JP4609046B2 - Laminated battery inspection method - Google Patents

Laminated battery inspection method Download PDF

Info

Publication number
JP4609046B2
JP4609046B2 JP2004337092A JP2004337092A JP4609046B2 JP 4609046 B2 JP4609046 B2 JP 4609046B2 JP 2004337092 A JP2004337092 A JP 2004337092A JP 2004337092 A JP2004337092 A JP 2004337092A JP 4609046 B2 JP4609046 B2 JP 4609046B2
Authority
JP
Japan
Prior art keywords
metal foil
battery
negative electrode
laminate film
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004337092A
Other languages
Japanese (ja)
Other versions
JP2006147393A (en
Inventor
和哉 安岡
義高 松政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004337092A priority Critical patent/JP4609046B2/en
Publication of JP2006147393A publication Critical patent/JP2006147393A/en
Application granted granted Critical
Publication of JP4609046B2 publication Critical patent/JP4609046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ポリマーリチウムイオン二次電池などの金属箔を中間の一層とするラミネートフィルムを外装ケースとして用いた電池において、外装ケースの密閉性を検査する方法に関するものである。   The present invention relates to a method for inspecting the hermeticity of an outer case in a battery using a laminated film having a metal foil as an intermediate layer, such as a polymer lithium ion secondary battery, as the outer case.

電池の外装ケースは、溶媒とこれに溶解させた電解質からなる電解液が液状のため金属缶などの強固な材料での密封が必要であったが、電解質を固体化したものやゲル化したものなどが提案され、外装ケースとして金属缶などの強固な材料でないものも用いられるようになった。その一つとして、金属箔を中間の一層とするラミネートフィルムを電池の外装ケースとして用い、金属缶を用いた電池に比べ軽量化・薄型化が図れるようになった。   The battery outer case needs to be sealed with a strong material such as a metal can because the electrolytic solution made of the solvent and the electrolyte dissolved in it is liquid, but the electrolyte is solidified or gelled Etc. have been proposed, and non-solid materials such as metal cans have been used as exterior cases. As one of them, a laminate film having a metal foil as an intermediate layer is used as an outer case of a battery, and the weight and thickness can be reduced compared to a battery using a metal can.

この金属箔を中間の一層とするラミネートフィルムを外装ケースとして用い、発電要素を密封する場合、発電要素より大きいラミネートフィルム2枚で発電要素を挟むように配置し、ラミネートフィルム同士が合わさる部分を加熱し、ラミネートフィルムの内層の熱溶着性樹脂同士を溶着させて封止するか、あるいは、袋状にしたラミネートフィルム中に発電要素を収納し、そのシール部を加熱してラミネートフィルムの内層の熱溶着性樹脂同士を溶着させて封止する方法が採用されている。   When using a laminate film with this metal foil as an intermediate layer as an exterior case and sealing the power generation element, arrange the power generation element so that it is sandwiched between two laminate films larger than the power generation element, and heat the part where the laminate films meet Then, heat-welding resins in the inner layer of the laminate film are welded together and sealed, or the power generation element is housed in a bag-like laminate film and the sealing portion is heated to heat the inner layer of the laminate film. A method of sealing by welding weldable resins together is employed.

しかしながら、発電要素から外部端子としてリード部を引き出す場合、ラミネートフィルムの封止した部分からリード部を引き出すこととなる。ラミネートフィルムの端面は、金属箔がむき出しの状態になっており、この金属箔とリード部とが接触したり、あるいは、封止時の加熱によりラミネートフィルムの内層の熱溶着性樹脂が溶融し過ぎて金属箔がむき出しの状態になり、金属箔とリード部とが接触し、金属箔が正極リードもしくは負極リード、または正負極リードの両方と短絡するという問題があった。   However, when the lead portion is pulled out as an external terminal from the power generation element, the lead portion is pulled out from the sealed portion of the laminate film. The metal foil is exposed on the end face of the laminate film. The metal foil and the lead part come into contact with each other, or the heat-welding resin in the inner layer of the laminate film melts too much due to heating during sealing. As a result, the metal foil is exposed, the metal foil and the lead portion come into contact with each other, and there is a problem that the metal foil is short-circuited with both the positive electrode lead, the negative electrode lead, or both the positive and negative electrode leads.

また、電池を使用する機器内において、ラミネートフィルムの中間の一層を構成する金属箔が機器回路の一部と接触し、正極もしくは負極へ電気的に接続される場合もある。   Moreover, in the apparatus using a battery, the metal foil which comprises the intermediate | middle layer of a laminate film may contact with a part of apparatus circuit, and may be electrically connected to a positive electrode or a negative electrode.

一方、ラミネートフィルムの中間の一層を構成する金属箔は、発電要素とラミネートフィルムの内層の熱溶着性樹脂で発電要素と電気的に絶縁されているが、ラミネートフィルムを所定の形状に成型したりすることによって、ラミネートフィルムの内層の熱溶着性樹脂層に微小な亀裂が生じた場合、金属箔が露出し、この部分と電池内部の電解質とが接触する場合がある。金属箔と電池内部の電解質が接触した状態で、かつ、金属箔と正負極リード間との絶縁が保たれない場合、金属箔は短絡したリード側の電位となり、電池の充放電に伴って部分電池が形成され、金属箔が溶解・析出を繰り返し、金属箔が疎な状態となる現象が起きる。この現象が進展すると、金属箔に穴があき、金属箔は電池外部からの水分の浸入を防止するバリヤー層としての役目を果たすことが出来なくなり、電池外部から水分が浸入することとなり電池の耐湿性が損なわれることとなる。   On the other hand, the metal foil constituting the middle layer of the laminate film is electrically insulated from the power generation element by the heat welding resin of the inner layer of the power generation element and the laminate film. By doing so, when a minute crack occurs in the heat-welding resin layer of the inner layer of the laminate film, the metal foil may be exposed, and this portion may come into contact with the electrolyte inside the battery. When the metal foil is in contact with the electrolyte inside the battery and insulation between the metal foil and the positive and negative electrode leads cannot be maintained, the metal foil becomes a potential on the shorted lead side, and part of the battery is charged and discharged. A phenomenon occurs in which a battery is formed, the metal foil is repeatedly dissolved and deposited, and the metal foil becomes sparse. As this phenomenon progresses, the metal foil has holes, and the metal foil can no longer serve as a barrier layer to prevent moisture from entering from the outside of the battery. The nature will be impaired.

したがって、ラミネートフィルムの中間の一層を構成する金属箔と発電要素の正極リードもしくは負極リードとの間で電気的絶縁状態とすることが不可欠である。このため、リード部に3層からなる樹脂層を封止材として用いたり(例えば、特許文献1参照)、ラミネートフィルム端部の金属箔が露出した部分を紫外線硬化性樹脂により絶縁被膜を形成することで絶縁性を保つ工夫が提案されている(例えば、特許文献2参照)。
特開2000−268789号公報 特開2004−87422号公報
Therefore, it is indispensable to establish an electrical insulation state between the metal foil constituting the middle layer of the laminate film and the positive electrode lead or the negative electrode lead of the power generation element. For this reason, a resin layer composed of three layers is used as a sealing material in the lead part (see, for example, Patent Document 1), or an insulating film is formed with an ultraviolet curable resin on the exposed portion of the metal foil at the end of the laminate film. Thus, a device for maintaining insulation is proposed (see, for example, Patent Document 2).
JP 2000-268789 A Japanese Patent Laid-Open No. 2004-87422

しかしながら、ラミネート電池のシール部を封止する工程において、リードが変形したり、内層の熱溶着性樹脂層が溶融しすぎてリードと金属箔とが短絡したり、内層の厚みが極端に薄くなり、正負極リードと金属箔との絶縁状態が保てない状態で電池を充放電し、かつ、ラミネートフィルム内層の熱溶着性樹脂に亀裂が入っていた場合、電池の充放電に連動して金属箔が溶解・析出することとなり、金属箔が部分的に疎面化し、電池外部からの水分の浸入を防ぐことができなくなり、水と電解質が反応してガスを発生させ、ラミネート電池が膨れると共に、電池として機能しなくなる。   However, in the process of sealing the sealing part of the laminated battery, the lead is deformed, the inner heat-welding resin layer is melted too much, the lead and the metal foil are short-circuited, or the inner layer is extremely thin. If the battery is charged / discharged in a state where the insulation between the positive and negative electrode leads and the metal foil cannot be maintained, and the heat-welding resin in the inner layer of the laminate film is cracked, the metal is linked with the charging / discharging of the battery. As the foil melts and precipitates, the metal foil becomes partially roughened, preventing the ingress of moisture from the outside of the battery, and the water and electrolyte react to generate gas, causing the laminate battery to swell. Will not function as a battery.

ラミネートフィルム内層の熱溶着性樹脂に亀裂が入っているかは、金属箔と正負極リードとの絶縁検査を行っても判別できない問題である。   Whether the heat-welding resin in the inner layer of the laminate film is cracked is a problem that cannot be determined even by conducting an insulation test between the metal foil and the positive and negative electrode leads.

