JP4608318B2 - Rhenium-containing supported catalyst and method for hydrogenating carbonyl compounds in liquid phase using the catalyst - Google Patents

Rhenium-containing supported catalyst and method for hydrogenating carbonyl compounds in liquid phase using the catalyst Download PDF

Info

Publication number
JP4608318B2
JP4608318B2 JP2004550946A JP2004550946A JP4608318B2 JP 4608318 B2 JP4608318 B2 JP 4608318B2 JP 2004550946 A JP2004550946 A JP 2004550946A JP 2004550946 A JP2004550946 A JP 2004550946A JP 4608318 B2 JP4608318 B2 JP 4608318B2
Authority
JP
Japan
Prior art keywords
catalyst
rhenium
metal
supported catalyst
carbonyl compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004550946A
Other languages
Japanese (ja)
Other versions
JP2006505400A (en
Inventor
シューベルト マルクス
ヘッセ ミヒャエル
フィッシャー ロルフ−ハルトムート
コンスタンティンスク テーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2006505400A publication Critical patent/JP2006505400A/en
Application granted granted Critical
Publication of JP4608318B2 publication Critical patent/JP4608318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D315/00Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D303/00 - C07D313/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/506Method of making inorganic composition utilizing organic compound, except formic, acetic, or oxalic acid or salt thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/506Method of making inorganic composition utilizing organic compound, except formic, acetic, or oxalic acid or salt thereof
    • Y10S502/512Carboxylic acid or salt thereof other than formic, acetic, or oxalic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

A supported rhenium containing catalyst (I) contains a further metal from Group 8 or 1b, preferably ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os,) iridium (Ir), platinum (Pt), copper (Cu), silver (Ag) or cobalt (Co) in the form of at least one bimetallic precursor compound applied to the support. An Independent claim is also included for a process for the production of mixtures of tetrahydrofuran and gamma-butyrolactone by catalytic hydrogenation of carbonyl compounds using the catalyst (I).

Description

本発明は、レニウムと一緒にバイメタル化合物の形で担体上に施与される少なくとも1つの別の活性金属を含有するレニウム含有担持触媒上で液相中でカルボニル基を有する化合物を水素化する方法に関する。   The present invention relates to a process for hydrogenating a compound having a carbonyl group in a liquid phase over a rhenium-containing supported catalyst containing at least one other active metal applied together with rhenium in the form of a bimetallic compound. About.

レニウム含有触媒上での水素を用いるカルボニル基を有する化合物、例えばアルデヒド類、ケトン類、カルボン酸類、無水カルボン酸類の工業的水素化は久しい以前から公知である。   Industrial hydrogenation of compounds having carbonyl groups using hydrogen over rhenium-containing catalysts such as aldehydes, ketones, carboxylic acids, carboxylic anhydrides has been known for a long time.

例えば、DE-A 100 09 817には、担持材料として非酸化的に前処理された活性炭が使用されるレニウム含有担持触媒が記載されている。前記触媒はそのうえ、触媒活性を増大させるために、別の遷移金属、特に白金族金属を含有する。レニウム及び別の遷移金属はその際にそれらのそれぞれの塩の別個又は一緒の溶液の形で担体上に施与される。記載された水素化は主生成物としてアルコール類をもたらす。   For example, DE-A 100 09 817 describes a rhenium-containing supported catalyst in which non-oxidatively pretreated activated carbon is used as the support material. The catalyst additionally contains another transition metal, in particular a platinum group metal, in order to increase the catalytic activity. Rhenium and another transition metal are then applied on the support in the form of separate or together solutions of their respective salts. The hydrogenation described leads to alcohols as the main product.

DE-A 2 519 817からは、元素の周期表のVII及びVIII族の元素を同時に含有する触媒が公知である。付加的に白金又はパラジウムを含有するレニウム含有担持触媒が好ましい。これらの触媒は、触媒製造の過程で実施例によれば好ましくは同時に担体上に施与される特にレニウム及びパラジウムを含有する。DE-A 2 519 817の開示によればパラジウム化合物をまず最初に担体上に施与することも可能である。アルコール類へのカルボニル基を有する化合物の水素化における担持されたパラジウム−レニウム−触媒の活性は、高い圧力及び215〜230℃の高い温度の同時の適用が必要であるほど僅かである。高い圧力及び高い温度での水素化の実施は、高いエネルギーコスト及び材料コストにより制約されてあまり経済的でない。そのうえ特にカルボン酸溶液の腐食性はこれらの条件下で増大する。   DE-A 2 519 817 discloses a catalyst which contains simultaneously elements VII and VIII of the periodic table of elements. A rhenium-containing supported catalyst additionally containing platinum or palladium is preferred. These catalysts contain in particular rhenium and palladium, which are preferably applied simultaneously on the support according to the examples in the course of the catalyst production. According to the disclosure of DE-A 2 519 817, it is also possible to first apply the palladium compound onto the support. The activity of the supported palladium-rhenium-catalyst in the hydrogenation of compounds with carbonyl groups to alcohols is so small that the simultaneous application of high pressure and high temperature of 215 to 230 ° C is required. The implementation of hydrogenation at high pressures and temperatures is not very economical, constrained by high energy costs and material costs. Moreover, the corrosivity of the carboxylic acid solution is particularly increased under these conditions.

EP-A 1 112 776からは、レニウム成分が担持材料上に極めて均一に分配されている触媒の使用下でのC−ジカルボン酸類、それらの無水物類又はエステル類の水素化法が公知である。しかしながら付加的に存在しているパラジウム成分は明らかなシェルプロフィール(Schalenprofil)を示すので、おそらく2種以上の金属からなる相が形成されることにある相乗効果が、制限されて利用されるに過ぎない。記載された触媒を用いて良好な選択率を有するγ−ブチロラクトンが形成される。しかしながら生成物混合物はTHFの痕跡のみを含有する。 EP-A 1 112 776 discloses a process for hydrogenating C 4 -dicarboxylic acids, their anhydrides or esters using a catalyst in which the rhenium component is distributed very uniformly on the support material. is there. However, since the additionally present palladium component exhibits a clear shell profile (Schalenprofil), the synergistic effect of possibly forming a phase composed of two or more metals is only used to a limited extent. Absent. Using the described catalyst, γ-butyrolactone with good selectivity is formed. However, the product mixture contains only traces of THF.

本発明の課題は、カルボニル化合物を水素化するための触媒並びにこの触媒の使用下で、特に、置換されていてよいγ−ブチロラクトン(以下“GBL”)及びテトラヒドロフラン(以下に“THF”)のほぼ同じ割合を有する混合物が製造可能であり、かつ良好な全選択率と共に良好な転化率でこれらの混合物を製造することが可能である、カルボニル化合物、特にジカルボン酸類、例えばマレイン酸及び/又はコハク酸又はそれらの無水物類又はエステル類を水素化する方法を提供することである。   The object of the present invention is to provide a catalyst for hydrogenating a carbonyl compound and, in the use of this catalyst, in particular, almost all of optionally substituted γ-butyrolactone (hereinafter “GBL”) and tetrahydrofuran (hereinafter “THF”). Carbonyl compounds, in particular dicarboxylic acids, such as maleic acid and / or succinic acid, which are capable of producing mixtures having the same proportions and which can be produced with good conversion with good overall selectivity Or providing a method of hydrogenating their anhydrides or esters.

前記課題は、カルボニル化合物、例えばジカルボン酸類及び/又はそれらの誘導体、特にマレイン酸及び/又はコハク酸、それらの無水物類及び/又はエステル類を、特に置換されていてよいγ−ブチロラクトン及びテトラヒドロフランの混合物へ水素化するためのレニウム含有担持触媒により解決され、前記触媒は、レニウム及び元素の周期表のVIII又はIb族の少なくとも1つの別の金属、特にルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、銅(Cu)、銀(Ag)又はコバルト(Co)が少なくとも1つのバイメタル前駆物質化合物の形で担体上に施与されていることにより特徴付けられる。   The problem is that of carbonyl compounds such as dicarboxylic acids and / or their derivatives, in particular maleic acid and / or succinic acid, their anhydrides and / or esters, in particular of γ-butyrolactone and tetrahydrofuran which may be substituted. Solved by a rhenium-containing supported catalyst for hydrogenation to a mixture, said catalyst comprising at least one other metal of group VIII or Ib of the periodic table of rhenium and elements, in particular ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), platinum (Pt), copper (Cu), silver (Ag) or cobalt (Co) is applied onto the support in the form of at least one bimetallic precursor compound. It is characterized by

バイメタル前駆物質化合物とは、その際にレニウム原子もしくはレニウムカチオン並びに元素の周期表のVIII又はIb族の金属の原子もしくはカチオンを有する化合物であると理解される。   A bimetallic precursor compound is understood here to be a compound having a rhenium atom or rhenium cation and an atom or cation of a group VIII or Ib metal of the periodic table of elements.

好ましくはバイメタル前駆物質化合物として過レニウム酸塩−複塩、特に好ましくは、一般式I
[Me(NH(OH)](ReO・eHO (I)
で示されるもの又はそれらの混合物が使用され、その際にMeは元素の周期表のVIII及びIb族の金属、特にRu(ルテニウム)、Rh(ロジウム)、Pd(パラジウム)、Os(オスミウム)、Ir(イリジウム)、Pt(白金)、Cu(銅)、Ni(ニッケル)、Ag(銀)又はCo(コバルト)を表し、aは1又は2であり、bは1〜8の整数であり、cは0〜5の整数であり、dは2、3又は4であり、かつeは0〜12の整数である。
Preferably the perrhenate-double salt as bimetal precursor compound, particularly preferably the general formula I
[Me a (NH 3 ) b (OH) c ] (ReO 4 ) d · eH 2 O (I)
Or a mixture thereof, wherein Me is a metal of group VIII and Ib of the periodic table of elements, particularly Ru (ruthenium), Rh (rhodium), Pd (palladium), Os (osmium), Ir (iridium), Pt (platinum), Cu (copper), Ni (nickel), Ag (silver) or Co (cobalt) is represented, a is 1 or 2, b is an integer of 1-8, c is an integer of 0 to 5, d is 2, 3 or 4, and e is an integer of 0 to 12.

複塩は2つの塩の混晶である。イオン結晶のアニオン及びカチオンは、結晶構造型を変えずに、他のカチオン及びアニオンにより置換されることができる。互いに代表するイオン対が純粋にランダムではなく、特定の分配方式に従ってイオン格子中に配置されている場合には、複塩が生じる。そのような複塩の製造は本来公知であり、例えばPechenyuk, S.I., Kuznetsov, V.Y., Popova, R.A., Zalkind, O.A.によりZh. Neorg. Khim. 24 (1979) 3306に記載されている。   A double salt is a mixed crystal of two salts. The anions and cations of the ionic crystal can be replaced by other cations and anions without changing the crystal structure type. If the ion pairs that are representative of each other are not purely random and are arranged in the ion lattice according to a particular distribution scheme, double salts are formed. The production of such double salts is known per se and is described, for example, by Pechenyuk, S.I., Kuznetsov, V.Y., Popova, R.A., Zalkind, O.A. in Zh. Neorg. Khim. 24 (1979) 3306.

本発明によれば、触媒活性な成分を担体上に施与するためのこれらの複塩の使用により、全ての触媒活性な金属の均一な分配が達成されることが分かった。   In accordance with the present invention, it has been found that the use of these double salts to apply the catalytically active component onto the support achieves a uniform distribution of all catalytically active metals.

特に好ましくはバイメタル前駆物質化合物としてPd(NH(ReO及び/又はPt(NH(ReOが使用される。 Particularly preferably, Pd (NH 3 ) 4 (ReO 4 ) 2 and / or Pt (NH 3 ) 4 (ReO 4 ) 2 is used as the bimetallic precursor compound.

担持材料として水素化触媒を製造するために公知の全ての担持材料が考慮の対象になる。酸化ケイ素、酸化アルミニウム、二酸化チタン、二酸化ジルコニウム、酸化マグネシウム、場合により前処理された活性炭、黒鉛状炭素担体、窒化物、ケイ化物、炭化物又はホウ化物が好ましい。述べた前処理は酸化的前処理であってよく、これは例えばEP-A 848 991に記載されているようなものである。好ましくは場合により前処理された活性炭からなる担体が使用される。   All known support materials are considered for the production of hydrogenation catalysts as support materials. Preferred are silicon oxide, aluminum oxide, titanium dioxide, zirconium dioxide, magnesium oxide, optionally pretreated activated carbon, graphitic carbon support, nitride, silicide, carbide or boride. The pretreatment mentioned may be an oxidative pretreatment, as described for example in EP-A 848 991. Preferably, a support consisting of optionally pretreated activated carbon is used.

レニウム(Re、金属として計算)及び周期表のVIII又はIb族の別の金属は、担体及び活性材料からなる全触媒に対して、その都度0.03〜30質量%、好ましくは1〜12質量%、特に好ましくは2〜5質量%の量で施与される。   Rhenium (Re, calculated as metal) and the other metals of group VIII or Ib of the periodic table are each 0.03 to 30% by weight, preferably 1 to 12% by weight, based on the total catalyst consisting of support and active material. %, Particularly preferably 2 to 5% by weight.

触媒上にさらに別の元素が存在していてよい。例示的にZn(亜鉛)、Sn(スズ)、Au(金)、Fe(鉄)、Mn(マンガン)、Cr(クロム)、Mo(モリブデン)、W(タングステン)及びV(バナジウム)を挙げることができる。同じようにさらに元素の周期表のVII、VIII又はIb族の元素、例えばレニウム(Re)、白金(Pt)、ルテニウム(Ru)、銀(Ag)及びパラジウム(Pd)が付加的に存在していてよい。これらの元素は触媒を本質的に活性及び選択率(水素化分解生成物)に関して修正するが、しかし本質的ではない。レニウムに対するそれらの質量比は0〜100、好ましくは0.5〜30、特に好ましくは0.1〜5であってよい。好ましくは本発明による触媒は特にクロム不含である。   Additional elements may be present on the catalyst. Illustrative examples include Zn (zinc), Sn (tin), Au (gold), Fe (iron), Mn (manganese), Cr (chromium), Mo (molybdenum), W (tungsten) and V (vanadium). Can do. Similarly, elements VII, VIII or Ib of the periodic table of elements such as rhenium (Re), platinum (Pt), ruthenium (Ru), silver (Ag) and palladium (Pd) are additionally present. It's okay. These elements essentially modify the catalyst in terms of activity and selectivity (hydrocracking products), but not essential. Their mass ratio to rhenium may be from 0 to 100, preferably from 0.5 to 30, particularly preferably from 0.1 to 5. Preferably the catalyst according to the invention is especially chromium-free.

活性成分であるレニウム及びさらに元素の周期表のVIII又はIb族の金属の施与は、1つ又はそれ以上の工程における水性、アルコール性又は他の有機溶剤を用いて製造されたそれぞれの溶解されたバイメタル前駆物質化合物、特に好ましくは一般式Iの複塩の溶液への含浸、1つ又はそれ以上の工程における担体上への水性又はアルコール性の溶液中に溶解されたバイメタル前駆物質化合物、特に好ましくは一般式Iの複塩の平衡吸着により実施されることができる。これらの方法の場合に活性成分は同時にかつ均一に担持材料上に施与される。個々の含浸工程及び平衡吸着工程の間に、溶剤を除去するための乾燥工程がその都度存在する。好ましくは活性成分の施与は一工程における塩水溶液への含浸により行われる。   The application of rhenium as an active ingredient and further a Group VIII or Ib metal of the Periodic Table of Elements is dissolved in each of the aqueous, alcoholic or other organic solvents produced in one or more steps. Impregnation of a bimetallic precursor compound, particularly preferably a double salt of the general formula I, into a solution in an aqueous or alcoholic solution on a support in one or more steps, in particular Preferably it can be carried out by equilibrium adsorption of double salts of the general formula I. In these processes, the active ingredients are applied simultaneously and uniformly on the support material. There is in each case a drying step to remove the solvent between the individual impregnation steps and the equilibrium adsorption step. Preferably, the active ingredient is applied by impregnation in an aqueous salt solution in one step.

