JP4604845B2 - X-ray receiver - Google Patents

X-ray receiver Download PDF

Info

Publication number
JP4604845B2
JP4604845B2 JP2005159207A JP2005159207A JP4604845B2 JP 4604845 B2 JP4604845 B2 JP 4604845B2 JP 2005159207 A JP2005159207 A JP 2005159207A JP 2005159207 A JP2005159207 A JP 2005159207A JP 4604845 B2 JP4604845 B2 JP 4604845B2
Authority
JP
Japan
Prior art keywords
image
ray
distortion
tube
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005159207A
Other languages
Japanese (ja)
Other versions
JP2006338906A (en
Inventor
圭 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005159207A priority Critical patent/JP4604845B2/en
Publication of JP2006338906A publication Critical patent/JP2006338906A/en
Application granted granted Critical
Publication of JP4604845B2 publication Critical patent/JP4604845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

この発明は、入射X線像に応じた光電子像を出力する入力面基板と光電子像を縮小結像させる電子レンズ系と電子レンズ系で縮小結像された光電子像を可視光像に変換出力する出力蛍光面とを収納したイメージ管を備えているX線受像装置に係り、特に光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気を打ち消すための技術に関する。   The present invention converts an input surface substrate that outputs a photoelectron image corresponding to an incident X-ray image, an electron lens system that reduces and forms a photoelectron image, and a photoelectron image that is reduced and formed by the electron lens system to a visible light image. The present invention relates to an X-ray image receiving apparatus including an image tube containing an output fluorescent screen, and more particularly to a technique for canceling distortion-induced magnetism that distorts a photoelectron image and causes distortion of a visible light image.

従来のこの種のイメージ管を備えたX線受像装置は、図9および図10に示すように、入射X線像に応じた光電子像を出力する為のCsI等の蛍光面と光電陰極とからなる入力面基板51と、入力面基板51の光電陰極から放出される光電子像を縮小結像させる為の電子レンズ系52と、電子レンズ系52のレンズ作用で縮小結像された光電子像を可視光像に変換出力する出力蛍光面53とを収納した真空密封式のイメージ管54が金属製外容器55に納められている。   As shown in FIGS. 9 and 10, a conventional X-ray image receiving apparatus equipped with this type of image tube includes a fluorescent screen such as CsI for outputting a photoelectron image corresponding to an incident X-ray image, and a photocathode. The input surface substrate 51, the electron lens system 52 for reducing the photoelectron image emitted from the photocathode of the input surface substrate 51, and the photoelectron image reduced by the lens action of the electron lens system 52 visible. A vacuum-sealed image tube 54 that houses an output phosphor screen 53 that converts and outputs a light image is housed in a metal outer container 55.

従来のX線受像装置では、通常、歪み誘発磁気として地磁気がローレンツ力で光電子像を歪ませて可視光像の歪みを引き起こす。地磁気は、例えば、図11(a)に示すように、+の形の入射X線像XAが、図11(b)に示すように、正しく+の形の可視光像Xaに変換されずに、縦・横が共にS字状にゆがんだ歪みのある可視光像Xbに変換されてしまう。そこで、地磁気による可視光像の歪みを回避する為に、イメージ管54の中の電子レンズ系52をイメージ管54の外側で囲むかたちで強磁性体製の円筒状の磁気シールド体56を設置して磁気遮蔽を行なっている。磁気シールド体56が磁気遮蔽壁となってイメージ管54の周側面から地磁気がかかるのを防ぐのである。   In a conventional X-ray image receiving apparatus, normally, geomagnetism distorts a photoelectron image by Lorentz force as distortion-induced magnetism, causing distortion of a visible light image. For example, as shown in FIG. 11 (a), the geomagnetism is not converted from a positive-shaped incident X-ray image XA into a positive-shaped visible light image Xa as shown in FIG. 11 (b). , Both the vertical and horizontal directions are converted into a visible light image Xb having a distortion distorted in an S shape. Therefore, in order to avoid distortion of the visible light image due to geomagnetism, a cylindrical magnetic shield 56 made of a ferromagnetic material is installed so as to surround the electron lens system 52 in the image tube 54 outside the image tube 54. Magnetic shielding. The magnetic shield 56 serves as a magnetic shielding wall to prevent geomagnetism from being applied from the peripheral side surface of the image tube 54.

ただX線の入射面である入力面基板51の前面には、入射X線像のX線強度低下を阻止するために、磁気遮蔽を施すことができず、X線の入射面には、アルミニウムやチタン,ガラス等の窓57を設けざるを得ない。したがって、イメージ管54の窓57からかかる地磁気は磁気シールド体56では防げず、磁気シールド体56だけで地磁気による可視光像の歪みを抑えられない。   However, the front surface of the input surface substrate 51, which is an X-ray incident surface, cannot be magnetically shielded in order to prevent a decrease in the X-ray intensity of the incident X-ray image. In addition, a window 57 made of titanium, glass or the like must be provided. Therefore, the geomagnetism applied from the window 57 of the image tube 54 cannot be prevented by the magnetic shield body 56, and the distortion of the visible light image due to the geomagnetism cannot be suppressed by the magnetic shield body 56 alone.

それで、図9および図10に示すように、可視光像の歪み誘発磁気を打ち消す歪み補正磁気を発生する歪み補正コイル58と、コイル電流を供給する電源59を設けると共に、入力面基板51の近傍の地磁気を検出する磁気センサー60と磁気センサー60の出力信号にしたがって電源59を制御する電源制御部61とを設けておき、磁気センサー60で検出された地磁気に対応したコイル電流が歪み補正コイル58に流れるように電源制御部61で電源59をコントロールし、歪み補正コイル58に歪み誘発磁気の強さに見合ったコイル電流を電源59から供給して歪み誘発磁気を打ち消すことが行われている。この歪み補正コイル58による地磁気の打ち消し作用により、イメージ管54の窓57からかかる歪み誘発磁気としての地磁気による可視光像の歪みを抑えている(例えば特許文献1参照。)。   Therefore, as shown in FIGS. 9 and 10, a distortion correction coil 58 that generates distortion correction magnetism that cancels distortion-induced magnetism of the visible light image, a power supply 59 that supplies a coil current, and the vicinity of the input surface substrate 51 are provided. A magnetic sensor 60 for detecting the geomagnetism and a power control unit 61 for controlling the power source 59 in accordance with the output signal of the magnetic sensor 60 are provided, and the coil current corresponding to the geomagnetism detected by the magnetic sensor 60 is applied to the distortion correction coil 58. The power source 59 is controlled by the power source controller 61 so that the coil current corresponding to the strength of the strain-induced magnetism is supplied from the power source 59 to the strain correction coil 58 to cancel the strain-induced magnetism. The distortion of the visible light image due to the geomagnetism as the distortion-induced magnetism from the window 57 of the image tube 54 is suppressed by the action of canceling the geomagnetism by the distortion correction coil 58 (see, for example, Patent Document 1).

一方、イメージ管54の出力蛍光面53に生じる可視光像は、TVカメラ62により撮影されて電気信号に変換された上で入射X線像に対応するX線画像取得用のX線検出信号として出力される。TVカメラ62の後段では、X線検出信号にしたがってX線画像が取得されて表示モニタ(図示省略)の画面に表示されたりする。   On the other hand, the visible light image generated on the output fluorescent screen 53 of the image tube 54 is captured by the TV camera 62 and converted into an electrical signal, and then used as an X-ray detection signal for acquiring an X-ray image corresponding to the incident X-ray image. Is output. In the subsequent stage of the TV camera 62, an X-ray image is acquired according to the X-ray detection signal and displayed on the screen of a display monitor (not shown).

他方、従来のX線受像装置の場合、随時、イメージ管54の入力面基板51における入射X線像の入力面のうち出力蛍光面53に実際に可視光像となって出現する範囲を規定する有効視野口径が変更可能な構成となっている。例えばイメージ管54で設定される最大の有効視野口径が仮に12インチであるとすると、例えば12インチと9インチの大小二つの有効視野口径の間で有効視野口径の変更が随時行なえる。
有効視野口径の小さい方が出力蛍光面53での可視光像の倍率が上がるので、最終的なX線画像の倍率も有効視野口径が小さい方が上がる。したがって、口径の小さいイメージ管54の有効視野口径モードを、通常、拡大視野モードと称したりする。
On the other hand, in the case of a conventional X-ray image receiving apparatus, the range in which the visible X-ray image actually appears on the output phosphor screen 53 among the input surfaces of the incident X-ray image on the input surface substrate 51 of the image tube 54 is defined as needed. The effective visual field aperture can be changed. For example, assuming that the maximum effective field diameter set in the image tube 54 is 12 inches, the effective field diameter can be changed at any time between two effective field diameters, for example, 12 inches and 9 inches.
The smaller the effective field aperture, the higher the magnification of the visible light image on the output phosphor screen 53. Therefore, the final X-ray image magnification also increases when the effective field aperture is smaller. Therefore, the effective field aperture mode of the image tube 54 having a small diameter is usually referred to as an enlarged field mode.

特開平7−65756号公報(第3〜4頁、図1〜図4)。JP-A-7-65756 (pages 3 to 4, FIGS. 1 to 4).

しかしながら、上記従来のX線受像装置は、可視光像の歪みを引き起こす歪み誘発磁気(地磁気)の打ち消しが、イメージ管54で設定される有効視野口径の口径寸法によっては、十分でないという問題がある。
歪み補正コイル58により発生する歪み補正磁気の強度は、図12に示すように、入力面基板51の中央から周縁にかけて相当に変化しており、打ち消し対象である地磁気と比較すると均一性が弱く、歪み補正コイル58により発生する歪み補正磁気で地磁気を的確に打ち消すことはできない。
However, the conventional X-ray image receiving apparatus has a problem that the distortion-induced magnetism (geomagnetism) cancellation that causes distortion of the visible light image is not sufficient depending on the aperture size of the effective field aperture set in the image tube 54. .
As shown in FIG. 12, the strength of the distortion correction magnetism generated by the distortion correction coil 58 changes considerably from the center to the periphery of the input surface substrate 51, and the uniformity is weak compared to the geomagnetism to be canceled. The geomagnetism cannot be accurately canceled by the distortion correction magnetism generated by the distortion correction coil 58.

通常、イメージ管54の有効視野口径を使用頻度の高い最大の有効視野口径に設定した場合に、可視光像やX線画像の上で歪みが目立たないように歪み補正コイル58により歪み補正磁気を発生させる構成とされている。しかし、この場合、拡大視野モードに変更した時に、可視光像やX線画像の倍率が上がるので、可視光像やX線画像の歪みが目立つことになる。
逆に、イメージ管54の有効視野口径を拡大視野モードの有効視野口径に設定した場合に、可視光像やX線画像の上で歪みが目立たないように歪み補正コイル58により歪み補正磁気を発生させる構成とすると、イメージ管54の有効視野口径を、使用頻度の高い最大の有効視野口径にした時に、可視光像やX線画像は周縁での歪みが大きなものとなってしまう。
Normally, when the effective field diameter of the image tube 54 is set to the maximum effective field diameter that is frequently used, distortion correction magnetism is applied by the distortion correction coil 58 so that distortion is not conspicuous on a visible light image or an X-ray image. It is configured to generate. In this case, however, the magnification of the visible light image or the X-ray image increases when the mode is changed to the enlarged visual field mode, so that the distortion of the visible light image or the X-ray image becomes conspicuous.
On the contrary, when the effective field diameter of the image tube 54 is set to the effective field diameter of the expanded field mode, the distortion correction magnet 58 generates distortion correction magnetism so that the distortion is not conspicuous on the visible light image or the X-ray image. With this configuration, when the effective field diameter of the image tube 54 is set to the maximum effective field diameter that is frequently used, the visible light image and the X-ray image are greatly distorted at the periphery.

この発明は、このような事情に鑑みてなされたものであって、イメージ管で設定される有効視野口径の口径寸法の如何にかかわらず、可視光像の歪みを引き起こす歪み誘発磁気を十分に打ち消すことができるX線受像装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and sufficiently cancels distortion-induced magnetism that causes distortion of a visible light image regardless of the aperture size of the effective field aperture set in the image tube. An object of the present invention is to provide an X-ray image receiving apparatus that can perform the above-described process.

上記目的を達成するために、この発明は、次のような構成をとる。
すなわち、請求項1に記載の発明に係るX線受像装置は、入射X線像に応じた光電子像を出力する入力面基板と光電子像を縮小結像させる電子レンズ系と電子レンズ系で縮小結像された光電子像を可視光像に変換出力する出力蛍光面とを収納したイメージ管と、イメージ管の中の電子レンズ系をイメージ管の外側で囲むかたちで配設されている筒状の磁気シールド体と、イメージ管のX線入力面の外周縁に沿って入力面基板の外周空間を囲むかたちで巻回され、光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気を検出する磁気検出手段と、磁気検出手段による歪み誘発磁気の検出結果に基づいて歪み誘発磁気を打ち消す歪み補正磁気を発生する歪み補正コイルと、入力面基板における入射X線像の入力面のうち出力蛍光面に実際に可視光像となって出現する範囲を規定する有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で変更可能に設定する視野口径設定手段とを備えたX線受像装置において、イメージ管で設定される有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイルに供給するコイル電流供給手段を備えていて、コイル電流供給手段が視野口径設定手段で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイルに供給することを特徴とするものである。
In order to achieve the above object, the present invention has the following configuration.
In other words, the X-ray image receiving apparatus according to the first aspect of the present invention is reduced by an input surface substrate that outputs a photoelectron image corresponding to an incident X-ray image, an electron lens system that forms a reduced image of the photoelectron image, and an electron lens system. A cylindrical magnet arranged in an image tube containing an output phosphor screen that converts the imaged photoelectron image into a visible light image and encloses the electron lens system in the image tube outside the image tube. It is wound around the outer periphery of the input surface substrate along the outer periphery of the shield body and the X-ray input surface of the image tube, and detects distortion-induced magnetism that distorts the photoelectron image and causes distortion of the visible light image. A magnetic detection means; a distortion correction coil for generating distortion correction magnetism that cancels the distortion-induced magnetism based on the detection result of the distortion-induced magnetism by the magnetic detection means; and an output phosphor screen of the input surface of the incident X-ray image on the input surface substrate In fact In an X-ray image receiving apparatus, comprising: a field aperture setting means for setting an effective field aperture that defines a range in which a visible light image appears to be changed between a plurality of effective field apertures having different predetermined aperture dimensions The coil current supply means for supplying the coil current for generating the distortion correction magnetism suitable for each effective field aperture for each effective field aperture to be supplied to the distortion correction coil according to the effective field aperture set in the image tube. The coil current supply means selects a coil current that generates distortion correction magnetism suitable for the effective field diameter set by the field diameter setting means and supplies the selected coil current to the distortion correction coil.

[作用・効果]請求項1の発明のX線受像装置において入射X線像の撮像が行なわれる場合、イメージ管では入力面基板への入射X線像の投影で生じた光電子像を電子レンズ系が、磁気シールド体による磁気遮蔽によって地磁気の影響を回避しながら出力蛍光面に縮小結像させる結果、出力蛍光面では縮小結像された光電子像が可視光像に変換出力される。つまり磁気シールド体が磁気遮蔽壁となってイメージ管の周側面から光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としての地磁気がかかるのを防ぐ。
加えて、請求項1の発明のX線受像装置では、入射X線像の撮像と同時平行で、イメージ管のX線入力面の外周縁に沿って入力面基板の外周空間を囲むかたちで巻回されている歪み補正コイルが歪み補正磁気を発生することにより、光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としてX線入力面側からかかる地磁気を打ち消す。
その結果、光電子像の歪みが阻止されて、出力蛍光面に出力される可視光像の歪みが抑えられる。
[Operation / Effect] When the incident X-ray image is picked up in the X-ray image receiving apparatus according to the first aspect of the present invention, the image tube generates a photoelectron image generated by the projection of the incident X-ray image onto the input surface substrate. However, as a result of reducing the image on the output phosphor screen while avoiding the influence of geomagnetism by magnetic shielding by the magnetic shield body, the photoelectron image reduced and imaged is converted into a visible light image on the output phosphor screen. In other words, the magnetic shield body serves as a magnetic shielding wall to prevent the geomagnetism as distortion-induced magnetism that distorts the photoelectron image from the peripheral side surface of the image tube and causes distortion of the visible light image.
In addition, in the X-ray image receiving apparatus according to the first aspect of the present invention, it is wound in such a manner as to surround the outer peripheral space of the input surface substrate along the outer peripheral edge of the X-ray input surface of the image tube in parallel with the imaging of the incident X-ray image. When the rotated distortion correction coil generates distortion correction magnetism, the geomagnetism is canceled from the X-ray input surface side as distortion-induced magnetism that distorts the photoelectron image and causes distortion of the visible light image.
As a result, distortion of the photoelectron image is prevented, and distortion of the visible light image output to the output phosphor screen is suppressed.

一方、請求項1の発明のX線受像装置の場合、随時、視野口径設定手段により、入力面基板における入射X線像の入力面のうち出力蛍光面に実際に可視光像となって出現する範囲を規定するイメージ管の有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で変更できる。視野口径設定手段による有効視野口径の変更に伴ってイメージ管の出力蛍光面での可視光像の倍率が変化する。
他方、請求項1の発明のX線受像装置では、有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイルに供給するコイル電流供給手段が備えられていて、視野口径設定手段による有効視野口径の変更があった場合、コイル電流供給手段は視野口径設定手段で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイルに供給するので、イメージ管で設定される有効視野口径の口径寸法が変更されても、歪み補正コイルは可視光像の歪みを引き起こす歪み誘発磁気を的確に打ち消すことができる。
On the other hand, in the case of the X-ray image receiving apparatus according to the first aspect of the present invention, a visible light image actually appears on the output fluorescent screen among the input surfaces of the incident X-ray image on the input surface substrate by the field aperture setting means. The effective field diameter of the image tube that defines the range can be changed between a plurality of effective field diameters having different predetermined diameter dimensions. The magnification of the visible light image on the output phosphor screen of the image tube changes with the change of the effective field aperture by the field aperture setting means.
On the other hand, in the X-ray image receiving apparatus according to the first aspect of the present invention, a coil current for generating a distortion correction magnetism suitable for each effective field aperture for each effective field aperture is supplied to the strain correction coil so as to be selectable for each effective field aperture. Coil current for generating distortion correction magnetism suitable for the effective field aperture set by the field aperture setting means when the supply field means is provided and the effective field aperture is changed by the field aperture setting unit Is selected and supplied to the distortion correction coil, so even if the aperture size of the effective field of view set in the image tube is changed, the distortion correction coil can accurately cancel the distortion-induced magnetism that causes distortion of the visible light image. it can.

また、請求項2に記載の発明は、請求項1に記載のX線受像装置において、視野口径設定手段は、イメージ管の有効視野口径の変更を電子レンズ系の電気的制御により行なうものである。   According to a second aspect of the present invention, in the X-ray image receiving apparatus according to the first aspect, the field aperture setting means changes the effective field aperture of the image tube by electrical control of the electron lens system. .

[作用・効果]請求項2の発明のX線受像装置の場合、視野口径設定手段による有効視野口径の変更が電子レンズ系の電気的制御により行なえるので、イメージ管の有効視野口径を容易に変更することができる。 [Operation and Effect] In the case of the X-ray image receiving apparatus according to the second aspect of the present invention, the effective field diameter of the image tube can be easily changed because the effective field diameter can be changed by the electric field system. Can be changed.

請求項1の発明のX線受像装置の場合、イメージ管による入射X線像の検出と同時平行で、イメージ管の中の電子レンズ系をイメージ管の外側で囲むかたちで配設されている筒状の磁気シールド体が磁気遮蔽壁となることにより、イメージ管の周側面から光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としての地磁気がかかるのを防ぐのに加え、イメージ管のX線入力面の外周縁に沿って入力面基板の外周空間を囲むかたちで巻回されている歪み補正コイルが歪み補正磁気を発生することにより、光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としてX線入力面側からかかる地磁気を打ち消す構成となっていて、光電子像の歪みが阻止されるので、出力蛍光面に出力される可視光像の歪みが抑えられると共に、視野口径設定手段により、入力面基板における入射X線像の入力面のうち出力蛍光面に実際に可視光像となって出現する範囲を規定するイメージ管の有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で変更できる構成であるので、イメージ管の出力蛍光面での可視光像の倍率を変化させることができる。   In the case of the X-ray image receiving apparatus according to the first aspect of the present invention, a cylinder disposed in parallel with the detection of the incident X-ray image by the image tube and surrounding the electron lens system in the image tube outside the image tube. In addition to preventing geomagnetism as distortion-induced magnetism that distorts the photoelectron image from the peripheral side of the image tube and causes distortion of the visible light image by the magnetic shield body in the form of a magnetic shield, the image tube The distortion correction coil wound around the outer periphery of the input surface substrate along the outer peripheral edge of the X-ray input surface generates distortion correction magnetism, which distorts the photoelectron image and distorts the visible light image. It is configured to cancel the geomagnetism from the X-ray input surface side as the strain-induced magnetism that causes the distortion, and the distortion of the photoelectron image is prevented, so that the distortion of the visible light image output to the output phosphor screen is suppressed, An effective field aperture of the image tube that prescribes the range in which the visible fluorescent image appears on the output phosphor screen of the input surface of the incident X-ray image on the input surface substrate by the field aperture setting means is determined in advance. Therefore, the magnification of the visible light image on the output fluorescent screen of the image tube can be changed.

加えて、請求項1の発明のX線受像装置の場合、有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイルに供給するコイル電流供給手段が備えられていて、視野口径設定手段による有効視野口径の変更があった場合、コイル電流供給手段が視野口径設定手段で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイルに供給するので、イメージ管で設定される有効視野口径が変更されても、歪み補正コイルは可視光像の歪みを引き起こす歪み誘発磁気を的確に打ち消すことができる。
よって、請求項1の発明のX線受像装置によれば、イメージ管で設定される有効視野口径の口径寸法の如何にかかわらず、可視光像の歪みを引き起こす歪み誘発磁気を十分に打ち消すことができる。
In addition, in the case of the X-ray image receiving apparatus according to the first aspect of the present invention, a coil current for generating distortion correction magnetism suitable for each effective field diameter is supplied to the distortion correction coil so as to be selectable for each effective field diameter. In the case where the coil current supply means is provided and the effective field aperture is changed by the field aperture setting means, the coil current supply means generates distortion correction magnetism suitable for the effective field aperture set by the field aperture setting means. Since the coil current is selected and supplied to the distortion correction coil, even if the effective visual field aperture set in the image tube is changed, the distortion correction coil can accurately cancel the distortion-induced magnetism that causes the distortion of the visible light image. .
Therefore, according to the X-ray image receiving apparatus of the first aspect of the present invention, it is possible to sufficiently cancel the distortion-induced magnetism that causes the distortion of the visible light image regardless of the aperture size of the effective field aperture set in the image tube. it can.

以下、この発明の実施例を図面を参照しながら説明する。図1は実施例に係るX線受像器(X線受像装置)が組み込まれたX線透視装置の全体構成図、図2は実施例に係るX線受像器の構成を示す説明図、図3は実施例に係るX線受像器の磁気シールド体および歪み補正コイルの配置状況を示す平面図、図4はX線透視装置におけるX線撮像系を示す斜視図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an X-ray fluoroscopic apparatus in which an X-ray receiver (X-ray image receiving apparatus) according to an embodiment is incorporated, and FIG. 2 is an explanatory diagram illustrating the configuration of the X-ray receiver according to the embodiment. FIG. 4 is a plan view showing an arrangement state of a magnetic shield body and a distortion correction coil of the X-ray receiver according to the embodiment, and FIG. 4 is a perspective view showing an X-ray imaging system in the X-ray fluoroscopic apparatus.

図1のX線透視装置は、天板BDに載置された被検体MにX線照射制御部10による制御にしたがってX線透視用のX線を照射するX線管1と、被検体Mの透過X線像を入射X線像として撮影して電気信号に変換してX線透視用のX線検出信号として出力するイメージインテンシファイア型のX線受像器2と、X線受像器2から出力されるX線透視用のX線検出信号に基づいてX線透視画像を取得する透視画像取得部3と、透視画像取得部3で取得されたX線透視画像やX線透視に必要な操作メニュー等を表示する表示モニタ4と、X線透視撮影に必要なデータや指令の入力操作を行なう操作部5などを備えている。   The X-ray fluoroscopic apparatus of FIG. 1 includes an X-ray tube 1 that irradiates a subject M placed on a top board BD with X-rays for X-ray fluoroscopy according to control by the X-ray irradiation control unit 10, and a subject M. An image intensifier type X-ray receiver 2 that captures a transmission X-ray image of the X-ray as an incident X-ray image, converts it into an electrical signal, and outputs it as an X-ray detection signal for X-ray fluoroscopy, and an X-ray receiver 2 Necessary for X-ray fluoroscopic images acquired by the fluoroscopic image acquisition unit 3 for acquiring X-ray fluoroscopic images based on X-ray detection signals for X-ray fluoroscopy output from A display monitor 4 for displaying an operation menu and the like, and an operation unit 5 for inputting data and commands necessary for fluoroscopic imaging are provided.

実施例のX線受像器2は、図2および図3に示すように、入射X線像に応じた光電子像を出力する為のCsI等の蛍光面と光電陰極とからなる入力面基板11と、入力面基板11の光電陰極から放出される光電子像を縮小結像させる為の電子レンズ系12と、電子レンズ系12のレンズ作用で縮小結像された光電子像を可視光像に変換出力する出力蛍光面13とを収納した真空密封式のイメージ管14が、金属製の外容器15に納められている構成とされている。   As shown in FIGS. 2 and 3, an X-ray receiver 2 of the embodiment includes an input surface substrate 11 composed of a fluorescent screen such as CsI and a photocathode for outputting a photoelectron image corresponding to an incident X-ray image, and a photocathode. The electron lens system 12 for reducing the photoelectron image emitted from the photocathode of the input surface substrate 11 and the photoelectron image reduced and formed by the lens action of the electron lens system 12 are converted into a visible light image and output. A vacuum-sealed image tube 14 that houses the output phosphor screen 13 is housed in a metal outer container 15.

実施例のX線受像器2の場合、地磁気(歪み誘発磁気)の影響で光電子像が歪むのに伴って出力蛍光面13の可視光像が歪むのを抑えるために、イメージ管14の中の電子レンズ系12をイメージ管14の外側で囲むかたちで円筒状の磁気シールド体16を設置して磁気遮蔽をおこなっている。磁気シールド体16はパーマロイ等の強磁性体製であり、磁気シールド体16が磁気遮蔽壁となってイメージ管14の周側面からかかる歪み誘発磁気としての地磁気を防ぐ。磁気シールド体16は外容器15の内周面と磁気シールド体16の外周面が当接した状態で外容器15に内挿される配置となっている。   In the case of the X-ray receiver 2 of the embodiment, in order to suppress the distortion of the visible light image on the output phosphor screen 13 as the photoelectron image is distorted due to the influence of geomagnetism (strain-induced magnetism), A cylindrical magnetic shield body 16 is installed to surround the electron lens system 12 on the outside of the image tube 14 for magnetic shielding. The magnetic shield body 16 is made of a ferromagnetic material such as permalloy, and the magnetic shield body 16 serves as a magnetic shielding wall to prevent geomagnetism as strain-induced magnetism from the peripheral side surface of the image tube 14. The magnetic shield body 16 is arranged to be inserted into the outer container 15 with the inner peripheral surface of the outer container 15 and the outer peripheral surface of the magnetic shield body 16 in contact with each other.

実施例のX線受像器2により入射X線像の撮影が行なわれる場合、イメージ管14の入力面基板11への入射X線像の投影で生じた光電子像を電子レンズ系12が、磁気シールド体16による磁気遮蔽壁で地磁気の影響を回避しながら出力蛍光面13に縮小結像すると共に、出力蛍光面13には縮小結像された光電子像が可視光像に変換されたかたちで出力される。なお、イメージ管14の出力蛍光面13に生じる可視光像は、TVカメラ19により撮影されて電気信号に変換された上でX線検出信号として出力される。   When an incident X-ray image is taken by the X-ray receiver 2 of the embodiment, the electron lens system 12 converts the photoelectron image generated by the projection of the incident X-ray image onto the input surface substrate 11 of the image tube 14 into a magnetic shield. While the magnetic shielding wall by the body 16 avoids the influence of geomagnetism, the reduced fluorescent image is formed on the output fluorescent screen 13, and the reduced focused photoelectron image is converted into a visible light image on the output fluorescent screen 13. The The visible light image generated on the output fluorescent screen 13 of the image tube 14 is captured by the TV camera 19 and converted into an electrical signal, and then output as an X-ray detection signal.

ただ、イメージ管14の場合、図2に示すように、X線の入射面である入力面基板11の前面には磁気シールド体16が施設されていない。入力面基板1の前面まで磁気遮蔽すると、磁気シールド体16によるX線吸収で入射X線像のX線強度が低下し、X線検出感度が落ちてしまう。そのため、入力面基板11の前面には強磁性体の金属による磁気シールドを施すことができず、X線の入射面には、アルミニウムやチタン,ガラス等の窓17を設けざるを得ない。したがって、イメージ管14の窓17からかかる地磁気は磁気シールド体16で防ぐことができず、磁気シールド体16だけでは地磁気による可視光像の歪みを抑えられない。   However, in the case of the image tube 14, as shown in FIG. 2, the magnetic shield body 16 is not provided on the front surface of the input surface substrate 11 which is the X-ray incident surface. When magnetic shielding is performed up to the front surface of the input surface substrate 1, the X-ray intensity of the incident X-ray image decreases due to X-ray absorption by the magnetic shield 16, and the X-ray detection sensitivity decreases. Therefore, the front surface of the input surface substrate 11 cannot be magnetically shielded with a ferromagnetic metal, and a window 17 made of aluminum, titanium, glass or the like must be provided on the X-ray incident surface. Therefore, the geomagnetism applied from the window 17 of the image tube 14 cannot be prevented by the magnetic shield body 16, and the distortion of the visible light image due to the geomagnetism cannot be suppressed by the magnetic shield body 16 alone.

それで、実施例のX線受像器2では、図2および図3に示すように、入力面基板11の近傍の地磁気の強さ・向きを検出する磁気センサー(磁気検出手段)20と、イメージ管14のX線入力面である窓17の外周縁に沿って入力面基板11の外周空間を囲むかたちで巻回され、磁気センサー20による歪み誘発磁気の検出結果に基づいて光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気を打ち消す歪み補正磁気を発生する歪み補正コイル18が設けられていて、歪み補正コイル18に歪み誘発磁気の強さに見合ったコイル電流を流すことによって歪み誘発磁気を打ち消す構成となっている。歪み補正コイル18の巻き回数(ターン数)は、特定のターン数に限られるものではないが、例えば800〜1000ターンが例示される。   Therefore, in the X-ray receiver 2 of the embodiment, as shown in FIGS. 2 and 3, a magnetic sensor (magnetic detection means) 20 for detecting the strength and direction of the terrestrial magnetism in the vicinity of the input surface substrate 11, and an image tube 14 is wound around the outer peripheral space of the input surface substrate 11 along the outer peripheral edge of the window 17 which is the X-ray input surface 14, and the photoelectron image is distorted based on the detection result of the distortion-induced magnetism by the magnetic sensor 20. A distortion correction coil 18 that generates distortion correction magnetism that cancels distortion-induced magnetism that causes distortion of a visible light image is provided, and distortion is induced by flowing a coil current that matches the strength of distortion-induced magnetism through the distortion correction coil 18. It is configured to cancel the magnetism. The number of turns (number of turns) of the distortion correction coil 18 is not limited to a specific number of turns, but is exemplified by 800 to 1000 turns.

即ち、入射X線像の撮像と同時平行で、歪み補正コイル18が歪み補正磁気を発生することにより、光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としてX線入力面側からかかる地磁気を打ち消すので、光電子像の歪みが阻止される結果、出力蛍光面13に出力される可視光像の歪みが抑えられる。   That is, simultaneously with the imaging of the incident X-ray image, the distortion correction coil 18 generates distortion correction magnetism, thereby distorting the photoelectron image and causing distortion of the visible light image from the X-ray input surface side. Since the geomagnetism is cancelled, the distortion of the photoelectron image is prevented, so that the distortion of the visible light image output to the output phosphor screen 13 is suppressed.

一方、X線受像器2の場合、図2に示すように、イメージ管14の入力面基板11における入射X線像の入力面のうち出力蛍光面13に実際に可視光像となって出現する範囲を規定するイメージ管14の有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で随時に変更可能に設定する視野口径設定機構21が備えられている。
イメージ管14で設定できる複数の有効視野口径の口径寸法や数は、特定の寸法や数に限定されるものではないが、以下では、便宜上、イメージ管14で設定される最大の有効視野口径を12インチとし、視野口径設定機構21により、大口径の12インチと小口径の9インチの大小二つの有効視野口径の間で有効視野口径の変更が随時に行なえるものとして説明する。有効視野口径の小さい方が出力蛍光面13での可視光像の倍率が上がるので、最終的なX線透視画像の倍率も有効視野口径が小さい方が上がる。また、以下では、図3に示すように、使用頻度の高い大口径の12インチ有効視野口径14aの設定モードを標準視野モードと称し、像倍率の高い小口径の9インチ有効視野口径14bの設定モードを拡大視野モードと称することとする。
On the other hand, in the case of the X-ray receiver 2, as shown in FIG. 2, a visible light image actually appears on the output fluorescent screen 13 out of the input surface of the incident X-ray image on the input surface substrate 11 of the image tube 14. A visual field aperture setting mechanism 21 is provided for setting the effective visual field aperture of the image tube 14 that defines the range so that it can be changed at any time among a plurality of effective visual field apertures having different predetermined aperture dimensions.
The aperture size and number of a plurality of effective field apertures that can be set in the image tube 14 are not limited to a specific size or number. However, for the sake of convenience, the maximum effective field aperture set in the image tube 14 will be described below. It is assumed that the effective field diameter can be changed at any time between the large and small effective field diameters of 12 inches and the small diameter of 9 inches by the visual field diameter setting mechanism 21. The smaller the effective field aperture, the higher the magnification of the visible light image on the output phosphor screen 13, so the final X-ray fluoroscopic image magnification also increases with a smaller effective field aperture. In the following, as shown in FIG. 3, the setting mode of the large-diameter 12-inch effective field aperture 14a, which is frequently used, is referred to as the standard viewing mode, and the small-diameter 9-inch effective field aperture 14b is set with a high image magnification. The mode is referred to as an enlarged view mode.

実施例の装置のX線受像器2の場合、操作部5により標準視野モードと拡大視野モードのいずれか一方が指定されるのに伴って、指定された視野モードに応じた視野モード指定信号を出力する視野モード制御部22と、電子レンズ系12の電極に電圧を印加するレンズ電極電源23が設けられていて、視野モード制御部22から出力される視野モード指定信号にしたがってレンズ電極電源23が電子レンズ系12の電極に印加する電圧を変更することにより、標準視野モードと拡大視野モードの間での有効視野口径の変更がなされる構成とされている。つまり、視野口径設定機構21は、視野モード制御部22とレンズ電極電源23を中心に構成されていて、有効視野口径の変更が電子レンズ系12の電極に印加する電圧を変更するという電気的制御で容易に行なえる。   In the case of the X-ray receiver 2 of the apparatus of the embodiment, a field-of-view mode designation signal corresponding to the designated field-of-view mode is generated when either the standard field-of-view mode or the enlarged field-of-view mode is designated by the operation unit 5. A field-of-view mode control unit 22 for outputting and a lens electrode power source 23 for applying a voltage to the electrodes of the electron lens system 12 are provided, and the lens electrode power source 23 is controlled according to a field-of-view mode designation signal output from the field-of-view mode control unit 22. By changing the voltage applied to the electrode of the electron lens system 12, the effective field diameter is changed between the standard field mode and the enlarged field mode. That is, the visual field aperture setting mechanism 21 is mainly configured by the visual field mode control unit 22 and the lens electrode power source 23, and the electrical control that the change of the effective visual field aperture changes the voltage applied to the electrodes of the electron lens system 12. Easy to do.

他方、実施例のX線受像器2の場合、図2に示すように、イメージ管14で設定される有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイル18に供給するコイル電流供給部24を備えていて、コイル電流供給部24が視野口径設定機構21で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイル18に供給する構成とされている点を、特徴としているので、この点を、以下、具体的に詳述する。   On the other hand, in the case of the X-ray receiver 2 of the embodiment, as shown in FIG. 2, the coil current that generates the distortion correction magnetism suitable for each effective field aperture is set for each effective field aperture set by the image tube 14. A coil current supply unit 24 that is supplied to the distortion correction coil 18 so as to be selectable every time, and the coil current supply unit 24 generates a distortion correction magnetism suitable for the effective field aperture set by the field aperture setting mechanism 21. Since the feature is that the current is selected and supplied to the distortion correction coil 18, this point will be described in detail below.

コイル電流供給部24は、磁気センサー20による歪み誘発磁気の検出信号にしたがってイメージ管14の標準視野モードである12インチ有効視野口径14aに適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイル18に供給する標準視野モード電流供給部24Aと、磁気センサー20による歪み誘発磁気の検出信号にしたがってイメージ管14の拡大視野モードである9インチ有効視野口径14bに適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイル18に供給する拡大視野モード電流供給部24Bと、視野モード指定信号が指定する視野モードに応じて磁気センサー20の出力を標準視野モード電流供給部24Aと拡大視野モード電流供給部24Bのいずれか一方に選択的に接続する切り換えスイッチ部24Cを有している。   The coil current supply unit 24 selects a coil current that generates a distortion-corrected magnetism suitable for the 12-inch effective field aperture 14a that is the standard field-of-view mode of the image tube 14 in accordance with a distortion-induced magnetism detection signal from the magnetic sensor 20 and performs distortion. In accordance with a standard visual field mode current supply unit 24A supplied to the correction coil 18 and a detection signal of distortion-induced magnetism by the magnetic sensor 20, a distortion correction magnetism suitable for the 9-inch effective visual field aperture 14b which is an enlarged visual field mode of the image tube 14 is generated. The field-of-view mode current supply unit 24B that selects a coil current to be supplied and supplies the selected coil current to the distortion correction coil 18, and the output of the magnetic sensor 20 is expanded to a standard field-of-view mode current supply unit 24A according to the field-of-view mode specified by the field-of-view mode designation signal Switching to selectively connect to either one of the visual field mode current supply units 24B And it has a switch section 24C.

そして、コイル電流供給部24の場合、標準視野モードが指定された時は、切り換えスイッチ部24Cの接点が実線で示す接続状態となり、磁気センサー20の出力が標準視野モード電流供給部24Aに接続されると共に、標準視野モード電流供給部24Aが歪み補正コイル18にコイル電流を供給し、拡大視野モードが指定された時は、切り換えスイッチ部24Cの接点が一点鎖線で示す接続状態となり、磁気センサー20の出力が拡大視野モード電流供給部24Bに接続されると共に、拡大視野モード電流供給部24Bが歪み補正コイル18にコイル電流を供給する構成とされている。
なお、標準視野モード電流供給部24Aや拡大視野モード電流供給部24Bの場合、オープンループ方式で歪み補正を行なう構成であるが、標準視野モード電流供給部24Aや拡大視野モード電流供給部24Bは、フィードバック方式で歪み補正を行なう構成であってもよい。
In the case of the coil current supply unit 24, when the standard visual field mode is designated, the contact of the changeover switch unit 24C is in a connection state indicated by a solid line, and the output of the magnetic sensor 20 is connected to the standard visual field mode current supply unit 24A. At the same time, when the standard visual field mode current supply unit 24A supplies the coil current to the distortion correction coil 18 and the enlarged visual field mode is designated, the contact of the changeover switch unit 24C is in the connection state indicated by the alternate long and short dash line. Are connected to the enlarged visual field mode current supply unit 24B, and the enlarged visual field mode current supply unit 24B supplies a coil current to the distortion correction coil 18.
In the case of the standard visual field mode current supply unit 24A and the enlarged visual field mode current supply unit 24B, the distortion is corrected by an open loop method. However, the standard visual field mode current supply unit 24A and the enlarged visual field mode current supply unit 24B A configuration in which distortion correction is performed by a feedback method may be used.

より具体的には、標準視野モード電流供給部24Aの場合、磁気センサー20による歪み誘発磁気の検出信号を入力信号として、図5に示すように、イメージ管14で設定される12インチ有効視野口径14aに投影される+の形の入射X線像YAを、図6に示すように、概ね+の可視光像Yaとして出力蛍光面13に出現させる歪み補正磁気を発生させるコイル電流を歪み補正コイル18に供給するよう、磁気センサー20による歪み誘発磁気の検出信号に対する増幅度やコイル電流の極性が予め調整・セッティングされている。つまり、補正コイル18で発生させた図12の磁場分布により過剰に補正をかけて、12インチ有効視野口径14aでは見かけ上の歪みが小さい可視光像Yaを得ているのである。なお、歪み補正コイル18による歪み補正のない時の可視光像yaを比較の為に破線で図6へ示す。   More specifically, in the case of the standard visual field mode current supply unit 24A, a 12-inch effective visual field aperture set by the image tube 14 as shown in FIG. As shown in FIG. 6, an incident X-ray image YA of + shape projected on 14a appears as an approximately + visible light image Ya on the output phosphor screen 13, and a coil current that generates distortion correction magnetism is used as a distortion correction coil. 18, the amplification degree and the polarity of the coil current for the strain-induced magnetism detection signal by the magnetic sensor 20 are adjusted and set in advance. In other words, the visible light image Ya with a small apparent distortion is obtained at the 12-inch effective field aperture 14a by performing excessive correction by the magnetic field distribution of FIG. 12 generated by the correction coil 18. A visible light image ya without distortion correction by the distortion correction coil 18 is shown in FIG. 6 by a broken line for comparison.

拡大視野モード電流供給部24Bの場合、磁気センサー20による歪み誘発磁気の検出信号を入力信号として、図7に示すように、イメージ管14で設定される9インチ有効視野口径14bに投影される+の形の入射X線像YBを、図8に示すように、正しく+の可視光像Ybとして出力蛍光面13に出現させる歪み補正磁気を発生させるコイル電流を歪み補正コイル18に供給するよう、磁気センサー20による歪み誘発磁気の検出信号に対する増幅度やコイル電流の極性が予め調整・セッティングされている。
なお、標準視野モード電流供給部24Aによる歪み補正時の可視光像Yaを比較の為に破線で図8へ示す。
In the case of the enlarged visual field mode current supply unit 24B, the detection signal of the distortion-induced magnetism by the magnetic sensor 20 is used as an input signal and projected onto the 9 inch effective visual field aperture 14b set in the image tube 14 as shown in FIG. The incident X-ray image YB in the form of FIG. 8 is supplied to the distortion correction coil 18 with a coil current for generating distortion correction magnetism that appears on the output phosphor screen 13 as a positive visible light image Yb as shown in FIG. The amplification degree and the polarity of the coil current for the detection signal of the strain-induced magnetism by the magnetic sensor 20 are adjusted and set in advance.
A visible light image Ya at the time of distortion correction by the standard visual field mode current supply unit 24A is shown by a broken line in FIG. 8 for comparison.

標準視野モード電流供給部24Aによる歪み補正だと、図6および図8に示すように、12インチ有効視野口径14aのエリアの全体的な歪みは旨く抑えられるが、9インチ有効視野口径のエリアの歪みはきっちりとは抑えられない。しかし、拡大視野モード電流供給部24Bによる歪み補正だと、図8に示すように、9インチ有効視野口径14bのエリアの歪みがきっちり抑えられる。なお、拡大視野モード電流供給部24Bの場合、9インチ有効視野口径14bを越えるエリアの歪みについては抑えが効き難くなるが、拡大視野モードの場合、9インチ有効視野口径14bを越えるエリアは非利用エリアであるので何ら問題ない。   In the distortion correction by the standard visual field mode current supply unit 24A, as shown in FIGS. 6 and 8, the overall distortion of the area of the 12-inch effective visual field aperture 14a is suppressed, but the area of the 9-inch effective visual field aperture is Distortion cannot be suppressed exactly. However, if the distortion correction is performed by the enlarged visual field mode current supply unit 24B, as shown in FIG. 8, the distortion in the area of the 9-inch effective visual field aperture 14b can be suppressed. In the case of the enlarged visual field mode current supply unit 24B, it is difficult to suppress distortion in an area exceeding the 9-inch effective visual field aperture 14b, but in the enlarged visual mode, the area exceeding the 9-inch effective visual field aperture 14b is not used. There is no problem because it is an area.

図1のX線透視装置の場合、X線管1とX線受像器2の(イメージ管14およびTVカメラ19を中心とする)主要部は、図4に示すように、天井走行式のC型アーム6の一端と他端に被検体Mを挟んで対向配置された状態で取り付けられており、C型アーム6の背面中央に設けられた回転軸7を回転中心としてC型アーム6が回転するのに伴って、X線管1とX線受像器2の主要部が対向配置状態のままで矢印8で示す向きに回転したり、C型アーム6の円弧に沿ってC型アーム6が所定範囲をスライドするの伴って、X線管1とX線受像器2の主要部が対向配置状態のままで矢印9で示す向きに移動してX線透視方向が変化させられる構成とされている。
また、C型アーム6の回転に伴ってX線管1とX線受像器2の主要部が移動してX線透視方向が変化する場合、イメージ管14の窓からかかる歪み誘発磁気の有効強度が変動することになるが、この変動は磁気センサー20の検出信号の強度に反映されるので、X線透視方向が変化しても、歪み補正コイル18の歪み補正機能が阻害されるようなことはない。
In the case of the X-ray fluoroscopic apparatus shown in FIG. 1, the main part of the X-ray tube 1 and the X-ray receiver 2 (centering on the image tube 14 and the TV camera 19) is a ceiling traveling type C as shown in FIG. The mold arm 6 is attached to one end and the other end of the mold arm 6 so as to face each other with the subject M interposed therebetween, and the C-arm 6 rotates around the rotation shaft 7 provided in the center of the back surface of the C-arm 6. As a result, the main parts of the X-ray tube 1 and the X-ray receiver 2 are rotated in the direction indicated by the arrow 8 while the C-arm 6 is rotated along the arc of the C-arm 6 while the main portions of the X-ray tube 1 and the X-ray receiver 2 are opposed. As the predetermined range is slid, the X-ray tube 1 and the X-ray receiver 2 are moved in the direction indicated by the arrow 9 while being opposed to each other, and the X-ray fluoroscopic direction is changed. Yes.
Further, when the X-ray tube 1 and the main part of the X-ray receiver 2 move as the C-arm 6 rotates and the X-ray fluoroscopic direction changes, the effective strength of the strain-induced magnetism applied from the window of the image tube 14 However, since the fluctuation is reflected in the intensity of the detection signal of the magnetic sensor 20, even if the fluoroscopic direction changes, the distortion correction function of the distortion correction coil 18 is inhibited. There is no.

なお、主制御部25は、コンピュータ(CPU)とその動作プログラムを中心に構成されていて、操作部5によるデータや指令の入力、あるいは、X線透視の進行状況などに応じて適切な命令信号やデータを適時に送出し、装置全体を常に適切に動作させる統括制御機能を果たす。   The main control unit 25 is mainly composed of a computer (CPU) and its operation program. An appropriate command signal is input according to the input of data and commands from the operation unit 5 or the progress of fluoroscopy. It performs a general control function to send data and data in a timely manner and always operate the entire device appropriately.

以上に詳述した通り、実施例のX線受像器2の場合、イメージ管14による入射X線像の検出と同時平行で、磁気シールド体16が磁気遮蔽壁となってイメージ管14の周側面から光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気としての地磁気がかかるのを防ぐのに加え、歪み補正コイル18が歪み補正磁気を発生して歪み誘発磁気としてX線入力面側からかかる地磁気を打ち消す構成となっていて、光電子像の歪みが抑えられるので、出力蛍光面13に出力される可視光像の歪みが抑えられると共に、視野口径設定機構21により、入力面基板11における入射X線像の入力面のうち出力蛍光面13に実際に可視光像となって出現する範囲を規定するイメージ管14の有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で変更できる構成であるので、イメージ管14の出力蛍光面13での可視光像の倍率を変化させることができる。   As described in detail above, in the case of the X-ray receiver 2 of the embodiment, the magnetic shield body 16 becomes a magnetic shielding wall in parallel with the detection of the incident X-ray image by the image tube 14, and the peripheral side surface of the image tube 14. In addition to preventing geomagnetism as distortion-induced magnetism that distorts the photoelectron image and causes distortion of the visible light image, the distortion correction coil 18 generates distortion correction magnetism to cause distortion-induced magnetism on the X-ray input surface side. Therefore, since the distortion of the photoelectron image is suppressed, the distortion of the visible light image output to the output phosphor screen 13 is suppressed, and the field aperture setting mechanism 21 allows the input surface substrate 11 to be corrected. Among the input surfaces of the incident X-ray image, the effective visual field aperture of the image tube 14 that defines the range that actually appears as a visible light image on the output fluorescent screen 13 is a plurality of different aperture sizes. Since the configuration can be changed between the effective field diameter, it is possible to change the magnification of the visible light image at the output phosphor screen 13 of the image tube 14.

加えて、実施例のX線受像器2の場合、イメージ管14で設定される有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイルに供給するコイル電流供給部24が備えられていて、視野口径設定機構21による有効視野口径の変更があった場合、コイル電流供給部24が視野口径設定機構21で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイル18に供給するので、イメージ管14で設定される有効視野口径が変更されても、歪み補正コイル18は可視光像の歪みを引き起こす歪み誘発磁気を的確に打ち消すことができる。
よって、実施例のX線受像器2によれば、イメージ管14で設定される有効視野口径の口径寸法の如何にかかわらず、可視光像の歪みを引き起こす歪み誘発磁気を十分に打ち消すことができる。
In addition, in the case of the X-ray receiver 2 of the embodiment, the coil current that generates the distortion correction magnetism suitable for each effective field aperture for each effective field aperture set in the image tube 14 can be selected for each effective field aperture. When the effective current aperture is changed by the visual field aperture setting mechanism 21 provided with the coil current supply unit 24 that supplies the correction coil, the effective visual field aperture set by the visual field aperture setting mechanism 21 is set by the coil current supply unit 24. Is selected and supplied to the distortion correction coil 18, so that even if the effective visual field aperture set in the image tube 14 is changed, the distortion correction coil 18 distorts the visible light image. It is possible to accurately cancel the strain-induced magnetism that causes
Therefore, according to the X-ray receiver 2 of the embodiment, the distortion-induced magnetism that causes distortion of the visible light image can be sufficiently canceled regardless of the aperture size of the effective field aperture set in the image tube 14. .

この発明は、上記の実施例に限られるものではなく、以下のように変形実施することも可能である。
(1)実施例の装置におけるX線受像器2の場合、磁気センサー20の設置位置がイメージ管14の前面(入力面)側外縁近傍であったが、磁気センサー20の設置位置は、イメージ管14の入力面外縁近傍に限らず、例えば磁気センサー20がイメージ管14の横(側周面)側に設置されていてもよい。
The present invention is not limited to the above embodiment, and can be modified as follows.
(1) In the case of the X-ray receiver 2 in the apparatus of the embodiment, the installation position of the magnetic sensor 20 is in the vicinity of the outer edge on the front surface (input surface) side of the image tube 14, but the installation position of the magnetic sensor 20 is For example, the magnetic sensor 20 may be installed on the side (side peripheral surface) of the image tube 14.

(2)実施例の装置におけるX線受像器2の場合、レンズ電極電源23がイメージ管14に併設されていたが、レンズ電極電源23がイメージ管14と別体に配設されている構成であってもよい。
また、実施例の装置におけるX線受像器2の場合、視野モード制御部22はイメージ管14と別体に制御コンソール側に配置されていたが、視野モード制御部22がイメージ管14に併設されていてもよい。
(2) In the case of the X-ray receiver 2 in the apparatus of the embodiment, the lens electrode power source 23 is provided side by side with the image tube 14, but the lens electrode power source 23 is provided separately from the image tube 14. There may be.
In the case of the X-ray receiver 2 in the apparatus of the embodiment, the visual field mode control unit 22 is arranged on the control console side separately from the image tube 14, but the visual field mode control unit 22 is provided in the image tube 14. It may be.

(3)実施例の場合、X線受像器2が、図4に示すような天井走行式Cアーム6に適用される構成であったが、X線受像器2は、床走行式CアームやX線撮影台に組み込まれた据え置き式Cアームに適用することもできる。   (3) In the case of the embodiment, the X-ray receiver 2 is configured to be applied to the overhead traveling C-arm 6 as shown in FIG. The present invention can also be applied to a stationary C-arm incorporated in an X-ray imaging table.

(4)実施例の場合、この発明のX線受像装置がX線透視装置に用いられていたが、この発明のX線受像装置はX線透視装置以外のX線撮像装置に適用することもできる。   (4) In the case of the embodiment, the X-ray image receiving apparatus of the present invention is used in an X-ray fluoroscopic apparatus, but the X-ray image receiving apparatus of the present invention may be applied to an X-ray imaging apparatus other than the X-ray fluoroscopic apparatus. it can.

実施例のX線受像器が組み込まれたX線透視装置の全体構成図である。1 is an overall configuration diagram of an X-ray fluoroscopic apparatus in which an X-ray receiver of an embodiment is incorporated. 実施例のX線受像器の構成を示す説明図である。It is explanatory drawing which shows the structure of the X-ray receiver of an Example. 実施例のX線受像器の磁気シールド体および歪み補正コイルの配置状況を示す平面図である。It is a top view which shows the arrangement | positioning condition of the magnetic shield body and distortion correction coil of the X-ray receiver of an Example. X線透視装置におけるX線撮像系を示す斜視図である。It is a perspective view which shows the X-ray imaging system in a X-ray fluoroscope. 実施例のX線受像器の標準視野モードでの入射X線像の一例を示す模式図である。It is a schematic diagram which shows an example of the incident X-ray image in the standard visual field mode of the X-ray receiver of an Example. 実施例のX線受像器の標準視野モードでの可視光像の一例を示す模式図である。It is a schematic diagram which shows an example of the visible light image in the standard visual field mode of the X-ray receiver of an Example. 実施例のX線受像器の拡大視野モードでの入射X線像の一例を示す模式図である。It is a schematic diagram which shows an example of the incident X-ray image in the expansion visual field mode of the X-ray receiver of an Example. 実施例のX線受像器の拡大視野モードでの可視光像の一例を示す模式図である。It is a schematic diagram which shows an example of the visible light image in the expansion visual field mode of the X-ray receiver of an Example. 従来のX線受像器の全体構成図である。It is a whole block diagram of the conventional X-ray receiver. 従来のX線受像器における磁気シールド体と歪み補正コイルの配置状況を示す平面図である。It is a top view which shows the arrangement | positioning condition of the magnetic shield body and distortion correction coil in the conventional X-ray receiver. 従来のX線受像器における入射X線像および可視光像の一例を示す模式図である。It is a schematic diagram which shows an example of the incident X-ray image and visible light image in the conventional X-ray receiver. X線受像器の入力面基板の周縁近傍における歪み補正コイルによる歪み補正磁気の印加状況を示す磁気強度表示チャートである。It is a magnetic intensity display chart which shows the application condition of the distortion correction magnetism by the distortion correction coil in the periphery vicinity of the input surface board | substrate of a X-ray receiver.

符号の説明Explanation of symbols

2 … X線受像器(X線受像装置)
11 … 入力面基板
12 … 電子レンズ系
13 … 出力蛍光面
14 … イメージ管
14a … 12インチ有効視野口径(有効視野口径)
14b … 9インチ有効視野口径(有効視野口径)
16 … 磁気シールド体
18 … 歪み補正コイル
20 … 磁気センサー
21 … 視野口径設定機構(視野口径設定手段)
24 … コイル電流供給部(コイル電流供給手段)
YA,YB … 入射X線像
Ya,Yb … 可視光像
2 ... X-ray receiver (X-ray receiver)
DESCRIPTION OF SYMBOLS 11 ... Input surface board | substrate 12 ... Electron lens system 13 ... Output fluorescent screen 14 ... Image tube 14a ... 12-inch effective visual field aperture (effective visual field aperture)
14b: 9 inch effective field aperture (effective field aperture)
16 ... Magnetic shield 18 ... Distortion correction coil 20 ... Magnetic sensor 21 ... Field size setting mechanism (field size setting means)
24 ... Coil current supply section (coil current supply means)
YA, YB ... Incident X-ray image Ya, Yb ... Visible light image

Claims (2)

入射X線像に応じた光電子像を出力する入力面基板と光電子像を縮小結像させる電子レンズ系と電子レンズ系で縮小結像された光電子像を可視光像に変換出力する出力蛍光面とを収納したイメージ管と、イメージ管の中の電子レンズ系をイメージ管の外側で囲むかたちで配設されている筒状の磁気シールド体と、光電子像を歪ませて可視光像の歪みを引き起こす歪み誘発磁気を検出する磁気検出手段と、イメージ管のX線入力面の外周縁に沿って入力面基板の外周空間を囲むかたちで巻回され、磁気検出手段による歪み誘発磁気の検出結果に基づいて歪み誘発磁気を打ち消す歪み補正磁気を発生する歪み補正コイルと、入力面基板における入射X線像の入力面のうち出力蛍光面に実際に可視光像となって出現する範囲を規定する有効視野口径を予め定められた口径寸法の異なる複数の有効視野口径の間で変更可能に設定する視野口径設定手段とを備えたX線受像装置において、イメージ管で設定される有効視野口径別に各有効視野口径に適合した歪み補正磁気を発生させるコイル電流を有効視野口径毎に選択可能に歪み補正コイルに供給するコイル電流供給手段を備えていて、コイル電流供給手段が視野口径設定手段で設定される有効視野口径に適合した歪み補正磁気を発生させるコイル電流を選択して歪み補正コイルに供給することを特徴とするX線受像装置。   An input surface substrate for outputting a photoelectron image corresponding to an incident X-ray image, an electron lens system for reducing and forming the photoelectron image, and an output phosphor screen for converting and outputting the photoelectron image reduced and imaged by the electron lens system to a visible light image; An image tube containing a tube, a cylindrical magnetic shield disposed around the electron lens system inside the image tube, and a photoelectron image that distorts the visible light image. Based on the detection result of the strain-induced magnetism by the magnetic detection means for detecting the strain-induced magnetism and wound around the outer peripheral space of the input surface substrate along the outer peripheral edge of the X-ray input surface of the image tube A distortion correction coil that generates distortion correction magnetism that cancels out the strain-induced magnetism, and an effective field of view that defines a range in which an actual visible light image appears on the output phosphor screen of the input surface of the incident X-ray image on the input surface substrate Caliber In an X-ray image receiving apparatus having a field aperture setting means that can be changed between a plurality of effective field apertures having different predetermined aperture sizes, each effective field aperture is set for each effective field aperture set in the image tube. A coil current supply means for supplying a coil current for generating a distortion correction magnetism suitable for each effective field aperture to the strain correction coil is provided, and the coil current supply means is set by the field aperture setting means. An X-ray image receiving apparatus comprising: selecting a coil current that generates distortion-corrected magnetism suitable for the above-mentioned and supplying the selected coil current to the distortion-correcting coil. 請求項1に記載のX線受像装置において、視野口径設定手段は、イメージ管の有効視野口径の変更を電子レンズ系の電気的制御により行なうX線受像装置。
2. The X-ray image receiving apparatus according to claim 1, wherein the field aperture setting means changes the effective field aperture of the image tube by electrical control of an electron lens system.
JP2005159207A 2005-05-31 2005-05-31 X-ray receiver Expired - Fee Related JP4604845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005159207A JP4604845B2 (en) 2005-05-31 2005-05-31 X-ray receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159207A JP4604845B2 (en) 2005-05-31 2005-05-31 X-ray receiver

Publications (2)

Publication Number Publication Date
JP2006338906A JP2006338906A (en) 2006-12-14
JP4604845B2 true JP4604845B2 (en) 2011-01-05

Family

ID=37559298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159207A Expired - Fee Related JP4604845B2 (en) 2005-05-31 2005-05-31 X-ray receiver

Country Status (1)

Country Link
JP (1) JP4604845B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248445A (en) * 1988-03-30 1989-10-04 Toshiba Corp X-ray image tube device
JPH0765756A (en) * 1993-08-30 1995-03-10 Shimadzu Corp Image intensifier device
JP2000100359A (en) * 1998-09-21 2000-04-07 Toshiba Corp X-ray image tube device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459741A (en) * 1987-08-31 1989-03-07 Toshiba Corp X-ray image tube device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248445A (en) * 1988-03-30 1989-10-04 Toshiba Corp X-ray image tube device
JPH0765756A (en) * 1993-08-30 1995-03-10 Shimadzu Corp Image intensifier device
JP2000100359A (en) * 1998-09-21 2000-04-07 Toshiba Corp X-ray image tube device

Also Published As

Publication number Publication date
JP2006338906A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US6810110B2 (en) X-ray tube for operating in a magnetic field
JP2013502033A5 (en)
EP3444836B1 (en) Diffraction pattern detection in a transmission charged particle microscope
JP4604845B2 (en) X-ray receiver
JP4651412B2 (en) X-ray diagnostic imaging equipment
JP2001235438A (en) Image observation method and scanning electron microscope
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP2008210702A (en) Charged particle beam device and applied voltage control method
EP0743670B1 (en) X-ray image intensifier tube apparatus
JP6285753B2 (en) Transmission electron microscope
JP2005032588A (en) Magnetic field objective lens for electron microscope
US9968313B2 (en) X-ray tube
JP3216355B2 (en) Image intensifier device
JP3129976U (en) X-ray fluoroscopic equipment
JP2010220838A (en) Radiographic apparatus
JP4293001B2 (en) Image intensifier device
KR0136444B1 (en) Color cathode ray tube display device
JP2571293B2 (en) Color cathode ray tube display device
EP1968097A1 (en) Strain correcting device for x-ray image tubes
JPWO2020100205A1 (en) Charged particle beam device and sample observation method
JP4182403B2 (en) Image intensifier device
JP2014032835A (en) Scanning transmission electron microscope
JP6824210B2 (en) electronic microscope
JPH0799033A (en) Image intensifier device
JP2006081739A (en) Medical diagnostic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R151 Written notification of patent or utility model registration

Ref document number: 4604845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees