for the eye;
When the fixation target is moved from the distant vision presentation distance to the near vision presentation distance by the distance variable means, the size variable means for increasing the apparent size of the fixation target as the fixation target approaches the near distance. When,
It is characterized by providing.
(2) In the eye refractive power measurement device according to (1), when the fixation target is moved to the near vision presentation distance by the distance varying means, the refractive power of the subject's eye for near use is objectively changed. It is provided with a near power measuring means for measuring.
(3) In the eye refractive power measurement device according to any one of (1) to (2) , the fixation target optical system is provided with an astigmatism correction optical system that corrects an astigmatism state of an eye to be examined. Control means for driving and controlling the astigmatism correcting optical system based on astigmatism refractive power data of the eye to be examined obtained in advance when the distance for near vision is presented is provided.

本発明によれば、近方視時の屈折力や調節力をより正確に確認、測定することができる。   According to the present invention, it is possible to more accurately confirm and measure the refractive power and the adjusting power during near vision.

以下、本発明の第1実施例を図面に基づいて説明する。図1は眼屈折力測定装置の外観略図である。1は基台、2は被検眼の顔を固定するための顔固定ユニットである。3は本体部、4は後述する光学系が収納された測定部であり、本体部3はジョイスティック5の操作により基台1の水平面上を前後左右に摺動し、また、ジョイスティック5の回転ノブ5aを回転操作することにより測定部4は本体部3に対して上下方向に移動する。ジョイスティック5の頂部には測定開始スイッチが設けられている。7は被検眼の前眼部像や各種情報を表示するTVモニタでる。8はスイッチ部であり、測定モード切換えスイッチ等が配置されている。   A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic external view of an eye refractive power measuring apparatus. 1 is a base, and 2 is a face fixing unit for fixing the face of the eye to be examined. Reference numeral 3 denotes a main body, and 4 denotes a measuring unit in which an optical system, which will be described later, is housed. The main body 3 slides back and forth on the horizontal plane of the base 1 by operation of the joystick 5, and a rotation knob of the joystick 5 By rotating 5a, the measuring unit 4 moves up and down with respect to the main body 3. A measurement start switch is provided on the top of the joystick 5. Reference numeral 7 denotes a TV monitor that displays an anterior segment image and various information of the eye to be examined. Reference numeral 8 denotes a switch unit, on which a measurement mode changeover switch and the like are arranged.

図2は光学系の概略構成図である。11は赤外領域に波長を持つ2個の測定用光源であり、光軸を中心に回転可動に配置されている。12は集光レンズである。13は測定用指標(スポット開口)を有し、被検眼Eの眼底と共役な位置に配置されるべく移動可能な測定用ターゲット板である。14は投影レンズ、15a及び15bはビームスプリッタである。17は対物レンズ、31はビームスプリッタ、16はミラー、18、19はリレーレンズ、20は被検眼Eの角膜と共役な位置に配置されている帯状の角膜反射除去マスク、21はターゲット板13とともに移動する移動レンズ、22は結像レンズである。23は測定用受光素子であり、測定用受光素子23は測定用光源11及び角膜反射除去マスク20と同期して光軸を中心に回動する。   FIG. 2 is a schematic configuration diagram of the optical system. Reference numeral 11 denotes two measurement light sources having wavelengths in the infrared region, which are arranged so as to be rotatable about the optical axis. Reference numeral 12 denotes a condenser lens. Reference numeral 13 denotes a measurement target plate having a measurement index (spot opening) and movable so as to be arranged at a position conjugate with the fundus of the eye E to be examined. 14 is a projection lens, and 15a and 15b are beam splitters. Reference numeral 17 is an objective lens, 31 is a beam splitter, 16 is a mirror, 18 and 19 are relay lenses, 20 is a strip-shaped corneal reflection removing mask arranged at a position conjugate with the cornea of the eye E, and 21 is a target plate 13. The moving lens 22 is an imaging lens. Reference numeral 23 denotes a measurement light-receiving element, and the measurement light-receiving element 23 rotates around the optical axis in synchronization with the measurement light source 11 and the corneal reflection removal mask 20.

30は固視標呈示光学系を表す。固視標呈示光学系30は、ビームスプリッタ15a,15b、対物レンズ17、ビームスプリッタ31、光軸上を移動可能な第1リレーレンズ32、第2リレーレンズ33、固視標表示部34を備える。測定時の被検眼の前眼部付近は、対物レンズ17の前側焦点位置にある。対物レンズ17は一枚のレンズで示しているが、複数のレンズの組み合わせで対物レンズ系を構成する場合もある。固視標表示部34は、液晶モニタやプラズマモニタ等の画像表示器により構成されており、被検眼に呈示する固視標の種類やサイズを自由に変えることができる。   Reference numeral 30 denotes a fixation target presenting optical system. The fixation target presenting optical system 30 includes beam splitters 15a and 15b, an objective lens 17, a beam splitter 31, a first relay lens 32 that can move on the optical axis, a second relay lens 33, and a fixation target display unit 34. . The vicinity of the anterior eye portion of the eye to be examined at the time of measurement is at the front focal position of the objective lens 17. Although the objective lens 17 is shown as a single lens, the objective lens system may be configured by a combination of a plurality of lenses. The fixation target display unit 34 includes an image display such as a liquid crystal monitor or a plasma monitor, and can freely change the type and size of the fixation target presented to the eye to be examined.