含浸工程又は平衡吸着工程後に溶剤を除去するために、含浸された触媒の乾燥が行われる。乾燥温度はその際に30〜350℃、好ましくは40〜280℃、特に好ましくは50〜150℃である。   In order to remove the solvent after the impregnation step or the equilibrium adsorption step, the impregnated catalyst is dried. In this case, the drying temperature is 30 to 350 ° C., preferably 40 to 280 ° C., particularly preferably 50 to 150 ° C.

活性成分は、本発明による触媒の担体上に特に均一に分配されており、特に、全触媒粒子に関して元素の周期表のVIII又はIb族の金属(Me)に対するレニウムの強度比は、統計的平均値に対して、99.9%を上回る分析点で10の因子未満の偏差、好ましくは触媒表面上の分析点の98%で5の因子未満の偏差及び特に好ましくは分析点の80%で2の因子未満の偏差を有する。   The active component is distributed particularly uniformly on the support of the catalyst according to the invention, in particular the intensity ratio of rhenium to group VIII or group Ib metal (Me) of the periodic table of elements for all catalyst particles is statistically averaged. With respect to the value, a deviation of less than 10 factors at an analysis point above 99.9%, preferably a deviation of less than 5 factors at 98% of the analysis points on the catalyst surface and particularly preferably 2 at 80% of the analysis points. With a deviation of less than one factor.

この因子を、SEM−EDX(走査電子顕微鏡−エネルギー分散型X線分光法)を用いて測定した。前記方法は本来公知であり、かつ例えばUlmanns Encylopedia of Industrial Chemistry 第6版 2000 Electronic Releaseに記載されている。   This factor was measured using SEM-EDX (scanning electron microscope-energy dispersive X-ray spectroscopy). Said method is known per se and is described, for example, in Ulmanns Encylopedia of Industrial Chemistry 6th edition 2000 Electronic Release.

触媒は通常それらの使用前に活性化される。この活性化は、還元する作用のあるガス雰囲気を触媒に適用することにより行われることができる。好ましくは水素を用いる活性化が使用される。活性化温度はその際に通常100〜500℃、好ましくは130〜400℃、特に好ましくは150〜400℃である。代替的な還元法は、液体の還元剤、例えばヒドラジン、ホルムアルデヒド又はギ酸ナトリウムと接触させることによる金属成分の還元である。その際に液体の還元剤は通常10〜100℃の温度で接触される。20〜80℃の温度での接触が特に好ましい。   The catalysts are usually activated before their use. This activation can be performed by applying a reducing gas atmosphere to the catalyst. Activation with hydrogen is preferably used. In this case, the activation temperature is usually 100 to 500 ° C., preferably 130 to 400 ° C., particularly preferably 150 to 400 ° C. An alternative reduction method is the reduction of the metal component by contact with a liquid reducing agent such as hydrazine, formaldehyde or sodium formate. In this case, the liquid reducing agent is usually contacted at a temperature of 10 to 100 ° C. Contact at a temperature of 20 to 80 ° C. is particularly preferred.

水素化は通常110〜250℃で、好ましくは150〜250℃で実施される。その際に通常5〜220bar、好ましくは40〜150barの反応圧で水素化される。水素化は液相中で好ましくは固定床中で実施される。   The hydrogenation is usually carried out at 110 to 250 ° C, preferably 150 to 250 ° C. The hydrogenation is usually carried out at a reaction pressure of 5 to 220 bar, preferably 40 to 150 bar. Hydrogenation is carried out in the liquid phase, preferably in a fixed bed.

水素化のための出発物質として、付加的にC−C−二重結合又は三重結合を有していてよいカルボニル化合物が一般的に適している。アルデヒド類の例はプロピオンアルデヒド、ブチルアルデヒド類、クロトンアルデヒド、エチルヘキサナール、ノナナール及びグルコースである。カルボン酸類の例はコハク酸、フマル酸、マレイン酸である。エステルとして、前記の酸のエステルを、例えばメチル−、エチル−、プロピル−又はブチルエステルとして挙げることができ、さらにラクトン類、例えばγ−ブチロラクトン、δ−バレロラクトン又はカプロラクトンが使用可能である。そのうえ、無水物類、例えば無水コハク酸又は無水マレイン酸が使用されることができる。好ましい出発物質はC−ジカルボン酸類及び/又はそれらの誘導体、特に好ましくはコハク酸、マレイン酸、無水コハク酸、無水マレイン酸並びにこれらの酸のエステルである。もちろん、アルデヒド類、カルボン酸類、エステル類、無水物類及び/又はラクトン類の混合物、好ましくはカルボン酸類の混合物が使用されることもできる。 As starting materials for the hydrogenation, carbonyl compounds which may additionally have C—C—double or triple bonds are generally suitable. Examples of aldehydes are propionaldehyde, butyraldehydes, crotonaldehyde, ethylhexanal, nonanal and glucose. Examples of carboxylic acids are succinic acid, fumaric acid and maleic acid. As esters, the esters of the acids mentioned can be mentioned, for example, as methyl-, ethyl-, propyl- or butyl esters, and also lactones such as γ-butyrolactone, δ-valerolactone or caprolactone can be used. In addition, anhydrides such as succinic anhydride or maleic anhydride can be used. Preferred starting materials are C 4 -dicarboxylic acids and / or their derivatives, particularly preferably succinic acid, maleic acid, succinic anhydride, maleic anhydride and esters of these acids. Of course, mixtures of aldehydes, carboxylic acids, esters, anhydrides and / or lactones, preferably mixtures of carboxylic acids, can also be used.

水素化すべき化合物はバルクで又は溶液中で水素化されることができる。溶剤として、例えば水素化生成物自体の1つが考えられ、又は例えばアルコール類、例えばメタノール、エタノール、プロパノール又はブタノールのような物質が使用され、さらにエーテル、例えばTHF又はエチレングリコールエーテル又はγ−ブチロラクトンが適している。好ましい溶剤は、特にカルボン酸類の水素化の場合に、水である。   The compound to be hydrogenated can be hydrogenated in bulk or in solution. As the solvent, for example, one of the hydrogenation products itself is conceivable, or substances such as alcohols, for example methanol, ethanol, propanol or butanol are used, and ethers such as THF or ethylene glycol ether or γ-butyrolactone are used. Is suitable. A preferred solvent is water, especially in the case of hydrogenation of carboxylic acids.

水素化は液相中で、一段階又は多段階で実施されることができる。液相中で懸濁並びに固定床運転方式が可能である。発熱反応の場合に熱は外部にある冷却剤により導出されることができる(例えば管形反応器)。さらに、とりわけ生成物返送なしで水素化される場合に、反応器中での蒸発冷却が可能である。生成物返送の場合に返送流中の冷却器が考えられる。   Hydrogenation can be carried out in the liquid phase in one or multiple stages. Suspension as well as fixed bed operation are possible in the liquid phase. In the case of an exothermic reaction, heat can be extracted by an external coolant (eg, a tubular reactor). Furthermore, evaporative cooling in the reactor is possible, especially when hydrogenated without product return. In the case of product return, a cooler in the return flow can be considered.

本発明による方法は以下の例に基づいて説明される。   The method according to the invention is illustrated on the basis of the following example.

SEM−EDXを用いる強度因子の測定
EDXプローブを備えた型式Philips ESEM-XL30-FGのSEM−EDX分光計を用いて、レニウム及びパラジウムの強度(含量に相当する)を測定した。分析電圧は30KVであった。粒子を、準備のために、きれいな切断面が得られるように分割した。この切断面から300μmを上回り各15μmのステップでSEM−EDXを用いてそれらのPd及びRe含量について調べた。各測定点でPd及びReの強度の比が計算されることができる。
Measurement of Strength Factor Using SEM-EDX The strength (corresponding to content) of rhenium and palladium was measured using a SEM-EDX spectrometer of type Philips ESEM-XL30-FG equipped with an EDX probe. The analysis voltage was 30 KV. The particles were divided in preparation so that a clean cut surface was obtained. Their Pd and Re contents were examined using SEM-EDX at a step of 15 μm each exceeding 300 μm from the cut surface. The ratio of Pd and Re intensity can be calculated at each measurement point.

例1
Pd(NO 15.83gを25%のNH溶液8gと混合し、水98g中のNHReO 8.66gの溶液と混合した。化合物Pd(NO(ReOを晶出させた。ろ過により取得された生成物を水で洗浄し、乾燥させた。
Example 1
15.83 g of Pd (NO 3 ) 2 was mixed with 8 g of 25% NH 3 solution and mixed with 8.66 g of NH 4 ReO 4 in 98 g of water. The compound Pd (NO 3 ) 2 (ReO 4 ) 2 was crystallized out. The product obtained by filtration was washed with water and dried.

例2:触媒A
例1に従って製造されたPd−Re塩1.11gを、80℃で水20g中に溶解させた。活性炭担体30g(Degussa AG社、DuesseldorfのDegussa 180)を、Pd−Re塩の溶液に70℃で浸漬させた。ついで触媒を120℃で窒素(N)100Nl/h中で乾燥させた。引き続いて同じ温度で30min及び200℃で30min、水素(H) 0.5%を含有するN(100Nl/h)で還元した。ついで、1h、水素量を5%に及びさらに2時間、100%に高めた。その後、温度を400℃に並び流量をH 3000l/hに高めた。加熱速度はその際にその都度5℃/minであった。最終的に、触媒をN中で冷却した後に室温で7h、N中の空気5%中で不動態化した。触媒はPd 0.5質量%及びRe 2質量%を含有していた。
Example 2: Catalyst A
1.11 g of the Pd—Re salt prepared according to Example 1 was dissolved in 20 g of water at 80 ° C. 30 g of activated carbon support (Degussa AG, Duesseldorf Degussa 180) was immersed in a solution of Pd-Re salt at 70 ° C. The catalyst was then dried at 120 ° C. in nitrogen (N 2 ) 100 Nl / h. Subsequently, it was reduced with N 2 (100 Nl / h) containing 0.5% of hydrogen (H 2 ) at the same temperature for 30 min and at 200 ° C. for 30 min. Subsequently, the amount of hydrogen was increased to 5% for 1 hour and further to 100% for 2 hours. Thereafter, the temperature was set to 400 ° C., and the flow rate was increased to 3000 L / h of H 2 . The heating rate was 5 ° C./min in each case. Finally, the catalyst 7h at room temperature after cooling in N 2, was passivated in 5% air in N 2. The catalyst contained 0.5 wt% Pd and 2 wt% Re.

例3
Pd−Re塩1.11gを水130g中に40℃で溶解させた。この溶液10gを、撹拌しながら活性炭担体30g(Degussa 180)上に施与した。ついで触媒を120℃で1h乾燥させた。水での洗浄工程後に、全溶液が担体上に施与されるまで浸漬及び乾燥手順を繰り返した。引き続いて触媒を乾燥させ、例2に類似して還元した。触媒はPd 0.5質量%及びRe 2質量%を含有していた。
Example 3
1.11 g of Pd—Re salt was dissolved in 130 g of water at 40 ° C. 10 g of this solution was applied on 30 g of activated carbon support (Degussa 180) with stirring. The catalyst was then dried at 120 ° C. for 1 h. After the water washing step, the soaking and drying procedure was repeated until the entire solution was applied onto the carrier. The catalyst was subsequently dried and reduced analogously to Example 2. The catalyst contained 0.5 wt% Pd and 2 wt% Re.

例4
触媒A 20gを管形反応器中に充填し、大気圧及び150℃で2h、N(240Nl/h)ですすいだ。引き続いて5% Hを混合し、2時間後に温度を200℃に高め、一晩に亘り保持した。50%のH−N混合物へ切り換えた後に温度を230℃に1h高め、最終的には純H 120Nl/h中でさらに1時間還元した。最終的に圧力を40barに高めた。この活性化された触媒Aを用いて、6.06g/hの量でγ−ブチロラクトン中の20質量%溶液として計量供給した無水コハク酸(BSA)を、235℃及び40barで連続運転で水素化した。モル比H:BSAは35であった。91%の転化率で生成物収率81%(テトラヒドロフラン(THF)39%及びγ−ブチロラクトン35%)が達成された。
Example 4
20 g of Catalyst A was charged into a tubular reactor and rinsed with N 2 (240 Nl / h) at atmospheric pressure and 150 ° C. for 2 h. Subsequently 5% H 2 was mixed and after 2 hours the temperature was increased to 200 ° C. and held overnight. After switching to a 50% H 2 —N 2 mixture, the temperature was increased to 230 ° C. for 1 h and finally reduced in pure H 2 120 Nl / h for an additional hour. Finally, the pressure was increased to 40 bar. Using this activated catalyst A, succinic anhydride (BSA) metered in as a 20 wt% solution in γ-butyrolactone in an amount of 6.06 g / h was hydrogenated in continuous operation at 235 ° C. and 40 bar. did. The molar ratio H 2 : BSA was 35. A product yield of 81% (tetrahydrofuran (THF) 39% and γ-butyrolactone 35%) was achieved with 91% conversion.

比較例1:触媒V1
水で予め湿らせた活性炭担体60g(Degussa 180)を、撹拌しながら水20ml中にPd(NO 2HO 0.78g及びHReO 1.52g(72.8質量%溶液)を含有する溶液に室温で浸漬した。引き続いて触媒を、触媒Aについて例2に記載された乾燥及び還元に類似して処理した。触媒はパラジウム0.5質量%及びレニウム2質量%を含有していた。
Comparative Example 1: Catalyst V1
60 g of activated carbon carrier (Degussa 180) pre-moistened with water containing 0.78 g of Pd (NO 3 ) 2 2H 2 O and 1.52 g of HReO 4 (72.8 mass% solution) in 20 ml of water with stirring Soaking at room temperature. Subsequently, the catalyst was treated analogously to the drying and reduction described in Example 2 for Catalyst A. The catalyst contained 0.5% by weight of palladium and 2% by weight of rhenium.

比較例2:
触媒V1 20gを、例に類似して管形反応器に取り付け、例5に類似して活性化した。この活性化された触媒Aを用いて、γ−ブチロラクトン中の20質量%溶液として5.94g/hの量で計量供給した無水コハク酸(BSA)を、235℃及び40barで連続運転で水素化した。モル比H:BSAは35であった。80%の転化率で77%の生成物収率(テトラヒドロフラン(THF)9%及びγ−ブチロラクトン53%)となった。
Comparative Example 2:
20 g of catalyst V1 was attached to a tubular reactor similar to the example and activated similar to example 5. Using this activated catalyst A, succinic anhydride (BSA) metered in a quantity of 5.94 g / h as a 20% by weight solution in γ-butyrolactone was hydrogenated in continuous operation at 235 ° C. and 40 bar. did. The molar ratio H 2 : BSA was 35. 80% conversion resulted in a 77% product yield (tetrahydrofuran (THF) 9% and γ-butyrolactone 53%).

Claims (8)

レニウム及び金属Meで表される少なくとも1つの別の金属が、一般式(I)
[Me(NH(OH)](ReO・eHO (I)
で示される少なくとも1つの過レニウム酸塩−複塩の形で使用されており、その際に金属MeはRu、Rh、Pd、Os、Ir又はtを表し、aは1又は2を表し、bは1〜8の整数を表し、cは0〜5の整数を表し、dは2、3又は4を表し、かつeは0〜12の整数を表し、バイメタル前駆物質化合物として担体上に施与されていることを特徴とする、カルボニル化合物の接触水素化によりテトラヒドロフラン及びγ−ブチロラクトンからなる混合物を製造するためのレニウム含有担持触媒。
At least one other metal represented by rhenium and metal Me is of the general formula (I)
[Me a (NH 3 ) b (OH) c ] (ReO 4 ) d · eH 2 O (I)
In at least one perrhenate shown - double salt are used in the form of a metal Me in that case represents a R u, Rh, Pd, Os , Ir or P t, a is 1 or 2 , B represents an integer from 1 to 8, c represents an integer from 0 to 5, d represents 2, 3 or 4, and e represents an integer from 0 to 12, on a support as a bimetallic precursor compound. A rhenium-containing supported catalyst for producing a mixture of tetrahydrofuran and γ-butyrolactone by catalytic hydrogenation of a carbonyl compound , characterized in that it is applied.
バイメタル前駆物質化合物としてPd(NH(ReO及び/又はPt(NH(ReO が使用されている、請求項1記載のレニウム含有担持触媒。The rhenium-containing supported catalyst according to claim 1, wherein Pd (NH 3 ) 4 (ReO 4 ) 2 and / or Pt (NH 3 ) 4 (ReO 4 ) 2 is used as the bimetallic precursor compound. レニウム及び金属Meが全触媒に対して、それぞれ0.03〜30質量%の量で存在している、請求項1又は2のいずれか1項記載のレニウム含有担持触媒。The rhenium-containing supported catalyst according to any one of claims 1 and 2, wherein rhenium and metal Me are present in an amount of 0.03 to 30% by mass, respectively, based on the total catalyst. 電子顕微鏡により測定される、全触媒粒子についての金属Meに対するレニウムの比が、分析点の98%で5未満の因子の偏差を有する、請求項1から3までのいずれか1項記載のレニウム含有担持触媒。4. The rhenium-containing content according to claim 1, wherein the ratio of rhenium to metal Me for all catalyst particles, as measured by electron microscopy, has a factor deviation of less than 5 at 98% of the analysis points. Supported catalyst. 請求項1から4までのいずれか1項記載の触媒を使用することを特徴とする、カルボニル化合物の接触水素化によテトラヒドロフラン及びγ−ブチロラクトンからなる混合物を製造する方法。Characterized by using the catalyst of any one of claims 1 to 4, a method for producing a mixture of tetrahydrofuran and γ- butyrolactone Ri by the catalytic hydrogenation of carbonyl compounds. カルボニル化合物を、アルデヒド類、カルボン酸類、エステル類、無水物類及び/又はラクトン類から選択する、請求項5記載の方法。  6. The process according to claim 5, wherein the carbonyl compound is selected from aldehydes, carboxylic acids, esters, anhydrides and / or lactones. カルボニル化合物を、マレイン酸、フマル酸、コハク酸又はそれらのエステル類又は無水物類から選択する、請求項6記載の方法。The carbonyl compounds, maleic acid, fumaric acid, succinic acid, or their esters or selected from anhydrides such method of claim 6 wherein. 水素化を、液相中で固定配置された触媒上で5〜220barの範囲内の圧力及び110〜250℃の範囲内の温度で実施する、請求項5からまでのいずれか1項記載の方法。The hydrogenation is carried out at a temperature in the range of pressure and 110 to 250 ° C. in the range from 5~220bar over a catalyst that is fixed arranged in the liquid phase, in any one of claims 5 to 7 Method.
JP2004550946A 2002-11-11 2003-11-06 Rhenium-containing supported catalyst and method for hydrogenating carbonyl compounds in liquid phase using the catalyst Expired - Fee Related JP4608318B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10252281A DE10252281A1 (en) 2002-11-11 2002-11-11 Supported rhenium catalyst, useful for the production of tetrahydrofuran and gamma-butyrolactone by reduction of carbonyl compounds, contains a further Group 8 or 1b metal and is prepared using a bimetallic precursor compound
PCT/EP2003/012379 WO2004043592A1 (en) 2002-11-11 2003-11-06 Supported catalyst containing rhenium and method for hydrogenation of carbonyl compounds in liquid phase by means of said catalyst

Publications (2)

Publication Number Publication Date
JP2006505400A JP2006505400A (en) 2006-02-16
JP4608318B2 true JP4608318B2 (en) 2011-01-12

Family

ID=32185441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004550946A Expired - Fee Related JP4608318B2 (en) 2002-11-11 2003-11-06 Rhenium-containing supported catalyst and method for hydrogenating carbonyl compounds in liquid phase using the catalyst

Country Status (10)

Country Link
US (1) US7214641B2 (en)
EP (1) EP1572354B1 (en)
JP (1) JP4608318B2 (en)
KR (1) KR100976939B1 (en)
CN (1) CN1326611C (en)
AT (1) ATE328658T1 (en)
AU (1) AU2003276258A1 (en)
DE (2) DE10252281A1 (en)
MY (1) MY135620A (en)
WO (1) WO2004043592A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264686A1 (en) * 2008-04-16 2009-10-22 Holladay Johnathan E Hydrogenolysis processes and hydrogenolysis catalyst preparation methods
US9834491B2 (en) * 2013-03-20 2017-12-05 Cj Cheiljedang Corporation Method for producing bio-based homoserine lactone and bio-based organic acid from O-acyl homoserine produced by microorganisms
KR101558735B1 (en) 2014-02-13 2015-10-08 포항공과대학교 산학협력단 Inorganic nanoparticle deposited catalyst for hydrogenation and manufacturing method of the same, and hydrogenation for biomass derived hydrocarbon compounds
US20160347634A1 (en) * 2014-02-18 2016-12-01 Qid S.R.L. Method for the catalyzed reduction of halogen oxyanions in aqueous solutions
US9597667B2 (en) 2015-03-26 2017-03-21 North Carolina State University Palladium, rhenium and alumina catalysts for the selective hydrogenation of carbonyls, their synthesis, and methods of using the same
CN107930642B (en) * 2017-10-23 2019-10-29 浙江大学 A kind of catalyst preparing gamma-valerolactone for levulic acid catalytic hydrogenation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840475A (en) 1971-02-19 1974-10-08 Mobil Oil Corp Bimetallic catalyst preparation
US3944626A (en) * 1973-04-26 1976-03-16 Kosaku Honna Process for producing adamantane compounds
DE2519817A1 (en) * 1975-05-03 1976-11-11 Hoechst Ag PROCESS FOR THE PRODUCTION OF BUTANDIOL- (1.4)
US5166121A (en) * 1990-05-21 1992-11-24 Engelhard Corporation Catalytic compositions
US5478952A (en) * 1995-03-03 1995-12-26 E. I. Du Pont De Nemours And Company Ru,Re/carbon catalyst for hydrogenation in aqueous solution
KR100445618B1 (en) * 1997-02-05 2004-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 Process for Regeneration of Carbon-Supported, Rhenium-Containing Catalysts
JP2001246254A (en) * 1999-12-28 2001-09-11 Tonen Chem Corp Catalyst for hydrogenating dicarboxylic acid
DE10009817A1 (en) * 2000-03-01 2001-09-06 Basf Ag Catalyst used in hydrogenation of carbonyl compounds to alcohols, useful e.g. as solvent or intermediate, contains rhenium, platinum and other metal(s) on activated charcoal subjected to non-oxidative pretreatment
US6670490B1 (en) * 2002-12-23 2003-12-30 E. I. Du Pont De Nemours And Company Platinum-rhenium-tin catalyst for hydrogenation in aqueous solution
US7935834B2 (en) * 2004-07-01 2011-05-03 Isp Investments Inc. Catalysts for maleic acid hydrogenation to 1,4-butanediol

Also Published As

Publication number Publication date
EP1572354A1 (en) 2005-09-14
KR100976939B1 (en) 2010-08-18
WO2004043592A1 (en) 2004-05-27
EP1572354B1 (en) 2006-06-07
ATE328658T1 (en) 2006-06-15
US20060052239A1 (en) 2006-03-09
JP2006505400A (en) 2006-02-16
MY135620A (en) 2008-05-30
AU2003276258A1 (en) 2004-06-03
CN1711133A (en) 2005-12-21
US7214641B2 (en) 2007-05-08
CN1326611C (en) 2007-07-18
KR20050086481A (en) 2005-08-30
DE10252281A1 (en) 2004-05-27
DE50303747D1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US7172989B2 (en) Catalytic hydrogenation over rhenium-containing catalysts supported on activated carbon
Hronec et al. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone
EP3322526B1 (en) Improved copper-containing multimetallic catalysts, and method for using the same to make biobased 1,2-propanediol
JPH04500813A (en) Ester production by hydrogenation of carboxylic acids and anhydrides
CN113332999B (en) Novel catalyst for preparing succinic anhydride and 1, 4-butanediol by maleic anhydride hydrogenation
EP2476674A2 (en) Method for producing cyclicised compounds from organic acids having from 4 to 6 carbon atoms
JP4608318B2 (en) Rhenium-containing supported catalyst and method for hydrogenating carbonyl compounds in liquid phase using the catalyst
KR100798548B1 (en) Method for the Production of Alcohols on Rhenium-Containing Activated Charcoal Supported Catalysts
JP2007518557A (en) Non-chromium containing catalyst of Cu metal and at least one second metal
JP4123525B2 (en) Method for producing gamma-butyrolactone
JP3616642B2 (en) Method for producing 1,4-butanediol
EP1562882B1 (en) Improved catalyst and method for producing alcohol by hydrogenation on said catalyst
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
JP2001525836A (en) Method for producing alcohol containing alicyclic group
Velea et al. Component for gasoline by hydroconversion of furfural derivates in presence of methanol
US20040122242A1 (en) Ruthenium-molybdenum catalyst for hydrogenation in aqueous solution
JPH0236136A (en) Production of alcohol
DE10252282A1 (en) Supported rhenium catalyst, e.g. for production of alcohols by catalytic hydrogenation of carbonyl compounds in liquid phase, comprises titanium dioxide of defined maximum sulfate content and surface area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees