JP4606724B2 - Thin film inductor and manufacturing method thereof - Google Patents

Thin film inductor and manufacturing method thereof Download PDF

Info

Publication number
JP4606724B2
JP4606724B2 JP2003374170A JP2003374170A JP4606724B2 JP 4606724 B2 JP4606724 B2 JP 4606724B2 JP 2003374170 A JP2003374170 A JP 2003374170A JP 2003374170 A JP2003374170 A JP 2003374170A JP 4606724 B2 JP4606724 B2 JP 4606724B2
Authority
JP
Japan
Prior art keywords
ferrite
thin film
film
substrate
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003374170A
Other languages
Japanese (ja)
Other versions
JP2005142199A (en
Inventor
龍矢 千葉
興邦 高畑
幸一 近藤
栄▲吉▼ ▲吉▼田
正紀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, NEC Tokin Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2003374170A priority Critical patent/JP4606724B2/en
Publication of JP2005142199A publication Critical patent/JP2005142199A/en
Application granted granted Critical
Publication of JP4606724B2 publication Critical patent/JP4606724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thin Magnetic Films (AREA)

Description

本発明は、ギガヘルツ帯の高周波領域において使用されるフェライト薄膜及びその製造方法、並びに薄膜インダクタ素子、および、その製造方法に関する。   The present invention relates to a ferrite thin film used in a high frequency region of the gigahertz band, a manufacturing method thereof, a thin film inductor element, and a manufacturing method thereof.

軟磁性材料の中でもフェライト材料は、金属系軟磁性材料と比較して高い抵抗を有するために高周波領域における軟磁気特性に優れ、磁気損失も少ないという利点を備えている。   Among the soft magnetic materials, the ferrite material has an advantage that it has excellent resistance to soft magnetic properties in a high frequency region and has a small magnetic loss because it has a higher resistance than a metal-based soft magnetic material.

このため、フェライト材料はトランスやインダクタの磁心材料として用いられている。また、フェライト材料は良好な耐摩耗性を有しているので磁気記録用のヘツド材料としても用いられている。   For this reason, ferrite materials are used as magnetic core materials for transformers and inductors. Further, since the ferrite material has good wear resistance, it is also used as a head material for magnetic recording.

近年、電子機器の小型化、軽量化の動きが強まる中で、高周波領域において優れた特性を有する薄膜トランスや薄膜インダクタが要望されている。例えば、移動体通信分野を中心に需要が高まっているモノリシックマイクロ波集積回路(MMIC)は数百MHz以上の高周波領域で使用されるため、これに集積化されている薄膜インダクタの磁心材料としてはギガヘルツ帯において良好な磁気特性を有することが要求される。また、高周波領域で使用される軟磁性材料としては、渦電流損失を小さくするために、比抵抗の大きな材料が望まれる。   In recent years, with the trend toward smaller and lighter electronic devices, thin film transformers and thin film inductors having excellent characteristics in the high frequency region have been demanded. For example, the monolithic microwave integrated circuit (MMIC), whose demand is increasing mainly in the field of mobile communication, is used in a high frequency region of several hundred MHz or more, and as a magnetic core material for a thin film inductor integrated therein, It is required to have good magnetic properties in the gigahertz band. In addition, as a soft magnetic material used in a high frequency region, a material having a large specific resistance is desired in order to reduce eddy current loss.

スピネル型結晶構造のNi−Zn系軟磁性フェライトなどの軟磁性フェライト材料は、金属材料と比較して大きな比抵抗を有することから、高周波領域で使用される軟磁性材料として有望な材料である。このため、近年、かかる軟磁性フェライト材料の薄膜化の研究が、真空燕着法、MOCVD法、メッキ法など、様々な成膜方法において盛んに行われている(例えば、非特許文献1、参照)。   A soft magnetic ferrite material such as a Ni-Zn soft magnetic ferrite having a spinel crystal structure is a promising material as a soft magnetic material used in a high frequency region because it has a larger specific resistance than a metal material. For this reason, in recent years, research on thinning the soft magnetic ferrite material has been actively performed in various film forming methods such as vacuum deposition, MOCVD, and plating (for example, see Non-Patent Document 1). ).

ところで、一般に軟磁性材料において、周波数を増加させて行くと、ある周波数で自然共鳴を起こし、その透磁率が低下して使用できなくなる。この場合、透磁率が大きい材料ほど低い周波数で自然共鳴を起こし、透磁率が小さい材料ほど高い周波数で自然共鳴を起こすスヌーク(Snoek)の限界線が存在する。大きな比抵抗を有するバルクのNi−Zn系フェライトにおいても、そのほとんどのものが100MHz以下で透磁率が低下し、数百MHz以上の周波数領域での使用は困難である。従って、数百MHz以上の高周波領域において使用される薄膜インダクタや薄膜トランスなどの磁心材料に適した軟磁性材料としては、このスヌークの限界線を超えるものが必要である。このスヌークの限界線を超える軟磁性フェライト材料としては、フェロクス・プレーナーと呼はれるマグネトプラムバイト型結晶構造の酸化物(以下、単にマグネトプラムバイト型酸化物とも称す。)がある。   By the way, in general, in a soft magnetic material, when the frequency is increased, natural resonance occurs at a certain frequency, and the magnetic permeability is lowered to make it unusable. In this case, there is a snook limit line that causes natural resonance at a lower frequency as the material has higher magnetic permeability and causes natural resonance at a higher frequency as the material has lower magnetic permeability. Almost all bulk Ni—Zn ferrites having a large specific resistance have a low magnetic permeability at 100 MHz or less, and are difficult to use in a frequency range of several hundred MHz or more. Therefore, a soft magnetic material suitable for a magnetic core material such as a thin film inductor or a thin film transformer used in a high frequency region of several hundred MHz or higher needs to exceed the Snook limit line. As a soft magnetic ferrite material exceeding the Snook limit line, there is an oxide having a magnetoplumbite type crystal structure called a ferrox planar (hereinafter also simply referred to as a magnetoplumbite type oxide).

前記マグネトプラムバイト型酸化物は、第二鉄イオン(Fe3+;Fe(III)イオン)と2価の金属イオンM2+(但し、M=Mn、Fe、Co、Ni、Cu、Zn、Mg)のほかにBa2+やSr2+などのO2−と同程度のイオン半径を有するイオンを含むフェライトであり、M2+とFe3+とからなるスピネル構造を有する層と、Ba2+やSr2+とO2−とからなる層が交互に組み合さった構造からなっており、全体としては六方晶系に属し、その(001)方向に強い一軸磁気異方性を有している。このマグネトプラムバイト型酸化物では、―軸異方性定数(Ku)が負で、飽和磁化(Ms)はc面内で安定である。c面内の磁気異方性は比較的小さく、飽和磁化(Ms)はc面内でかなり自由に回転することができるため、透磁率は比較的高い。そして、歳差運動の際には、c面から逸れると非常に強い異方性が作用するため、自然共鳴が起きる周波数も大きくなり、スヌークの限界線を超えることができる。 The magnetoplumbite type oxide includes ferric ions (Fe 3+ ; Fe (III) ions) and divalent metal ions M 2+ (where M = Mn, Fe, Co, Ni, Cu, Zn, Mg) In addition to the above, ferrite including ions having an ion radius comparable to O 2− such as Ba 2+ and Sr 2+ , a layer having a spinel structure composed of M 2+ and Fe 3+ , Ba2 +, Sr 2+, and O 2. - it has become a layer are combined alternately structure consisting of a belong to crystal system hexagonal as a whole, has a strong uniaxial magnetic anisotropy in the (001) direction. In this magnetoplumbite type oxide, the negative axial anisotropy constant (Ku) is negative and the saturation magnetization (Ms) is stable in the c-plane. The magnetic anisotropy in the c-plane is relatively small, and the saturation magnetization (Ms) can rotate quite freely in the c-plane, so the permeability is relatively high. In precession, since the very strong anisotropy acts when deviating from the c-plane, the frequency at which natural resonance occurs increases and can exceed the Snook limit line.

しかるに、このマグネトプラムバイト型酸化物はその比抵抗を十分大きくすることが困難であり、高周波領域において渦電流損失が大きくなってしまうため、未だ実用化には至っていない(非特許文献2、参照)。   However, it is difficult to sufficiently increase the specific resistance of this magnetoplumbite type oxide, and eddy current loss increases in a high frequency region, so that it has not yet been put into practical use (see Non-Patent Document 2). ).

前述したように、このマグネトプラムバイト型酸化物はその比抵抗を十分大きくすることが困難であり、高周波領域において渦電流損失が大きくなってしまうため、未だ実用化には至っていない。   As described above, it is difficult to sufficiently increase the specific resistance of this magnetoplumbite type oxide, and eddy current loss increases in a high frequency region, so that it has not yet been put into practical use.

また、マグネトプラムバイト型酸化物薄膜の製造方法は、後に詳しく述べるように、雰囲気置換及び制御装置が必要であり、工業化に莫大なコストがかかる。加え、薄膜生成温度が400℃以上となるため、基体に用いられる材料は耐熱材に限られる。
平塚信之ほか:粉体および粉末冶金、39(1992)第152頁 近角聰信著:強磁性体の物理(下)、第32頁
Moreover, the manufacturing method of the magnetoplumbite-type oxide thin film requires an atmosphere replacement and a control device, as will be described in detail later, and enormous costs are required for industrialization. In addition, since the thin film formation temperature is 400 ° C. or higher, the material used for the substrate is limited to a heat-resistant material.
Hiratsuka Nobuyuki et al .: Powder and Powder Metallurgy, 39 (1992), p. 152 Takunobu Kakukaku: Physics of ferromagnetic materials (bottom), p. 32

本発明は、以上のような従来技術の欠点に鑑みてなされたものであり、その技術的課題は、ギガヘルツ帯の高周波領域において優れた軟磁気特性を示す高抵抗のフェライト薄膜を備えた薄膜インダクタとその製造方法を提供することにある。   The present invention has been made in view of the drawbacks of the prior art as described above, and the technical problem thereof is a thin film inductor having a high resistance ferrite thin film exhibiting excellent soft magnetic characteristics in a high frequency region of the gigahertz band. And providing a manufacturing method thereof.

また、本発明の他の技術的課題は、ギガヘルツ帯の高周波領域において優れたインダクタ特性を示す薄膜インダクタとその製造方法とを提供することにある。   Another technical problem of the present invention is to provide a thin film inductor exhibiting excellent inductor characteristics in a high frequency region of the gigahertz band and a method for manufacturing the same.

本発明によれば、フェライトメッキ膜と、前記フェライトメッキ膜上に形成された導電層とを具備して構成される薄膜インダクタにおいて、前記フェライトメッキ膜は、結晶が柱状であり、柱状結晶の長軸aが0.01〜50μm、短軸bが0.01〜1μmであり、柱状結晶の長軸a、短軸bの比a/bが1〜100の範囲内であることを特徴とする薄膜インダクタが得られる。 According to the present invention, in the thin film inductor comprising a ferrite plating film and a conductive layer formed on the ferrite plating film, the ferrite plating film has a columnar crystal, and the length of the columnar crystal is long. The axis a is 0.01 to 50 μm, the minor axis b is 0.01 to 1 μm, and the ratio a / b between the major axis a and the minor axis b of the columnar crystal is in the range of 1 to 100. A thin film inductor is obtained.

また、本発明によれば、前記薄膜インダクタにおいて、前記フェライトメッキ膜は任意形状であり、前記フェライトメッキ膜上に同形状の導体層を有することを特徴とする薄膜インダクタが得られる。   According to the present invention, in the thin film inductor, there is obtained a thin film inductor characterized in that the ferrite plating film has an arbitrary shape and has a conductor layer of the same shape on the ferrite plating film.

また、本発明によれば、前記いずれか一つの薄膜インダクタにおいて、前記フェライトメッキ膜が、Ni、Zn、Fe、Coの内の少なくとも1種を含有する事を特徴とする薄膜インダクタが得られる。 In addition, according to the present invention, in any one of the thin film inductors, a thin film inductor is obtained in which the ferrite plating film contains at least one of Ni, Zn, Fe, and Co.

また、本発明によれば、前記いずれか一つの薄膜インダクタを製造する方法であって、前記フェライトメッキ膜は少なくとも第一鉄イオンを含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接触させる工程と、前記反応液、酸化液の内フェライト膜生成に寄与しない残分を基体から除去する工程とを備えていることを特徴とする薄膜インダクタの製造方法が得られる。 Also, according to the present invention, there is provided a method for manufacturing any one of the above thin film inductors, wherein the ferrite plating film includes a step of bringing a reaction solution containing at least ferrous ions into contact with a substrate, and at least an oxidizing agent. A method of manufacturing a thin film inductor, comprising: a step of bringing an oxidizing solution into contact with a substrate; and a step of removing from the substrate a residue of the reaction solution and the oxidizing solution that does not contribute to the formation of a ferrite film. It is done.

本発明によれば、フェライト膜と、前記フェライトメッキ膜上に形成された導電層とを具備して構成される薄膜インダクタにおいて、前記フェライト膜は、Ni、Zn、Fe、Coの少なくとも1種を含有し、結晶が柱状であり、柱状結晶の長軸aが0.01〜50μm、短軸bが0.01〜1μm、柱状結晶の長軸a、短軸bの比a/bがl〜100となるように成膜することにより、ギガヘルツ帯の高周波領域においても渦電流損失が大きくならず、優れた軟磁気特性を持つ薄膜インダクタを提供することができる。 According to the present invention, in the thin film inductor comprising a ferrite film and a conductive layer formed on the ferrite plating film , the ferrite film is made of at least one of Ni, Zn, Fe, and Co. And the crystal is columnar, the major axis a of the columnar crystal is 0.01 to 50 μm, the minor axis b is 0.01 to 1 μm, and the ratio a / b of the major axis a and minor axis b of the columnar crystal is 1 to By forming the film so as to be 100, eddy current loss is not increased even in the high frequency region of the gigahertz band, and a thin film inductor having excellent soft magnetic characteristics can be provided.

また、本発明においては、フェライト膜と導体によって構成される薄膜インダクタにおいて、前記フェライト層は少なくとも第一鉄イオンを含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接蝕させる工程と、前記反応液、酸化液の内フェライト膜生成に寄与しない残分を基体から除去する工程とを備えることによって、上記優れた軟磁気特性を持つ薄膜インダクタを製造する方法を提供することができる。   Further, in the present invention, in the thin film inductor constituted by the ferrite film and the conductor, the ferrite layer includes a step of bringing a reaction solution containing at least ferrous ions into contact with the substrate, and an oxidation solution containing at least an oxidizing agent. A method of manufacturing a thin film inductor having excellent soft magnetic properties by comprising: a step of corroding the substrate and a step of removing from the substrate a residue that does not contribute to the formation of an inner ferrite film of the reaction solution and the oxidation solution. Can be provided.

本発明について更に具体的に説明する。   The present invention will be described more specifically.

本発明者等は、インダクタの磁性層であるフェライト膜の製造方法において、少なくとも第一鉄イオン(Fe2+;Fe(II)イオン)を含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接触させる工程と、前記反応液、酸化液の内フェライト膜生成に寄与しない残分を基体から除去する工程とを有することによって、生成速度を向上して工業的な生産性を増し、膜を構成する構成要素(結晶粒)が規則的に配置されてなるフェライト薄膜を得られることを見出した。 In the method of manufacturing a ferrite film that is a magnetic layer of an inductor, the present inventors contact a substrate with a reaction solution containing at least ferrous ions (Fe 2+ ; Fe (II) ions), and at least an oxidizing agent. The production rate is improved by having the step of bringing the contained oxidizing solution into contact with the substrate and the step of removing the reaction solution and the residue of the oxidizing solution that does not contribute to the formation of the ferrite film from the substrate. It has been found that a ferrite thin film in which the constituent elements (crystal grains) constituting the film are regularly arranged can be obtained.

また、工程の繰り返し回数を制御することでフェライトメッキ膜状結晶の長軸aを0.01〜50μm、短軸bを0.01〜1μm、また長軸a、短軸bの比a/bを1〜100に制御することが可能である。 Further, the major axis a to 0.01~50μm the ferrite plating film pillar-shaped crystals by controlling the number of repetitions of steps, the minor axis b 0.01 to 1 [mu] m, and the length axis a, the ratio of the minor axis b a / It is possible to control b to 1-100.

また、本発明において、前記フェライト薄膜はNi、Zn、Fe、Oを含有するが、更にCoを含有する事により、軟磁気特性がさらに向上することを見出した。   Further, in the present invention, the ferrite thin film contains Ni, Zn, Fe, and O, and it has been found that the soft magnetic characteristics are further improved by further containing Co.

本発明のフェライト薄膜は、スピネル型結晶構造を有するフェライト薄膜であって、Fe2+を実質的に含まないことを特徴とする。Fe2+を実質的に含まないことにより高い抵抗率を有する。従って、ギガヘルツ帯の高周波領域においても渦電流損失が大きくならず、優れた軟磁気特性が得られる。 The ferrite thin film of the present invention is a ferrite thin film having a spinel crystal structure and is characterized by substantially not including Fe 2+ . It has a high resistivity by substantially not containing Fe 2+ . Therefore, eddy current loss does not increase even in the high frequency region of the gigahertz band, and excellent soft magnetic characteristics can be obtained.

また、本発明において、フェライトメッキは、膜を形成しようとする基体が前述した水溶液に対して耐性があれば何でも良い。更に、水溶液を介した反応であるため、温度が比較的低温(常温〜水溶液の沸点以下)でスピネル型フェライト膜を形成できるという特徴がある。そのため、他のフェライト膜作成技術に比べて、固体の限定範囲が小さい。このことは、即ち、フェライト膜を形成する基体が、有機化合物シート等々の耐熱温度が比較的低い物質でも良いことを示している。これは従来の薄膜インダクタの製造方法と比較して低コスト化が図れるばかりか、基体に有機化合物シート等を用いることにより基体の加工性に優れ、電子機器の軽量化、省スペース化に寄与できる。   In the present invention, the ferrite plating may be anything as long as the substrate on which the film is to be formed is resistant to the aforementioned aqueous solution. Further, since the reaction is via an aqueous solution, the spinel ferrite film can be formed at a relatively low temperature (normal temperature to the boiling point of the aqueous solution). Therefore, the limited range of solids is small compared to other ferrite film creation techniques. This indicates that the substrate on which the ferrite film is formed may be a substance having a relatively low heat resistant temperature such as an organic compound sheet. This not only reduces costs compared to conventional thin film inductor manufacturing methods, but also uses an organic compound sheet or the like for the substrate, which makes it possible to contribute to weight reduction and space saving of electronic devices. .

また、本発明においては、一方の溶液が供給された後供給された溶液除去され、他方の溶液が供給された後供給された溶液が除去される工程の繰り返しの例を示したが、二つの溶液は同時に供給されても構わない。 Further, in the present invention, an example in which the supplied solution is removed after one solution is supplied and the supplied solution is removed after the other solution is supplied is shown. Two solutions may be supplied simultaneously.

本発明において、柱状結晶の長軸a、短軸bの値は0.01μm以上である。その理由は、前記値が0.01μm以上を下回った場合、均質なフェライトメッキ膜が得られないからである。また、本発明において、長軸aの値は50μm以下であり、短軸bの値は1μm以下である。その理由は、長軸aの値が50μmを上回った場合、又は短軸bの値は1μm以下の場合に、得られるフェライトメッキ膜の実質的な機械的強度が低下するからである。なお、本発明の薄膜インダクタとして任意形状の磁性膜と同形状の導体層が一対であればよく、その形状は問わないことは勿論である。   In the present invention, the values of the major axis a and minor axis b of the columnar crystal are 0.01 μm or more. The reason is that a homogeneous ferrite plating film cannot be obtained when the value is less than 0.01 μm or more. In the present invention, the value of the major axis a is 50 μm or less, and the value of the minor axis b is 1 μm or less. The reason is that when the value of the major axis a exceeds 50 μm, or the value of the minor axis b is 1 μm or less, the substantial mechanical strength of the obtained ferrite plating film is lowered. The thin film inductor of the present invention may be any pair of conductor layers having the same shape as the magnetic film having an arbitrary shape, and the shape is of course not limited.

図1は本発明の実施の形態によるメッキ装置の概略図である。図1を参照すると、フェライト薄膜は基体4に形成される。基体4の一面に対向して第1、第2、及び第3のノズル1,2,3が配置されている。第1のノズル1は配管11を介して、反応液を貯蔵した第1のタンク5に接続されている。また、第2のノズル2は、メッキに必要な反応液、酸化液を除去するためのガスの導入口7を備えたガス導入管12に接続されている。第3のノズル3は配管を介して、酸化液を貯蔵した第2のタンク13に接続されている。前述したメッキ工程における反応液、酸化液の除去を効率よく行うために必要な液は幾つかに分けて準備する方が良い。尚、図1では、メッキに必要な液を二つに分けた場合を示している。   FIG. 1 is a schematic view of a plating apparatus according to an embodiment of the present invention. Referring to FIG. 1, the ferrite thin film is formed on the substrate 4. The first, second, and third nozzles 1, 2, and 3 are disposed so as to face one surface of the base 4. The first nozzle 1 is connected to a first tank 5 that stores a reaction liquid via a pipe 11. The second nozzle 2 is connected to a gas introduction pipe 12 having a gas introduction port 7 for removing a reaction solution and an oxidizing solution necessary for plating. The third nozzle 3 is connected via a pipe to a second tank 13 that stores the oxidizing solution. It is better to prepare several solutions necessary for efficiently removing the reaction solution and the oxidizing solution in the plating step described above. FIG. 1 shows a case where the liquid necessary for plating is divided into two.

第1及び第2のタンク5,6に夫々貯蔵された反応液及び酸化液等の溶液は、第1及び第3のノズル1、3を夫々介して基体4に供給される。また、導入口7から供給されたガスは、第2のノズル2を介して基体4に供給される。その際、例えば、第1のノズル1を介して基体4に溶液が供給された後、第2のノズル2を介してガスが基体に供給されることでノズル1を介して供給された溶液が除去され、第3のノズル3を介して基体4に溶液が供給された後、第2のノズル2を介してガスが基体に供給されることで、第3のノズル3を介して供給された溶液が除去されることを繰り返す。   The solutions such as the reaction solution and the oxidizing solution stored in the first and second tanks 5 and 6 are supplied to the substrate 4 through the first and third nozzles 1 and 3, respectively. Further, the gas supplied from the introduction port 7 is supplied to the base 4 through the second nozzle 2. At this time, for example, after the solution is supplied to the base 4 via the first nozzle 1, the gas supplied to the base via the second nozzle 2 causes the solution supplied via the nozzle 1 to be supplied. After the solution was removed and the solution was supplied to the substrate 4 via the third nozzle 3, the gas was supplied to the substrate via the second nozzle 2, so that the solution was supplied via the third nozzle 3. Repeat that the solution is removed.

図1においては、溶液、ガスが供給される第2のノズル2が基体4に対してなす角θ1、θ2、θ3が約90度である例を示したが、角度θ1、θ2、θ3は、夫々0〜180度の何れを選択しても構わない。   FIG. 1 shows an example in which the angles θ1, θ2, and θ3 formed by the second nozzle 2 supplied with the solution and gas with respect to the substrate 4 are about 90 degrees, but the angles θ1, θ2, and θ3 are Any of 0 to 180 degrees may be selected.

それでは、本発明の薄膜インダクタの製造の具体例について説明する。   Now, a specific example of manufacturing the thin film inductor of the present invention will be described.

(例1)
フェライト膜の作製は、以下の手順で行った。尚、単位l(リットル)の読み間違いを避けるために、リットルは大文字の「L」で示されている。
(Example 1)
The ferrite film was produced according to the following procedure. In order to avoid reading errors in the unit l (liter), the liter is indicated by a capital letter “L”.

図1に示す様な装置10の図示しない回転板の上にプラズマ処理により親水化処理をしたガラス板、ポリイミド基体を設置し反応液、酸化液の流量を30mL/分に調整した。その後、メッキ膜を形成する基体の温度を、ヒータを用いて90℃に調節した。また、メッキ装置には、窒素ガスを1.5L/分で供給して、非酸化性雰囲気を得た。反応液は、2種類準備した。脱酸素イオン交換水中にFeC1・4HO、NiC1・6HO、ZnCl、CoCl・6HOをそれぞれ3.3,1.3,0.03,0.1g/L溶かしたものを反応液Aとした。脱酸素イオン交換水中にFeCl・4HO、NiCl・6HO、ZnClをそれぞれ3.3,1.3,0.03g/L溶かしたものを反応液Bとした。 A glass plate hydrophilized by a plasma treatment and a polyimide substrate were placed on a rotating plate (not shown) of the apparatus 10 as shown in FIG. 1, and the flow rates of the reaction solution and the oxidizing solution were adjusted to 30 mL / min. Thereafter, the temperature of the substrate on which the plating film was formed was adjusted to 90 ° C. using a heater. Further, nitrogen gas was supplied to the plating apparatus at 1.5 L / min to obtain a non-oxidizing atmosphere. Two types of reaction solutions were prepared. In deoxygenated ion exchange water FeC1 2 · 4H 2 O, NiC1 2 · 6H 2 O, ZnCl 2, CoCl 2 · 6H 2 O were dissolved respectively 3.3,1.3,0.03,0.1g / L This was designated as reaction solution A. Reaction solution B was prepared by dissolving 3.3, 1.3, and 0.03 g / L of FeCl 2 .4H 2 O, NiCl 2 .6H 2 O, and ZnCl 2 in deoxygenated ion-exchanged water, respectively.

メッキ膜の形成は、反応液を0.5s供給した後、不活性ガスを供給して反応液を除去し、酸化剤を含む酸化液を0.5s供給した後、不活性ガスを供給して酸化液を除去することを1サイクルとして、500、5000、25000サイクル行った。   The plating film is formed by supplying a reaction solution for 0.5 s, then supplying an inert gas to remove the reaction solution, supplying an oxidizing solution containing an oxidizing agent for 0.5 s, and then supplying an inert gas. One cycle was to remove the oxidizing solution, and 500, 5000 and 25000 cycles were performed.

取り出したガラス基板の板上には反応液A、Bいずれを用いた場合にも黒色鏡面膜が形成されており、反応液Aを用いた場合はNi,Zn,Fe,Co,O、反応液Bを用いた場合はNi,Zn,Fe,Oからなるフェライトであることを確認した。反応液Aを用いた場合のフェライト膜中に含まれるCo量はモル比でCo/(Fe+Ni+Zn+Co)の値が0.03/3だった。作製したフェライト膜の磁化曲線を測定したところ、反応液A、反応液Bいずれの反応液を用いた場合も膜面内のいずれの方向でも磁化曲線はほぼ同じ形状であり、薄膜の面内方向で磁気的に等方的であるフェライト薄膜が得られた。さらに得られたフェライトメッキ膜に蒸着法により導電層を形成した。得られた膜の比抵抗、透磁率の実部(μ’)と虚部(μ”)を測定した。   A black mirror film is formed on the taken out glass substrate plate when either of the reaction liquids A and B is used. When the reaction liquid A is used, Ni, Zn, Fe, Co, O, and the reaction liquid are formed. When B was used, it was confirmed to be a ferrite composed of Ni, Zn, Fe, and O. When the reaction solution A was used, the amount of Co contained in the ferrite film was 0.03 / 3 as a molar ratio of Co / (Fe + Ni + Zn + Co). When the magnetization curve of the manufactured ferrite film was measured, the magnetization curve was almost the same in any direction in the film plane when using either the reaction liquid A or the reaction liquid B, and the in-plane direction of the thin film A ferrite thin film that is magnetically isotropic was obtained. Further, a conductive layer was formed on the obtained ferrite plating film by a vapor deposition method. The specific resistance and magnetic permeability real part (μ ′) and imaginary part (μ ″) of the obtained film were measured.

(比較例)
出発原料としてバリウムジピバロイルメタン(Ba(DPM)、DPM=C1119)、鉄アセチルアセトナート(Fe(acac)、acac=C)を用いた。また、基板としてガラス基体(比較品1)、ポリイミド(比較品2)を用いた。気化器にバリウムジピバロイルメタン、鉄アセチルアセトナートを入れ、それぞれを230℃、140℃に加熱保持した。次いで、反応チャンバー内を排気し、反応チャンバー1内を減圧状態(0.1Torr=13.3Pa)に保持した。反応ガスである酸素を流量50sccmで反応チャンバーに導入し、高周波コイルに13.56MHzのrf電力を400W供給してプラズマを発生させた。次いで、図示しない基板加熱ヒーターによって下地基板を490℃に加熱した。次いで,バリウムジピバロイルメタンの蒸気と鉄アセチルアセトナートの蒸気をキャリアガスである窒素とともに反応チャンバー内に導入した。そして、120分間反応させた結果、Si基板、ガラス基体上にBaフェライト薄膜が形成されていることを確認した。(ポリイミドは溶融し、不可)このようにして得られた試料膜No.1について、X線回折による解析を行い、結晶構造と配向性を調ベた。その結果、すべての膜はマグネトプラムバイト型結晶構造を有し、(001)面に高い配向性を示すことがわかた。走査型電子顕微鏡(SEM)観察から、膜厚は比較例1が8.3μm、比較例2が9.2μmであった。また化学分析により膜組成を調べた。その結果BaFe1219であった。
(Comparative example)
Barium dipivaloylmethane (Ba (DPM) 2 , DPM = C 11 H 19 O 2 ) and iron acetylacetonate (Fe (acac) 3 , acac = C 5 H 7 O 2 ) were used as starting materials. Further, a glass substrate (Comparative product 1) and polyimide (Comparative product 2) were used as substrates. Barium dipivaloylmethane and iron acetylacetonate were placed in a vaporizer and heated and maintained at 230 ° C. and 140 ° C., respectively. Next, the inside of the reaction chamber was evacuated, and the inside of the reaction chamber 1 was maintained in a reduced pressure state (0.1 Torr = 13.3 Pa). Oxygen as a reaction gas was introduced into the reaction chamber at a flow rate of 50 sccm, and plasma was generated by supplying 400 W of rf power of 13.56 MHz to the high-frequency coil. Next, the base substrate was heated to 490 ° C. by a substrate heater (not shown). Next, the vapor of barium dipivaloylmethane and the vapor of iron acetylacetonate were introduced into the reaction chamber together with nitrogen as the carrier gas. As a result of the reaction for 120 minutes, it was confirmed that a Ba ferrite thin film was formed on the Si substrate and the glass substrate. (Polyimide melts and cannot be used) Sample film No. obtained in this way 1 was analyzed by X-ray diffraction to examine the crystal structure and orientation. As a result, it was found that all the films had a magnetoplumbite type crystal structure and exhibited high orientation on the (001) plane. From observation with a scanning electron microscope (SEM), the film thickness was 8.3 μm in Comparative Example 1 and 9.2 μm in Comparative Example 2. The film composition was examined by chemical analysis. As a result, it was BaFe 12 O 19 .

さらに得られたフェライトメッキ膜に蒸着法により導層を形成した。得られた膜の比抵抗、透磁率の実部(μ’)を測定した。次の表1に本発明品である例1〜12と従来品である比較例1,2の比抵抗と透磁率の実部(μ’)を示す。 Further, a conductive layer was formed on the obtained ferrite plating film by a vapor deposition method. The specific resistance and the real part (μ ′) of the magnetic permeability of the obtained film were measured. The following Table 1 shows specific parts (μ ′) of specific resistance and magnetic permeability of Examples 1 to 12 which are products of the present invention and Comparative Examples 1 and 2 which are conventional products.

Figure 0004606724
Figure 0004606724

いずれの本発明品も従来品とくらべ高い比抵抗を有し、かつ、優れた軟磁気特性を示している。なお、本発明品において反応液Aを用いた方がμ’の値が高く、優れた特性を示した。   Each of the products of the present invention has a specific resistance higher than that of the conventional product and exhibits excellent soft magnetic properties. In the product of the present invention, the value of μ ′ was higher when the reaction solution A was used, and excellent characteristics were exhibited.

また、比較例2で示したように基体として有機化合物であるポリイミドを用いた場合、下地温度が490度と高く成膜不可であったが、本発明手段を用いることにより、いずれの条件下においても成膜可能であることがわかった。   In addition, as shown in Comparative Example 2, when polyimide, which is an organic compound, was used as the substrate, the substrate temperature was as high as 490 ° C., and film formation was not possible. It was also found that film formation was possible.

本発明に係るフェライト薄膜及びその製造方法、並びに薄膜インダクタ素子、および、その製造方法により得られたフェライト薄膜及び薄膜インダクタ素子は、ギガヘルツ帯の高周波領域において使用される電子部品,電気部品の薄膜インダクタ素子として最適である。   Ferrite thin film and manufacturing method thereof, thin film inductor element, and ferrite thin film and thin film inductor element obtained by the manufacturing method according to the present invention are thin film inductors for electronic parts and electric parts used in a high frequency region of gigahertz band. It is optimal as an element.

図1は本発明の実施の形態によるメッキ装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a plating apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 第1のノズル
2 第2のノズル
3 第3のノズル
4 基体
5 第1のタンク
6 第2のタンク
7 ガス導入口
DESCRIPTION OF SYMBOLS 1 1st nozzle 2 2nd nozzle 3 3rd nozzle 4 Base | substrate 5 1st tank 6 2nd tank 7 Gas inlet

Claims (4)

フェライトメッキ膜と、前記フェライトメッキ膜上に形成された導電層とを具備して構成される薄膜インダクタにおいて、前記フェライトメッキ膜は、結晶が柱状であり、柱状結晶の長軸aが0.01〜50μm、短軸bが0.01〜1μmであり、柱状結晶の長軸a、短軸bの比a/bが1〜100の範囲内であることを特徴とする薄膜インダクタ。 In a thin film inductor comprising a ferrite plating film and a conductive layer formed on the ferrite plating film, the ferrite plating film has a columnar crystal, and the long axis a of the columnar crystal is 0.01. A thin film inductor characterized in that the ratio a / b of the major axis a to the minor axis b of the columnar crystal is in the range of 1 to 100, ˜50 μm, the minor axis b is 0.01 to 1 μm. 請求項1に記載の薄膜インダクタにおいて、前記フェライトメッキ膜は任意形状であり、前記フェライトメッキ膜上に同形状の導体層を有することを特徴とする薄膜インダクタ。   2. The thin film inductor according to claim 1, wherein the ferrite plated film has an arbitrary shape, and a conductor layer having the same shape is provided on the ferrite plated film. 請求項1又は2に記載の薄膜インダクタにおいて、前記フェライトメッキ膜が、Ni、Zn、Fe、Coの内の少なくとも1種を含有する事を特徴とする薄膜インダクタ。   3. The thin film inductor according to claim 1, wherein the ferrite plating film contains at least one of Ni, Zn, Fe, and Co. 請求項1から3のいずれか一項に記載の薄膜インダクタを製造する方法であって、前記フェライトメッキ膜は少なくとも第一鉄イオンを含む反応液を基体に接触させる工程と、少なくとも酸化剤を含んだ酸化液を基体に接触させる工程と、前記反応液、酸化液の内フェライト膜生成に寄与しない残分を基体から除去する工程とを備えていることを特徴とする薄膜インダクタの製造方法。   4. The method of manufacturing a thin film inductor according to claim 1, wherein the ferrite plating film includes a step of bringing a reaction liquid containing at least ferrous ions into contact with a substrate, and at least an oxidizing agent. A method of manufacturing a thin-film inductor, comprising: a step of bringing an oxidizing solution into contact with a substrate; and a step of removing from the substrate a residue that does not contribute to the formation of a ferrite film in the reaction solution and the oxidizing solution.
JP2003374170A 2003-11-04 2003-11-04 Thin film inductor and manufacturing method thereof Expired - Lifetime JP4606724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374170A JP4606724B2 (en) 2003-11-04 2003-11-04 Thin film inductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374170A JP4606724B2 (en) 2003-11-04 2003-11-04 Thin film inductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005142199A JP2005142199A (en) 2005-06-02
JP4606724B2 true JP4606724B2 (en) 2011-01-05

Family

ID=34685966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374170A Expired - Lifetime JP4606724B2 (en) 2003-11-04 2003-11-04 Thin film inductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4606724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057182B2 (en) * 2011-07-15 2017-01-11 日本電気株式会社 LAMINATE FOR MAGNETIC ELEMENT, THERMOELECTRIC CONVERSION ELEMENT HAVING THE LAMINATE, AND METHOD FOR PRODUCING THE SAME

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222924A (en) * 1985-03-28 1986-10-03 Nippon Paint Co Ltd Method for forming ferrite film
JPH02116631A (en) * 1988-10-21 1990-05-01 Matsushita Electric Ind Co Ltd Formation of ferrite film
JPH0442513A (en) * 1990-06-08 1992-02-13 Matsushita Electric Ind Co Ltd Inductance component and manufacture thereof
JPH10223435A (en) * 1996-12-05 1998-08-21 Matsushita Electric Ind Co Ltd Magnetic thin film and magnetic device employing it
JPH1154331A (en) * 1997-08-05 1999-02-26 Taiyo Yuden Co Ltd Chip-type inductor array
JPH11121237A (en) * 1997-10-21 1999-04-30 Fuji Electric Co Ltd Planar magnetic element
JP2000100622A (en) * 1998-09-18 2000-04-07 Matsushita Electric Ind Co Ltd Magnetic thin film and magnetic head using the same
JP2003128420A (en) * 2001-10-18 2003-05-08 Minebea Co Ltd Method for producing ferrite thin film
JP2003267705A (en) * 2002-01-11 2003-09-25 Nippon Shokubai Co Ltd Metal oxide-deposited body and its production method
JP2005126776A (en) * 2003-10-24 2005-05-19 Nec Tokin Corp Ferrite film having columnar crystal and its production method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222924A (en) * 1985-03-28 1986-10-03 Nippon Paint Co Ltd Method for forming ferrite film
JPH02116631A (en) * 1988-10-21 1990-05-01 Matsushita Electric Ind Co Ltd Formation of ferrite film
JPH0442513A (en) * 1990-06-08 1992-02-13 Matsushita Electric Ind Co Ltd Inductance component and manufacture thereof
JPH10223435A (en) * 1996-12-05 1998-08-21 Matsushita Electric Ind Co Ltd Magnetic thin film and magnetic device employing it
JPH1154331A (en) * 1997-08-05 1999-02-26 Taiyo Yuden Co Ltd Chip-type inductor array
JPH11121237A (en) * 1997-10-21 1999-04-30 Fuji Electric Co Ltd Planar magnetic element
JP2000100622A (en) * 1998-09-18 2000-04-07 Matsushita Electric Ind Co Ltd Magnetic thin film and magnetic head using the same
JP2003128420A (en) * 2001-10-18 2003-05-08 Minebea Co Ltd Method for producing ferrite thin film
JP2003267705A (en) * 2002-01-11 2003-09-25 Nippon Shokubai Co Ltd Metal oxide-deposited body and its production method
JP2005126776A (en) * 2003-10-24 2005-05-19 Nec Tokin Corp Ferrite film having columnar crystal and its production method

Also Published As

Publication number Publication date
JP2005142199A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
Zhang et al. Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method
KR101648658B1 (en) Magnetic part, metal powder used therein and manufacturing method therefor
Ikeda et al. Multilayer nanogranular magnetic thin films for GHz applications
Kabbur et al. Magnetic interactions and electrical properties of Tb3+ substituted NiCuZn ferrites
JP2016063170A (en) Magnetic member, manufacturing method thereof, and inductor element
US20110027588A1 (en) Magnetic powder and method of manufacturing the same
CN111118464B (en) Preparation method and application of nanocrystalline high-entropy oxide film
Bando et al. Reactive condensation and magnetic properties of iron oxide films
US10937586B2 (en) Electromagnetic device having layered magnetic material components and methods for making same
Huili et al. Effect of sintering conditions on the structural, electrical, and magnetic properties of nanosized Co0. 2Ni0. 3Zn0. 5Fe2O4
Espejo et al. Magnetic and electrical characterization of nickel-rich NiFe thin films synthesized by atomic layer deposition and subsequent thermal reduction
Akbar et al. Role of precursor to solvent ratio in tuning the magnetization of iron oxide thin films–A sol-gel approach
KR100203525B1 (en) Soft magnetic alloy for high frrequency and flat magnetic element, antenna and radio wave absorber using the same
Johnson et al. Dense nanocrystalline yttrium iron garnet films formed at room temperature by aerosol deposition
Batool et al. Synthesis, characterization, dielectric and magnetic properties of substituted Y-type hexaferrites
KR20160140777A (en) Fe-co alloy powder, manufacturing method therefor, antenna, inductor, and emi filter
JP4606724B2 (en) Thin film inductor and manufacturing method thereof
Sultan et al. Magnetization and crystal structure of RF-sputtered nanocrystalline CuFe2O4 thin films
Riaz et al. Magnetic and magnetization properties of iron aluminum oxide thin films prepared by Sol-Gel
Sivabharathy et al. Partial correlation of optical, electrical and magnetic properties of nanosized Zn–Cr–La ferrite particles synthesized by sonochemical method
JP2000252121A (en) HIGH-FREQUENCY Co-BASED METALLIC AMORPHOUS MAGNETIC FILM, AND MAGNETIC ELEMENT, INDUCTOR AND TRANSFORMER USING THE SAME
JPWO2005027154A1 (en) Magnetic thin film for high frequency, its manufacturing method and magnetic element
JPWO2004061876A1 (en) Granular material, magnetic thin film, magnetic element
Frey et al. Microstructure and magnetism in barium strontium titanate (BSTO)–barium hexaferrite (BaM) multilayers
Sai et al. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Ref document number: 4606724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141015

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term