図3は、固視標表示部34に呈示される固視標の例を示し、マスクされた円形の呈示面の中心部に固視目標としての固視標34aが表示されている。この例では、サッカーボールを図柄としている。固視標表示部34の表示面は、第2リレーレンズ33の後側焦点位置に位置するように配置されている。固視標34aからの光束は第2リレーレンズ33により平行光束となり、第1リレーレンズにより固視標像34a´が結像する。被検眼は対物レンズ17を介してこの固視標像34a´を見ることとなる。第1リレーレンズ32は光軸上を移動して、固視標像34a´の呈示位置(呈示距離)を光学的に変化させる。遠用屈折力の測定時には、第1リレーレンズ32の移動により被検眼の調節除去の雲霧を行う。   FIG. 3 shows an example of a fixation target presented on the fixation target display unit 34, and a fixation target 34a as a fixation target is displayed at the center of the masked circular presentation surface. In this example, a soccer ball is used as a design. The display surface of the fixation target display unit 34 is disposed so as to be positioned at the rear focal position of the second relay lens 33. The light flux from the fixation target 34a becomes a parallel light flux by the second relay lens 33, and a fixation target image 34a 'is formed by the first relay lens. The eye to be examined sees this fixation target image 34 a ′ through the objective lens 17. The first relay lens 32 moves on the optical axis to optically change the presentation position (presentation distance) of the fixation target image 34a ′. At the time of measuring the distance refractive power, the first relay lens 32 is moved to perform adjustment removal of the eye to be examined.

45は観察光学系であり、図示無き照明光源により照明された被検眼前眼部像はビームスプリッタ15bで反射された後、対物レンズ46、ミラー47を介してCCDカメラ48に撮像される。   Reference numeral 45 denotes an observation optical system, and the anterior eye image of the eye illuminated by an illumination light source (not shown) is reflected by the beam splitter 15 b and then captured by the CCD camera 48 via the objective lens 46 and the mirror 47.

図4は装置の制御系の概略構成図である。CCDカメラ48からの映像信号は、画像処理部51に入力され、TVモニタ7に出力される。50は制御部であり、固視標表示部34、受光素子23、スイッチ部8、測定用光源11、測定用光源11及び受光素子23を駆動するモータ56、測定用ターゲット板13及びレンズ21を移動するモータ57、第1リレーレンズ32を移動するモータ58、ターゲット板13の移動位置を検出するポテンショメータ60、メモリ62等が接続されている。制御部50は固視標表示部34を制御し、その表示面に表示する固視標34aのサイズを呈示距離に応じて変化させる。また、制御部50は、受光素子23やポテンショメータ60からの検出信号を基に眼屈折力等を演算する。   FIG. 4 is a schematic configuration diagram of a control system of the apparatus. The video signal from the CCD camera 48 is input to the image processing unit 51 and output to the TV monitor 7. A control unit 50 includes a fixation target display unit 34, a light receiving element 23, a switch unit 8, a measurement light source 11, a motor 56 for driving the measurement light source 11 and the light receiving element 23, a measurement target plate 13 and a lens 21. A motor 57 that moves, a motor 58 that moves the first relay lens 32, a potentiometer 60 that detects the movement position of the target plate 13, a memory 62, and the like are connected. The control unit 50 controls the fixation target display unit 34 to change the size of the fixation target 34a displayed on the display surface according to the presentation distance. Further, the control unit 50 calculates the eye refractive power and the like based on the detection signals from the light receiving element 23 and the potentiometer 60.

以上のような構成を備える装置について、以下にその動作を説明する。まず、スイッチ部8のスイッチにより通常の遠用屈折力測定モードとした場合を説明する。モニタ7に表示される被検眼の前眼部像を観察しながら、ジョイスティック5及び回転ノブ5aを操作してアライメントを行う。アライメントが完了したら測定開始スイッチ6を押して測定を行う。被検眼には固視標呈示光学系により固視標34aを呈示する。   The operation of the apparatus having the above configuration will be described below. First, the case where the normal distance power measurement mode is set by the switch of the switch unit 8 will be described. While observing the anterior segment image of the eye to be examined displayed on the monitor 7, the joystick 5 and the rotary knob 5a are operated to perform alignment. When the alignment is completed, the measurement start switch 6 is pressed to perform measurement. A fixation target 34a is presented to the eye to be examined by a fixation target presenting optical system.

測定用光源11を出射した測定光は、集光レンズ12、ターゲット板13、投影レンズ14、ビームスプリッタ15a及び15bを経て被検眼Eの角膜近傍に集光した後、眼底に到達する。正常眼の場合、眼底で反射したターゲット像はビームスプリッタ15aで反射し、対物レンズ17、ビームスプリッタ31を通過後、ミラー16でもう一度反射され、リレーレンズ18,19及びレンズ21を通過し、結像レンズ22によって受光素子23上で結像する。被検眼に屈折異常がある場合は、受光素子23で受光した眼底反射光の受信信号に基づき、モータ57を駆動して移動レンズ21とともにターゲット板13を被検眼Eの眼底と共役な位置にくるように移動させる。   The measurement light emitted from the measurement light source 11 is condensed in the vicinity of the cornea of the eye E through the condenser lens 12, the target plate 13, the projection lens 14, and the beam splitters 15a and 15b, and then reaches the fundus. In the case of normal eyes, the target image reflected by the fundus is reflected by the beam splitter 15a, passes through the objective lens 17 and the beam splitter 31, and then is reflected again by the mirror 16, passes through the relay lenses 18 and 19 and the lens 21, and is connected. An image is formed on the light receiving element 23 by the image lens 22. If the eye to be examined has a refractive error, the motor 57 is driven based on the received signal of the fundus reflected light received by the light receiving element 23 to bring the target plate 13 together with the moving lens 21 to a position conjugate with the fundus of the eye E to be examined. To move.

次に、モータ58の駆動により第1リレーレンズ32を移動して固視標34aと被検眼Eの眼底とを共役な位置においた後、被検眼の調節を除去すべく、さらに適当なディオプタ分だけ雲霧が掛かるように第1リレーレンズ32を移動させる。次に、被検眼Eに雲霧の掛かった状態で、測定用光源11、角膜反射除去マスク20、及び受光素子23を光軸回りに180度回転させる。回転中、受光素子23からの信号によりターゲット板13及び移動レンズ21が移動し、その移動量をポテンショメータ60が検出して各経線方向の屈折力を求める。制御部50は、この屈折力に所定の処理を施すことによって被検眼のS(球面屈折度数)、C(乱視度数)、A(乱視軸角度)の他覚屈折力値を得る。雲霧状態での他覚屈折力値S,C,Aはメモリ62に記憶される。   Next, after the first relay lens 32 is moved by driving the motor 58 to place the fixation target 34a and the fundus of the eye E in a conjugate position, an appropriate diopter component is further removed to remove the adjustment of the eye to be examined. The first relay lens 32 is moved so that only fog is applied. Next, the measurement light source 11, the corneal reflection removal mask 20, and the light receiving element 23 are rotated 180 degrees around the optical axis while the eye E is clouded. During the rotation, the target plate 13 and the moving lens 21 are moved by a signal from the light receiving element 23, and the potentiometer 60 detects the amount of movement to obtain the refractive power in each meridian direction. The control unit 50 obtains objective refractive power values of S (spherical refractive power), C (astigmatic power), and A (astigmatic axis angle) of the eye to be examined by performing predetermined processing on this refractive power. The objective refractive power values S, C, A in the cloud state are stored in the memory 62.

上記の遠用屈折力の測定段階では、固視標表示部34に表示する固視標34aのサイズは変えずに固定である。固視標34aからの光束は第2リレーレンズ33により平行光束となり、第1リレーレンズにより固視標像34a´が結像する。第1リレーレンズ32を光軸方向に移動させることにより固視標34a(固視標像34a´)の呈示距離を変化させるが、被検眼の前眼部付近が対物レンズ17の前側焦点位置にあるため、固視標34aの見かけの大きさ(視角)は変化しない。このため、遠用屈折力の測定では、被検眼の視度に拘わらず、固視標34aの見かけの大きさ(視角)をほぼ同じとして呈示できる。   In the above-mentioned distance refractive power measurement stage, the size of the fixation target 34a displayed on the fixation target display unit 34 is fixed without changing. The light flux from the fixation target 34a becomes a parallel light flux by the second relay lens 33, and a fixation target image 34a 'is formed by the first relay lens. The presentation distance of the fixation target 34 a (fixation target image 34 a ′) is changed by moving the first relay lens 32 in the optical axis direction, but the vicinity of the anterior eye portion of the eye to be examined is at the front focal position of the objective lens 17. Therefore, the apparent size (viewing angle) of the fixation target 34a does not change. For this reason, in the measurement of the refractive power for distance, the apparent size (viewing angle) of the fixation target 34a can be presented as substantially the same regardless of the diopter of the eye to be examined.

次に、近方視時の眼屈折力を測定する場合について説明する。上記の遠用屈折力測定後に、スイッチ8部により近用測定モード(固視標を近方視の呈示距離とするモード)を設定すると、遠用屈折力測定で得られたS値の位置(乱視がある場合は、S値にC値の半分を加えた等価球面値としても良い)を基準に近方方向に固視標34a(固視標像34a´)が移動される。例えば、遠用屈折力が−2.0Dであった場合、固視標34aを0D(ディオプター)の位置から、2.0D分だけ近方に移動した位置が基準位置となる。これにより、被検眼は遠用矯正された状態となる。次に、被検眼を近方視とさせるために、第一リレーレンズ32の移動により、視標の呈示位置を一定の速度で遠用位置から近用位置(例えば、被検眼から35cmの位置)へゆっくりと移動させていく。近用位置の距離は、予めスイッチ部8に配置された近用位置設定スイッチで設定しておく。   Next, the case where the eye refractive power during near vision is measured will be described. After the above distance power measurement, when the near distance measurement mode (mode in which the fixation target is a near vision presentation distance) is set by the switch 8, the position of the S value obtained by the distance power measurement ( When astigmatism is present, the fixation target 34a (fixation target image 34a ') is moved in the near direction with reference to an equivalent spherical value obtained by adding half of the C value to the S value. For example, when the distance refractive power is −2.0D, the position where the fixation target 34a is moved closer to the distance of 2.0D from the position of 0D (diopter) becomes the reference position. Thereby, the eye to be examined is in a state of being corrected for distance. Next, in order to make the eye to be inspected to be near vision, the first relay lens 32 is moved to change the presentation position of the target from the distance position to the near position (for example, a position 35 cm from the eye to be examined). Move slowly to. The distance of the near-use position is set in advance by a near-use position setting switch arranged in the switch unit 8.

この時、制御部50は、固視標の呈示距離に応じて、固視標表示部34に表示する固視標34aのサイズを連続的に大きくしていく。図5(a)〜(d)は、呈示距離に応じて固視標34aのサイズを変えた例を示し、図5(a)から順に、被検眼からの呈示距離を5m、1m、50cm、35cmとしたときの例である。呈示距離5mは遠用屈折力の基準位置から0.2D分だけ近方へ移動した位置であり、呈示距離1mは1.0D分、呈示距離50cmは2.0D分、呈示距離35cmは約2.8D分、それぞれ遠用屈折力の基準位置から近方へ移動した位置である。図5に示すように、固視標34aが被検眼に近づくにつれて、その固視標34a(図はサッカーボールの例である)のサイズが大きくなっている。なお、遠用屈折力を測定するときも固視標が見える必要があるので、このサッカーボールの例の場合、5m以上の遠方距離及び無限遠距離では呈示距離5mのときと同じサイズでほぼ一定とする。   At this time, the control unit 50 continuously increases the size of the fixation target 34 a displayed on the fixation target display unit 34 according to the presentation distance of the fixation target. 5A to 5D show examples in which the size of the fixation target 34a is changed according to the presentation distance, and the presentation distance from the eye to be examined is 5 m, 1 m, 50 cm, in order from FIG. This is an example when the distance is 35 cm. The presentation distance 5 m is a position moved 0.2 D from the reference position of the distance power, the presentation distance 1 m is 1.0 D, the presentation distance 50 cm is 2.0 D, and the presentation distance 35 cm is about 2 .8D, respectively, is a position moved from the reference position of the distance power to the near side. As shown in FIG. 5, as the fixation target 34a approaches the eye to be examined, the size of the fixation target 34a (the figure is an example of a soccer ball) increases. In addition, since it is necessary to be able to see the fixation target even when measuring the refractive power for distance, in the case of this soccer ball, at a distance of 5 m or more and at an infinite distance, it is almost the same size as when the presentation distance is 5 m. And

このように固視標34aが近方に近づくにつれて、その固視標34aのサイズを大きくすることにより、固視標34aの見かけのサイズ(視角)も大きくなるので、被検者は固視標34aが近方に近づいたことを感覚的に容易に認識できる。これにより、被検者は近用位置に来た固視標を固視しようとして調節力を働かせるようになる。このときの屈折力を上記と同じように測定用光源11、受光素子23等を回転させ、ポテンショメータ60からの出力を基に得ることで、近用時の屈折力を正確に測定できる。また、被検者も自分の眼の調節能力を自覚的に確認しやすくなる。そして、近用時の屈折力を基に調節力を求めたり、加入度を決定したりすることが可能である。調節力は遠用屈折力と近用屈折力の差により求められる。視標呈示距離35cmでの加入度は、35cm=約2.8Dであるので、この2.8Dと調節力との差により決定される。制御部50により調節力と加入度が演算されると、その結果がモニタ7に表示される。   Thus, as the fixation target 34a approaches, the apparent size (visual angle) of the fixation target 34a increases by increasing the size of the fixation target 34a. It can be easily recognized sensuously that 34a has approached near. As a result, the subject exercises adjustment power to fixate the fixation target that has come to the near position. The refractive power at this time can be accurately measured by rotating the measurement light source 11, the light receiving element 23, etc. in the same manner as described above, and obtaining the refractive power based on the output from the potentiometer 60. In addition, it becomes easier for the subject to confirm the ability to adjust his / her eyes. Then, it is possible to obtain the adjustment force based on the refractive power at the time of near use or to determine the addition power. The adjusting power is determined by the difference between the distance power and the near power. The addition at the target presentation distance of 35 cm is 35 cm = about 2.8 D, and is thus determined by the difference between the 2.8 D and the adjusting force. When the control force and the addition power are calculated by the control unit 50, the results are displayed on the monitor 7.

なお、以上のような測定において、遠近の移動量、移動の速度、遠近移動の繰り返しなどは、任意の設定が可能である。また、上記のように画像表示にて連続的に固視標のサイズを変えることにより、固視標の見かけのサイズ(視角)を変えるような構成の場合、固視標を遠方から近方へ(又は近方から遠方へ)移動し、この固視標の移動により誘起される屈折力変化を経時的に連続して測定する調節力測定においては、特に有利である。被検眼の近点を求める近点測定にも適用できる。   In the measurement as described above, the amount of movement in the near and far, the speed of movement, the repetition of the near and far movement, and the like can be arbitrarily set. Further, in the case of a configuration in which the apparent size (viewing angle) of the fixation target is changed by continuously changing the size of the fixation target in the image display as described above, the fixation target is moved from a distant place to a near place. This is particularly advantageous in the measurement of the adjustment force that moves (or from near to far) and continuously measures the change in refractive power induced by the movement of the fixation target over time. The present invention can also be applied to the near point measurement for obtaining the near point of the eye to be examined.

上記の呈示距離に応じた固視標の見かけのサイズ(視角)変化は、感覚的に近方に近づいてきたことを感じさせる変化であれば良いが、呈示距離に対する実際の視角の変化に合わせて表示倍率を変えてやれば、より自然に固視標が近づいたことを感じさせることができる。図6は、直径22cmのサッカーボールが5mから35cmまで近づいてきた時の、ボールの直径/視標呈示距離、及び被検眼が視認する実際の視角を計算した結果と、その計算結果をグラフに示したものである。被検眼の視角は、ボールの直径と固視標の呈示距離から求めることができる。これを基に、呈示距離に応じて固視標34aの大きさを実際の視角に合わせて変えていけば、被検眼に対象物が近づいてくる時の距離感をより認識しやすくなる。この時、ボール全体の画像が固視標表示部34に表示できない時は、図5(d)に示すように、実際の視角に対応したボールの拡大図(拡大されたボールの一部をとったもの)を表示すればよい。   The change in the apparent size (viewing angle) of the fixation target according to the presenting distance may be a change that makes you feel that you are approaching the sensory distance, but it matches the actual change in viewing angle with respect to the presenting distance. If the display magnification is changed, the fixation target can be felt more naturally. FIG. 6 is a graph showing the calculation result of the ball diameter / target presentation distance and the actual viewing angle viewed by the eye when the soccer ball with a diameter of 22 cm approaches from 5 m to 35 cm, and the calculation result. It is shown. The viewing angle of the eye to be examined can be obtained from the diameter of the ball and the fixation target presentation distance. Based on this, if the size of the fixation target 34a is changed in accordance with the actual viewing angle in accordance with the presentation distance, it becomes easier to recognize the sense of distance when the object approaches the eye to be examined. At this time, if the image of the entire ball cannot be displayed on the fixation target display unit 34, as shown in FIG. 5D, an enlarged view of the ball corresponding to the actual viewing angle (a part of the enlarged ball is taken). Display).

図7は、被検眼に注視させる固視標の図柄を風景視標とした例であり、一本道の道路と車の固視標34bを使って、視標呈示距離に応じて遠くから車が近づいてくるような構成としている。この場合、図7(a)の無限遠にある車は非常に小さく見えるが、図7(b)の被検眼から1mの位置、図7(c)の被検眼から35cmの位置へと近づくにつれて、車が大きくなってくるため、徐々に視角も大きくなり、固視標34bが近づいてくることが認識しやすくなる。また、車と道路を拡大していくような構成として、被検眼が車へ近づいていくような構成としてもよい。   FIG. 7 is an example in which a fixation target image to be watched on the eye to be examined is a landscape target. A single road and a vehicle fixation target 34b are used to drive a car from a distance according to the target presentation distance. The structure is approaching. In this case, the car at infinity in FIG. 7 (a) looks very small, but as it approaches the position 1 m from the eye in FIG. 7 (b) and the position 35 cm from the eye in FIG. 7 (c). As the vehicle becomes larger, the viewing angle gradually increases, and it becomes easier to recognize that the fixation target 34b is approaching. Moreover, it is good also as a structure which a to-be-tested eye approaches a vehicle as a structure which expands a car and a road.

近用位置での屈折力や見え方を確認する場合、遠方視と近方視の2種類の固視標に切換えることでも良い。例えば、固視標を遠方視の呈示距離としたときには、図7(a)に示すように遠方視をイメージさせる図柄の固視標とし、これに対して、固視標を近方視の距離としたときには図7(c)に示すように近方視をイメージさせる図柄の固視標に切換える。   When confirming the refractive power and the appearance at the near position, it may be switched to two types of fixation targets: far vision and near vision. For example, when the fixation target is set as the distance for far vision, as shown in FIG. 7 (a), the fixation target is designed to image far vision, and the fixation target is the distance for near vision. In this case, as shown in FIG. 7C, the display is switched to a fixation target having an image of near vision.

次に、遠用屈折力測定の測定値に基づいて遠用矯正された状態で、遠方視した場合と近方視した場合の見え方の比較を、被検者に体験させる機能について説明する。スイッチ部8に配置された近用スイッチを押すと、第1リレーレンズ32が移動し、遠用屈折力測定の測定値に基づいて遠用位置に置かれた固視標が、例えば35cm(遠用位置から約2.8D分近方へ移動させた距離)の近用距離とされる。遠用位置での固視標は、例えば、図7(a)に示す遠方視をイメージさせる図柄の固視標であり、近用位置での固視標は、図7(c)に示す近方視をイメージさせる図柄の固視標に切換えられる。そして、スイッチ部8に配置された比較用スイッチを押すたびに、固視標が遠用位置と近用位置と交互に切換えられると共に、固視標の図柄も図7(a)のものと図7(c)のものとに交互に切換えられる。これにより、被検者は遠方視した場合と近方視した場合の見え方の比較を確認でき、近方視では感覚的に固視標が近くにあることを認識しやすくなる。そして、近用位置の固視標がボケて見えるときは、調節力が不足しているので、加入度の必要性を被検者に訴え易くなる。   Next, a description will be given of a function that allows the subject to experience a comparison of the appearance when the distance is viewed and the distance when the distance is corrected based on the distance refractive power measurement value. When the near switch disposed in the switch unit 8 is pressed, the first relay lens 32 moves, and the fixation target placed at the far position based on the measured value of the distance refractive power is, for example, 35 cm (far) The near-use distance is a distance moved to the near position by about 2.8D from the use position. The fixation target at the distance position is, for example, a fixation target having an image of distant vision shown in FIG. 7 (a), and the fixation target at the near position is the near fixation target shown in FIG. 7 (c). It is switched to the fixation target of the image that makes you imagine the perspective. Each time the comparison switch arranged in the switch unit 8 is pressed, the fixation target is alternately switched between the distance position and the near position, and the design of the fixation target is also as shown in FIG. 7 (c) and are alternately switched. Thereby, the subject can confirm the comparison of the appearance when the distance is viewed and the distance is viewed, and in the near vision, it is easy to recognize that the fixation target is close sensuously. When the fixation target at the near position appears to be out of focus, the adjustment power is insufficient, so that it is easy to appeal to the subject about the necessity of the addition.

図8は、第2実施例を示す図である。図2と同じ符号は同じ機能の部材を示しているものとし、その説明を省略する。第2実施例の固視光学系30は、固視標表示部34のかわりに、固視標板74が円周上に複数個配置されたディスク71と、ディスク71を回転させる図示無き駆動部と、固視標板74を照明する照明光源73とを備える。ディスク71は、固視光学系30の光軸に固視標板74を切換え配置する。複数個の固視標板74には、図5や図7に示したような視標呈示距離に対応した図柄の視標がそれぞれ描かれている。この例では、ディスク71の回転制御により呈示距離に応じて固視標板74を切換え配置し、視標の大きさを段階的に変化させることにより、視標の見かけの大きさ(視角)を変化させる。遠用屈折力測定モードのときは、固視標板74の中の遠用固視標を光路に配置する。固視標を近方視の呈示距離とするモードでは、その近用の呈示距離に応じたサイズの固視標が描かれた固視標板74を切換え配置する。   FIG. 8 is a diagram showing a second embodiment. The same reference numerals as those in FIG. 2 indicate members having the same functions, and the description thereof is omitted. The fixation optical system 30 of the second embodiment includes a disk 71 in which a plurality of fixation target plates 74 are arranged on the circumference instead of the fixation target display unit 34, and a drive unit (not shown) that rotates the disk 71. And an illumination light source 73 that illuminates the fixation target plate 74. In the disk 71, a fixation target plate 74 is switched and arranged on the optical axis of the fixation optical system 30. On the plurality of fixation target plates 74, the visual targets of the symbols corresponding to the visual target presentation distances as shown in FIGS. 5 and 7 are respectively drawn. In this example, the fixation target plate 74 is switched and arranged according to the presentation distance by rotation control of the disk 71, and the apparent size (viewing angle) of the visual target is changed by changing the size of the visual target stepwise. Change. In the distance power measurement mode, the distance fixation target in the fixation target plate 74 is arranged in the optical path. In the mode in which the fixation target is a near vision presentation distance, a fixation target plate 74 on which a fixation target having a size corresponding to the near presentation distance is drawn is switched and arranged.

図9は、第3実施例を示す図である。図2と同じ符号は同じ機能の部材を示しているものとし、その説明を省略する。第3実施例では、固視光学系30にズームレンズを用いることにより、呈示する視標の見かけの大きさ(視角)を呈示距離に応じて変える。80は固視標であり、81は照明光源であり、82は第1リレーレンズ32の代わりに配置されたズームレンズ光学系である。ズームレンズ光学系82は、凸レンズ82a及び凹レンズ82bよりなり、凹レンズ82bを光軸方向に移動させることにより、固視標板80の視標像80´の投影倍率が可変となる。その視標像80´の結像位置は、凸レンズ82a及び凹レンズ82bを一体的に移動することにより変えることができる。遠用屈折力測定では投影倍率を一定のままとし、近用測定モードのときには、凹レンズ82bを移動することにより呈示距離に応じて投影倍率を変える。この場合、固視標の見かけのサイズ(視角)は第1実施例と同様に連続的に変えることができる。   FIG. 9 is a diagram showing a third embodiment. The same reference numerals as those in FIG. 2 indicate members having the same functions, and the description thereof is omitted. In the third embodiment, by using a zoom lens for the fixation optical system 30, the apparent size (viewing angle) of the target to be presented is changed according to the presentation distance. Reference numeral 80 denotes a fixation target, 81 denotes an illumination light source, and 82 denotes a zoom lens optical system arranged instead of the first relay lens 32. The zoom lens optical system 82 includes a convex lens 82a and a concave lens 82b. By moving the concave lens 82b in the optical axis direction, the projection magnification of the visual target image 80 ′ of the fixation target plate 80 is variable. The imaging position of the visual target image 80 ′ can be changed by moving the convex lens 82a and the concave lens 82b integrally. In the distance power measurement, the projection magnification is kept constant. In the near measurement mode, the projection magnification is changed according to the presentation distance by moving the concave lens 82b. In this case, the apparent size (viewing angle) of the fixation target can be continuously changed as in the first embodiment.

図10は、第4実施例の固視標呈示光学系を示す図である。固視標光学系の光軸上には、被検眼側から順に対物レンズ90、絞り91、レンズ92、固視標表示部93が配置されている。絞り91は対物レンズ90に関して被検眼の前眼部付近と共役であり、レンズ92の前側焦点位置に配置されている。この例では、対物レンズ90とレンズ92からなる光学系が、実施例1の対物レンズ17に相当する対物レンズ系を構成し、この対物レンズ系の前側焦点位置に被検眼前眼部付近が位置する。また、この例では固視標表示部93を光軸方向に移動させて呈示距離を可変とする。固視標表示部93は第1実施例の固視標表示部34と同じであり、画像表示により固視標のサイズを変える。絞り91は被検眼の瞳孔に入射する視標光束の大きさをより一定に保持しやすくするものであり、これは必ずしも無くても良い。この例においても、固視標を近方視の呈示距離とするモードのときに、固視標表示部93に表示する固視標のサイズを呈示距離に応じて変えることで対応する。   FIG. 10 is a diagram illustrating a fixation target presenting optical system according to the fourth embodiment. On the optical axis of the fixation target optical system, an objective lens 90, a diaphragm 91, a lens 92, and a fixation target display unit 93 are arranged in this order from the eye to be examined. The diaphragm 91 is conjugate with the vicinity of the anterior eye portion of the eye to be examined with respect to the objective lens 90, and is disposed at the front focal position of the lens 92. In this example, the optical system composed of the objective lens 90 and the lens 92 constitutes an objective lens system corresponding to the objective lens 17 of Example 1, and the vicinity of the anterior eye portion of the eye to be examined is located at the front focal position of the objective lens system. To do. In this example, the fixation target display unit 93 is moved in the optical axis direction to change the presentation distance. The fixation target display unit 93 is the same as the fixation target display unit 34 of the first embodiment, and changes the size of the fixation target by image display. The diaphragm 91 makes it easier to keep the size of the target luminous flux incident on the pupil of the eye to be examined more constant, and this is not necessarily required. In this example as well, in the mode in which the fixation target is a near vision presentation distance, the size of the fixation target displayed on the fixation target display unit 93 is changed according to the presentation distance.

なお、固視標を近方視の呈示距離とするモードにおいて、強度の乱視を持つ被検眼に固視標を呈示するような場合、被検者は固視標が2重に見えてしまう等により、近方に固視標が呈示されたかどうか自覚しづらい。この場合には、被検者は調節力を十分に働かせることができず、近方視時の屈折力や調節力を正確に測定することができなくなる。このため、上記の実施例においては、固視標呈示光学系に被検眼の乱視状態を矯正する乱視矯正光学系を設けることが好ましい。   In addition, when the fixation target is presented to the subject's eye with strong astigmatism in the mode in which the fixation target is the near vision presentation distance, the subject may see the fixation target double. Therefore, it is difficult to realize whether or not a fixation target is presented in the vicinity. In this case, the subject cannot fully exercise the adjustment force, and cannot accurately measure the refractive power and adjustment force during near vision. Therefore, in the above embodiment, it is preferable to provide an astigmatism correction optical system for correcting the astigmatism state of the eye to be examined in the fixation target presenting optical system.

図11は、第1実施例の固視標呈示光学系に被検眼の乱視状態を矯正する乱視矯正光学系及び駆動機構を設けたものである。なお、以下に示す乱視矯正光学系及び駆動機構は、第2〜第4実施例記載の固視標呈示光学系においても適用可能である。37は乱視矯正光学系であり、焦点距離が等しい2つの負の円柱レンズ37a,37bを持ち、両者は互いに独立して光軸を中心に同一方向又は反対方向に回転可能である。38は駆動機構であり、レンズ37aとレンズ37bをそれぞれ光軸を中心に回転させる。制御部50は、乱視矯正光学系37を被検眼の乱視状態が矯正されるように調整すべく、駆動機構38に駆動信号を出力する。なお、2枚の円柱レンズを使用する場合、球面成分が発生するので、その分固視標34aの位置を補正する。   FIG. 11 shows the fixation target presenting optical system of the first embodiment provided with an astigmatism correcting optical system and a driving mechanism for correcting the astigmatism state of the eye to be examined. The astigmatism correcting optical system and the driving mechanism described below can also be applied to the fixation target presenting optical systems described in the second to fourth embodiments. An astigmatism correcting optical system 37 has two negative cylindrical lenses 37a and 37b having the same focal length, and both can rotate independently of each other in the same direction or in the opposite direction around the optical axis. Reference numeral 38 denotes a driving mechanism that rotates the lens 37a and the lens 37b around the optical axis. The control unit 50 outputs a drive signal to the drive mechanism 38 in order to adjust the astigmatism correction optical system 37 so that the astigmatism state of the eye to be examined is corrected. When two cylindrical lenses are used, a spherical component is generated, so that the position of the fixation target 34a is corrected accordingly.

このような構成を備える装置において、乱視を持つ被検眼の近方視時の眼屈折力を測定する場合、上記遠用屈折力測定後に、スイッチ8部により近用測定モードを設定すると、遠用屈折力で得られたS値(弱主経線方向の屈折力)の位置を基準に近方方向に固視標34a(固視標像34a´)が移動される。また、遠用屈折力測定等で事前に得られたC(乱視度数:強主経線方向の屈折力−弱主経線方向の屈折力)とA(乱視軸角度)の乱視屈折力に基づいて、被検眼の乱視状態が矯正されるように乱視矯正光学系37が制御部50により駆動制御される。これにより、被検眼の乱視状態が矯正された状態となる。   In the apparatus having such a configuration, when measuring the eye refractive power at the near vision of the subject's eye having astigmatism, after the distance refractive power measurement, setting the near measurement mode with the switch 8 unit, The fixation target 34a (fixation target image 34a ') is moved in the near direction with reference to the position of the S value (refractive power in the weak principal meridian direction) obtained by the refractive power. Also, based on the astigmatic power of C (astigmatism power: refractive power in the strong main meridian direction−refractive power in the weak main meridian direction) and A (astigmatic axis angle) obtained in advance by measuring the refractive power for distance, etc. The astigmatism correction optical system 37 is driven and controlled by the control unit 50 so that the astigmatism state of the eye to be examined is corrected. Thereby, the astigmatism state of the eye to be examined is corrected.

乱視矯正光学系37を設けたことにより、強度の乱視を持つ被検眼であっても、近方に近づいてきた固視標が二重に見えてしまう等の問題が解消され、近方に近づくに従ってそのサイズが大きくなる固視標を十分に固視することができる。このため、被検者は固視標が近方に近づいてきたことを感覚的に容易に認識でき、近方位置の固視標を固視しようとして調節力を働かせるようになるので、正確な測定が可能となる。また、近用位置での視標の見え方を被検者に確認させる場合においても、固視標がぼけて見えたような場合、その原因が眼の乱視によるものではなく、眼の調節力不足によるものであることが正確に分かる。   By providing the astigmatism correcting optical system 37, even for an eye to be inspected with strong astigmatism, the problem that the fixation target approaching near is doubled is solved, and the near is approached. Accordingly, it is possible to sufficiently fix the fixation target whose size increases according to the above. For this reason, the subject can easily perceive that the fixation target is approaching in the vicinity, and the adjustment force is applied to try to fixate the fixation target in the near position. Measurement is possible. Also, when the subject confirms how the target looks at the near-use position, if the fixation target appears to be blurred, the cause is not due to astigmatism of the eye, but the eye's ability to adjust You can see exactly that this is due to a shortage.

眼屈折力測定装置の外観略図である。1 is a schematic external view of an eye refractive power measurement device. 第一実施例の装置の光学系の概略構成図である。It is a schematic block diagram of the optical system of the apparatus of a 1st Example. 固視標表示部に呈示される固視標の例を示す図である。It is a figure which shows the example of the fixation target shown by a fixation target display part. 装置の制御系の概略構成図である。It is a schematic block diagram of the control system of an apparatus. 呈示距離に応じて固視標のサイズを変えた例を示す図である。It is a figure which shows the example which changed the size of the fixation target according to the presentation distance. 直径22cmのサッカーボールが5mから35cmまで近づいてきた時の、ボールの直径/視標呈示距離、及び被検眼が視認する実際の視角を計算した結果と、その計算結果をグラフに示したものである。When a soccer ball with a diameter of 22 cm approaches from 5 m to 35 cm, the calculation result of the ball diameter / target presentation distance and the actual viewing angle visually recognized by the eye to be examined are shown in the graph. is there. 被検眼に注視させる固視標の図柄を風景視標とした例である。This is an example in which a design of a fixation target to be watched by an eye to be examined is a landscape target. 第2実施例を示す図である。It is a figure which shows 2nd Example. 第3実施例を示す図である。It is a figure which shows 3rd Example. 第4実施例の固視標呈示光学系を示す図である。It is a figure which shows the fixation target presentation optical system of 4th Example. 第1実施例の固視標呈示光学系に被検眼の乱視状態を矯正する乱視矯正光学系及び駆動機構を設けたものである。The fixation target presenting optical system of the first embodiment is provided with an astigmatism correcting optical system and a driving mechanism for correcting the astigmatism state of the eye to be examined.

符号の説明Explanation of symbols

8 スイッチ部
17 対物レンズ
30 固視標呈示光学系
32 第1リレーレンズ
33 第2リレーレンズ
34 固視標表示部
34a、34b 固視標
34a' 固視標像
37 乱視矯正光学系
38 駆動機構
50 制御部
71 ディスク
73 照明光源
74 固視標板
80 固視標板
80' 視標像
82 ズームレンズ光学系




DESCRIPTION OF SYMBOLS 8 Switch part 17 Objective lens 30 Fixation target presentation optical system 32 1st relay lens 33 2nd relay lens 34 Fixation target display part 34a, 34b Fixation target 34a 'Fixation target image 37 Astigmatism correction optical system 38 Drive mechanism 50 Control unit 71 Disc 73 Illumination light source 74 Fixation target plate 80 Fixation target plate 80 'Target image 82 Zoom lens optical system




Claims (3)

被検眼の屈折力を他覚的に測定する眼屈折力測定装置において、
被検眼の前眼部付近をその前側焦点位置とする対物レンズ系を介して被検眼に固視標を呈示する固視標光学系と、
被検眼に対する前記固視標の呈示距離を変える距離可変手段と、
該距離可変手段により前記固視標が遠方視の呈示距離から近方視の呈示距離に移動されるとき、固視標が近方に近づくにつれて固視標の見かけのサイズを大きくするサイズ可変手段と、
を備えることを特徴とする眼屈折力測定装置。
In an eye refractive power measurement device that objectively measures the refractive power of the eye to be examined,
A fixation target optical system for presenting a fixation target to the eye to be examined through an objective lens system having the anterior eye portion of the eye to be examined as its front focal position;
A variable distance means for changing the distance of the fixation target for the eye;
When the fixation target is moved from the distant vision presentation distance to the near vision presentation distance by the distance variable means, the size variable means for increasing the apparent size of the fixation target as the fixation target approaches the near distance. When,
An eye refractive power measuring device comprising:
請求項1の眼屈折力測定装置において、該距離可変手段により前記固視標が近方視の呈示距離に移動されたとき、被検眼の近用時の屈折力を他覚的に測定する近用屈折力測定手段を備えることを特徴とする眼屈折力測定装置。2. The eye refractive power measuring apparatus according to claim 1, wherein when the fixation target is moved to a near vision presentation distance by the distance varying means, a near power for objectively measuring the refractive power of the subject's eye for near use. An eye refractive power measuring device comprising: a refractive power measuring means for use. 請求項1〜の何れかの眼屈折力測定装置において、前記固視標光学系には被検眼の乱視状態を矯正する乱視矯正光学系が設けられ、前記固視標を近方視の呈示距離としたときに、事前に得られた被検眼の乱視屈折力データに基づいて前記乱視矯正光学系を駆動制御する制御手段を設けたことを特徴とする眼屈折力測定装置。 3. The eye refractive power measuring apparatus according to claim 1, wherein the fixation target optical system is provided with an astigmatism correction optical system for correcting an astigmatism state of an eye to be examined, and the fixation target is presented as near vision. An eye refractive power measuring apparatus, comprising a control means for driving and controlling the astigmatism correcting optical system based on astigmatism refractive power data of the eye to be examined obtained in advance when the distance is set.
JP2004278060A 2003-09-30 2004-09-24 Eye refractive power measuring device Expired - Fee Related JP4609697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278060A JP4609697B2 (en) 2003-09-30 2004-09-24 Eye refractive power measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003341145 2003-09-30
JP2004278060A JP4609697B2 (en) 2003-09-30 2004-09-24 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JP2005125086A JP2005125086A (en) 2005-05-19
JP4609697B2 true JP4609697B2 (en) 2011-01-12

Family

ID=34655663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278060A Expired - Fee Related JP4609697B2 (en) 2003-09-30 2004-09-24 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP4609697B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167545B2 (en) 2006-03-31 2013-03-21 国立大学法人静岡大学 Viewpoint detection device
DE102009004866B4 (en) * 2009-01-16 2010-11-04 Carl Zeiss Vision Gmbh Method and device for determining the individually required addition of a visual aid
CA3188783A1 (en) * 2013-11-07 2015-05-14 Ohio State Innovation Foundation Automated detection of eye alignment
JP6842264B2 (en) * 2016-09-15 2021-03-17 株式会社トプコン Ophthalmic examination equipment
JP7127333B2 (en) * 2018-03-30 2022-08-30 株式会社ニデック Optometry equipment
JP7199895B2 (en) * 2018-09-27 2023-01-06 株式会社トプコン ophthalmic equipment
JP7154259B2 (en) * 2020-08-11 2022-10-17 株式会社トプコン ophthalmic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217938A (en) * 1993-01-25 1994-08-09 Canon Inc Ocular refractometer
JPH06304139A (en) * 1993-04-21 1994-11-01 Canon Inc Eye examination device
JPH09271461A (en) * 1996-04-05 1997-10-21 Canon Inc Ophthalmometer
JPH10127581A (en) * 1996-10-25 1998-05-19 Nidek Co Ltd Alignment detector
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2003047636A (en) * 2001-05-28 2003-02-18 Nikon Corp Eye fatigue relieving apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217938A (en) * 1993-01-25 1994-08-09 Canon Inc Ocular refractometer
JPH06304139A (en) * 1993-04-21 1994-11-01 Canon Inc Eye examination device
JPH09271461A (en) * 1996-04-05 1997-10-21 Canon Inc Ophthalmometer
JPH10127581A (en) * 1996-10-25 1998-05-19 Nidek Co Ltd Alignment detector
JP2001095760A (en) * 1999-09-28 2001-04-10 Topcon Corp Optical characteristic measuring apparatus for eyes
JP2003047636A (en) * 2001-05-28 2003-02-18 Nikon Corp Eye fatigue relieving apparatus

Also Published As

Publication number Publication date
JP2005125086A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP3709335B2 (en) Ophthalmic equipment
JP4417035B2 (en) Observation device
JP4492847B2 (en) Eye refractive power measuring device
JP5987477B2 (en) Ophthalmic imaging equipment
US5309186A (en) Eye refractive power measuring apparatus having opacity discriminant function of crystalline lens
JP6951054B2 (en) Subjective optometry device
JP2009291409A (en) Apparatus for measuring refractive power of eye
JP4739795B2 (en) Eye refractive power measuring device
JP6587484B2 (en) Ophthalmic equipment
JP3649839B2 (en) Ophthalmic equipment
JP5435698B2 (en) Fundus camera
JP2011072593A (en) Eye refractive power measurement apparatus
JP4609697B2 (en) Eye refractive power measuring device
JP7283391B2 (en) eye refractive power measuring device
JP5199009B2 (en) Fundus camera
JP2000116603A (en) Retinal camera
JPH10307314A (en) Observation optical device
JP4628795B2 (en) Optometry equipment
JP6766342B2 (en) Awareness optometry device
JP5317049B2 (en) Fundus camera
JP5787060B2 (en) Fundus photographing device
JP2018171140A (en) Subjective optometric apparatus and subjective optometric program
JP2017086654A (en) Subjective optometry apparatus and subjective optometry program
JPH0575412B2 (en)
JP2000023914A (en) Optometric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4609697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees