JP4603495B2 - Alkali recovery method for alkali etching solution - Google Patents

Alkali recovery method for alkali etching solution Download PDF

Info

Publication number
JP4603495B2
JP4603495B2 JP2006044119A JP2006044119A JP4603495B2 JP 4603495 B2 JP4603495 B2 JP 4603495B2 JP 2006044119 A JP2006044119 A JP 2006044119A JP 2006044119 A JP2006044119 A JP 2006044119A JP 4603495 B2 JP4603495 B2 JP 4603495B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
alkali
tank
anolyte
etching solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006044119A
Other languages
Japanese (ja)
Other versions
JP2007224328A (en
Inventor
拓夫 川原
秀夫 野坂
Original Assignee
株式会社野坂電機
拓夫 川原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社野坂電機, 拓夫 川原 filed Critical 株式会社野坂電機
Priority to JP2006044119A priority Critical patent/JP4603495B2/en
Publication of JP2007224328A publication Critical patent/JP2007224328A/en
Application granted granted Critical
Publication of JP4603495B2 publication Critical patent/JP4603495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

アルミニウムのアルカリエッチング処理において、エッチング液中のAl濃度が増加するとエッチング速度が低下すると共に品質にも悪影響を与える。また溶解したAl3+イオンは酸と結合してAlO の陰イオンを形成し、アルミン酸ソーダNaAlO
として液中に存在する。
Al+NaOH+HO→NaAlO+3/2H
そして、アルミン酸ソーダは加水分解して硬いAlを生成し、エッチング処理に支障を来す。
そこで、アルカリエッチング液からアルミン酸ソーダを除去してAlの生成を阻止する必要がある。従来そのために種結晶添加法(バイヤー法)と加水分解防止剤添加法が採用されている。
前者は加水分解により以下の反応を得てAlを分離するものである。
NaAlO+2HO→NaOH+Al(OH)(Al
しかし、この方法においては過大な装置が必要であると共にAlの生成が避けられず、Alが壁に付着して運転に支障が生ずることが免れない。
後者はAlは生成されないのでAlによるトラブルは避けることができるが、Alを分離除去することが出来ないのでエッチング液の廃棄更新が必要になる。
In the alkaline etching treatment of aluminum, when the Al concentration in the etching solution increases, the etching rate decreases and the quality is also adversely affected. The dissolved Al 3+ ions combine with an acid to form an anion of AlO , and sodium aluminate NaAlO 2.
As it exists in the liquid.
Al + NaOH + H 2 O → NaAlO 2 + 3 / 2H 2
And sodium aluminate hydrolyzes to produce hard Al 2 O 3 , which hinders the etching process.
Therefore, it is necessary to remove the production of Al 2 O 3 by removing sodium aluminate from the alkaline etching solution. Conventionally, a seed crystal addition method (Buyer method) and a hydrolysis inhibitor addition method have been employed for this purpose.
The former obtains the following reaction by hydrolysis to separate Al.
NaAlO 2 + 2H 2 O → NaOH + Al (OH) 3 (Al 2 O 3 )
However, in this method, an excessive apparatus is required and generation of Al 2 O 3 is unavoidable, and it is inevitable that Al 2 O 3 adheres to the wall and hinders operation.
In the latter case, since Al 2 O 3 is not generated, troubles due to Al 2 O 3 can be avoided. However, since Al cannot be separated and removed, it is necessary to recycle the etching solution.

この発明は、従来における以下の問題点を解決することを課題とするものである
(1)アルミナ(Al)の析出を回避すること。
(2)小型な装置で処理可能とすること。
(3)NaCO及び重金属の蓄積を回避すること。
An object of the present invention is to solve the following problems in the prior art: (1) Avoid precipitation of alumina (Al 2 O 3 ).
(2) It should be possible to process with a small device.
(3) Avoid accumulation of NaCO 3 and heavy metals.

この発明は、Naを含むアルミニウムのアルカリエッチング液を電解槽に導き、二段階の電解透析工程を経ることによって、アルミナの結晶を生成することなく、アルカリエッチング液に含まれるNaAlOをNaOHとAl(OH)に分離するものである。 The present invention introduces an alkaline etching solution of aluminum containing Na into an electrolytic cell, and passes NaAlO 2 contained in the alkaline etching solution through a two-stage electrodialysis process without producing alumina crystals. (OH) 3 is separated.

請求項1の発明は、第一工程としてアルミニウムのアルカリエッチング液を第一電解槽に導き、イオン交換膜を通してNaを陰極側に分離し、前記Naを陰極反応で生成されるOHと結合させてNaOHを得る。次いで第二工程として、前記第一工程における陽極側の液を中和槽に供給し、併せて第二電解槽の陽極液を前記中和槽に供給して中和槽において第一電解槽の陽極液中のAlO イオンを前記第二電解槽の陽極反応で生成されるHイオンで中和してAl イオンをAl(OH)として分離した後、この液を第二電解槽に導き、イオン交換膜を通してNaを陰極側に分離し、前記Naを陰極反応で生成されるOHと結合させてNaOHを得る。
以上の工程により、アルミナや重金属が生成されることなく、エッチング液に含まれるNaAlOはNaOHとAl(OH)に分離され、これらを回収することができる。そして、Al(OH)は前記中和槽で生成されかつ排出されるので、電解槽にAl(OH)が生成することがない。
請求項2の発明は、中和槽の処理液を、第二電解槽の陽極側に加えて第一電解槽の陰極側に導くこととしたものである。
請求項3の発明は、陽極液のpHは、第一工程においてはpH10以上、第二工程においてはpH2以上8以下としたものである。上記pHの調整は、各電解槽のpHを随時チェックし、第一電解槽にエッチング液を適宜添加し、第二電解槽に第一電解槽の陽極液を添加して行う。
pHを2以上8以下に維持すればNaAlOは加水分解しAl(OH)として分離されるので実質上第2電解槽中に混入することはない。
The invention of claim 1 leads to aluminum alkaline etching solution in a first electrolytic bath as a first step, the Na + were separated on the cathode side through the ion-exchange membrane, OH produced the Na + in the cathode reaction - with Combine to obtain NaOH. Next, as the second step, the anode-side liquid in the first step is supplied to the neutralization tank, and the anolyte of the second electrolytic tank is supplied to the neutralization tank. After the AlO 2 ions in the anolyte are neutralized with H + ions generated by the anodic reaction in the second electrolytic cell to separate Al 3 + ions as Al (OH) 3 , this solution is subjected to second electrolysis. led to the bath, a Na + were separated on the cathode side through the ion-exchange membrane, the Na + and OH produced by the cathodic reaction - be coupled with obtaining NaOH.
Through the above steps, NaAlO 2 contained in the etching solution is separated into NaOH and Al (OH) 3 without generating alumina or heavy metal, and these can be recovered. And since Al (OH) 3 is produced | generated and discharged | emitted by the said neutralization tank, Al (OH) 3 does not produce | generate in an electrolytic cell.
In the invention of claim 2, the treatment liquid in the neutralization tank is introduced to the anode side of the second electrolysis tank and led to the cathode side of the first electrolysis tank.
In the invention of claim 3, the pH of the anolyte is adjusted to pH 10 or more in the first step and from 2 to 8 in the second step. The pH is adjusted by checking the pH of each electrolytic cell as needed, adding an etching solution to the first electrolytic cell as appropriate, and adding the anolyte of the first electrolytic cell to the second electrolytic cell.
If the pH is maintained at 2 or more and 8 or less, NaAlO 2 is hydrolyzed and separated as Al (OH) 3 , so that it is not substantially mixed into the second electrolytic cell.

請求項4は請求項1ないし3の方法を実施するための装置に関するものである。
この発明の装置は、イオン交換膜を備えた第一電解槽と、イオン交換膜を備えた第二電解槽と、中和槽とで構成する。前記第一電解槽の陽極側にはアルカリエッチング液の流入管及び前記中和槽への流出管を接続し、前記第一電極槽の陰極側には回収アルカリの回収管を接続し、前記中和槽には前記第一電解槽の流出管及び第二電解槽の陽極側に接続された流出管を接続し、前記中和槽には中和槽内液の流出管が接続され、この流出管の先端は第二電解槽の陽極側に接続し、前記第二電解槽の陰極側には回収アルカリの回収管を接続してアルカリエッチング液のアルカリ回収装置を構成する。
Claim 4 relates to an apparatus for carrying out the method of claims 1 to 3.
The apparatus of this invention comprises a first electrolytic cell equipped with an ion exchange membrane, a second electrolytic cell equipped with an ion exchange membrane, and a neutralization tank. An alkaline etching solution inflow pipe and an outflow pipe to the neutralization tank are connected to the anode side of the first electrolysis tank, and a recovery alkali recovery pipe is connected to the cathode side of the first electrode tank. The sump tank is connected to the outflow pipe of the first electrolysis tank and the outflow pipe connected to the anode side of the second electrolysis tank, and the neutralization tank is connected to the outflow pipe of the liquid in the neutralization tank. The tip of the tube is connected to the anode side of the second electrolytic cell, and a recovery alkali recovery tube is connected to the cathode side of the second electrolytic cell to constitute an alkali recovery device for alkali etching solution.

請求項1の発明において、第一工程としてアルミニウムのアルカリエッチング液を第一電解槽に導くと、陽極において式(1)の反応が得られ、陰極において式(2)の反応が得られる。
式(1) NaOH→Na+1/4O+1/2H
式(2) HO+e→1/2H+OH
そして、陽極反応で得られたNaをイオン交換膜を通して陰極側に分離すると、前記Naは陰極反応で生成されるOHと結合してNaOHが生成し、O2とH2は気体として分離される。よって、陰極液を回収することにより、アルカリ(NaOH)を回収することができる。
In the first aspect of the present invention, when an alkali etching solution of aluminum is introduced into the first electrolytic cell as the first step, the reaction of the formula (1) is obtained at the anode, and the reaction of the formula (2) is obtained at the cathode.
Equation (1) NaOH - e - → Na + + 1 / 4O 2 + 1 / 2H 2 O
Formula (2) H 2 O + e → 1 / 2H 2 + OH
Then, when Na + obtained by the anodic reaction is separated to the cathode side through the ion exchange membrane, the Na + is combined with OH produced by the cathodic reaction to produce NaOH, and O 2 and H 2 are separated as gas. The Therefore, alkali (NaOH) can be recovered by recovering the catholyte.

次いで第二工程として、前記第一工程における陽極液を中和槽に供給し、併せて第二電解槽の陽極液を前記中和槽に供給して中和槽においてアルカリエッチング液中のAlO イオンを前記第二電解槽の陽極反応で生成されるHイオンで中和してAl イオンをAl(OH)として分離する。この反応は式(3)のとおりである。
式(3) NaAlO+HO+H+→Na+Al(OH)
Al(OH)を分離排出した後、この液を第二電解槽に導く。
第二電解槽における陽極反応は式(4)、陰極反応は式(5)のとおりである。
式(4) 1/2HO−e→H+1/4O
式(5) HO+e→1/2H+OH
ここに、Naを含む前記中和槽の処理水を導入すると、Naはイオン交換膜を通して陰極側に分離し、前記Naが陰極反応で生成されるOHと結合してNaOHが生成される。
以上の工程により、アルミナの生成や重金属を蓄積することなく、エッチング液に含まれるNaAlOはNaOHとAl(OH)に分離され、これらを回収することができる。特にAl(OH)は中和槽でのみ生成され、かつ中和槽から分離排出されるので電解槽にAl(OH)が生成することはない。
Then as a second step, the anolyte is supplied to the neutralization tank in the first step, together with the alkali etching solution in the neutralization tank to supply the anolyte in the second electrolytic bath to the neutralizing bath AlO 2 - neutralized with H + ions generated ions at the anode reaction of the second electrolytic cell for separating the Al 3 + ions as Al (OH) 3. This reaction is as shown in Formula (3).
Formula (3) NaAlO 2 + H 2 O + H + → Na + Al (OH) 3
After the Al (OH) 3 is separated and discharged, this liquid is guided to the second electrolytic cell.
The anodic reaction in the second electrolytic cell is as shown in formula (4), and the cathodic reaction is as shown in formula (5).
Formula (4) 1 / 2H 2 O−e → H + + 1 / 4O 2
Formula (5) H 2 O + e → 1 / 2H 2 + OH
Here, the introduction of process water in the neutralization tank containing Na +, Na + is separated into the cathode side through the ion-exchange membrane, wherein the Na + is OH generated at the cathode reaction - generation NaOH combined with Is done.
Through the above steps, NaAlO 2 contained in the etching solution is separated into NaOH and Al (OH) 3 without generating alumina or accumulating heavy metals, and these can be recovered. In particular, Al (OH) 3 is produced only in the neutralization tank and separated and discharged from the neutralization tank, so that Al (OH) 3 is not produced in the electrolytic cell.

請求項2の発明は、中和槽の処理液を、第二電解槽の陽極側に加えて第一電解槽の陰極側に導くこととしたものである。
この操作によりエッチング液中の水の量と[回収アルカリ中の水+凝集沈殿したAl(OH)中の水+余剰の水]の両のバランスがとれ、Naを完全回収することができる。
In the invention of claim 2, the treatment liquid in the neutralization tank is introduced to the anode side of the second electrolysis tank and led to the cathode side of the first electrolysis tank.
This operation balances both the amount of water in the etching solution and [water in the recovered alkali + water in the coagulated and precipitated Al (OH) 3 + surplus water], and Na can be completely recovered.

請求項3の発明は、陽極液のpHは、第一工程においてはpH10以上、第二工程においてはpH2以上8以下としたものである。
電解槽のpHは、陽極でHが生成されることにより次第に低下する。しかるに、陽極反応はpHが高いほど電流効率がよく、pHが2以下になると急激に電流効率が低下し、消費電力が増大する。アルカリエッチング液のpHは13〜14程度であるが、電解により次第に低下する。
請求項3の発明においては第一電解槽の陽極液のpHを10以上、第二電解槽の陽極液のpHも2以上8以下に維持することとしたので、比較的効率よく陽極反応を行うことができる。
pH2以上8以下に維持することの理由は、
NaAlO+2HO→NaOH+Al(OH)
の反応はpH8以下でないと完結せず、一方pHが2以下になるとHがイオン交換膜を通して陰極側に移動し電流効率を低下させるためである。加えて、pH2以下においてはAlO またはAL(OH)中のAlが、Al として溶解し、また酸化電位も上昇する。
In the invention of claim 3, the pH of the anolyte is adjusted to pH 10 or more in the first step and from 2 to 8 in the second step.
The pH of the electrolytic cell gradually decreases as H + is generated at the anode. However, the higher the pH, the better the current efficiency of the anodic reaction, and when the pH drops to 2 or less, the current efficiency rapidly decreases and the power consumption increases. The pH of the alkaline etching solution is about 13 to 14, but gradually decreases due to electrolysis.
In the invention of claim 3, since the pH of the anolyte in the first electrolytic cell is maintained at 10 or more and the pH of the anolyte in the second electrolytic cell is also maintained at 2 or more and 8 or less, the anodic reaction is performed relatively efficiently. be able to.
The reason for maintaining the pH between 2 and 8 is
NaAlO 2 + 2H 2 O → NaOH + Al (OH) 3
This is because the reaction is not completed unless the pH is 8 or less, whereas when the pH is 2 or less, H + moves to the cathode side through the ion-exchange membrane and lowers the current efficiency. In addition, at pH 2 or lower, Al in AlO 2 or AL (OH) 3 is dissolved as Al 3 + and the oxidation potential is increased.

図1は第一工程の実施装置の概略図である。
第一電解槽1にイオン交換膜2を隔てて陽極電極3,陰極電極4が取り付けてある。
前記第一電解槽1の陽極側にはアルカリエッチング液の流入管5と中和槽6(図2参照)への流出管7が接続してあり、陰極側にはアルカリの回収管8と第二電解槽9からの帰還管10が接続してある。
FIG. 1 is a schematic view of an apparatus for performing the first step.
An anode electrode 3 and a cathode electrode 4 are attached to the first electrolytic cell 1 across the ion exchange membrane 2.
An alkaline etching solution inflow pipe 5 and a neutralization tank 6 outflow pipe 7 (see FIG. 2) are connected to the anode side of the first electrolytic cell 1, and an alkali recovery pipe 8 and a first electrode are connected to the cathode side. A return pipe 10 from the second electrolytic cell 9 is connected.

図2は第二工程の実施装置の概略図である。
第二電解槽9にイオン交換膜11を隔てて陽極電極12,陰極電極13が取り付けてある。
前記中和槽6には前記排出管7と第二電解槽9への流出管14が接続してあり、Al(OH)の排出口15が設けてある。前記流出管14は第二電解槽9の陽極側に接続してあり、この流出管14には前記第一電解槽1への帰還管10が接続してある。
前記第二電解槽9の陽極側には流出管16が接続してあり、この流出管16の他端は前記第一電解槽の流出管7に接続してある。また、第二電解槽9の陰極側にはアルカリの回収管17が接続してある。
FIG. 2 is a schematic view of an apparatus for performing the second step.
An anode electrode 12 and a cathode electrode 13 are attached to the second electrolytic cell 9 with an ion exchange membrane 11 therebetween.
The neutralization tank 6 is connected to the discharge pipe 7 and the outflow pipe 14 to the second electrolytic tank 9, and is provided with an outlet 15 for Al (OH) 3 . The outflow pipe 14 is connected to the anode side of the second electrolytic cell 9, and the return pipe 10 to the first electrolytic cell 1 is connected to the outflow pipe 14.
An outflow pipe 16 is connected to the anode side of the second electrolytic cell 9, and the other end of the outflow pipe 16 is connected to the outflow pipe 7 of the first electrolytic cell 9. An alkali recovery tube 17 is connected to the cathode side of the second electrolytic cell 9.

上記装置において、アルカリエッチング液の基本的な流れは、流入管5,第一電解槽1,流出管7,中和槽6,流出管14,第二電解槽9となる。そして、第二電解槽9の陽極液の一部が流出管16を経て中和槽6へ流れ、ここで第一電解槽0の陽極液と混合することとなる。   In the above apparatus, the basic flow of the alkaline etching solution is the inflow pipe 5, the first electrolytic tank 1, the outflow pipe 7, the neutralization tank 6, the outflow pipe 14, and the second electrolytic tank 9. A part of the anolyte in the second electrolytic cell 9 flows to the neutralizing cell 6 through the outflow pipe 16 and is mixed with the anolyte in the first electrolytic cell 0 here.

アルミニウムエッチング処理に使用されたアルカリエッチング液は、NaOHとAlを含んでいる。この液が第一電解槽に導入されると、陽極において NaOHが電気分解されてNaが分離し、陰極側へ移動する。これと陰極反応で生成されるOHが結合して純度の高いNaOHが生成されるので、陰極液を回収することによりアルカリエッチング液中のアルカリを回収することができる。なお、前掲式(1)(2)参照。 The alkaline etchant used for the aluminum etching process contains NaOH and Al. When this liquid is introduced into the first electrolytic cell, NaOH is electrolyzed at the anode to separate Na + and move to the cathode side. Since this and OH produced by the cathodic reaction combine to produce highly pure NaOH, the alkali in the alkaline etching solution can be collected by collecting the catholyte. See formulas (1) and (2) above.

上記第一電解槽1における電気分解においては、陽極液のpHを随時計測し、pHを10以上の維持する。そのために、pHが10以下に低下するおそれのある際にpHの高い(通常13−14)アルカリエッチング液を流入管5から第一電解槽1に供給し、pHを10以上に維持し、電流効率を高く維持し、処理速度の維持、消費電力の低減を図る。   In the electrolysis in the first electrolytic cell 1, the pH of the anolyte is measured at any time and the pH is maintained at 10 or more. Therefore, when the pH may be lowered to 10 or less, an alkaline etching solution having a high pH (usually 13-14) is supplied from the inflow pipe 5 to the first electrolytic cell 1 to maintain the pH at 10 or more. Maintain high efficiency, maintain processing speed and reduce power consumption.

Al成分は陽極液に含まれているので、陽極液を流出管7から中和槽6へ導入する。併せて第二電解槽9の陽極液を流出管16から中和槽6へ導入する。
中和槽6においては、第一電解槽からの流入液に含まれるNaAlOと第二電解槽9の陽極液に含まれるH+とが反応してNaとAl(OH)とが生成されるので、Al(OH)を排出口15から排出する。
この処理により、中和槽6内のアルカリエッチング液からAl成分が除去され、第二電解槽9に供給される処理液にはAl成分が含まれない。
Since the Al component is contained in the anolyte, the anolyte is introduced into the neutralization tank 6 from the outflow pipe 7. At the same time, the anolyte in the second electrolytic cell 9 is introduced from the outflow pipe 16 into the neutralization cell 6.
In the neutralization tank 6, NaAlO 2 contained in the influent from the first electrolytic tank reacts with H + contained in the anolyte of the second electrolytic tank 9 to produce Na + and Al (OH) 3. Therefore, Al (OH) 3 is discharged from the discharge port 15.
By this treatment, the Al component is removed from the alkaline etching liquid in the neutralization tank 6, and the treatment liquid supplied to the second electrolytic tank 9 does not contain the Al component.

第二電解槽9における電気分解において、陰極反応によりOHが生成される。そして前記中和槽から供給される処理液にはNaが含まれている。そこで、陰極側において純度の高いNaOHが生成されるので、これを回収管17から回収する。
以上の処理により、使用済みアルカリエッチング液に含まれるAl成分を完全に回収することができると共に、アルカリ(Na)をNaOHとして回収することができる。
In the electrolysis in the second electrolytic cell 9, OH is generated by the cathode reaction. And the process liquid supplied from the said neutralization tank contains Na <+> . Therefore, high-purity NaOH is generated on the cathode side, and this is recovered from the recovery tube 17.
Through the above treatment, the Al component contained in the used alkaline etching solution can be completely recovered, and the alkali (Na) can be recovered as NaOH.

上記第二電解槽9における電気分解においては、陽極液のpHを随時計測し、pHを2以上の維持する。そのために、pHが2以下に低下するおそれのある際にpHの高い第一電解槽陽極液オーバーフロー(実際には気液分離器からのオーバーフロー)を第二電解槽9の陽極側に供給し、pHを2以上に維持し、電流効率を高く維持し、処理速度の維持、消費電力の低減を図る。   In the electrolysis in the second electrolytic cell 9, the pH of the anolyte is measured as needed, and the pH is maintained at 2 or more. Therefore, when there is a possibility that the pH may be lowered to 2 or less, supply the first electrolytic cell anolyte overflow with high pH (actually overflow from the gas-liquid separator) to the anode side of the second electrolytic cell 9, The pH is maintained at 2 or more, current efficiency is maintained high, processing speed is maintained, and power consumption is reduced.

全NaOH 79.6g/l、Al 20g/lを含むアルカリエッチング液毎時560mlを陽イオン交換膜を隔膜とする2段の電解装置で処理した。
第1電解工程では電流密度10A/dm2で運転し、陽極液pHを10〜11に調整した。第2電解工程では電流密度5A/dm2で運転し、陽極液pHを2〜8に維持した。この陽極液と第1電解槽陽極液気液分離器からのオーバーフローを中和槽で混合しAl(OH)を凝集分離し、上澄み液は陽極液として第2電解槽へ供給した。この結果第1および第2電解槽から毎時480ml、全NaOH 92g/l、Al 4g/lのNaOH液を回収した。またAl(OH)としてAlを分離回収した凝集液は毎時80ml、Al濃度116g/lであった。
(注 NaOH回収液中のAlは実験上の問題によるものと思われる
560 ml of alkaline etching solution containing 79.6 g / l of total NaOH and 20 g / l of Al per hour was treated in a two-stage electrolytic apparatus using a cation exchange membrane as a diaphragm.
In the first electrolysis step, the battery was operated at a current density of 10 A / dm2, and the anolyte pH was adjusted to 10-11. In the second electrolysis step, the battery was operated at a current density of 5 A / dm 2 and the anolyte pH was maintained at 2-8. The anolyte and overflow from the first electrolytic cell anolyte gas-liquid separator were mixed in a neutralization tank to coagulate and separate Al (OH) 3 , and the supernatant was supplied as the anolyte to the second electrolytic tank. As a result, 480 ml / hour of total NaOH 92 g / l and Al 4 g / l of NaOH solution were recovered from the first and second electrolytic cells. Further, the aggregate liquid from which Al was separated and recovered as Al (OH) 3 was 80 ml / hour and the Al concentration was 116 g / l.
(Note: Al in the NaOH recovery solution is probably due to experimental problems.

全NaOH 32g/l、Al 15g/lを含むアルカリエッチング液毎時360mlを実施例1と同様、陽イオン交換膜を隔膜とする2段の電解装置で処理した。
第1電解工程では電流密度1.3A/dm2で運転し、陽極液pHを10〜11に調整した。第2電解工程では電流密度2.4A/dm2で運転し、陽極液pHを2〜8に維持した。この陽極液と第1電解槽陽極液気液分離器からのオーバーフローを中和槽で混合しAl(OH)を凝集分離し、上澄み液は陽極液として第2電解槽へ供給した。この結果第1および第2電解槽から毎時320ml、全NaOH 34g/l、Al 4g/lのNaOH液を回収した。またAl(OH)としてAlを分離回収した凝集液は毎時40ml、Al濃度100g/lであった。
(注 NaOH回収液中のAlは実験上の問題によるものと思われる。)
In the same manner as in Example 1, 360 ml of alkaline etching solution containing 32 g / l of total NaOH and 15 g / l of Al was treated in a two-stage electrolytic apparatus using a cation exchange membrane as a diaphragm.
In the first electrolysis step, the battery was operated at a current density of 1.3 A / dm2, and the anolyte pH was adjusted to 10-11. In the second electrolysis step, the battery was operated at a current density of 2.4 A / dm2, and the anolyte pH was maintained at 2-8. The anolyte and overflow from the first electrolytic cell anolyte gas-liquid separator were mixed in a neutralization tank to coagulate and separate Al (OH) 3 , and the supernatant was supplied as the anolyte to the second electrolytic tank. As a result, an NaOH solution of 320 ml / hour, total NaOH 34 g / l, and Al 4 g / l was recovered from the first and second electrolytic cells. Further, the aggregate liquid from which Al was separated and recovered as Al (OH) 3 was 40 ml per hour and the Al concentration was 100 g / l.
(Note: Al in the NaOH recovery solution is probably due to experimental problems.)

この発明によれば、簡易な装置により、使用済みアルカリエッチング液に含まれるAl成分を完全に回収することができると共に、アルカリ(Na)をNaOHとして回収することができるものであり、産業上の利用可能性を有するものである。   According to the present invention, the Al component contained in the used alkaline etching solution can be completely recovered with a simple apparatus, and the alkali (Na) can be recovered as NaOH. It has availability.

この発明実施例の第一工程を示す図The figure which shows the 1st process of this invention Example 同じく第二工程を示す図Figure showing the second step

符号の説明Explanation of symbols

1 第一電解槽
2 イオン交換膜
3 陽極電極
4 陰極電極
5 流入管
6 中和槽
7 流出管
8 回収管
9 第二電解槽
10 帰還管
11 イオン交換膜
12 陽極電極
13 陰極電極
14 流出管
15 排出口
16 流出管
17 回収管
DESCRIPTION OF SYMBOLS 1 1st electrolysis tank 2 Ion exchange membrane 3 Anode electrode 4 Cathode electrode 5 Inflow pipe 6 Neutralization tank 7 Outflow pipe 8 Recovery pipe 9 Second electrolysis tank 10 Return pipe 11 Ion exchange membrane 12 Anode electrode 13 Cathode electrode 14 Outflow pipe 15 Discharge port 16 Outflow pipe 17 Recovery pipe

Claims (4)

アルミニウムのアルカリエッチング液を第一電解槽に導き、イオン交換膜を通してNaを陰極側に分離し、前記Naを陰極反応で生成されるOHと結合させてNaOHを得る第一工程と、
前記第一工程における陽極液を中和槽に供給し、併せて第二電解槽の陽極液を前記中和槽に供給して中和槽において第一電解槽の陽極液中のAlO イオンを前記第二電解槽の陽極反応で生成されるHイオンで中和してAl イオンをAl(OH)として分離した後、中和槽の液を第二電解槽に供給し、イオン交換膜を通してNaを陰極側に分離し、前記Naを陰極反応で生成されるOHと結合させてNaOHを得る第二工程とよりなる、アルカリエッチング液のアルカリ回収方法
A first step of introducing an alkaline etching solution of aluminum into a first electrolytic cell, separating Na + to the cathode side through an ion exchange membrane, and combining the Na + with OH generated by a cathode reaction to obtain NaOH;
Said anolyte is supplied to the neutralization tank in the first step, together with the second in the electrolytic cell anolyte neutralization tank is supplied to the neutralization tank of the first electrolytic bath in the anolyte AlO 2 - ions Is neutralized with H + ions generated by the anodic reaction of the second electrolytic cell to separate Al 3 + ions as Al (OH) 3 , and then the liquid in the neutralizing cell is supplied to the second electrolytic cell, A method for recovering an alkali of an alkali etching solution, comprising a second step of separating Na + to the cathode side through an ion exchange membrane and combining the Na + with OH generated by a cathode reaction to obtain NaOH.
中和のために混合された第一電解槽における陽極側の液と第二電解槽における陽極側の液とは、第二電解槽の陽極側に加えて第一電解槽の陰極側に導くこととした、請求項1記載のアルカリエッチング液のアルカリ回収方法 The liquid on the anode side in the first electrolytic cell and the liquid on the anode side in the second electrolytic cell mixed for neutralization are led to the cathode side of the first electrolytic cell in addition to the anode side of the second electrolytic cell. The alkali recovery method of the alkali etching liquid according to claim 1 陽極液のpHは、第一電解槽においてはpH10以上、第二電解槽においてはpH2以上8以下に維持した、請求項1又は2に記載のアルカリエッチング液のアルカリ回収方法 The method for recovering an alkali of an alkali etching solution according to claim 1 or 2, wherein the pH of the anolyte is maintained at a pH of 10 or more in the first electrolytic cell and from 2 to 8 in the second electrolytic cell. イオン交換膜を備えた第一電解槽と、イオン交換膜を備えた第二電解槽と、中和槽とを有し、
前記第一電解槽の陽極側にはアルカリエッチング液の流入管及び前記中和槽への流出管が接続され、
前記第一電極槽の陰極側には回収アルカリの回収管が接続され
前記中和槽には前記第一電解槽の流出管及び第二電解槽の陽極側に接続された流出管が接続され、
前記中和槽には中和槽内液の流出管が接続され、この流出管の先端は第二電解槽の陽極側に接続され、
前記第二電解槽の陰極側には回収アルカリの回収管が接続された、
アルカリエッチング液のアルカリ回収装置
A first electrolytic cell equipped with an ion exchange membrane, a second electrolytic cell equipped with an ion exchange membrane, and a neutralization tank,
On the anode side of the first electrolysis tank, an alkaline etchant inflow pipe and an outflow pipe to the neutralization tank are connected,
A recovery pipe for recovery alkali is connected to the cathode side of the first electrode tank, and an outflow pipe connected to the anode side of the first electrolysis tank and the second electrolysis tank is connected to the neutralization tank,
The neutralization tank is connected to an outflow pipe for the liquid in the neutralization tank, and the tip of the outflow pipe is connected to the anode side of the second electrolytic tank,
A recovery alkali recovery tube was connected to the cathode side of the second electrolytic cell,
Alkali recovery device for alkali etching solution
JP2006044119A 2006-02-21 2006-02-21 Alkali recovery method for alkali etching solution Active JP4603495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044119A JP4603495B2 (en) 2006-02-21 2006-02-21 Alkali recovery method for alkali etching solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006044119A JP4603495B2 (en) 2006-02-21 2006-02-21 Alkali recovery method for alkali etching solution

Publications (2)

Publication Number Publication Date
JP2007224328A JP2007224328A (en) 2007-09-06
JP4603495B2 true JP4603495B2 (en) 2010-12-22

Family

ID=38546404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044119A Active JP4603495B2 (en) 2006-02-21 2006-02-21 Alkali recovery method for alkali etching solution

Country Status (1)

Country Link
JP (1) JP4603495B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101772468A (en) * 2007-06-27 2010-07-07 美铝澳大利亚有限公司 Electrolytic method for controlling the precipitation of alumina
EP2739568A2 (en) * 2011-08-01 2014-06-11 Ceramatec, Inc Electrolytic process to produce aluminum hydroxide
AU2014249310B2 (en) * 2013-03-12 2018-08-16 Dfi Usa, Llc Methods for the electrolytic decarboxylation of sugars
CN111304657B (en) * 2019-02-12 2023-08-15 叶旖婷 Method for electrolytic recycling of alkaline etching waste liquid
WO2022022461A1 (en) * 2020-07-28 2022-02-03 叶涛 Method and apparatus for regeneration and reuse of alkaline etching waste liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316089A (en) * 1986-06-24 1988-01-23 ザ・ウォ−タ−・リサ−チ・コミッション Method of treating solution of salt or hydroxide of alkali metal
JPH04128392A (en) * 1990-09-19 1992-04-28 Fuji Photo Film Co Ltd Surface treatment of aluminum support for printing plate
JP2001213066A (en) * 2000-02-04 2001-08-07 Fuji Photo Film Co Ltd Manufacturing method for lithographic printing plate support, lithographic printing plate support, and lithographic printing plate
JP2002517171A (en) * 1991-12-19 2002-06-11 ジェイ. ボーガン,ダニエル Electrodialysis collection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316089A (en) * 1986-06-24 1988-01-23 ザ・ウォ−タ−・リサ−チ・コミッション Method of treating solution of salt or hydroxide of alkali metal
JPH04128392A (en) * 1990-09-19 1992-04-28 Fuji Photo Film Co Ltd Surface treatment of aluminum support for printing plate
JP2002517171A (en) * 1991-12-19 2002-06-11 ジェイ. ボーガン,ダニエル Electrodialysis collection method
JP2001213066A (en) * 2000-02-04 2001-08-07 Fuji Photo Film Co Ltd Manufacturing method for lithographic printing plate support, lithographic printing plate support, and lithographic printing plate

Also Published As

Publication number Publication date
JP2007224328A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
CN101768742B (en) Regenerated acidic etching solution, copper recycling method and special device thereof
JP4603495B2 (en) Alkali recovery method for alkali etching solution
WO2008053616A1 (en) Method for collection of valuable metal from ito scrap
CN104313584A (en) Method and system for electrolyzing copper-containing etching liquid to obtain copper plate and regenerating and recycling etching liquid
CN111560615B (en) Method for on-line recovery of copper and chlorine from acidic etching waste liquid and regeneration of etching liquid
CN107012466B (en) A kind of acidic etching liquid method for recycling and system
RU2751710C2 (en) Method for producing high-purity lithium hydroxide monohydrate from materials containing lithium carbonate or lithium chloride
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
JP2009270188A (en) Method of manufacturing high-purity lithium hydroxide
CN107022769B (en) A kind of method and device for extracting high-purity monohydrate lithium hydroxide from the material containing lithium carbonate
JPH033747B2 (en)
RU2196735C1 (en) Process of extracting monohydrate of high-purity lithium hydroxide from materials containing lithium carbonate
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
JP4515804B2 (en) Method for recovering metallic indium by electrowinning
JP5016973B2 (en) Method and apparatus for alkali recovery of alkali etchant
CN109852987B (en) Method for preparing sodium glyoxylate by coupling reverse osmosis technology
CA1214748A (en) Process for nickel electroreplenishment for nickel refinery electrolyte
KR20120031445A (en) Method for manufacturing high-purity nickel
JP2014015649A (en) Production method of caustic soda
SE455706B (en) SET FOR PREPARATION OF ALKALIA METAL CHLORATE
JPS602393B2 (en) Amino acid production method
CN105887123A (en) Method for preparing PdCl2
JP2001262206A (en) Method for producing silver oxide and method for producing silver powder
JPS61261488A (en) Electrolyzing method for alkaline metallic salt of amino acid
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250