そこで本発明は、金属箔とリード部の電気的絶縁が損なわれ、かつ、ラミネートフィルム内層の熱溶着性樹脂に亀裂が入った場合においても、金属層の溶解・析出の進展により電池の耐湿性が損なわれないようにするために、金属箔の耐湿性を低下させる亀裂が、ラミネートフィルム内層の熱溶着性樹脂層に入っているかどうかを電気的に判定する検査方法を提供することを目的とする。   Therefore, the present invention provides the moisture resistance of the battery due to the progress of dissolution / deposition of the metal layer even when the electrical insulation between the metal foil and the lead portion is impaired and the heat-welding resin of the inner layer of the laminate film is cracked. An object of the present invention is to provide an inspection method for electrically determining whether or not a crack that lowers moisture resistance of a metal foil is contained in a heat-welding resin layer of an inner layer of a laminate film. To do.

前記従来の課題を解決するために、本発明の検査方法は、正極板、電解質を保持するセパレータおよび負極板からなる極板群を金属箔を中間の一層とするラミネートフィルムからなる外装ケース内に収納すると共に、前記正極板及び負極板のそれぞれ一端が接続された正極リード及び負極リードが前記外装ケースのシール部より外部に引き出されている電池の検査方法において、前記ラミネートフィルム内層の熱溶着性樹脂層に亀裂が入り、前記金属箔と前記電解質が接触した状態で、かつ、前記金属箔と前記リード部の電気的絶縁が損なわれた場合に形成される部分電池の電圧を、前記リードと前記金属箔との間に電流を流して測定し、前記部分電池の電圧から前記金属箔の耐湿性を低下させる亀裂が前記ラミネートフィルム内層の熱溶着性樹脂層に入っているかどうかを検査することを特徴とし、電流値としては、100kΩ〜1MΩの定抵抗による放電、もしくは1μA〜10μAの電流による放電であることが好ましい。 In order to solve the above-mentioned conventional problems, the inspection method of the present invention includes a positive electrode plate, a separator holding an electrolyte, and an electrode plate group consisting of a negative electrode plate in an outer case made of a laminate film having a metal foil as an intermediate layer. In the method for inspecting a battery in which the positive electrode lead and the negative electrode lead connected to one end of each of the positive electrode plate and the negative electrode plate are pulled out from the seal portion of the outer case, the heat weldability of the inner layer of the laminate film is stored When the resin layer is cracked and the metal foil and the electrolyte are in contact with each other, and the electrical insulation between the metal foil and the lead portion is damaged, the voltage of the partial battery is the measured by applying a current between the metal foil, heat welding cracks the laminated film inner layer to lower the moisture resistance of the metal foil from the voltage of the partial cell It characterized by examining whether the entered resin layer, as the current value, it is preferable discharge by constant resistance of 100Keiomega~1emuomega, or a discharge by 1μA~10μA current.

本発明によると、金属箔の耐湿性を低下させる亀裂がラミネートフィルム内層の熱溶着性樹脂層に入っているかどうかを検査することができる。 According to this invention, it can be test | inspected whether the crack which reduces the moisture resistance of metal foil is contained in the heat welding resin layer of a laminate film inner layer .

以下、本発明の検査方法の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of an inspection method of the present invention will be described with reference to the drawings.

図1に、本発明の一実施例であるポリマーリチウムイオン二次電池の縦断面概略図を示す。   In FIG. 1, the longitudinal cross-sectional schematic of the polymer lithium ion secondary battery which is one Example of this invention is shown.

正極集電体1に正極活物質層3を塗布して形成した正極板5と、負極集電体2に負極活物質層4を塗布して形成した負極板6とが、セパレータ11を介して絶縁した状態で配置され、これらを挟むように正極集電板7と負極集電板8が積層されている極板群12が、熱溶着性樹脂層、金属箔層、表面樹脂層の3層構造のラミネートフィルムからなる外装ケース13中に収納されており、電解質はポリマー化された状態でセパレータ11に保持されている(図示せず)。   A positive electrode plate 5 formed by applying the positive electrode active material layer 3 to the positive electrode current collector 1 and a negative electrode plate 6 formed by applying the negative electrode active material layer 4 to the negative electrode current collector 2 are interposed via the separator 11. The electrode plate group 12 is arranged in an insulated state and the positive electrode current collector plate 7 and the negative electrode current collector plate 8 are laminated so as to sandwich them. The electrode plate group 12 is composed of three layers of a heat-welding resin layer, a metal foil layer, and a surface resin layer. It is housed in an outer case 13 made of a laminated film having a structure, and the electrolyte is held in the separator 11 in a polymerized state (not shown).

なお、正極集電板7には正極リード9が、負極集電板8には負極リード10の一端がそれぞれ溶接されており、正極リード9と負極リード10を相対する方向になるように配置させており、外装ケース13の正極リード9を引き出したシール部及び負極リード10を引き出したもう一方のシール部は熱溶着により封止されている。   A positive electrode lead 9 is welded to the positive electrode current collector plate 7, and one end of the negative electrode lead 10 is welded to the negative electrode current collector plate 8, and the positive electrode lead 9 and the negative electrode lead 10 are arranged to face each other. The seal portion from which the positive electrode lead 9 is pulled out of the outer case 13 and the other seal portion from which the negative electrode lead 10 is pulled out are sealed by thermal welding.

このようなラミネート電池の密閉性を検査する方法として、前記正極リードもしくは負極リードと前記金属箔との間に電流を流し、電圧の変化量から外装ケース内層の熱溶着性樹脂層の亀裂が入った部分の金属層と電解質との接触の有無を電気的に検査する。
金属箔とリード部との間に流す電流の向きはどちらでもよいが、金属箔の溶解・析出が発生する向きに電流を流すのが好ましい。また、ラミネートフィルム内層の熱溶着性樹脂層に微小な亀裂により形成された部分電池に電流を流して充放電するために、外部電源を用いて強制的に電流を流してもよい。もしくは、金属箔とリード部との間に固定抵抗を接続し、電池から電流を供給するようにしてもよい。
As a method for inspecting the hermeticity of such a laminated battery, a current is passed between the positive electrode lead or the negative electrode lead and the metal foil, and a crack in the heat-welding resin layer of the inner layer of the outer case occurs from the amount of voltage change. Inspect the presence or absence of contact between the metal layer and the electrolyte.
The direction of the current flowing between the metal foil and the lead portion may be either direction, but it is preferable to flow the current in the direction in which the metal foil is dissolved and precipitated. In addition, in order to charge and discharge a current through a partial battery formed by minute cracks in the heat-welding resin layer of the laminate film inner layer, an electric current may be forced to flow using an external power source. Alternatively, a fixed resistor may be connected between the metal foil and the lead portion to supply current from the battery.

電圧の測定は、電流を流し始めた直後、もしくは固定抵抗を接続した直後では、形成された部分電池によって定まった固有の電圧が発生しているので、一定時間後の電圧を測定するのが好ましい。金属箔が電池の発電要素と異なる材料の場合、僅かな電流であっても、急速に部分電池の電圧が低下する。また、熱溶着性樹脂の亀裂の面積が大きい場合、部分電池の容量が大きくなり、放電容量に対して電圧減衰が少なくなる。   The voltage is measured immediately after the current starts to flow or immediately after the fixed resistor is connected, because a specific voltage determined by the formed partial battery is generated. Therefore, it is preferable to measure the voltage after a certain time. . When the metal foil is made of a material different from the power generation element of the battery, the voltage of the partial battery rapidly decreases even with a small current. Moreover, when the area of the crack of the heat-welding resin is large, the capacity of the partial battery is increased, and the voltage attenuation is reduced with respect to the discharge capacity.

電池系によって異なるが、発明者が検討した結果、ラミネートフィルム内層の熱溶着性樹脂層に微小な亀裂により形成された部分電池の放電反応が継続するためには、1μA〜10μAの電流による放電、もしくは、100kΩ〜1MΩの定抵抗による放電を50ms〜2000ms放電した後でも、部分電池電圧が0.8V以上あることが必要であることがわかった。熱溶着性樹脂層の亀裂により形成された部分電池において、部分電池が放電しても部分電池に電圧が残存している場合、充放電反応が継続的に起こる場合にのみ、ラミネートフィルムの中間の一層を構成する金属箔が充放電反応により疎面化し、外部からの水分が浸入する経路が形成されることとなる。逆に、部分電池の放電により電圧が残存しない場合、充放電反応は継続しないため、ラミネートフィルムの中間の一層を構成する金属箔が疎面化することは無く、外部からの水分が浸入する経路が形成されることはなくなる。その時の部分電池電圧の境界が0.8Vであることがわかった。このようにラミネートフィルム内層の熱溶着性樹脂層に微小な亀裂の有無を判定するためには、100kΩ〜1MΩの定抵抗による放電、もしくは1μA〜10μAの電流による放電を行い、50ms〜2000msの時間が経過した後の電圧を測定し、0.8V未満を良品、0.8V以上を不良品とすることが好ましい。   Although it differs depending on the battery system, as a result of examination by the inventors, in order to continue the discharge reaction of the partial battery formed by minute cracks in the heat-weldable resin layer of the laminate film, the discharge with a current of 1 μA to 10 μA, Or it turned out that a partial battery voltage needs to be 0.8V or more even after discharging 50 ms to 2000 ms with a constant resistance of 100 kΩ to 1 MΩ. In the partial battery formed by the crack of the heat-welding resin layer, if the voltage remains in the partial battery even if the partial battery is discharged, only when the charge / discharge reaction continuously occurs, The metal foil constituting one layer becomes rough due to the charge / discharge reaction, and a path through which moisture from the outside enters is formed. Conversely, when no voltage remains due to the discharge of the partial battery, the charging / discharging reaction does not continue, so the metal foil constituting the middle layer of the laminate film does not become roughened, and the path through which moisture from the outside enters Will not be formed. It was found that the boundary of the partial battery voltage at that time was 0.8V. Thus, in order to determine the presence or absence of micro cracks in the heat-welding resin layer of the laminate film inner layer, discharge with a constant resistance of 100 kΩ to 1 MΩ or discharge with a current of 1 μA to 10 μA is performed for a time of 50 ms to 2000 ms. It is preferable to measure the voltage after elapse of time, and to determine that a voltage less than 0.8V is a non-defective product and that 0.8V or more is a defective product.

以下に、本発明の検査方法について詳細に説明する。ただし、本発明の検査方法はこれらの実施例のみに限定されるものではない。
(実施例1)
図1において、まず、アルミニウム箔製の正極集電体1に正極活物質層3を塗布して形成した正極板5と、銅箔製の負極集電体2に負極活物質層4を塗布して形成した負極板6の間に、ポリプロピレン樹脂製の微多孔膜からなるセパレータ11を配置する。これらを挟むようにアルミニウム製の正極集電板7と銅製の負極集電板8を積層し、極板群12を構成する。アルミニウム製の正極集電板7には正極リード9が、銅製負極集電板8には負極リード10が溶接されている。また、正極板5、負極板6の活物質層塗布面はセパレータ11に対向させている。正極リード9と負極リード10が相対する方向になるように配置させ、極板群12をテープ(図示せず)で固定する。
Hereinafter, the inspection method of the present invention will be described in detail. However, the inspection method of the present invention is not limited to these examples.
Example 1
In FIG. 1, first, a positive electrode plate 5 formed by applying a positive electrode active material layer 3 to a positive electrode current collector 1 made of aluminum foil, and a negative electrode active material layer 4 applied to a negative electrode current collector 2 made of copper foil. A separator 11 made of a microporous film made of polypropylene resin is disposed between the negative electrode plates 6 formed in this way. The positive electrode current collector plate 7 made of aluminum and the negative electrode current collector plate 8 made of copper are laminated so as to sandwich them, thereby constituting an electrode plate group 12. A positive electrode lead 9 is welded to the positive electrode current collector plate 7 made of aluminum, and a negative electrode lead 10 is welded to the negative electrode current collector plate 8 made of copper. The active material layer application surfaces of the positive electrode plate 5 and the negative electrode plate 6 are opposed to the separator 11. The positive electrode lead 9 and the negative electrode lead 10 are arranged so as to face each other, and the electrode plate group 12 is fixed with a tape (not shown).

さらに、内側からポリプロピレン(以下、PPと略す)樹脂層からなる熱溶着性樹脂層、アルミニウム箔からなる金属層、PP樹脂層からなる表面層の3層構造のラミネートフィルムで構成される外装ケース13中に、前記極板群12を収納する。   Furthermore, an exterior case 13 composed of a laminate film having a three-layer structure of a heat-welding resin layer composed of a polypropylene (hereinafter abbreviated as PP) resin layer, a metal layer composed of an aluminum foil, and a surface layer composed of a PP resin layer from the inside. The electrode plate group 12 is accommodated therein.

一方の正極リード9を引き出したラミネートフィルム13のシール部を正極リード9と共に熱溶着し、封止する。もう一方の負極リード10を引き出したラミネートフィルム13のシール部から、非水電解液を混合したポリマー前駆体を注入する。   The seal portion of the laminate film 13 from which one positive electrode lead 9 is pulled out is thermally welded together with the positive electrode lead 9 and sealed. A polymer precursor mixed with a non-aqueous electrolyte is injected from the seal portion of the laminate film 13 from which the other negative electrode lead 10 is drawn.

封止前処理として、定電流0.7mAで8時間充電し、減圧脱気(−100MPa、10秒間)する。その後、電池を60℃で15分間加熱してポリマー前駆体をポリマーにする処理を行った。ラミネートフィルムのシール部を負極リード10と共に熱溶着し、封止する。   As a pre-sealing treatment, charging is performed at a constant current of 0.7 mA for 8 hours, and vacuum deaeration (−100 MPa, 10 seconds) is performed. Thereafter, the battery was heated at 60 ° C. for 15 minutes to give a polymer precursor as a polymer. The sealing part of the laminate film is thermally welded together with the negative electrode lead 10 and sealed.

このようにして得られたポリマーリチウムイオン二次電池において、正極集電体1と同種の金属であるアルミニウム箔をラミネートフィルムの中間の一層を構成する金属箔として用いた場合は、アルミニウム箔と負極リード10との間を抵抗値1MΩの固定抵抗で接続し、接続後200ms経過した後の固定抵抗にかかる電圧を測定した。   In the polymer lithium ion secondary battery thus obtained, when an aluminum foil that is the same kind of metal as the positive electrode current collector 1 is used as a metal foil constituting the middle layer of the laminate film, the aluminum foil and the negative electrode The lead 10 was connected with a fixed resistance having a resistance value of 1 MΩ, and the voltage applied to the fixed resistance after 200 ms had elapsed after the connection was measured.

負極リード10に対するアルミニウム箔の電位は、無負荷状態で1.7Vの起電力を有するが、固定抵抗を接続することで、固定抵抗にかかる電圧は急速に減衰する。200ms後の固定抵抗にかかる電圧が0.8V以上あるものを不良として判別した。固定抵抗にかかる電圧が0.8V以上あった電池を分解し、ラミネートフィルムの内層のPP樹脂製の熱溶着性樹脂層を顕微鏡で観察したところ、微小な亀裂が観察された。   The potential of the aluminum foil with respect to the negative electrode lead 10 has an electromotive force of 1.7 V in an unloaded state, but the voltage applied to the fixed resistor is rapidly attenuated by connecting the fixed resistor. Those having a voltage applied to the fixed resistance after 200 ms of 0.8 V or more were determined as defective. When the battery having a voltage applied to the fixed resistance of 0.8 V or higher was disassembled and the PP resin heat-welding resin layer as the inner layer of the laminate film was observed with a microscope, minute cracks were observed.

また、固定抵抗接続後200ms経過した後の固定抵抗にかかる電圧が0.8V以上の不良の電池n=10(電圧の平均値1.3V)と0.8V未満の良品の電池n=10(電圧の平均値0.1V)について、ラミネートフィルムの中間の一層を構成するアルミニウム箔の穴あき加速試験として、負極リード10とラミネートフィルムの中間の一層を構成するアルミニウム箔間を短絡させ、60℃−90%RHの高温多湿槽中に放置した。2週間後高温多湿槽から電池を取り出し観察したところ、0.8V以上の電池はn=10とも1.0mm以上膨れていた。これは電池外部から水分が浸入し、非水電解液と反応し、ガスが発生したためと考えられる。0.8V未満の電池はn=10とも電池の膨れは観察されなかった。負極リード10とラミネートフィルムの中間の一層を構成するアルミニウム箔との間で絶縁が保たれなかったにもかかわらず、耐湿性が十分に確保できていることが確認できた。
(実施例2)
実施例1と同様にして得られたポリマーリチウムイオン二次電池において、100kΩの固定抵抗を接続して、50ms経過後、1MΩの固定抵抗を接続して、2000ms経過後、1μAの定電流にて2000ms経過後、10μAの定電流にて50ms経過後の電圧を測定した。
Further, a defective battery n = 10 (average voltage 1.3 V) with a voltage applied to the fixed resistance after 200 ms has passed after the fixed resistor connection is 0.8 V or more and a non-defective battery n = 10 (less than 0.8 V) ( For the average voltage of 0.1 V), as a holed acceleration test of the aluminum foil constituting the middle layer of the laminate film, the negative electrode lead 10 and the aluminum foil constituting the middle layer of the laminate film were short-circuited, and 60 ° C. It was left in a hot and humid tank of -90% RH. Two weeks later, the batteries were taken out from the high-temperature and high-humidity tank and observed. As a result, the batteries of 0.8 V or higher were swollen by 1.0 mm or more for both n = 10. This is presumably because moisture entered from the outside of the battery, reacted with the non-aqueous electrolyte, and gas was generated. Batteries with a voltage of less than 0.8 V were not observed even when n = 10. Although insulation was not maintained between the negative electrode lead 10 and the aluminum foil constituting the middle layer of the laminate film, it was confirmed that sufficient moisture resistance was ensured.
(Example 2)
In the polymer lithium ion secondary battery obtained in the same manner as in Example 1, a fixed resistance of 100 kΩ was connected, and after 50 ms, a fixed resistance of 1 MΩ was connected, and after 2000 ms, at a constant current of 1 μA. After 2000 ms, the voltage after 50 ms was measured at a constant current of 10 μA.

その結果、いずれの場合でも、電圧が0.8V以上あった電池を分解し、ラミネートフィルムの内層のPP樹脂製の熱用着生樹脂層を顕微鏡で観察したところ、微小な亀裂が観察された。
また、電圧が0.8V以上の不良電池n=10と0.8V未満の良品の電池n=10について、実施例1と同様のアルミニウム箔の穴あき加速試験を実施した結果、電圧が0.8V以上の電池はn=10とも1.0mm以上膨れていたが、0.8V未満の電池はn=10とも電池の膨れは観察されなかった。
以上のことから、ラミネートフィルムの中間の一層を構成するアルミニウム箔と負極リードとの間に100kΩ〜1MΩの定抵抗による放電、もしくは1μA〜10μAの電流による放電を行い、50ms〜2000msの時間が経過した後の電圧を測定し、0.8V未満を良品、0.8V以上を不良品とすることにより、ラミネートフィルム内層の亀裂の有無を判定できることが明らかになった。
As a result, in each case, the battery having a voltage of 0.8 V or higher was disassembled, and when the thermal resin layer made of PP resin as the inner layer of the laminate film was observed with a microscope, minute cracks were observed. .
In addition, as a result of performing the same aluminum foil perforation acceleration test as in Example 1 on defective batteries n = 10 having a voltage of 0.8 V or higher and non-defective batteries n = 10 having a voltage of less than 0.8 V, the voltage was reduced to 0.1. Batteries of 8V or higher were swollen by 1.0 mm or more for both n = 10, but no battery swollen was observed for batteries of less than 0.8V at n = 10.
From the above, a discharge with a constant resistance of 100 kΩ to 1 MΩ or a discharge with a current of 1 μA to 10 μA is performed between the aluminum foil constituting the middle layer of the laminate film and the negative electrode lead, and a time of 50 ms to 2000 ms has elapsed. It was clarified that the presence or absence of cracks in the inner layer of the laminate film can be determined by measuring the voltage after the treatment, and setting a value less than 0.8 V as a non-defective product and a value of 0.8 V or more as a defective product.

本発明の検査方法は、金属箔を中間の一層とするラミネートフィルムからなる外装ケースの密閉性を容易に検査でき、信頼性の高いラミネート電池を得ることができるので、携帯電子機器用などの小型機器の電源として有用である。   The inspection method of the present invention can easily inspect the sealing property of an outer case made of a laminate film having a metal foil as an intermediate layer, and can obtain a highly reliable laminate battery. Useful as a power source for equipment.

本発明の一実施例であるポリマーリチウムイオン二次電池の縦断面概略図1 is a schematic vertical sectional view of a polymer lithium ion secondary battery according to an embodiment of the present invention.

1 正極集電体
2 負極集電体
3 正極活物質層
4 負極活物質層
5 正極板
6 負極板
7 正極集電板
8 負極集電板
9 正極リード
10 負極リード
11 セパレータ
12 極板群
13 外装ケース
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Negative electrode collector 3 Positive electrode active material layer 4 Negative electrode active material layer 5 Positive electrode plate 6 Negative electrode plate 7 Positive electrode current collector plate 8 Negative electrode current collector plate 9 Positive electrode lead 10 Negative electrode lead 11 Separator 12 Electrode plate group 13 Exterior Case

Claims (2)

正極板、電解質を保持するセパレータおよび負極板からなる極板群を金属箔を中間の一層とするラミネートフィルムからなる外装ケース内に収納すると共に、前記正極板及び負極板のそれぞれ一端が接続された正極リード及び負極リードが前記外装ケースのシール部より外部に引き出されている電池の検査方法において、前記ラミネートフィルム内層の熱溶着性樹脂層に亀裂が入り、前記金属箔と前記電解質が接触した状態で、かつ、前記金属箔と前記リード部の電気的絶縁が損なわれた場合に形成される部分電池の電圧を、前記リードと前記金属箔との間に電流を流して測定し、前記部分電池の電圧から前記金属箔の耐湿性を低下させる亀裂が前記ラミネートフィルム内層の熱溶着性樹脂層に入っているかどうかを検査することを特徴とするラミネート電池の検査方法。 A positive electrode plate, an electrode plate group consisting of a separator for holding an electrolyte, and a negative electrode plate are housed in an outer case made of a laminate film having a metal foil as an intermediate layer, and one end of each of the positive electrode plate and the negative electrode plate is connected. In the battery inspection method in which the positive electrode lead and the negative electrode lead are drawn to the outside from the seal portion of the outer case, the heat-welding resin layer of the inner layer of the laminate film is cracked, and the metal foil and the electrolyte are in contact with each other. The voltage of the partial battery formed in a state and when the electrical insulation between the metal foil and the lead part is impaired is measured by passing a current between the lead and the metal foil, and the part and wherein the crack to reduce the moisture resistance of the metal foil from the voltage of the battery is examined whether the entered heat-welding resin layer of the laminated film inner layer Inspection method of the laminate battery that. 前記電流値が100kΩ〜1MΩの定抵抗による放電、もしくは1μA〜10μAの電流による放電であることを特徴とする請求項1記載のラミネート電池の検査方法。 2. The method for inspecting a laminated battery according to claim 1, wherein the current value is a discharge with a constant resistance of 100 kΩ to 1 MΩ or a discharge with a current of 1 μA to 10 μA.
JP2004337092A 2004-11-22 2004-11-22 Laminated battery inspection method Expired - Fee Related JP4609046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004337092A JP4609046B2 (en) 2004-11-22 2004-11-22 Laminated battery inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004337092A JP4609046B2 (en) 2004-11-22 2004-11-22 Laminated battery inspection method

Publications (2)

Publication Number Publication Date
JP2006147393A JP2006147393A (en) 2006-06-08
JP4609046B2 true JP4609046B2 (en) 2011-01-12

Family

ID=36626827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004337092A Expired - Fee Related JP4609046B2 (en) 2004-11-22 2004-11-22 Laminated battery inspection method

Country Status (1)

Country Link
JP (1) JP4609046B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089090B1 (en) 2006-12-30 2011-12-06 주식회사 엘지화학 Fixation Device for Insulation Resistance Measurement of Battery
JP5375179B2 (en) * 2008-09-30 2013-12-25 大日本印刷株式会社 Insulation degradation site identification method
JP5915182B2 (en) * 2012-01-06 2016-05-11 日産自動車株式会社 Aerial ultrasonic flaw detector
JP6154867B2 (en) * 2015-09-24 2017-06-28 日産自動車株式会社 Inspection method and inspection system
KR102238196B1 (en) 2019-04-15 2021-04-08 (주)플렉스파워 Short circuit detection device of battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367473A (en) * 1989-08-04 1991-03-22 Matsushita Electric Ind Co Ltd Inspection method for sealed lead-acid battery
JP2002324572A (en) * 2001-04-26 2002-11-08 Yuasa Corp Method and device for inspecting insulation of a sealed battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367473A (en) * 1989-08-04 1991-03-22 Matsushita Electric Ind Co Ltd Inspection method for sealed lead-acid battery
JP2002324572A (en) * 2001-04-26 2002-11-08 Yuasa Corp Method and device for inspecting insulation of a sealed battery

Also Published As

Publication number Publication date
JP2006147393A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP5699337B2 (en) Insulation defect inspection apparatus, insulation defect inspection method using the same, and electrochemical cell manufacturing method
US11374264B2 (en) Detection system
CN110168390B (en) Apparatus and method for inspecting secondary battery defects
CN104662697A (en) Secondary battery of pouch type having sealing margin for improving durability
WO1997040539A1 (en) Non-aqueous electrolyte cell
WO2008010349A1 (en) Electric storage device
US9761915B2 (en) Manufacturig method for battery
JP4887581B2 (en) Battery inspection method and inspection apparatus
JP2004273139A (en) Lithium secondary battery
CN110672704A (en) Identification method for rapidly judging damage of soft package lithium ion battery aluminum plastic film
JP2014017175A (en) Lead conductor, and electric power storage device
JP4609046B2 (en) Laminated battery inspection method
KR101089090B1 (en) Fixation Device for Insulation Resistance Measurement of Battery
KR20120047643A (en) Secondary battery having temperature measuring pad and protection apparatus for the same
JPH09293490A (en) Sealed battery and manufacture thereof
KR100516774B1 (en) Pouch type Lithium secondary battery
JP7437609B2 (en) Laminated power storage device and its short circuit inspection method
KR20120048407A (en) Waterproof layer coated secondary battery and its coating method
KR101347117B1 (en) Method for Checking Insulation Resistance Defects of Battery
JP2021163703A (en) Short-circuit inspection method for laminate type power storage device
JP2021190245A (en) Short circuit inspection method for laminate type power storage devices
JP5375179B2 (en) Insulation degradation site identification method
KR100551886B1 (en) Pouch type Lithium secondary battery
JPH0367473A (en) Inspection method for sealed lead-acid battery
JP2014229505A (en) Sealing material for thin battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4609046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141022

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees