JP4602198B2 - Preparation method of chlorine dioxide water - Google Patents

Preparation method of chlorine dioxide water Download PDF

Info

Publication number
JP4602198B2
JP4602198B2 JP2005236907A JP2005236907A JP4602198B2 JP 4602198 B2 JP4602198 B2 JP 4602198B2 JP 2005236907 A JP2005236907 A JP 2005236907A JP 2005236907 A JP2005236907 A JP 2005236907A JP 4602198 B2 JP4602198 B2 JP 4602198B2
Authority
JP
Japan
Prior art keywords
chlorine dioxide
reaction vessel
chlorite
aqueous solution
dioxide water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005236907A
Other languages
Japanese (ja)
Other versions
JP2006083056A (en
Inventor
光康 高須
妙子 藤垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naigai Chemical Products Co Ltd
Original Assignee
Naigai Chemical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naigai Chemical Products Co Ltd filed Critical Naigai Chemical Products Co Ltd
Priority to JP2005236907A priority Critical patent/JP4602198B2/en
Publication of JP2006083056A publication Critical patent/JP2006083056A/en
Application granted granted Critical
Publication of JP4602198B2 publication Critical patent/JP4602198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、例えば循環式浴槽や冷却水系のような循環水系の殺菌消毒、飲食品工場における容器類や製造・充填ラインの殺菌洗浄、食器類の殺菌洗浄等に有用な二酸化塩素水の調製方法に関する。   The present invention relates to a method for preparing chlorine dioxide water useful for sterilization and sterilization of circulating water systems such as circulating baths and cooling water systems, sterilization cleaning of containers and production / filling lines in food and beverage factories, and sterilization cleaning of tableware. About.

近年、水系の殺菌・消毒剤として、二酸化塩素を用いる方法が普及しつつある。この二酸化塩素は、塩素よりも殺菌作用が強い上、バイオフィルム(生物膜)に対する殺菌性にも優れており、循環水系では濾過器の詰まりを生じずに系内全体を一括して殺菌洗浄できるという利点がある。しかして、この二酸化塩素を生成させる手段として、従来より、亜塩素酸ナトリウムの如き亜塩素酸塩を主原料とする次の(1)〜(4)の方法が知られている。   In recent years, a method using chlorine dioxide as a water-based disinfectant / disinfectant is becoming widespread. This chlorine dioxide has a stronger bactericidal action than chlorine and is also excellent in bactericidal properties for biofilms (biological membranes). In a circulating water system, the entire system can be sterilized and washed without causing clogging of the filter. There is an advantage. Therefore, as means for producing this chlorine dioxide, the following methods (1) to (4) using a chlorite such as sodium chlorite as a main raw material are conventionally known.

(1)亜塩素酸塩と酸とを直接に反応させる方法
5NaClO2 +4HCl→4ClO2 +5NaCl+2H2
(2)亜塩素酸塩に次亜塩素酸ナトリウムと酸を作用させる方法
2NaClO2 +NaClO+2HCl→2ClO2 +3NaCl+H2
(3) 亜塩素酸塩に塩素ガスを作用させる方法
2NaClO2 +Cl2 →2ClO2 +2NaCl
(4) 亜塩素酸塩水溶液を電気分解する方法
NaClO2 +H2 O→ClO2 +NaOH+1/2H2
(1) Method of directly reacting chlorite and acid 5NaClO 2 + 4HCl → 4ClO 2 + 5NaCl + 2H 2 O
(2) Method of allowing sodium hypochlorite and acid to act on chlorite 2NaClO 2 + NaClO + 2HCl → 2ClO 2 + 3NaCl + H 2 O
(3) Method of causing chlorine gas to act on chlorite 2NaClO 2 + Cl 2 → 2ClO 2 + 2NaCl
(4) Method of electrolyzing aqueous chlorite solution NaClO 2 + H 2 O → ClO 2 + NaOH + 1 / 2H 2

上記(1)及び(2)の方法では、酸として例示した塩酸の他にリン酸やクエン酸等も使用できるが、低pHほど短い反応時間で高い二酸化塩素発生率が得られる。従って、これらの方法で調製された高濃度の二酸化塩素水は、強い酸性を示すことから、慎重な取扱いが要求される上、消毒殺菌対象の水系に加えた際に当該水系のpHを低下させることになるから、水系の種類によっては問題を生じると共に、金属製の接液部が侵される懸念がある。なお、(2)の方法は、亜塩素酸塩と次亜塩素酸ナトリウム及び酸の3種の液を混合することから、操作的に煩雑で作業性に劣るという難点もある。   In the above methods (1) and (2), phosphoric acid, citric acid and the like can be used in addition to hydrochloric acid exemplified as the acid. However, a higher chlorine dioxide generation rate is obtained with a shorter reaction time as the pH is lower. Therefore, high-concentration chlorine dioxide water prepared by these methods shows strong acidity, and thus requires careful handling and lowers the pH of the aqueous system when added to the aqueous system to be disinfected. Therefore, depending on the type of water system, there is a problem and there is a concern that the wetted part made of metal may be affected. In addition, since the method (2) mixes three kinds of liquids of chlorite, sodium hypochlorite and acid, there is also a problem that it is complicated in operation and inferior in workability.

一方、前記(3)の塩素ガスを用いる方法は、有毒な塩素ガスを取扱う上で充分な安全性を確保する必要があり、作業性及び設備コストの両面から採用しにくい。また(4)の電気分解による方法は、特殊な設備を要することから、コスト的に問題がある。   On the other hand, the method (3) using chlorine gas needs to ensure sufficient safety in handling toxic chlorine gas, and is difficult to adopt from the viewpoint of workability and equipment cost. Further, the method (4) by electrolysis has a problem in terms of cost because it requires special equipment.

本発明は、上述の事情に鑑みて、高濃度で且つ取扱い容易な中性域の二酸化塩素水を、低コストで比較的安全に調製し得る方法、更には該二酸化塩素水の有効濃度や生成量を容易に制御し得る調製方法を提供することを目的としている。   In view of the above-mentioned circumstances, the present invention is a method capable of preparing a neutral chlorine dioxide water having a high concentration and easy handling at a low cost and relatively safe, and further, an effective concentration and generation of the chlorine dioxide water. The object is to provide a preparation method in which the amount can be easily controlled.

上記目的を達成するために、本発明の請求項1に係る二酸化塩素水の調製方法は、固形塩素化薬剤としてトリクロロイソシアヌル酸の成形物を装填した反応容器内に亜塩素酸塩水溶液を導入して反応させ、生成する二酸化塩素水を該反応容器から導出させることを特徴としている。 In order to achieve the above object, a method for preparing chlorine dioxide water according to claim 1 of the present invention introduces an aqueous chlorite solution into a reaction vessel charged with a molded product of trichloroisocyanuric acid as a solid chlorinating agent. reacted Te, chlorine dioxide water produced is characterized in Rukoto is derived from the reaction vessel.

請求項の発明は、上記請求項の二酸化塩素水の調製方法において、亜塩素酸塩水溶液の導入速度と濃度の調節により、生成する二酸化塩素の有効濃度もしくは生成量を制御するものとしている。 The invention of claim 2 is the process for the preparation of chlorine dioxide water of the claim 1, by adjusting the introduction rate and the concentration of the chlorite solution, it is assumed to control the effective concentration or amount of production of chlorine dioxide generating .

請求項の発明は、上記請求項の二酸化塩素水の調製方法において、亜塩素酸塩水溶液を前記反応容器内に滞留時間0.5時間以上で導入することを特徴としている。 The invention of claim 3 is characterized in that, in the method for preparing chlorine dioxide water of claim 2 , the aqueous chlorite solution is introduced into the reaction vessel with a residence time of 0.5 hours or more.

請求項1の発明によれば、使用薬剤が亜塩素酸塩水溶液と固形塩素化薬剤であるトリクロロイソシアヌル酸の成形物の2種のみで高濃度の二酸化塩素水を安定して連続的に調製できる上、固形塩素化薬剤は一般に液剤である次亜塩素酸ナトリウムや塩酸に比較して危険性が少なく取扱い容易であるから、調製を作業性よく且つ安全に行える。しかも、調製された二酸化塩素水は、pHが略中性域になるため、消毒殺菌対象の水系に必要なだけ加えても当該水系のpHを低下させることがなく、金属製の接液部を侵す懸念もない。加えて、反応容器及び亜塩素酸塩水溶液タンクと簡単な配管によって調製装置を非常に簡素に構築でき、該調製装置をトラックのような車両に搭載した自走移動型、手押し式台車等に搭載した可搬型、全体をユニット化した携帯型等とすることも容易になる。 According to the invention of claim 1, high concentration chlorine dioxide water can be stably and continuously prepared with only two kinds of molded products of trichlorisocyanuric acid which is a chlorite aqueous solution and a solid chlorinated agent. In addition, since solid chlorinated chemicals are generally less dangerous and easy to handle than liquid sodium chlorite and hydrochloric acid, preparation can be performed with good workability and safety. Moreover, since the pH of the prepared chlorine dioxide water is in a substantially neutral range, even if it is added to the water system to be sterilized and sterilized as much as necessary, the pH of the water system is not lowered, and the metal wetted part is There is no fear of invading. In addition, a preparation device can be constructed very simply with a reaction vessel, a chlorite aqueous solution tank, and simple piping, and the preparation device is mounted on a self-propelled mobile type, hand-held trolley mounted on a vehicle such as a truck. It becomes easy to make it portable, portable, etc. that are unitized as a whole.

請求項の発明によれば、亜塩素酸塩水溶液の導入速度と濃度の調節により、生成する二酸化塩素の有効濃度もしくは生成量を容易に且つ確実に制御できる。 According to invention of Claim 2 , the effective density | concentration or produced | generated amount of the chlorine dioxide to produce | generate can be controlled easily and reliably by adjusting the introduction speed | rate and density | concentration of a chlorite aqueous solution.

請求項の発明によれば、亜塩素酸塩水溶液を前記反応容器内に一定以上の滞留時間となるように導入することから、該亜塩素酸塩水溶液の広い濃度範囲において特に高い二酸化塩素発生効率が得られる。 According to the invention of claim 3, since the chlorite aqueous solution is introduced into the reaction vessel so as to have a residence time of a certain level or more, particularly high chlorine dioxide generation in a wide concentration range of the chlorite aqueous solution. Efficiency is obtained.

本発明に係る二酸化塩素水の調製方法は、既述のように、亜塩素酸塩水溶液と固形塩素化薬剤とを反応させるものであり、高濃度で中性域の二酸化塩素水を容易に調製できるという特徴がある。   As described above, the method for preparing chlorine dioxide water according to the present invention is a reaction between a chlorite aqueous solution and a solid chlorinated chemical, and easily prepares a high concentration of neutral chlorine dioxide water. There is a feature that can be done.

この調製方法で用いる前記亜塩素酸水溶液の亜塩素酸塩としては、亜塩素酸ナトリウム(NaClO)や亜塩素酸カリウム(KClO)が挙げられる。 Examples of the chlorite of the aqueous chlorite solution used in this preparation method include sodium chlorite (NaClO 2 ) and potassium chlorite (KClO 2 ).

一方、常温下で固形を保ち、亜塩素酸塩水溶液との接触によって反応して二酸化塩素を生成する固形塩素化薬剤としては、塩素化イソシアヌル酸とその塩、及び塩素化ヒダントインが挙げられるが、本発明では特に好結果を得るものとしてトリクロロイソシアヌル酸を使用する。 On the other hand, maintaining the solid under normal temperature, the solid chlorinating agent to produce chlorine dioxide reacts by contact with chlorite aqueous solution, a salt thereof with a chlorinating isocyanuric acid, and chlorinated hydantoins In the present invention, trichloroisocyanuric acid is used to obtain particularly good results.

しかして、二酸化塩素の生成反応は、例えば、亜塩素酸塩がナトリウム塩であり、固形塩素化薬剤がトリクロロイソシアヌル酸である場合、次式(A)のようになる。   Thus, for example, when the chlorite is a sodium salt and the solid chlorinated drug is trichloroisocyanuric acid, the chlorine dioxide production reaction is represented by the following formula (A).

6NaClO2 +C3 3 3 Cl3
→6ClO2 +C3 3 3 Na3 +3NaCl ・・・(A)
6NaClO 2 + C 3 N 3 O 3 Cl 3
→ 6ClO 2 + C 3 N 3 O 3 Na 3 + 3NaCl (A)

二酸化塩素水を調製するには、図1に示すように、予め固形塩素化薬剤の粉末をプレス成形等でタブレット状等にした成形物Tを反応容器1に装填し、この反応容器1内に溶液タンク2からポンプPによって亜塩素酸塩水溶液Sを導入することにより、生成した二酸化塩素水Cを当該反応容器1から導出する通液方式を採用するIn order to prepare chlorine dioxide water , as shown in FIG. 1, a molded product T in which a solid chlorinated chemical powder has been made into a tablet shape by press molding or the like is loaded into a reaction vessel 1. By introducing the chlorite aqueous solution S from the solution tank 2 by the pump P, a liquid passing method is adopted in which the generated chlorine dioxide water C is led out from the reaction vessel 1.

すなわち、この通液方式によれば、固形塩素化薬剤の成形物Tが導入された亜塩素酸塩水溶液S中に徐々に溶解する形で反応するから、該亜塩素酸塩水溶液Sを所定流量で連続的に反応容器1内に導入すると共に、この導入量に見合う反応液を該反応容器1から連続的に導出させ、もって二酸化塩素水Cを連続的に調製することが可能であり、またバッジ式で定量の二酸化塩素水Cを製出させることもできる。   That is, according to this liquid flow method, the molded product T of the solid chlorinated drug reacts in the form of gradually dissolving in the introduced chlorite aqueous solution S. The reaction solution 1 can be continuously introduced into the reaction vessel 1 and a reaction solution corresponding to the introduction amount can be continuously led out from the reaction vessel 1 so that the chlorine dioxide water C can be continuously prepared. It is also possible to produce a certain amount of chlorine dioxide water C by a badge type.

そして、このような通液方式では、二酸化塩素水の調製装置を前記の反応容器1及び溶液タンク2と簡単な配管構成によって非常に簡素に構築でき、固定型の装置は無論のこと、可動型の装置としても、二酸化塩素水の調製量に応じて、トラックのような車両に搭載した自走移動型、手押し式台車等に搭載した可搬型、全体をユニット化した携帯型等の様々な構成が可能である。   And in such a liquid flow system, the chlorine dioxide water preparation apparatus can be constructed very simply by the reaction vessel 1 and the solution tank 2 and a simple piping configuration, and of course, the fixed type apparatus is a movable type. Depending on the amount of chlorine dioxide water to be prepared, there are various configurations such as a self-propelled mobile type mounted on a vehicle such as a truck, a portable type mounted on a handcart, etc., and a portable type unitized as a whole. Is possible.

固形塩素化薬剤の成形物Tの形状、サイズ、密度は、特に制約はなく、溶解性と連続調製における必要な製出量に応じて適宜設定すればよい。ただし、成形物Tのサイズが小さくなると、それだけ比表面積が大きくなって溶解性を増すから、反応容器内で早く消耗することになる。なお、図1ではポンプPを用いているが、溶液タンク2を反応容器1よりも上位に配置し、反応容器1内の亜塩素酸塩水溶液Sを重力によって反応容器1内へ供給すると共に、その供給配管に介在させたバルブによって供給・停止や流量調整を行うようにしてもよい。 Shape of the molded product T of the solid chlorinating agent, size, density is not particularly limited, it may be appropriately set in accordance with the discharge amount Ltd. required in the continuous preparation and dissolve properties. However, if the size of the molded product T is reduced, the specific surface area is increased accordingly and the solubility is increased. Although the pump P is used in FIG. 1, the solution tank 2 is disposed above the reaction vessel 1, and the aqueous chlorite solution S in the reaction vessel 1 is supplied into the reaction vessel 1 by gravity, Supply / stop and flow rate adjustment may be performed by a valve interposed in the supply pipe.

生成する二酸化塩素水Cの有効濃度もしくは生成量は、反応容器1内の成形物Tの量、導入する亜塩素酸塩水溶液Sの濃度及び流量、該水溶液Sの反応容器1内の滞留時間(通液速度)によって調整できる。また、二酸化塩素水CのpHは、後述する実施例で示すように、略中性域に納まることが判明している。なお、固形塩素化薬剤がトリクロロイソシアヌル酸である場合、亜塩素酸塩水溶液Sの反応容器1内の滞留時間を0.5時間以上に設定すれば、該水溶液Sの広い濃度範囲において80%以上といった高い二酸化塩素発生効率が得られることが判明している。   The effective concentration or production amount of the generated chlorine dioxide water C is the amount of the molded product T in the reaction vessel 1, the concentration and flow rate of the chlorite aqueous solution S to be introduced, the residence time of the aqueous solution S in the reaction vessel 1 ( It can be adjusted according to the flow rate). Further, it has been found that the pH of the chlorine dioxide water C falls within a substantially neutral range as shown in Examples described later. When the solid chlorinated agent is trichloroisocyanuric acid, if the residence time of the chlorite aqueous solution S in the reaction vessel 1 is set to 0.5 hours or more, 80% or more in a wide concentration range of the aqueous solution S It has been found that high chlorine dioxide generation efficiency can be obtained.

導入する亜塩素酸塩水溶液Sの濃度は、溶液タンク2等の適当な容器内での希釈によって調整してもよいし、反応容器1に希釈原液と希釈水とを導入する構成として、その導入比率にて調整するようにしてもよい。   The concentration of the chlorite aqueous solution S to be introduced may be adjusted by dilution in an appropriate container such as the solution tank 2 or the introduction of the diluted stock solution and the diluted water into the reaction container 1 You may make it adjust with a ratio.

なお、生成する二酸化塩素水Cには残留塩素が付随し、使用する亜塩素酸塩水溶液Sの濃度が低いほど二酸化塩素に対する残留塩素の比率が高くなる傾向があるが、亜塩素酸塩水溶液Sとして濃度1%程度以上のものを使用することにより、量的に二酸化塩素を主体(二酸化塩素/遊離残留塩素の比が1以上)とする溶液が得られる。しかして、浴場やプールについては基本的に塩素消毒がうたわれているから、これら施設の消毒に用いる二酸化塩素水Cが残留塩素を含むことは却って好都合である。また、例えば食品工場のライン洗浄では、従来より高濃度次亜塩素酸ナトリウム水溶液が汎用されているが、塩素と汚れの結合に起因した洗浄後の悪臭が消えにくいために多量のすすぎ水を要するという難点があったのに対し、この二酸化塩素水Cは塩素を含んでいても二酸化塩素が上記悪臭成分を分解して消臭作用を示すから、該二酸化塩素水Cの使用によってすすぎ水の大幅な節減が可能となる。   The generated chlorine dioxide water C is accompanied by residual chlorine, and the lower the concentration of the chlorite aqueous solution S used, the higher the ratio of residual chlorine to chlorine dioxide. As a solution having a concentration of about 1% or more, a solution containing chlorine dioxide as a main component (a ratio of chlorine dioxide / free residual chlorine of 1 or more) can be obtained. Since baths and pools are basically sterilized by chlorine, it is advantageous that the chlorine dioxide water C used for disinfection of these facilities contains residual chlorine. Also, for example, in line washing in food factories, a high concentration sodium hypochlorite aqueous solution has been widely used in the past, but a large amount of rinsing water is required because the odor after washing due to the combination of chlorine and dirt is difficult to disappear On the other hand, even though this chlorine dioxide water C contains chlorine, chlorine dioxide decomposes the malodorous component and exhibits a deodorizing action. Savings.

実施例1
図1に示す装置構成において、縦円筒形の反応容器1(容量670ml)内に、トリクロロイソシアヌル酸(有効塩素90%)の粉末をプレス成形したタブレットT(直径約30mm、厚さ約15mm、重さ30g)330g(11個)を装填すると共に、溶液タンク2に濃度2.5%の亜塩素酸ナトリウム水溶液S(液温25℃)を収容し、この水溶液SをポンプPによって反応容器1内に下部より導入し、該反応容器1の上部からオーバーフローして導出される二酸化塩素水Cの二酸化塩素発生量とpHを測定した。その結果を表1に示す。
Example 1
In the apparatus configuration shown in FIG. 1, a tablet T (diameter of about 30 mm, thickness of about 15 mm, weight) obtained by press-molding powder of trichloroisocyanuric acid (effective chlorine 90%) in a vertical cylindrical reaction vessel 1 (capacity: 670 ml). 30 g) 330 g (11 pieces) are charged, and a 2.5% sodium chlorite aqueous solution S (liquid temperature: 25 ° C.) is stored in the solution tank 2. The chlorine dioxide generation amount and pH of the chlorine dioxide water C introduced from the lower part and overflowed from the upper part of the reaction vessel 1 were measured. The results are shown in Table 1.

なお、通液量(亜塩素酸ナトリウム水溶液Sの導入量)は表1に示すように4段階に変更しており、反応容器1内での液滞留時間は、その容量から、通液量335ml/時の第1及び第4段階では2時間、通液量670ml/時の第2段階では1時間、通液量170ml/時の第3段階では約4時間となっている。また、亜塩素酸ナトリウム水溶液Sの通液開始前と全通液終了後に、それぞれ反応容器1内に水道水を通水し、トリクロロイソシアヌル酸から発生している残留塩素濃度を測定したところ、通液開始前では2300mg/L、トリクロロイソシアヌル酸量が約1/3に減った全通液終了後では1200mg/Lであった。   The flow rate (introduced amount of sodium chlorite aqueous solution S) was changed in four stages as shown in Table 1, and the liquid residence time in the reaction vessel 1 was 335 ml from the capacity. The first and fourth stages are 2 hours, the second stage with a flow rate of 670 ml / hour is 1 hour, and the third stage with a flow rate of 170 ml / hour is about 4 hours. In addition, before starting the passage of the sodium chlorite aqueous solution S and after the end of the passage, tap water was passed through the reaction vessel 1 and the residual chlorine concentration generated from trichloroisocyanuric acid was measured. It was 2300 mg / L before the start of the liquid, and 1200 mg / L after the end of the entire liquid flow where the amount of trichloroisocyanuric acid was reduced to about 1/3.

Figure 0004602198
Figure 0004602198

表1の結果から、この調製方法では、亜塩素酸ナトリウム水溶液Sの導入量の変更によって反応容器1での液滞留時間が1〜4時間と変動し、且つ反応容器1内のトリクロロイソシアヌル酸の残量が次第に減っていっても、12000mg/L前後の二酸化塩素が安定して発生することか判る。また、製出する二酸化塩素水Cは、pH5.8〜7.2の略中性域に納まっているから、消毒殺菌の対象となる水系に対し、その消毒殺菌に必要なだけ加えても当該水系のpHを変化させず、水系の酸性化による様々な問題の発生を回避でき、金属製の接液部等が酸で腐食する懸念もない。   From the results in Table 1, in this preparation method, the liquid residence time in the reaction vessel 1 varies from 1 to 4 hours due to the change in the amount of sodium chlorite aqueous solution S introduced, and the trichloroisocyanuric acid in the reaction vessel 1 It can be seen that chlorine dioxide of around 12000 mg / L is stably generated even when the remaining amount is gradually reduced. In addition, since the chlorine dioxide water C to be produced is in a substantially neutral range of pH 5.8 to 7.2, even if it is added as much as necessary for the disinfection and sterilization to the target water system, The occurrence of various problems due to the acidification of the aqueous system can be avoided without changing the pH of the aqueous system, and there is no concern that the wetted parts made of metal will corrode with acid.

参考例
濃度2.5%の亜塩素酸塩ナトリウム水溶液に塩酸を加えて各種pHに調整し、それぞれ二酸化塩素発生量の経時変化を調べたところ、次の表2で示す結果が得られた。
Reference Example When hydrochloric acid was added to an aqueous solution of sodium chlorite having a concentration of 2.5% to adjust to various pH values, and the change over time in the amount of chlorine dioxide generated was examined, the results shown in Table 2 were obtained.

Figure 0004602198
Figure 0004602198

表2に示すように、二酸化塩素量は、pH0.7、pH1.5、pH2.7のいずれにおいても経時的に増加する傾向があり、pH1.5及びpH2.7では5時間後でもピークに達していないが、pH0.1では10分後から以降は漸減している。この結果から、従来の亜塩素酸塩ナトリウムと酸との反応によって二酸化塩素を生成させる方法では、酸性域でもpHが高いほど反応効率が悪く、短時間で二酸化塩素発生量をピークに導くにはpHを極端に低く設定する必要があることが判る。しかるに、このような強酸性の二酸化塩素水を用いれば、消毒殺菌対象の水系によっては著しいpH低下による様々な問題を生起すると共に、金属製の接液部等の酸による腐食が懸念される。   As shown in Table 2, the amount of chlorine dioxide tends to increase with time at any of pH 0.7, pH 1.5, and pH 2.7, and reaches a peak even after 5 hours at pH 1.5 and pH 2.7. Although not reached, it gradually decreases after 10 minutes at pH 0.1. From this result, in the conventional method of generating chlorine dioxide by the reaction of sodium chlorite and acid, the reaction efficiency is worse as the pH is higher even in the acidic region, and the amount of chlorine dioxide generated can be peaked in a short time. It can be seen that the pH needs to be set extremely low. However, if such strongly acidic chlorine dioxide water is used, various problems due to a significant pH drop occur depending on the aqueous system to be sterilized and sterilized, and corrosion due to an acid such as a metal wetted part is feared.

実施例2
図1に示す装置構成において、縦円筒形の反応容器1として容量1730mlのものを用い、この反応容器1内に、トリクロロイソシアヌル酸(有効塩素90%)の粉末をプレス成形したタブレットT(直径約35mm、厚さ約18mm、重さ30g)1200g(40個)を装填すると共に、溶液タンク2に濃度2.5%の亜塩素酸ナトリウム水溶液S(液温20℃)を収容し、この水溶液SをポンプPによって反応容器1内に後記表3〜5に記載の各流量で導入し、表記の各滞留時間毎に該反応容器1から導出される二酸化塩素水C中の二酸化塩素(ClO2 )及び亜塩素酸イオン(ClO2 - ) の量とpHを測定した。その結果を二酸化塩素(ClO2 )の発生率と共に表3〜表5に示す。なお、表記の高さ、滞留時間、発生率とは、それぞれ次のとおりである。
Example 2
In the apparatus configuration shown in FIG. 1, a vertical cylindrical reaction vessel 1 having a capacity of 1730 ml is used, and trichloroisocyanuric acid (effective chlorine 90%) powder is press-molded in the reaction vessel 1 with a diameter of about T 35 mm, thickness 18 mm, weight 30 g) 1200 g (40 pieces) are loaded, and the solution tank 2 contains a 2.5% sodium chlorite aqueous solution S (liquid temperature 20 ° C.). Is introduced into the reaction vessel 1 by the pump P at the respective flow rates shown in Tables 3 to 5 below, and chlorine dioxide (ClO 2 ) in the chlorine dioxide water C derived from the reaction vessel 1 for each residence time indicated. The amount and pH of chlorite ion (ClO 2 ) were measured. The results are shown in Tables 3 to 5 together with the generation rate of chlorine dioxide (ClO 2 ). The indicated height, residence time, and occurrence rate are as follows.

高 さ・・・反応容器1の内高に占めるタブレットT装填層の高さの百分率であり、 通液によるタブレットTの減耗に伴って次第に低くなる。
滞留時間・・・亜塩素酸ナトリウム水溶液Sが反応容器1内のタブレットT装填層を通 過するのに要する時間であり、通液による減耗で該装填層の前記高さが低 くなるのに従って短くなる。
発生率・・・・導入した亜塩素酸ナトリウム水溶液S由来の亜塩素酸イオンに対する生 成した二酸化塩素の百分率である。
Height: Percentage of the height of the tablet T loading layer occupying the inner height of the reaction vessel 1, and gradually decreases as the tablet T is depleted due to the flow of liquid.
Residence time is the time required for the sodium chlorite aqueous solution S to pass through the tablet T loading layer in the reaction vessel 1, and as the height of the loading layer decreases due to depletion due to liquid passage. Shorter.
Occurrence rate: Percentage of chlorine dioxide produced with respect to chlorite ions derived from the introduced sodium chlorite aqueous solution S.

Figure 0004602198
Figure 0004602198

Figure 0004602198
Figure 0004602198

Figure 0004602198
Figure 0004602198

表3〜表5の結果から明らかなように、2.5%亜塩素酸ナトリウム水溶液Sの流量が480mL/時、960mL/時、1920mL/時のいずれにおいても、反応容器1内のトリクロロイソシアヌル酸タブレットTの高さつまり残量が約30%になるまで、高濃度の二酸化塩素が高い発生効率のもとに安定的に発生している。   As is apparent from the results of Tables 3 to 5, trichloroisocyanuric acid in the reaction vessel 1 was obtained at any flow rate of the 2.5% sodium chlorite aqueous solution S at 480 mL / hour, 960 mL / hour, and 1920 mL / hour. Until the height of the tablet T, that is, the remaining amount is about 30%, high-concentration chlorine dioxide is stably generated with high generation efficiency.

実施例3
実施例2と同じ装置構成(反応容器1の容量1730ml)において、反応容器1内に実施例2と同じトリクロロイソシアヌル酸のタブレットTを80%高さまで装填すると共に、溶液タンク2に収容した後記表6記載の濃度の亜塩素酸ナトリウム水溶液S(液温20℃)をポンプPによって反応容器1内に表記流量で導入し、表記の各流量毎に反応容器1から導出される二酸化塩素水C中の二酸化塩素(ClO2 )及び亜塩素酸イオン(ClO2 - ) の量とpHを測定した。その結果を二酸化塩素(ClO2 )の発生率及び発生量と亜塩素酸イオン残留率と共に表6に示す。
Example 3
In the same apparatus configuration as in Example 2 (reaction vessel 1 capacity 1730 ml), the same trichloroisocyanuric acid tablet T as in Example 2 was loaded into the reaction vessel 1 to a height of 80% and stored in the solution tank 2 A sodium chlorite aqueous solution S (liquid temperature 20 ° C.) having a concentration of 6 is introduced into the reaction vessel 1 by a pump P at the indicated flow rate, and in the chlorine dioxide water C derived from the reaction vessel 1 for each indicated flow rate. The amount and pH of chlorine dioxide (ClO 2 ) and chlorite ions (ClO 2 ) were measured. The results are shown in Table 6 together with the generation rate and generation amount of chlorine dioxide (ClO 2 ) and the chlorite ion residual rate.

Figure 0004602198
Figure 0004602198

表6で示されるように、滞留時間を0.5時間以上に設定することにより、亜塩素酸ナトリウム水溶液Sが0.11〜5%の全濃度範囲において、略80%以上の高い二酸化塩素発生率が得られている。また同表より、亜塩素酸イオンの残留は、滞留時間が1時間以上で1%以下に低減されることが判る。 As shown in Table 6, by setting the residence time to 0.5 hours or more, high chlorine dioxide generation of about 80% or more in the total concentration range of the sodium chlorite aqueous solution S of 0.11 to 5% the rate has been obtained, et al. Further, from the table, it can be seen that the residual chlorite ion is reduced to 1% or less when the residence time is 1 hour or more.

実施例4
実施例2と同じ装置構成(反応容器1の容量1730ml)において、反応容器1内に実施例2と同じトリクロロイソシアヌル酸のタブレットT1200gを装填し、濃度1.25%及び2.5%の亜塩素酸ナトリウム水溶液Sの各々について後記表7記載の液温としたものをポンプPによって反応容器1内に960mL/時の流量で導入し、該反応容器1から導出される二酸化塩素水C中の二酸化塩素(ClO2 )及び亜塩素酸イオン(ClO2 - ) の量を測定した。その結果を二酸化塩素発生率及び亜塩素酸イオン残留率と共に表7に示す。
Example 4
In the same apparatus configuration as Example 2 (reaction vessel 1 capacity 1730 ml), the reaction vessel 1 was charged with 1200 g of the same trichloroisocyanuric acid tablet T as in Example 2, and chlorite having a concentration of 1.25% and 2.5%. Each of the aqueous sodium acid solutions S having the liquid temperature shown in Table 7 below was introduced into the reaction vessel 1 by a pump P at a flow rate of 960 mL / hour, and the carbon dioxide in the chlorine dioxide water C derived from the reaction vessel 1 was introduced. The amount of chlorine (ClO 2 ) and chlorite ion (ClO 2 ) was measured. The results are shown in Table 7 together with the chlorine dioxide generation rate and the chlorite ion residual rate.

Figure 0004602198
Figure 0004602198

上表で示すように、亜塩素酸ナトリウム水溶液Sの液温を30〜40℃にしても、二酸化塩素発生率は同液温20℃の場合と殆ど変わらないが、亜塩素酸イオン残留率は低下している。しかして、亜塩素酸イオン濃度に留意が必要な浴場やプール等の施設では、30〜40℃程度の温度環境にあることが多いため、この二酸化塩素水Cの亜塩素酸イオン残留率が当該温度範囲で低下することは好都合である。   As shown in the above table, even if the liquid temperature of the sodium chlorite aqueous solution S is 30 to 40 ° C., the chlorine dioxide generation rate is almost the same as that at the same liquid temperature of 20 ° C., but the chlorite ion residual rate is It is falling. Therefore, in facilities such as baths and pools that require attention to the chlorite ion concentration, there are many cases where the temperature environment is about 30 to 40 ° C. It is advantageous to decrease in the temperature range.

本発明の実施例に採用した二酸化塩素水の調整装置を示す模式図である。It is a schematic diagram which shows the adjustment apparatus of the chlorine dioxide water employ | adopted as the Example of this invention.

符号の説明Explanation of symbols

1 反応容器
2 溶液タンク
C 二酸化塩素水
P ポンプ
S 亜塩素酸ナトリウム水溶液
T トリクロロイソシアヌル酸のタブレット
1 Reaction vessel 2 Solution tank C Chlorine dioxide water P Pump S Sodium chlorite aqueous solution T Trichloroisocyanuric acid tablet

Claims (3)

固形塩素化薬剤としてトリクロロイソシアヌル酸の成形物を装填した反応容器内に亜塩素酸塩水溶液を導入して反応させ、生成する二酸化塩素水を該反応容器から導出させることを特徴とする二酸化塩素水の調製方法。   Chlorine dioxide water characterized in that an aqueous chlorite solution is introduced into a reaction vessel charged with a molded product of trichloroisocyanuric acid as a solid chlorinating agent and reacted, and the generated chlorine dioxide water is led out from the reaction vessel Preparation method. 亜塩素酸塩水溶液の導入速度と濃度の調節により、生成する二酸化塩素の有効濃度もしくは生成量を制御する請求項1記載の二酸化塩素水の調製方法。   2. The method for preparing chlorine dioxide water according to claim 1, wherein the effective concentration or amount of generated chlorine dioxide is controlled by adjusting the introduction rate and concentration of the chlorite aqueous solution. 亜塩素酸塩水溶液を前記反応容器内に滞留時間0.5時間以上で導入することを特徴とする請求項記載の二酸化塩素水の調製方法。 The method for preparing chlorine dioxide water according to claim 2 , wherein the chlorite aqueous solution is introduced into the reaction vessel with a residence time of 0.5 hours or more.
JP2005236907A 2004-08-18 2005-08-17 Preparation method of chlorine dioxide water Active JP4602198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236907A JP4602198B2 (en) 2004-08-18 2005-08-17 Preparation method of chlorine dioxide water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004238840 2004-08-18
JP2005236907A JP4602198B2 (en) 2004-08-18 2005-08-17 Preparation method of chlorine dioxide water

Publications (2)

Publication Number Publication Date
JP2006083056A JP2006083056A (en) 2006-03-30
JP4602198B2 true JP4602198B2 (en) 2010-12-22

Family

ID=36161866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236907A Active JP4602198B2 (en) 2004-08-18 2005-08-17 Preparation method of chlorine dioxide water

Country Status (1)

Country Link
JP (1) JP4602198B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2830956C (en) * 2011-03-23 2019-03-05 Taiko Pharmaceutical Co., Ltd. Chlorine dioxide generator
CN103891766A (en) * 2014-04-01 2014-07-02 青岛市中心医院 Disinfectant and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126143U (en) * 1990-03-30 1991-12-19
JPH11503995A (en) * 1995-04-25 1999-04-06 キューケ フリッツ Production method of disinfectant containing chlorine dioxide for water treatment
JP2003521526A (en) * 2000-02-02 2003-07-15 エンゲルハード・コーポレーシヨン Heavy objects for producing solutions of highly converted chlorine dioxide
JP2005523867A (en) * 2002-04-29 2005-08-11 エスケー アクアテック カンパニー リミテッド Simple generator of chlorine dioxide gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091107A (en) * 1989-10-20 1992-02-25 The Drackett Company Chlorine dioxide generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126143U (en) * 1990-03-30 1991-12-19
JPH11503995A (en) * 1995-04-25 1999-04-06 キューケ フリッツ Production method of disinfectant containing chlorine dioxide for water treatment
JP2003521526A (en) * 2000-02-02 2003-07-15 エンゲルハード・コーポレーシヨン Heavy objects for producing solutions of highly converted chlorine dioxide
JP2005523867A (en) * 2002-04-29 2005-08-11 エスケー アクアテック カンパニー リミテッド Simple generator of chlorine dioxide gas

Also Published As

Publication number Publication date
JP2006083056A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5376958B2 (en) Chlorine dioxide based cleaner / cleaning agent
US20060226023A1 (en) Neutralization system for electrochemical chlorine dioxide generators
JP2007537969A (en) Process using chlorine dioxide
US11746012B2 (en) Methods and systems for production of an aqueous hypochlorous acid solution
KR101768935B1 (en) Weakly acidic hypochlorous acid, and apparatus and method for production there of
JPWO2019194184A1 (en) A manufacturing method for obtaining a novel chlorine oxide composition from deteriorated hypochlorite
TW201300313A (en) Weakly acidic hypochlorous acid and apparatus and method for producing the same
WO2019225599A1 (en) Method for producing weakly acidic hypochlorous acid aqueous solution
JP4602198B2 (en) Preparation method of chlorine dioxide water
KR20090013414A (en) A room temperature stable solid composition for providing chlorine dioxide solution in aqueous medium
KR100926790B1 (en) Manufacturing apparatus of Chlorine Dioxide and Manufacturing method thereof
KR100880954B1 (en) Stabilised hypobromous acid solutions
KR101162536B1 (en) Generator and process for aqueous solution of chlorine dioxide
CA3117252A1 (en) Electrochemical system for the synthesis of aqueous oxidizing agent solutions
JP2007031374A (en) Method for producing germicidal disinfectant solution
US20080031805A1 (en) Method For The Production Of Chlorine Dioxide
KR20170127271A (en) Generator for Chlorine Dioxide
JP4299012B2 (en) Chlorine dioxide water production apparatus, production method, and sterilization apparatus
EP2639204B1 (en) Process and device for generating chlorine dioxide for the disinfection of water
KR102093907B1 (en) A composition for providing room temperature long-term constant-concentration chlorine dioxide solution in aqueous medium and preparation method thereof
JP2021080140A (en) Chlorine dioxide aqueous solution composition retaining concentration for long terms at ordinary temperature and method for producing the same
JP3851932B2 (en) Chlorine dioxide water production method
WO2022091381A1 (en) Method and apparatus for producing aqueous hypochlorous acid solution
KR102565677B1 (en) System and method for producing an aqueous chlorine dioxide solution using reactor and dissolver under atmospheric pressure
KR102147188B1 (en) Scrubber with depression of microorganism using sterilization water based on tap water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250