JP4606118B2 - Method for producing working electrode structure for iontophoresis device - Google Patents

Method for producing working electrode structure for iontophoresis device Download PDF

Info

Publication number
JP4606118B2
JP4606118B2 JP2004306912A JP2004306912A JP4606118B2 JP 4606118 B2 JP4606118 B2 JP 4606118B2 JP 2004306912 A JP2004306912 A JP 2004306912A JP 2004306912 A JP2004306912 A JP 2004306912A JP 4606118 B2 JP4606118 B2 JP 4606118B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
ion
drug
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004306912A
Other languages
Japanese (ja)
Other versions
JP2006116068A (en
Inventor
眞澄 長島
憲二 福田
勘治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2004306912A priority Critical patent/JP4606118B2/en
Publication of JP2006116068A publication Critical patent/JP2006116068A/en
Application granted granted Critical
Publication of JP4606118B2 publication Critical patent/JP4606118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)

Description

本発明は、生体に有用なイオン性の薬剤を電気泳動を利用して生体に浸透させるイオントフォレーシス(イオン浸透療法)において使用されるイオントフォレーシス用装置に用いる作用極構造体の製造方法に関する。   The present invention relates to the production of a working electrode structure for use in an iontophoresis device used in iontophoresis (ionosmosis therapy) in which an ionic drug useful for a living body is permeated into the living body using electrophoresis. Regarding the method.

生体に有用なイオン性の薬剤を電気泳動を利用して生体に浸透させるイオントフォレーシスは、イオン浸透療法、イオン導入法、などとも呼ばれ、無痛状態で所望の患部に所望量の薬剤を投与する方法として広く知られている。   Iontophoresis, in which an ionic drug useful for the living body is permeated into the living body using electrophoresis, is also called ion osmosis therapy, iontophoresis, and the like. It is widely known as a method of administration.

従来、イオントフォレーシスにおいては、イオン性の薬剤を含浸させた薬剤層(イオン性薬剤溶液保持部)を生体上に置き、薬剤層を挟んで生体と反対側に作用極を配し、薬剤層と離れた生体上に対極を置き、電源により作用極と対極の間に電流を流すことでイオン性の薬剤を生体に浸透させた。この方法においては、イオン性薬剤のみを、皮膚や粘膜などの生体界面を通して生体内に浸透させることを目的とする。しかしながら、このような電極においては、必ずしもイオン性薬剤が生体界面を通過するとは限らず、逆に、生体側からナトリウムカチオン、カリウムカチオン、塩化物アニオンなどが生体界面から薬剤層側に浸透する場合も少なくない。特に、生体に有用とされるイオン性薬剤は、上記のような生体内に存在するイオンに比べ、移動度が小さいため、通電した電気量に対し目的とする薬剤の投与効率(生体への浸透効率)が低いという問題があった。   Conventionally, in iontophoresis, a drug layer (ionic drug solution holding part) impregnated with an ionic drug is placed on the living body, and a working electrode is disposed on the opposite side of the living body across the drug layer. A counter electrode was placed on a living body separated from the layer, and an ionic drug was infiltrated into the living body by passing an electric current between the working electrode and the counter electrode by a power source. The purpose of this method is to allow only an ionic drug to penetrate into a living body through a living body interface such as skin or mucous membrane. However, in such an electrode, the ionic drug does not necessarily pass through the biological interface, and conversely, sodium cation, potassium cation, chloride anion, etc. penetrate from the biological interface to the drug layer side. Not a few. In particular, an ionic drug that is useful for a living body has a lower mobility than the ions existing in the living body as described above. There was a problem of low efficiency.

これらの欠点を解消するため、生体界面上にイオン交換膜を置き、該イオン交換膜を通して薬効イオンを生体に浸透させるイオントフォレーシスの新しい手法が提案されている(例えば、特許文献1〜7参照)。ここで提案されている新方式では、生体界面上に目的とする薬効イオンと同符号のイオンのみを透過させるイオン交換膜が配される。このため目的薬剤と反対符号を持つイオンが生体から滲出することを防ぐことができ、イオン交換膜を配さない場合に比して薬剤の高い投与効率が得られる。   In order to eliminate these drawbacks, a new method of iontophoresis has been proposed in which an ion exchange membrane is placed on the living body interface and medicinal ions permeate the living body through the ion exchange membrane (for example, Patent Documents 1 to 7). reference). In the new system proposed here, an ion exchange membrane that allows only ions having the same sign as the intended medicinal ions to pass through is disposed on the living body interface. For this reason, it is possible to prevent ions having a sign opposite to that of the target drug from exuding from the living body, and higher drug administration efficiency can be obtained as compared with the case where no ion exchange membrane is provided.

また、電極部分において、イオン性薬剤が分解されてしまったり、あるいはイオン性薬剤の溶剤として用いられている水が電気分解してHイオンやOHイオンが生成して、これが生体に作用して炎症などを起こすといった問題を解決するために、薬剤含有層と電極の間にイオン交換膜を配し、薬剤含有層に含まれるイオン性薬剤が電極と直接接しないようにしたり、あるいは電極で発生したHイオンやOHイオンが生体側に移動しないようにする手法も提案されている(例えば、特許文献3〜5、8参照)。 Further, at the electrode portion, the ionic drug is decomposed, or water used as a solvent for the ionic drug is electrolyzed to generate H + ions and OH ions, which act on the living body. In order to solve problems such as inflammation, an ion exchange membrane is arranged between the drug-containing layer and the electrode so that the ionic drug contained in the drug-containing layer is not in direct contact with the electrode. A method for preventing the generated H + ions and OH ions from moving toward the living body has also been proposed (see, for example, Patent Documents 3 to 5 and 8).

さらに上記HイオンやOHイオンによる炎症を防止するために、対極側にもイオン交換膜を配置する手法が提案されている(例えば、特許文献6、7参照)。 Furthermore, in order to prevent inflammation due to the H + ions and OH ions, a method of arranging an ion exchange membrane on the counter electrode side has been proposed (see, for example, Patent Documents 6 and 7).

特開平03−94771号公報Japanese Patent Laid-Open No. 03-94771 特表昭03−504343号公報JP-T03-504343 特開平04−297277号公報Japanese Patent Laid-Open No. 04-297277 特開2004−188188号公報JP 2004-188188 A 特開2004−202057号公報JP 2004-202057 A 特開2000−229128号公報JP 2000-229128 A 国際公開第03/037425号パンフレットInternational Publication No. 03/037425 Pamphlet 特表昭63−502404号公報JP-T 63-502404

上記のような、イオン交換膜を用いるイオントフォレーシスにおいては、薬剤投与効率を良好なものとするために、イオン交換膜と生体界面との接触効率、即ち密着性が良好な必要がある。   In iontophoresis using an ion exchange membrane as described above, in order to improve drug administration efficiency, the contact efficiency between the ion exchange membrane and the living body interface, that is, adhesion must be good.

ところが本発明者等の検討によれば、乾燥させたイオン交換膜を固定し、この上にイオン性薬剤溶液保持部を積層すると、薬剤投与のための通電中にイオン交換膜に皺や歪み(以下、変形)が生じてしまうことが明らかとなった。イオン交換膜にこのような変形が生じると、生体界面との密着性が低下してしまい、薬剤投与効率が低下してしまう。また、このような変形に起因してイオン交換膜が破れやすくなるなどの問題も生じる。   However, according to the study by the present inventors, when a dried ion exchange membrane is fixed and an ionic drug solution holding portion is laminated thereon, wrinkles or strains ( Hereinafter, it became clear that deformation) occurred. When such deformation occurs in the ion exchange membrane, the adhesion with the living body interface decreases, and the drug administration efficiency decreases. In addition, there arises a problem that the ion exchange membrane is easily broken due to such deformation.

従って本発明は、上記のような変形が発生せず、よって薬剤投与効率が良好で、また信頼性に優れるイオントフォレーシス装置用の作用極構造体の提供を目的とする。   Therefore, an object of the present invention is to provide a working electrode structure for an iontophoresis device that does not cause the above-described deformation, and thus has a high drug administration efficiency and excellent reliability.

本発明者等は、上記課題を解決すべく鋭意研究を行った。その結果、イオン交換膜を事前に薬剤溶液により湿潤させ、ついでこれと薬剤溶液を含有する物質とを接触させる順で作用極構造体を製造することにより上記通電時の変形の発生がなくなることを見出し、さらに検討を進めた結果、本発明を完成した。   The present inventors have conducted intensive research to solve the above problems. As a result, the ion exchange membrane is preliminarily moistened with the drug solution, and then the working electrode structure is manufactured in the order in which the ion exchange membrane is brought into contact with the substance containing the drug solution, thereby preventing the occurrence of deformation during the energization. The present invention was completed as a result of the heading and further examination.

即ち本発明は、電極、イオン性薬剤溶液保持部及び厚さ5〜150μmのイオン交換膜がこの順に積層されており、該イオン性薬剤溶液保持部に含まれる薬効イオンを、イオン交換膜を介した電気泳動により生体に投与するために用いるイオントフォレーシス装置用作用極構造体の製造方法において、前記イオン性薬剤溶液保持部とイオン交換膜とを積層するに先立ち、該イオン交換膜の有するイオン交換基の対イオンを前記薬効イオンにより置換しておく工程を含むことを特徴とするイオントフォレーシス装置用の作用極構造体の製造方法である。

That is, in the present invention, an electrode, an ionic drug solution holding part, and an ion exchange membrane having a thickness of 5 to 150 μm are laminated in this order, and medicinal ions contained in the ionic drug solution holding part are passed through the ion exchange membrane. In the method for producing a working electrode structure for an iontophoresis device used for administration to a living body by electrophoresis, the ion exchange membrane has a structure prior to stacking the ionic drug solution holding part and the ion exchange membrane. A method for producing a working electrode structure for an iontophoresis device, comprising a step of replacing a counter ion of an ion exchange group with the medicinal ions.

また他の発明は、上記作用極構造体の製造方法を用いたイオントフォレーシス装置の製造方法である。   Another invention is a method for manufacturing an iontophoresis device using the method for manufacturing a working electrode structure.

本発明の製造方法により得られるイオントフォレーシス装置用の作用極構造体を用いたイオントフォレーシス装置は、通電中のイオン交換膜の変形に伴う投与効率の低下を防止することができる。これにより、目的とする薬剤の安定投与が可能となり、また信頼性にも優れたイオントフォレーシス装置とでき極めて有用である。   The iontophoresis device using the working electrode structure for an iontophoresis device obtained by the production method of the present invention can prevent a decrease in administration efficiency due to deformation of the ion exchange membrane during energization. This makes it possible to stably administer the target drug and is an extremely useful iontophoresis device with excellent reliability.

以下、本発明を図面を参照して説明する。本発明におけるイオントフォレーシス装置は、代表的には図1に示すように、作用極構造体1、対極構造体2、およびこれらの構造体と電気的に結線された電源部3とから構成される。   The present invention will be described below with reference to the drawings. As shown in FIG. 1, the iontophoresis device according to the present invention typically includes a working electrode structure 1, a counter electrode structure 2, and a power supply unit 3 electrically connected to these structures. Is done.

作用極構造体1は、作用極となる電極4、イオン性の薬剤を含有するイオン性薬剤溶液保持部5、およびイオン交換膜6を含む構造体であり、当該イオン交換膜6は、投与する薬効イオンと同符号のイオンを選択的に透過させるイオン交換膜である。これらが図に示すように、電極、イオン性薬剤溶液保持部、イオン交換膜の順番に配置される。通常、これらは一つの外装材料(図示しない)の中に積層されてなり、イオン交換膜を生体界面上に配する向きにて使用される。また、投与する薬剤の分解を防ぎ、電極反応で薬剤含有層のpHが変化するのを防ぐため、電極と薬剤含有層の間にさらにイオン交換膜8が配置される場合もある。この場合、当該イオン交換膜8としては、一般に薬効イオンと反対符号のイオンを選択的に透過させるイオン交換膜が用いられる。   The working electrode structure 1 is a structure including an electrode 4 serving as a working electrode, an ionic drug solution holding unit 5 containing an ionic drug, and an ion exchange membrane 6. The ion exchange membrane 6 is administered. It is an ion exchange membrane that selectively transmits ions having the same sign as medicinal ions. As shown in the figure, the electrodes, the ionic drug solution holding part, and the ion exchange membrane are arranged in this order. Usually, these are laminated in one exterior material (not shown), and are used in the orientation in which the ion exchange membrane is arranged on the living body interface. Moreover, in order to prevent decomposition | disassembly of the chemical | medical agent to administer and to prevent that the pH of a chemical | medical agent containing layer changes by an electrode reaction, the ion exchange membrane 8 may be arrange | positioned further between an electrode and a chemical | medical agent containing layer. In this case, as the ion exchange membrane 8, generally used is an ion exchange membrane that selectively transmits ions having the opposite sign to the medicinal ions.

本発明の作用極構造体の製造方法においては、上記イオン交換膜6とイオン性薬剤溶液保持部5とを積層するに先立って、該イオン交換膜6の有するイオン交換基の対イオンを、イオン性薬剤溶液保持部5に含まれる薬効イオンで置換しておく。   In the method for producing a working electrode structure according to the present invention, prior to stacking the ion exchange membrane 6 and the ionic drug solution holding unit 5, the ion exchange group counterion of the ion exchange membrane 6 is ionized. Replacement with medicinal ions contained in the drug solution holding part 5 is performed.

本発明において、上記のような工程を経ることにより通電中のイオン交換膜の変形が防止できる理由は、イオン交換膜中のイオン交換基の対イオン(例えば、H、Na、あるいはOH、Cl等)と比べて薬効イオンのサイズが遥かに大きいため、通電を行なうとイオン交換によって膜が膨張してしまうのに対して、予めイオン交換を行っておくことにより、膜の膨張が抑制されるためであると推測される。 In the present invention, the reason why the ion exchange membrane can be prevented from being deformed through the steps as described above is that the counter ion of the ion exchange group in the ion exchange membrane (for example, H + , Na + , or OH , Cl −, etc.) is much larger in size than medicinal ions, and when energized, the membrane expands due to ion exchange, whereas by performing ion exchange in advance, the membrane expands. This is presumed to be suppressed.

イオン交換膜6の有するイオン交換基の対イオンを、薬効イオンで置換する方法は特に限定されるものではないが、好適には、該薬効イオンを含む溶液にイオン交換膜を浸漬する方法が挙げられる。薬効イオンを含む溶液中の薬効イオンの対イオンは、生体に対する為害性のないイオンであれば特に制限されるものではないが、イオン性薬剤溶液保持部に含有させるイオン性薬剤における対イオンと同種とすることが好ましい。また溶媒も生体に対する為害性がなく、薬効イオンを含む溶液を得ることができる溶媒であれば特に制限されるものではなく、通常は、水、エタノール等が使用される。   The method for substituting the counter ion of the ion exchange group of the ion exchange membrane 6 with a medicinal ion is not particularly limited, but a method of immersing the ion exchange membrane in a solution containing the medicinal ion is preferable. It is done. The counter ion of the medicinal ion in the solution containing the medicinal ion is not particularly limited as long as it is an ion that is not harmful to the living body, but is the same kind as the counter ion in the ionic drug contained in the ionic drug solution holding part. It is preferable that The solvent is not particularly limited as long as it is not harmful to the living body and can obtain a solution containing medicinal ions. Usually, water, ethanol or the like is used.

上記のように、浸漬により対イオンの置換を行う場合には、薬効イオン濃度が高いほど置換が早く、また確実に進む。イオン交換膜の厚さ、イオン性薬剤の種類等により異なるが、通常は、0.1〜300mmol/L、好ましくは1〜100mmol/L程度の溶液に、10分〜24時間程度浸漬しておけば充分である。また用いる溶液の量は、薬効イオンの絶対量(濃度×溶液量)が、浸漬を行うイオン交換膜の有するイオン交換基の量、即ち、浸漬したイオン交換膜の質量×イオン交換容量から算出される値の2倍以上、好ましくは5倍以上、より好ましくは10倍以上となるようにすればよい。   As described above, when substitution of counter ions is performed by immersion, the substitution is faster and more reliably as the medicinal ion concentration is higher. Although it varies depending on the thickness of the ion exchange membrane, the kind of the ionic agent, etc., it is usually immersed in a solution of about 0.1 to 300 mmol / L, preferably about 1 to 100 mmol / L for about 10 minutes to 24 hours. Is enough. In addition, the amount of the solution used is calculated from the absolute amount of medicinal ions (concentration × solution amount) from the amount of ion-exchange groups of the ion-exchange membrane to be immersed, that is, the mass of the ion-exchange membrane soaked × ion-exchange capacity The value may be set to be 2 times or more, preferably 5 times or more, more preferably 10 times or more.

対イオンの交換割合は、上記の如き所定の条件下でイオン交換させた膜から強酸又は強塩基により再度溶出させた薬効イオンの量を測定し、これとイオン交換膜の有するイオン交換基の量とを対比させることにより求めることができる。対イオンの交換割合はより高い方が好ましいが、必ずしも100%交換させる必要はなく、平均的な使用条件での通電中に変形が起こらないようにするためには、70%程度以上とすればよく、80%以上とすることが好ましく、90%以上とすることが特に好ましい。対イオンの交換割合が低い場合には、より高濃度の溶液を用いたり、より長時間浸漬するように浸漬条件を変更するとよい。   The exchange rate of counter ions is determined by measuring the amount of medicinal ions re-eluted with a strong acid or strong base from the membrane ion-exchanged under the predetermined conditions as described above, and the amount of ion-exchange groups possessed by the ion-exchange membrane. Can be obtained by comparing Although the exchange rate of the counter ion is preferably higher, it is not always necessary to exchange 100%. In order to prevent deformation during energization under the average use condition, it should be about 70% or more. It is preferably 80% or more, particularly preferably 90% or more. If the exchange rate of the counter ion is low, a higher concentration solution may be used, or the immersion conditions may be changed so as to be immersed for a longer time.

また上記浸漬に限らず、薬効イオンを含有する溶液を、筆やスプレーで塗布したり、イオン交換膜上に滴下したりして接触させてもよい。   In addition to the above immersion, a solution containing medicinal ions may be applied by brushing or spraying, or dropped on an ion exchange membrane.

本発明の製造方法では、上記のようにして得た、対イオンが薬効イオンに置換されたイオン交換膜をイオン性薬剤溶液保持部と接触させて積層する。なお該イオン交換膜は、対イオンの置換後に一旦乾燥させて用いてもよいが、乾燥させずに湿潤したままの状態でイオン性薬剤溶液保持部と積層させる工程に供することが好ましい。   In the production method of the present invention, the ion exchange membrane in which counter ions are substituted with medicinal ions obtained as described above is laminated in contact with the ionic drug solution holding part. The ion exchange membrane may be used after being dried once after substitution of the counter ion, but is preferably subjected to a step of laminating with the ionic drug solution holding portion in a wet state without being dried.

本発明における上記イオン性薬剤は、イオントフォレーシスによって投与可能な薬剤であれば特に限定されない。このような薬剤を具体的に例示すると、薬効イオンが正に帯電するイオン性薬剤では、塩酸プロカイン、塩酸リドカイン、塩酸ジブカインなどの麻酔剤、マイトマイシン、塩酸ブレオマイシンなどの抗悪性腫瘍剤、塩酸モルフィネなどの鎮痛剤、酢酸メドロキシプロゲステロンなどのステロイド類、ヒスタミンなどが挙げられ、一方、負に帯電するイオン性薬剤では、ビタミンB2、ビタミンB12、ビタミンC、ビタミンE、葉酸などのビタミン剤、アスピリン、イブプロフェンなどの抗炎症剤、デキサメタゾン系水溶性製剤などの副腎皮質ホルモン、ベンジルペニシリンカリウムなどの抗生物質などが挙げられる。   The ionic drug in the present invention is not particularly limited as long as it can be administered by iontophoresis. Specific examples of such drugs include ionic drugs with positively charged medicinal ions such as anesthetic agents such as procaine hydrochloride, lidocaine hydrochloride and dibucaine hydrochloride, antineoplastic agents such as mitomycin and bleomycin hydrochloride, and morphine hydrochloride. Steroids such as medroxyprogesterone acetate, histamine and the like, while negatively charged ionic drugs include vitamin B2, vitamin B12, vitamin C, vitamin E, vitamins such as folic acid, aspirin, Anti-inflammatory agents such as ibuprofen, corticosteroids such as dexamethasone-based water-soluble preparations, and antibiotics such as benzylpenicillin potassium.

このようなイオン性薬剤は固体であるため、生体への投与を可能とするために該薬剤が溶解可能な溶媒に溶解させる必要がある。該溶媒としては水が代表的であるが、必要に応じてエタノール等の有機溶媒を用いても良い。   Since such an ionic drug is a solid, it must be dissolved in a solvent in which the drug can be dissolved in order to enable administration to a living body. The solvent is typically water, but an organic solvent such as ethanol may be used as necessary.

上記イオン性薬剤溶液を含むイオン性薬剤溶液保持部を製造する方法としては、イオントフォレーシス用薬剤における当該方法として公知の方法が何ら制限なく採用できる。例えば、該薬剤溶液にポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ゼラチン等の非電離性の親水性高分子やコロイダルシリカ等の微粒子充填剤などを添加してペースト状やゲル状にする方法が挙げられる。また、他の方法としては、紙や綿布等の親水性のシート状あるいはフィルム状物質にイオン性薬剤溶液を染み込ませる方法も好適に採用できる。   As a method for producing the ionic drug solution holding part containing the ionic drug solution, any known method can be employed without any limitation as the method for iontophoresis. For example, a method of adding a non-ionizing hydrophilic polymer such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, gelatin or the like and a fine particle filler such as colloidal silica to the drug solution to form a paste or gel Is mentioned. Further, as another method, a method in which an ionic drug solution is soaked into a hydrophilic sheet-like or film-like substance such as paper or cotton cloth can be suitably employed.

対イオンが薬効イオンに置換されたイオン交換膜をイオン性薬剤保持部と積層する方法は特に限定されず、例えば、平面状に固定したイオン交換膜上に、上記のようなイオン性薬剤溶液を染み込ませたシートや板状に形成したゲルを配設したり、イオン性薬剤溶液を含むペーストを塗布したりする方法が挙げられる。このようにして得られるイオン交換膜とイオン性薬剤溶液保持部との積層体は、さらにその上に逆極性のイオン交換膜を設置して周縁部を封止、固定したり、電極等を配設した外装材料と積層させてこの外装材料に固定したりすればよい。   The method of laminating the ion exchange membrane in which the counter ion is replaced with the medicinal ion with the ionic drug holding part is not particularly limited. For example, the ionic drug solution as described above is placed on the ion exchange membrane fixed in a planar shape. Examples of the method include arranging a soaked sheet or a gel formed in a plate shape, or applying a paste containing an ionic drug solution. The laminated body of the ion exchange membrane and the ionic drug solution holding part thus obtained is further provided with an ion exchange membrane having a reverse polarity on it to seal and fix the peripheral part, or to arrange an electrode or the like. What is necessary is just to laminate | stack with the provided exterior material and to fix to this exterior material.

また、電極等を配設した外装材料等の内部にイオン性薬剤溶液を含むペーストやゲルを充填しておき、その上からイオン交換膜が該ゲルやペーストに密着するように設置し、その後、固定する方法も好適である。   In addition, the paste or gel containing the ionic drug solution is filled in the exterior material or the like in which the electrodes are disposed, and the ion exchange membrane is placed on the gel or paste so as to adhere to the gel or paste. A fixing method is also suitable.

このようにして得られる作用極構造体は、通常のイオントフォレーシス用の作用極構造体と同様にして使用でき、代表的には、前述した図1に示したようなイオントフォレーシス装置の一部として使用できる。   The working electrode structure thus obtained can be used in the same manner as a working electrode structure for ordinary iontophoresis. Typically, the iontophoresis device as shown in FIG. 1 is used. Can be used as part of

本発明の製造方法は、対イオンを前記薬効イオンにより置換されるイオン交換膜の厚さが薄いものを用いるほどその効果が大きい。即ち、膜厚の薄いイオン交換膜は、膜抵抗が低く、また薬効イオンの透過性も優れるが、一方で薄いために変形がおきやすいためである。   The effect of the production method of the present invention increases as the ion exchange membrane in which the counter ion is replaced by the medicinal ions is thinner. That is, an ion exchange membrane having a small film thickness has low membrane resistance and excellent medicinal ion permeability, but on the other hand, it is thin and easily deforms.

このような膜厚が薄く、よって膜抵抗が低く、また薬効イオンの透過性にも優れるイオン交換膜としては、その機械的強度にも優れる点で、多孔質フィルムを基材としたものが特に有用である。このような多孔質フィルムを基材とするイオン交換膜は、特開2004−188188号公報、特開2004−202057号公報等に開示されている。   As such an ion exchange membrane having a thin film thickness and thus low membrane resistance and excellent medicinal ion permeability, a porous film as a base material is particularly preferable because of its excellent mechanical strength. Useful. Such ion exchange membranes based on a porous film are disclosed in Japanese Patent Application Laid-Open Nos. 2004-188188 and 2004-202057.

即ち、厚さ5〜150μm、好ましくは10〜120μm、より好ましくは10〜70μmの熱可塑性樹脂製の多孔質フィルムの有する空隙部に、架橋型のイオン交換樹脂を充填した構造のイオン交換膜である。上記熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン樹脂が好ましい。また該多孔質フィルムとしては、薄くかつ強度に優れ、さらに電気抵抗も低いイオン交換膜としやすい点でバブルポイント法(JIS K 3832-1990)に準拠して測定される平均流孔径が、好ましくは0.005〜5.0μm、より好ましくは0.01〜2.0μm、最も好ましくは0.02〜0.2μmであるのがよい。同様に、多孔質フィルムの空隙率は、好ましくは20〜95%、より好ましくは30〜90%、最も好ましくは30〜60%であるのがよい
このような多孔質フィルムを基材とするイオン交換膜の製造方法を簡単に述べると、スチレン、α−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2,4−ジメチルスチレン、p−tert−ブチルスチレン、α−ハロゲン化スチレン、ビニルナフタレン等の陽イオン交換基が導入可能な単量体、又はスチレン、ビニルトルエン、クロロメチルスチレン、ビニルピリジン、ビニルイミダゾール、α−メチルスチレン、ビニルナフタレン等の陰イオン交換基が導入可能な官能基を有する単量体と、ジビニルベンゼン類、ジビニルスルホン、ブタジエン、クロロプレン、ジビニルビフェニル、トリビニルベンゼン等の架橋剤、及びオクタノイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシラウレート、t−ヘキシルパーオキシベンゾエート、ジ−t−ブチルパーオキシド等の重合開始剤との混合物からなる重合性組成物を調製し、この重合性組成物中に前記多孔質フィルムを浸漬させて、多孔質フィルムの有する空隙内に該重合性組成物を浸入させ、ついで、ポリエステルフィルム等の表面平滑なフィルムで両面を覆った状態で加熱等により重合させる。このようにして得られるイオン交換膜は、充分な強度と柔軟性の双方を有し、かつ薬剤投与効率も高い。
That is, an ion exchange membrane having a structure in which a void portion of a porous film made of a thermoplastic resin having a thickness of 5 to 150 μm, preferably 10 to 120 μm, more preferably 10 to 70 μm, is filled with a cross-linked ion exchange resin. is there. As said thermoplastic resin, polyolefin resin, such as polyethylene, a polypropylene, polybutene, is preferable. In addition, the porous film preferably has an average pore diameter measured in accordance with the bubble point method (JIS K 3832-1990) in that it is thin and excellent in strength and easy to form an ion exchange membrane with low electrical resistance. The thickness should be 0.005 to 5.0 μm, more preferably 0.01 to 2.0 μm, and most preferably 0.02 to 0.2 μm. Similarly, the porosity of the porous film is preferably 20 to 95%, more preferably 30 to 90%, and most preferably 30 to 60%. Ions based on such a porous film Briefly describing the method for producing the exchange membrane, styrene, α-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethylstyrene, p-tert-butylstyrene, α-halogenated styrene, vinylnaphthalene A monomer capable of introducing a cation exchange group such as styrene, vinyl toluene, chloromethyl styrene, vinyl pyridine, vinyl imidazole, α-methyl styrene, vinyl naphthalene and the like. A monomer having divinylbenzene, divinylsulfone, butadiene, chloroprene, divinylbiphenyl, Cross-linking agents such as trivinylbenzene, and octanoyl peroxide, lauroyl peroxide, t-butylperoxy-2-ethylhexanoate, benzoyl peroxide, t-butylperoxyisobutyrate, t-butylperoxylaur Preparing a polymerizable composition comprising a mixture with a polymerization initiator such as rate, t-hexylperoxybenzoate, di-t-butyl peroxide, and soaking the porous film in the polymerizable composition; The polymerizable composition is allowed to enter the voids of the porous film, and then polymerized by heating or the like with both surfaces covered with a smooth film such as a polyester film. The ion exchange membrane thus obtained has both sufficient strength and flexibility and high drug administration efficiency.

むろん本発明の製造方法は、上記のような方法で得られるイオン交換膜に限らず、他のイオントフォレーシス用として使用可能な如何なるイオン交換膜を用いたイオトンフォレーシス装置の製造方法に適用してもよい。   Of course, the production method of the present invention is not limited to the ion exchange membrane obtained by the method as described above, and a production method of an ioton foresis device using any ion exchange membrane that can be used for other iontophoresis. You may apply to.

また本発明の製造方法は、イオン交換膜の面積が大きい場合ほど有効性が高く、薬剤投与における有効面積が3cm以上の膜を用いる場合に適用することが好適であり、4cm以上の膜に適用することがより好適であり、5cm以上の膜に適用することが特に好適である。 The production method of the present invention is more effective when the area of the ion exchange membrane is larger, and is preferably applied when a membrane having an effective area for drug administration of 3 cm 2 or more is used, and a membrane of 4 cm 2 or more. It is more preferable to apply to a film of 5 cm 2 or more.

本発明を更に具体的に説明するため、以下、実施例及び比較例を掲げて説明するが、本発明はこれらの実施例に限定されるものではない。   In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples.

まず、試験に用いるイオン交換膜1〜7を以下の方法で作製した。   First, ion exchange membranes 1 to 7 used in the test were produced by the following method.

製造例1
イオン交換膜1の作製
クロロメチルスチレン380g、ジビニルベンゼン20g、t−ブチルパーオキシエチルヘキサノエート20gからなる単量体組成物を調製し、この単量体組成物420gを500mlのガラス容器に入れ、これに各20cm×20cmの多孔質フィルム(重量平均分子量25万のポリエチレン製、膜厚25μm、平均孔経0.03μm、空隙率37%)を大気圧下、25℃で10分浸漬し、この多孔質フィルムに単量体組成物を含浸させた。続いて、上記多孔質フィルムを単量体組成物中から取り出し、100μmのポリエステルフィルムでこの多孔質フィルムの両側を被覆した後、3kg/cmの窒素加圧下、80℃で5時間加熱重合した。次いで、得られた膜状物を30重量%トリメチルアミン10重量部、水5重量部、アセトン5重量部よりなるアミノ化浴中、室温で5時間反応せしめ4級アンモニウム型陰イオン交換膜を得た。得られたイオン交換膜は、3cm×4cmの大きさに切断(乾燥重量約0.03g)し、使用直前まで生理食塩水に浸漬し、乾燥を防止しておいた。
Production Example 1
Preparation of ion exchange membrane 1 A monomer composition comprising 380 g of chloromethylstyrene, 20 g of divinylbenzene, and 20 g of t-butylperoxyethylhexanoate was prepared, and 420 g of this monomer composition was placed in a 500 ml glass container. In this, a porous film of 20 cm × 20 cm (made of polyethylene having a weight average molecular weight of 250,000, a film thickness of 25 μm, an average pore size of 0.03 μm, a porosity of 37%) is immersed at 25 ° C. for 10 minutes under atmospheric pressure, This porous film was impregnated with the monomer composition. Subsequently, the porous film was taken out from the monomer composition, and both sides of the porous film were covered with a 100 μm polyester film, and then heated and polymerized at 80 ° C. for 5 hours under a nitrogen pressure of 3 kg / cm 2 . . Next, the obtained membrane was reacted at room temperature for 5 hours in an amination bath consisting of 10 parts by weight of 30% by weight trimethylamine, 5 parts by weight of water and 5 parts by weight of acetone to obtain a quaternary ammonium type anion exchange membrane. . The obtained ion exchange membrane was cut into a size of 3 cm × 4 cm (dry weight: about 0.03 g) and immersed in physiological saline until just before use to prevent drying.

製造例2〜5
イオン交換膜2〜5の作製
単量体組成物、及び多孔質フィルムを表1に示した組成に代えた以外は製造例1の場合と同様の方法で陰イオン交換膜を作製した。
Production Examples 2-5
Production of Ion Exchange Membranes 2-5 Anion exchange membranes were produced in the same manner as in Production Example 1 except that the monomer composition and the porous film were replaced with the compositions shown in Table 1.

製造例6
イオン交換膜6の作製
N,N−ジメチルアミノエチルメタクリレート・メチルクロライド塩244g、ノナエチレングリコールジメタクリレート28g、ヒドロキシエチルメタクリレート128g、t−ブチルパーオキシエチルヘキサノエート12gからなる単量体組成物を調製し、この単量体組成物400gを500mlのガラス容器に入れ、これに各12cm×13cmの多孔質フィルム(重量平均分子量25万のポリエチレン製、膜厚25μm、平均孔径0.03μm、空隙率37%)を大気圧下、25℃で10分浸漬し、この多孔質フィルムに単量体組成物を含浸させた。続いて、上記多孔質フィルムを単量体組成物中から取り出し、100μmのポリエステルフィルムでこの多孔質フィルムの両側を被覆した後、3kg/cmの窒素加圧下、70℃で2時間、次いで90℃で3時間加熱重合して4級アンモニウム型陰イオン交換膜を得た。
Production Example 6
Preparation of Ion Exchange Membrane 6 A monomer composition comprising 244 g of N, N-dimethylaminoethyl methacrylate / methyl chloride salt, 28 g of nonaethylene glycol dimethacrylate, 128 g of hydroxyethyl methacrylate, and 12 g of t-butylperoxyethyl hexanoate 400 g of this monomer composition was placed in a 500 ml glass container, and each 12 cm × 13 cm porous film (made of polyethylene having a weight average molecular weight of 250,000, film thickness of 25 μm, average pore diameter of 0.03 μm, porosity) 37%) was immersed at 25 ° C. for 10 minutes under atmospheric pressure, and the porous film was impregnated with the monomer composition. Subsequently, the porous film was taken out of the monomer composition, and both sides of the porous film were covered with a 100 μm polyester film, and then nitrogen pressure of 3 kg / cm 2 was applied at 70 ° C. for 2 hours, and then 90 A quaternary ammonium type anion exchange membrane was obtained by heat polymerization at 0 ° C. for 3 hours.

得られた陰イオン交換膜のイオン交換容量、含水率、膜抵抗、膜厚を測定した。結果を表1に示した。   The ion exchange capacity, water content, membrane resistance, and film thickness of the obtained anion exchange membrane were measured. The results are shown in Table 1.

製造例7
イオン交換膜7の作製
スチレン360g、ジビニルベンゼン40g、t−ブチルパーオキシエチルヘキサノエート20gからなる単量体組成物を調製し、イオン交換膜1の場合と同様にして多孔質フィルムに含浸させた。続いて、上記多孔質フィルムを単量体組成物中から取り出し、100μmのポリエステルフィルムで多孔質フィルムの両側を被覆した後、3kg/cmの窒素加圧下、80℃で5時間加熱重合した。次いで、得られた膜状物を98%濃硫酸と純度90%以上のクロロスルホン酸の1:1混合物中に40℃で45分間浸漬し、スルホン酸型陽イオン交換膜を得た。
Production Example 7
Preparation of ion exchange membrane 7 A monomer composition comprising 360 g of styrene, 40 g of divinylbenzene, and 20 g of t-butyl peroxyethyl hexanoate was prepared, and impregnated into the porous film in the same manner as in the case of the ion exchange membrane 1. It was. Subsequently, the porous film was taken out from the monomer composition, and both sides of the porous film were covered with a 100 μm polyester film, and then heated and polymerized at 80 ° C. for 5 hours under a nitrogen pressure of 3 kg / cm 2 . Next, the obtained membrane was immersed in a 1: 1 mixture of 98% concentrated sulfuric acid and chlorosulfonic acid having a purity of 90% or more at 40 ° C. for 45 minutes to obtain a sulfonic acid type cation exchange membrane.

製造例8
イオン交換膜8の作製
単量体組成物を表1に示した組成に代えた以外はイオン交換膜7と同様の方法で陽イオン交換膜を作製した。
Production Example 8
Production of Ion Exchange Membrane 8 A cation exchange membrane was produced in the same manner as the ion exchange membrane 7 except that the monomer composition was changed to the composition shown in Table 1.

得られたイオン交換膜の膜物性を以下の方法で測定した。結果は表1に併せて示した。   The membrane physical properties of the obtained ion exchange membrane were measured by the following method. The results are shown in Table 1.

Figure 0004606118
Figure 0004606118

(1)イオン交換容量および含水率;
イオン交換膜を1mol/LのHCl水溶液に10時間以上浸漬する。
(1) ion exchange capacity and moisture content;
The ion exchange membrane is immersed in a 1 mol / L HCl aqueous solution for 10 hours or more.

その後、陽イオン交換膜の場合には、1mol/LのNaCl水溶液で水素イオン型をナトリウムイオン型に置換させ、遊離した水素イオンを水酸化ナトリウム水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。一方、陰イオン交換膜の場合には、1mol/LのNaNO水溶液で塩化物イオン型を硝酸イオン型に置換させ、遊離した塩化物イオンを硝酸銀水溶液を用いて電位差滴定装置(COMTITE−900、平沼産業株式会社製)で定量した(Amol)。 Thereafter, in the case of a cation exchange membrane, the hydrogen ion type is replaced with a sodium ion type with a 1 mol / L NaCl aqueous solution, and the liberated hydrogen ions are converted into a potentiometric titrator (COMMITE-900, Hiranuma using a sodium hydroxide aqueous solution). (Amol). On the other hand, in the case of an anion exchange membrane, a chloride ion type is replaced with a nitrate ion type with 1 mol / L NaNO 3 aqueous solution, and the liberated chloride ion is converted into a potentiometric titrator (COMMITITE-900, (Amol).

次に、同じイオン交換膜を1mol/LのHCl水溶液に4時間以上浸漬し、イオン交換水で十分水洗した後膜を取り出しティッシュぺーパー等で表面の水分を拭き取り湿潤時の重さ(Wg)を測定した。次に膜を60℃で5時間減圧乾燥させその重量を測定した(Dg)。上記測定値に基づいて、イオン交換容量は次式により求めた。   Next, the same ion exchange membrane is immersed in a 1 mol / L HCl aqueous solution for 4 hours or more, washed thoroughly with ion exchange water, and then the membrane is taken out. The surface moisture is wiped off with a tissue paper or the like (Wg). Was measured. Next, the membrane was dried under reduced pressure at 60 ° C. for 5 hours, and its weight was measured (Dg). Based on the measured value, the ion exchange capacity was determined by the following equation.

イオン交換容量=A×1000/W[mmol/g−乾燥重量]
含水率=100×(W−D)/D[%]
(2)膜抵抗;
白金黒電極を備えた2室セル中にイオン交換膜を挟み、イオン交換膜の両側に3mol/L硫酸水溶液を満たし、交流ブリッジ(周波数1000サイクル/秒)により25℃における電極間の抵抗を測定し、該電極間の抵抗とイオン交換膜を設置しない場合の該電極間の抵抗の差により求めた。上記測定に使用する膜は、あらかじめ3mol/L硫酸水溶液中で平衡にしたものを用いた。
Ion exchange capacity = A × 1000 / W [mmol / g-dry weight]
Moisture content = 100 × (WD) / D [%]
(2) membrane resistance;
An ion exchange membrane is sandwiched in a two-chamber cell equipped with a platinum black electrode, 3 mol / L sulfuric acid aqueous solution is filled on both sides of the ion exchange membrane, and the resistance between the electrodes at 25 ° C. is measured by an AC bridge (frequency 1000 cycles / second). The difference between the resistance between the electrodes and the resistance between the electrodes when no ion exchange membrane was installed was obtained. The membrane used for the above measurement was previously equilibrated in a 3 mol / L sulfuric acid aqueous solution.

実施例1
生理食塩水中から取り出した3cm×4cmのイオン交換膜1の表面をティッシュペーパーでぬぐって水気を軽く除いた。これを25mlのアスコルビン酸リン酸エステルマグネシウム塩の100mmol/L水溶液に25℃で24時間浸漬し、イオン交換膜に薬剤イオン(アスコルビン酸リン酸エステルイオン)を含浸させた。この膜と薬剤の電極への到達を防ぐイオン交換膜(イオン交換膜7)を用いて図2に示す作用極構造体を作製した。なお皮膚とイオン交換膜との接触面積が6cm(2cm×3cm)となるように規定した。薬液室にアスコルビン酸リン酸エステルマグネシウム塩の10mmol/Lの水溶液、電極室には0.1mol/L乳酸ナトリウム水溶液を満たした。この作用極構造体と電源および対極構造体を図2に示すように接続し、ミニブタ(Yucatan Micropig、5ヶ月齢、メス)の背部皮膚に固定した。仮想皮膚室には、0.9重量%の塩化ナトリウム水溶液を満たした。次いで、仮想皮膚室を攪拌しながら、25℃で0.5mA/cmの定電流密度で1時間通電し、通電終了後、直ちに仮想皮膚室の液を抜き取って液体クロマトグラフィーにて薬剤量を測定した。同様の操作を通電を行わずに実施してブランク値を測定し、通電した場合の薬剤量との差を計算して薬剤透過量とした。また、通電終了後、作用極構造体をミニブタ皮膚から外し、イオン交換膜の変形の様子を目視で評価した。結果を表2に示した。
Example 1
The surface of the 3 cm × 4 cm ion exchange membrane 1 taken out from the physiological saline was wiped with a tissue paper to lightly remove moisture. This was immersed in 25 ml of a 100 mmol / L aqueous solution of ascorbic acid phosphate magnesium salt at 25 ° C. for 24 hours, and the ion exchange membrane was impregnated with drug ions (ascorbic acid phosphate ions). A working electrode structure shown in FIG. 2 was prepared using this membrane and an ion exchange membrane (ion exchange membrane 7) that prevents the drug from reaching the electrode. The contact area between the skin and the ion exchange membrane was specified to be 6 cm 2 (2 cm × 3 cm). The chemical chamber was filled with a 10 mmol / L aqueous solution of magnesium ascorbate phosphate, and the electrode chamber was filled with a 0.1 mol / L sodium lactate aqueous solution. The working electrode structure, the power source and the counter electrode structure were connected as shown in FIG. 2 and fixed to the back skin of a minipig (Yucatan Micropig, 5 months old, female). The virtual skin chamber was filled with 0.9% by weight sodium chloride aqueous solution. Next, while stirring the virtual skin chamber, it was energized for 1 hour at a constant current density of 0.5 mA / cm 2 at 25 ° C. After the energization was completed, the liquid in the virtual skin chamber was immediately removed and the drug amount was measured by liquid chromatography. It was measured. The same operation was performed without energization, the blank value was measured, and the difference from the amount of drug when energized was calculated as the drug permeation amount. Further, after the energization was completed, the working electrode structure was removed from the mini-pig skin, and the state of deformation of the ion exchange membrane was visually evaluated. The results are shown in Table 2.

比較例1
実施例1において、イオン交換膜1をアスコルビン酸リン酸エステルマグネシウム塩水溶液に24時間浸漬して薬剤イオンを含浸させる工程を行わなかった以外は、同様の操作を行い評価を行った。結果を表2に示した。
Comparative Example 1
In Example 1, evaluation was performed by performing the same operations except that the step of immersing the ion exchange membrane 1 in an aqueous solution of magnesium ascorbate phosphate for 24 hours to impregnate the drug ions was not performed. The results are shown in Table 2.

Figure 0004606118
Figure 0004606118

実施例2
実施例1と同様にして、アスコルビン酸リン酸エステルイオン)を含浸させたイオン交換膜1を得た。
Example 2
In the same manner as in Example 1, an ion exchange membrane 1 impregnated with ascorbic acid phosphate ester ions) was obtained.

この膜とミニブタの背部皮膚、保護イオン交換膜(イオン交換膜7)を用いて図3に示すようなセルを組んだ。なおイオン交換膜の有効面積は6cm(2cm×3cm)となるように規定した。薬液室にアスコルビン酸リン酸エステルマグネシウム塩の10mmol/Lの水溶液を満たし、仮想皮膚室には、0.9重量%の塩化ナトリウム水溶液、2つの電極室には0.1mol/L乳酸ナトリウム水溶液を満たした。次いで、薬液室と仮想皮膚室を攪拌しながら、25℃で0.5mA/cmの定電流密度で1時間通電し、通電終了後、直ちに仮想皮膚室の液を抜き取って液体クロマトグラフィーにて薬剤量を測定した。同様の操作を通電を行わずに実施してブランク値を測定し、通電した場合の薬剤量との差を計算して薬剤透過量とした。また、通電終了時の膜とミニブタ皮膚との接触の様子を目視で評価した。結果を表3に示した。 A cell as shown in FIG. 3 was assembled using this membrane, the back skin of a minipig, and a protective ion exchange membrane (ion exchange membrane 7). The effective area of the ion exchange membrane was specified to be 6 cm 2 (2 cm × 3 cm). The chemical chamber is filled with 10 mmol / L aqueous solution of ascorbic acid phosphate magnesium salt, the virtual skin chamber is filled with 0.9 wt% sodium chloride aqueous solution, and the two electrode chambers are filled with 0.1 mol / L sodium lactate aqueous solution. Satisfied. Next, while stirring the chemical chamber and the virtual skin chamber, energization was performed for 1 hour at a constant current density of 0.5 mA / cm 2 at 25 ° C. After the energization was completed, the liquid in the virtual skin chamber was immediately extracted and subjected to liquid chromatography. The amount of drug was measured. The same operation was performed without energization, the blank value was measured, and the difference from the amount of drug when energized was calculated as the drug permeation amount. Further, the state of contact between the membrane at the end of energization and the minipig skin was visually evaluated. The results are shown in Table 3.

比較例2
実施例2において、イオン交換膜1をアスコルビン酸リン酸エステルマグネシウム塩水溶液に24時間浸漬して薬剤イオンを含浸させる工程を行わなかった以外は、同様の操作を行い評価を行った。結果を表3に示した。
Comparative Example 2
In Example 2, the same operation was performed and evaluated except that the step of immersing the ion exchange membrane 1 in an aqueous solution of ascorbic acid phosphate magnesium salt for 24 hours and impregnating the drug ions was not performed. The results are shown in Table 3.

実施例3〜7
イオン交換膜1に代えてイオン交換膜2〜6を用いた以外は、実施例2と同様にして薬剤透過量を測定し、膜とミニブタ皮膚の接触の様子を評価した。結果を表3に示した。
Examples 3-7
Except that the ion exchange membranes 2 to 6 were used in place of the ion exchange membrane 1, the amount of drug permeation was measured in the same manner as in Example 2, and the state of contact between the membrane and the minipig skin was evaluated. The results are shown in Table 3.

比較例3〜7
イオン交換膜1に代えてイオン交換膜2〜6を用いた以外は、比較例2と同様にして薬剤透過量を測定し、膜とミニブタ皮膚の接触の様子を評価した。結果を表3に示した。
Comparative Examples 3-7
The amount of drug permeation was measured in the same manner as in Comparative Example 2 except that ion exchange membranes 2 to 6 were used in place of the ion exchange membrane 1, and the state of contact between the membrane and minipig skin was evaluated. The results are shown in Table 3.

Figure 0004606118
Figure 0004606118

実施例8
皮膚と接触させるイオン交換膜として、イオン交換膜1に代えてイオン交換膜7を用い、アスコルビン酸リン酸エステルマグネシウム塩水溶液に代えてリドカイン塩酸塩水溶液を用い、さらに保護イオン交換膜としてイオン交換膜1を用いた以外は、実施例2と同様にして薬剤透過量を測定し、膜とミニブタ皮膚の接触の様子を評価した。結果を表4に示した。なお、リドカイン塩酸塩水溶液の濃度も、実施例2と同様、セルを組む前のイオン交換膜浸漬時には100mmol/L、薬剤透過試験時には10mmol/Lである。
Example 8
As the ion exchange membrane to be brought into contact with the skin, the ion exchange membrane 7 is used instead of the ion exchange membrane 1, the lidocaine hydrochloride aqueous solution is used instead of the ascorbic acid phosphate magnesium aqueous solution, and the ion exchange membrane is further used as a protective ion exchange membrane. Except for using 1, the amount of drug permeation was measured in the same manner as in Example 2, and the state of contact between the membrane and the minipig skin was evaluated. The results are shown in Table 4. The concentration of the lidocaine hydrochloride aqueous solution is 100 mmol / L at the time of immersion in the ion exchange membrane before assembling the cell and 10 mmol / L at the time of the drug permeation test, as in Example 2.

実施例9
皮膚と接触させるイオン交換膜として、イオン交換膜7に代えてイオン交換膜8を用いた以外は、実施例8と同様にして、同様にして薬剤透過量を測定し、膜とミニブタ皮膚の接触の様子を評価した。結果を表4に示した。
Example 9
The amount of drug permeation was measured in the same manner as in Example 8 except that an ion exchange membrane 8 was used instead of the ion exchange membrane 7 as the ion exchange membrane to be brought into contact with the skin, and the amount of drug permeation was measured in the same manner. Was evaluated. The results are shown in Table 4.

比較例8
実施例8において、イオン交換膜7をリドカイン塩酸塩の100mmol/L水溶液に24時間浸漬して薬剤イオンを含浸させる工程を行わなかった以外は、同様の操作を行い評価を行った。結果を表4に示した。
Comparative Example 8
In Example 8, evaluation was performed by performing the same operations except that the step of immersing the ion exchange membrane 7 in a 100 mmol / L aqueous solution of lidocaine hydrochloride for 24 hours and impregnating the drug ions was not performed. The results are shown in Table 4.

比較例9
イオン交換膜7に代えてイオン交換膜8を用いた以外は、比較例8と同様にして薬剤透過量を測定し、膜とミニブタ皮膚の接触の様子を評価した。結果を表4に示した。
Comparative Example 9
Except for using the ion exchange membrane 8 in place of the ion exchange membrane 7, the amount of drug permeation was measured in the same manner as in Comparative Example 8, and the state of contact between the membrane and the minipig skin was evaluated. The results are shown in Table 4.

Figure 0004606118
Figure 0004606118

実施例10〜12、比較例10〜12
アスコルビン酸リン酸エステルマグネシウム塩に代えて表5に示すイオン性薬剤を用いた以外は、実施例2(各実施例)又は比較例2(各比較例)と同様に評価を行った。結果を表5に併せて示す。
Examples 10-12, Comparative Examples 10-12
Evaluation was performed in the same manner as in Example 2 (each example) or Comparative example 2 (each comparative example) except that the ionic chemicals shown in Table 5 were used instead of the ascorbic acid phosphate magnesium salt. The results are also shown in Table 5.

Figure 0004606118
Figure 0004606118

以上のように、皮膚と接触させるイオン交換膜を予め薬剤溶液に浸漬してイオン交換を行わせなかったイオントフォレーシスでは、通電中に膜に皺が発生するなど変形し、薬剤透過量が少ないのに対し、本発明の方法で製造した場合には通電中の変形が無く、高い薬剤透過量を得ることができる。   As described above, in iontophoresis in which the ion exchange membrane to be brought into contact with the skin is preliminarily immersed in the drug solution and ion exchange is not performed, deformation occurs such as wrinkles on the membrane during energization, and the drug permeation amount is On the other hand, when manufactured by the method of the present invention, there is no deformation during energization and a high drug permeation amount can be obtained.

本発明のイオントフォレーシス用装置の代表的な構成を示す模式図。The schematic diagram which shows the typical structure of the apparatus for iontophoresis of this invention. 実施例1、比較例1において、作用極構造体のイオン交換膜の変形と薬剤透過量を評価するために用いた装置の模式図。The schematic diagram of the apparatus used in Example 1 and the comparative example 1 in order to evaluate the deformation | transformation of the ion exchange membrane of a working electrode structure, and chemical | medical agent permeation amount. 実施例2〜12、比較例2〜12において、イオン交換膜の変形と薬剤透過量とを評価するために用いた他の装置の模式図。In Examples 2-12 and Comparative Examples 2-12, the schematic diagram of the other apparatus used in order to evaluate the deformation | transformation and chemical | medical agent permeation amount of an ion exchange membrane.

符号の説明Explanation of symbols

1:作用極構造体
2:対極構造体
3:電源部
4,4’:電極
5:イオン性薬剤溶液保持部
6:イオン交換膜
7:生体表面(界面)
8:イオン交換膜
9:電解質含有部
10:イオン交換膜
1: Working electrode structure 2: Counter electrode structure 3: Power supply unit 4, 4 ′: Electrode 5: Ionic drug solution holding unit 6: Ion exchange membrane 7: Living body surface (interface)
8: Ion exchange membrane 9: Electrolyte containing part 10: Ion exchange membrane

Claims (2)

電極、イオン性薬剤溶液保持部及び厚さ5〜150μmのイオン交換膜がこの順に積層されており、該イオン性薬剤溶液保持部に含まれる薬効イオンを、イオン交換膜を介した電気泳動により生体に投与するために用いるイオントフォレーシス装置用作用極構造体の製造方法において、前記イオン性薬剤溶液保持部とイオン交換膜とを積層するに先立ち、該イオン交換膜の有するイオン交換基の対イオンを前記薬効イオンにより置換する工程を含むことを特徴とするイオントフォレーシス装置用の作用極構造体の製造方法。 An electrode, an ionic drug solution holding part, and an ion exchange membrane having a thickness of 5 to 150 μm are laminated in this order, and the medicinal ions contained in the ionic drug solution holding part are biologically dispersed by electrophoresis through the ion exchange membrane. In the method for producing a working electrode structure for an iontophoresis device used for administration to an iontophoresis device, prior to laminating the ionic drug solution holding part and the ion exchange membrane, a pair of ion exchange groups possessed by the ion exchange membrane The manufacturing method of the working electrode structure for iontophoresis apparatuses characterized by including the process of replacing ion with the said medicinal ion. 請求項1記載のイオントフォレーシス装置用作用極構造体の製造方法をその工程に含む、イオントフォレーシス装置の製造方法。   The manufacturing method of the iontophoresis apparatus which includes the manufacturing method of the working electrode structure for iontophoresis apparatuses of Claim 1 in the process.
JP2004306912A 2004-10-21 2004-10-21 Method for producing working electrode structure for iontophoresis device Expired - Fee Related JP4606118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306912A JP4606118B2 (en) 2004-10-21 2004-10-21 Method for producing working electrode structure for iontophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306912A JP4606118B2 (en) 2004-10-21 2004-10-21 Method for producing working electrode structure for iontophoresis device

Publications (2)

Publication Number Publication Date
JP2006116068A JP2006116068A (en) 2006-05-11
JP4606118B2 true JP4606118B2 (en) 2011-01-05

Family

ID=36534502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306912A Expired - Fee Related JP4606118B2 (en) 2004-10-21 2004-10-21 Method for producing working electrode structure for iontophoresis device

Country Status (1)

Country Link
JP (1) JP4606118B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000463A (en) * 2006-06-23 2008-01-10 Transcutaneous Technologies Inc Iontophoresis apparatus
JP2008173180A (en) * 2007-01-16 2008-07-31 Transcu Ltd Iontophoresis apparatus and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511664A (en) * 1994-04-08 1997-11-25 アルザ・コーポレーション Electrotransport system with enhanced drug delivery
JP2004188188A (en) * 2002-11-27 2004-07-08 Tokuyama Corp Device for iontophoresis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721318A (en) * 1980-07-14 1982-02-04 Nitto Electric Ind Co Ltd Plaster
US4915685A (en) * 1986-03-19 1990-04-10 Petelenz Tomasz J Methods and apparatus for iontophoresis application of medicaments at a controlled ph through ion exchange

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511664A (en) * 1994-04-08 1997-11-25 アルザ・コーポレーション Electrotransport system with enhanced drug delivery
JP2004188188A (en) * 2002-11-27 2004-07-08 Tokuyama Corp Device for iontophoresis

Also Published As

Publication number Publication date
JP2006116068A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
EP1649891B1 (en) Working electrode assembly for iontophoresis and iontophoresis device
CN108601935B (en) Device for mounting on a mask, mask and kit comprising such a device
JP4731931B2 (en) Iontophoresis device
WO2005115534A1 (en) Iontophoresis apparatus
US7734339B2 (en) Iontophoresis apparatus
JP2004188188A (en) Device for iontophoresis
Kwon et al. Drug release from electric current sensitive polymers
US7479132B2 (en) Patch material for ionic medicine administration
WO2006112254A1 (en) External preparation, method of applying external preparation, iontophoresis device and transdermal patch
WO2007037324A1 (en) Dry electrode construct for iontophoresis
JP4606118B2 (en) Method for producing working electrode structure for iontophoresis device
JP4312085B2 (en) Patch for ionic drug administration
KR20190005061A (en) Device mounted on mask pack comprising whitening agents, mask pack and kit comprising the same
US20090124957A1 (en) Method of Producing an Ion-Exchange for Iontophoresis
EP1844813B1 (en) Iontophoresis apparatus
JP4606117B2 (en) Working electrode structure for iontophoresis and apparatus for iontophoresis
JP2021154277A (en) Anion exchange membrane and method for producing the same
WO2007020911A1 (en) Iontophoresis device
JPH1087853A (en) Production of bipolar membrane
JPS6339930A (en) Production of improved ion exchange membrane
KR20190005062A (en) Device mounted on mask pack comprising burn treatment, mask pack and kit comprising the same
JPH11151430A (en) Bipolar membrane
JP2624424B2 (en) Bipolar membrane
Jia Ion Conducting Materials and Devices for Bioelectronics
de Lara et al. Modification of cellulose based membranes by γ-radiation: Effect of cellulose content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4606118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161015

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees