JP4600642B2 - Abnormality judgment device for fuel cell stack - Google Patents

Abnormality judgment device for fuel cell stack Download PDF

Info

Publication number
JP4600642B2
JP4600642B2 JP2004153855A JP2004153855A JP4600642B2 JP 4600642 B2 JP4600642 B2 JP 4600642B2 JP 2004153855 A JP2004153855 A JP 2004153855A JP 2004153855 A JP2004153855 A JP 2004153855A JP 4600642 B2 JP4600642 B2 JP 4600642B2
Authority
JP
Japan
Prior art keywords
cell
voltage
abnormality
determination
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004153855A
Other languages
Japanese (ja)
Other versions
JP2005339848A (en
Inventor
哲也 坊農
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004153855A priority Critical patent/JP4600642B2/en
Publication of JP2005339848A publication Critical patent/JP2005339848A/en
Application granted granted Critical
Publication of JP4600642B2 publication Critical patent/JP4600642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料電池スタックの発電異常を判定する異常判定装置に関し、特に、発電異常の度合いを適正に判定するための改良技術に関する。   The present invention relates to an abnormality determination device for determining a power generation abnormality of a fuel cell stack, and more particularly to an improved technique for appropriately determining the degree of power generation abnormality.

燃料電池はセルを直列に積層したスタック構造を備えており、アノード極に供給された燃料ガスとカソード極に供給された酸化ガスの電気化学反応を利用して電力発電を行っている。電池反応では水分が生成されるため、水分の凝縮などにより、セルの有効電極面積が減少し、各セルに燃料ガスが均等に供給されなくなるおそれがある。このような状況では、各々のセル間で電圧分布が生じて電流密度が不均一になり、出力低下が生じるとともに、最も電圧の低いセルが0V以下まで到達して過放電するおそれがある。過放電の状態で電流を流し続けると、電解質膜が破損する可能性があるため、事前に燃料電池スタックの発電異常を判定する必要がある。燃料電池スタックの発電異常を判定するための手段として、特開2003−297407号公報には、燃料電池スタックを構成する各々のセルについてセル電圧と複数の基準電圧とを比較し、各々のセルの発電異常を早期に判定する技術が提案されている。
特開2003−297407号公報
A fuel cell has a stack structure in which cells are stacked in series, and generates electric power using an electrochemical reaction between a fuel gas supplied to an anode electrode and an oxidizing gas supplied to a cathode electrode. Since water is generated in the battery reaction, the effective electrode area of the cell is reduced due to condensation of the water, and there is a possibility that the fuel gas is not uniformly supplied to each cell. In such a situation, a voltage distribution occurs between the cells, the current density becomes non-uniform, the output decreases, and the cell with the lowest voltage may reach 0 V or less to be overdischarged. If an electric current continues to flow in an overdischarged state, the electrolyte membrane may be damaged. Therefore, it is necessary to determine the power generation abnormality of the fuel cell stack in advance. As means for determining power generation abnormality of a fuel cell stack, Japanese Patent Application Laid-Open No. 2003-297407 compares a cell voltage with a plurality of reference voltages for each cell constituting the fuel cell stack, Techniques for early determination of power generation abnormality have been proposed.
JP 2003-297407 A

しかし、従来ではセル電圧と基準電圧との単純比較で発電異常を判定しているため、どの程度の異常電流がどの程度の時間流れているのか、つまり、発電異常の度合いがどの程度であるかを正確に判定することができなかった。   However, since power generation abnormality is conventionally determined by simple comparison between cell voltage and reference voltage, how much abnormal current is flowing for how long, that is, how much is power generation abnormality? Could not be determined accurately.

そこで、本発明は燃料電池スタックの発電異常の度合いを適正に判定できる異常判定装置を提案することを課題とする。   Therefore, an object of the present invention is to propose an abnormality determination device that can appropriately determine the degree of power generation abnormality of a fuel cell stack.

本発明の異常判定装置は、複数のセルを積層して成る燃料電池スタックの発電異常を判定する装置であって、セル電圧が所定の閾値電圧以下に低下したか否かを1次判定する1次判定手段と、1次判定においてセル電圧が閾値電圧以下に低下したと判定されてからの経過時間を加味したセルの出力積算値に基づいて発電異常の度合いを2次判定する2次判定手段とを備える。セル電圧が閾値電圧以下に低下したと判定されてからの経過時間を加味したセルの出力積算値に基づいて発電異常の度合いを判定することにより、発電異常の適正な判定が可能になる。   An abnormality determination apparatus according to the present invention is an apparatus for determining a power generation abnormality of a fuel cell stack formed by stacking a plurality of cells, and firstly determines whether or not a cell voltage has dropped below a predetermined threshold voltage. Secondary determination means, and secondary determination means for secondary determination of the degree of power generation abnormality based on the integrated output value of the cells, taking into account the elapsed time since it was determined in the primary determination that the cell voltage has fallen below the threshold voltage With. By determining the degree of power generation abnormality based on the integrated output value of the cell taking into account the elapsed time since it was determined that the cell voltage has fallen below the threshold voltage, it is possible to appropriately determine power generation abnormality.

ここで、2次判定に用いられるセルの出力積算値としては、例えば、1次判定においてセル電圧が閾値電圧以下に低下したと判定されてからの経過時間にわたってセル電流を積分した積算電流値が望ましい。積算電流値を用いることにより発電異常時に流れたセル電流の大きさとその継続時間を異常判定に反映させることができるため、どの程度の異常状態がどの程度継続したかを把握することが可能となり、発電異常の度合いを適正に判定することができる。   Here, the integrated output value of the cell used for the secondary determination is, for example, an integrated current value obtained by integrating the cell current over the elapsed time after the determination that the cell voltage has dropped below the threshold voltage in the primary determination. desirable. By using the integrated current value, it is possible to reflect the magnitude and duration of the cell current that flowed during power generation abnormality in the abnormality determination, so it is possible to grasp how much abnormal state has continued, The degree of power generation abnormality can be determined appropriately.

この他に、2次判定に用いられるセルの出力積算値としては、例えば、1次判定においてセル電圧が閾値電圧以下に低下したと判定されてからの経過時間にわたってセル電圧を積分した積算電圧値でもよい。積算電圧値を用いることにより発電異常の程度とその継続時間を異常判定に反映させることができるため、どの程度の異常状態がどの程度継続したかを把握することが可能となり、発電異常の度合いを適正に判定することができる。   In addition, as the output integrated value of the cell used for the secondary determination, for example, an integrated voltage value obtained by integrating the cell voltage over the elapsed time since it was determined in the primary determination that the cell voltage has fallen below the threshold voltage. But you can. By using the integrated voltage value, the degree of power generation abnormality and its duration can be reflected in the abnormality judgment, so it is possible to grasp how much abnormal state has continued and how much power generation abnormality has occurred. It can be determined appropriately.

本発明の異常判定装置は、上述の構成に加えて、2次判定に基づいて燃料電池スタックの出力制限又は運転停止を制御する制御手段を更に備える構成としてもよい。かかる構成により発電異常による燃料電池スタックの破損を回避できる。   In addition to the above-described configuration, the abnormality determination device of the present invention may further include a control unit that controls output limitation or operation stop of the fuel cell stack based on the secondary determination. With this configuration, damage to the fuel cell stack due to power generation abnormality can be avoided.

本発明によれば、セル電圧が閾値電圧以下に低下したと判定されてからの経過時間を加味したセルの出力積算値に基づいて発電異常の度合いを判定することにより、発電異常の適正な判定が可能になる。   According to the present invention, an appropriate determination of power generation abnormality is made by determining the degree of power generation abnormality based on the integrated output value of the cell taking into account the elapsed time since it was determined that the cell voltage has fallen below the threshold voltage. Is possible.

本実施形態の異常判定装置は、複数のセルを積層して成る燃料電池スタックの発電異常を判定する装置であって、セル電圧が所定の閾値電圧以下に低下したか否かを1次判定する1次判定手段と、1次判定においてセル電圧が閾値電圧以下に低下したと判定されてからの経過時間を加味したセルの出力積算値(積算電流値又は積算電圧値)に基づいて発電異常の度合いを2次判定する2次判定手段とを備える。セル電圧が閾値電圧以下に低下したと判定されてからの経過時間を加味したセルの出力積算値に基づいて発電異常の度合いを判定することにより、どの程度の異常状態がどの程度継続したかを把握することが可能となり、発電異常の度合いを適正に判定することができる。   The abnormality determination device of the present embodiment is a device that determines a power generation abnormality of a fuel cell stack formed by stacking a plurality of cells, and primarily determines whether or not the cell voltage has dropped below a predetermined threshold voltage. Based on the primary determination means and the output integrated value (integrated current value or integrated voltage value) of the cell taking into account the elapsed time since it was determined in the primary determination that the cell voltage has dropped below the threshold voltage, Secondary determination means for secondary determination of the degree. By determining the degree of power generation abnormality based on the output integrated value of the cell taking into account the elapsed time since it was determined that the cell voltage has fallen below the threshold voltage, how much abnormal state continued how much It becomes possible to grasp and the degree of power generation abnormality can be determined appropriately.

図1は本実施例の異常判定装置を備えた燃料電池システム10の主要構成図である。燃料電池システム10は、主として、固体高分子電解質膜の両面にそれぞれアノード極とカソード極を対向配置し更にその外側を一対のセパレータで挟持してなるセルを所定数直列に接続して成る燃料電池スタック20と、燃料電池スタック20のアノード極に燃料ガスを供給する燃料ガス供給装置51と、燃料電池スタック20のカソード極に酸化ガスを供給する酸化ガス供給装置52と、燃料電池スタック20を構成する各セルの出力電圧(セル電圧)を検出するセル電圧検出手段41と、燃料電池スタック20の出力電流(セル電流)を検出するセル電流検出手段42と、システム制御を行う制御部30を備えて構成されている。   FIG. 1 is a main configuration diagram of a fuel cell system 10 provided with an abnormality determination device of the present embodiment. The fuel cell system 10 is mainly a fuel cell in which a predetermined number of cells, each having an anode electrode and a cathode electrode facing each other on both sides of a solid polymer electrolyte membrane and sandwiched outside by a pair of separators, are connected in series. The stack 20, a fuel gas supply device 51 that supplies fuel gas to the anode electrode of the fuel cell stack 20, an oxidizing gas supply device 52 that supplies oxidizing gas to the cathode electrode of the fuel cell stack 20, and the fuel cell stack 20 are configured. A cell voltage detecting means 41 for detecting an output voltage (cell voltage) of each cell, a cell current detecting means 42 for detecting an output current (cell current) of the fuel cell stack 20, and a controller 30 for performing system control. Configured.

燃料ガス供給装置51は、例えば、水素ガスを充填する高圧水素タンク若しくは水素吸蔵タンク、又は改質原料(メタノールや天然ガス等の炭化水素系の原燃料と水)を水素リッチガスに改質する改質器等から構成される。酸化ガス供給装置52は、例えば、大気中の酸素を圧送するエアコンプレッサ(空気圧縮機)等から構成される。制御部30は電池運転を制御する制御手段33として機能し、燃料電池スタック20の発電量が要求発電量と一致するように燃料ガス供給装置51から供給される燃料ガスの流量と、酸化ガス供給装置52から供給される酸化ガスの流量を調整する。燃料電池スタック20で発電された電力は負荷60で消費される。同システム10を燃料電池車両等の電源装置として搭載する場合、負荷60としては、例えば、車両走行用のトラクションモータ、トラクションモータに交流電力を供給するインバータ、その他の車載補機類等が該当する。同システム10を定置用発電装置として用いる場合、負荷60としては、例えば、商用インバータ等が該当する。燃料電池スタック20の電力系統には逆電流を抑制するためのダイオード61と、燃料電池スタック20と負荷60との電気的接続を行うスイッチ(燃料電池出力スイッチ)62が設置されている。   The fuel gas supply device 51 is, for example, a high-pressure hydrogen tank or hydrogen storage tank filled with hydrogen gas, or a reforming material that reforms reforming raw materials (hydrocarbon raw fuel and water such as methanol or natural gas) into hydrogen-rich gas. It is composed of a quality device. The oxidizing gas supply device 52 is composed of, for example, an air compressor (air compressor) that pumps oxygen in the atmosphere. The control unit 30 functions as a control unit 33 that controls battery operation, and the flow rate of the fuel gas supplied from the fuel gas supply device 51 and the oxidizing gas supply so that the power generation amount of the fuel cell stack 20 matches the required power generation amount. The flow rate of the oxidizing gas supplied from the device 52 is adjusted. The electric power generated by the fuel cell stack 20 is consumed by the load 60. When the system 10 is mounted as a power supply device for a fuel cell vehicle or the like, the load 60 includes, for example, a traction motor for driving the vehicle, an inverter that supplies AC power to the traction motor, and other in-vehicle accessories. . When the system 10 is used as a stationary power generator, a commercial inverter or the like corresponds to the load 60, for example. The power system of the fuel cell stack 20 is provided with a diode 61 for suppressing reverse current and a switch (fuel cell output switch) 62 that electrically connects the fuel cell stack 20 and the load 60.

制御部30は電池運転を制御するシステムコントローラとして機能する他、燃料電池スタック20の発電異常を判定する判定手段31,32を備えた異常判定装置として機能する。1次判定手段31はセル電圧検出手段41によって検出されたセル電圧が所定の閾値電圧V0以下に低下したか否かを1次判定する。セル電圧検出手段41としては、各セルの出力電圧を1セル毎に検出する手段が望ましいが、所定数セル毎にその出力電圧を検出する手段であってもよい。また、1次判定に用いられる閾値電圧V0としては、発電異常に起因するセル電圧低下を判定する目安になる電圧値であれば特に限定されるものではないが、例えば、0.3V程度が望ましい(正常発電時における各セルの出力電圧は0.6V程度である。)。図3に示すように、2次判定手段32は1次判定においてセル電圧が閾値電圧V0以下に低下した(つまり、発電異常が生じている)と判定されてからの経過時間(異常発電時間)を加味したセル電流の時間積分値(積算電流値IT)を計算し、この積算電流値ITに基づいて発電異常の度合いを2次判定する。積算電流値ITの積分時間は1次判定においてセル電圧が閾値電圧V0以下に低下したと判定されてからの経過時間である。セル電流の時間積分はセル電圧が閾値電圧V0以下であることを条件として実施される。   In addition to functioning as a system controller that controls battery operation, the control unit 30 functions as an abnormality determination device including determination means 31 and 32 that determine power generation abnormality of the fuel cell stack 20. The primary determination means 31 performs a primary determination as to whether or not the cell voltage detected by the cell voltage detection means 41 has dropped below a predetermined threshold voltage V0. The cell voltage detecting means 41 is preferably means for detecting the output voltage of each cell for each cell, but may be means for detecting the output voltage for every predetermined number of cells. Further, the threshold voltage V0 used for the primary determination is not particularly limited as long as it is a voltage value that serves as a guideline for determining a cell voltage drop due to power generation abnormality, but is preferably about 0.3 V, for example. (The output voltage of each cell during normal power generation is about 0.6V.) As shown in FIG. 3, the secondary determination means 32 has elapsed time (abnormal power generation time) after it is determined in the primary determination that the cell voltage has dropped below the threshold voltage V0 (that is, power generation abnormality has occurred). Is calculated as a time integral value (integrated current value IT) of the cell current, and the degree of power generation abnormality is secondarily determined based on the integrated current value IT. The integration time of the integrated current value IT is an elapsed time after it is determined in the primary determination that the cell voltage has dropped below the threshold voltage V0. The time integration of the cell current is performed on condition that the cell voltage is equal to or lower than the threshold voltage V0.

制御手段33は2次判定で計算した積算電流値IT(発電異常の度合い)が大きくなる程、燃料電池スタック20の出力が抑制されるように、負荷60の制御が実施され、それに伴って、燃料ガス供給装置51と酸化ガス供給装置52を制御して燃料電池スタック20の出力制限を実施する。そして、この積算電流値ITが燃料電池スタック20の破損を招く虞のある範囲内の値になると、制御手段33は燃料電池スタック20への反応ガス(燃料ガス、酸化ガス)の供給を停止するとともに、スイッチ62を開いて電池運転(電力発電)を停止する。   The control means 33 controls the load 60 so that the output of the fuel cell stack 20 is suppressed as the integrated current value IT (degree of power generation abnormality) calculated in the secondary determination increases, and accordingly, The fuel gas supply device 51 and the oxidizing gas supply device 52 are controlled to limit the output of the fuel cell stack 20. When the integrated current value IT becomes a value within a range in which the fuel cell stack 20 may be damaged, the control means 33 stops the supply of the reaction gas (fuel gas, oxidizing gas) to the fuel cell stack 20. At the same time, the switch 62 is opened to stop battery operation (power generation).

図2は燃料電池スタックの発電異常を判定して電池運転を制御する処理ルーチンを示している。同処理ルーチンを参照しつつ、上述の説明を再述する。1次判定手段31はセル電圧検出手段41から出力されるセンサ信号を取得し、各々のセル電圧を監視する(S11)。セル電圧Vが閾値電圧V0以上の場合は(S12;NO)、発電状態は正常なのでS11に再帰する。セル電圧Vが閾値電圧V0以下になると(S12;YES)、発電状態は異常なので、2次判定手段32はセル電流検出手段42が検出したセル電流の時間積分を行う(S13)。積算電流値ITが所定値W1未満の場合には(S14;NO)、制御手段33は燃料電池スタック20の出力制限を実施する(S15)。制御部30には積算電流値ITに応じた、負荷60の制限率や、反応ガス供給量などのマップデータが予め記憶されており、制御手段33はこのマップデータを参照して燃料電池スタック20の出力制限を実施する。また、積算電流値ITのフィードバックによって燃料電池スタック20の出力制限を実施してもよい。一方、積算電流値ITが所定値W1以上の場合には(S14;YES)、燃料電池スタック20の破損を防止するため、制御手段33は電池運転を停止する(S16)。   FIG. 2 shows a processing routine for determining a power generation abnormality of the fuel cell stack and controlling the battery operation. The above description will be described again with reference to the processing routine. The primary determination means 31 acquires the sensor signal output from the cell voltage detection means 41, and monitors each cell voltage (S11). When the cell voltage V is equal to or higher than the threshold voltage V0 (S12; NO), since the power generation state is normal, the process returns to S11. When the cell voltage V becomes equal to or lower than the threshold voltage V0 (S12; YES), since the power generation state is abnormal, the secondary determination unit 32 performs time integration of the cell current detected by the cell current detection unit 42 (S13). When the integrated current value IT is less than the predetermined value W1 (S14; NO), the control means 33 performs the output limitation of the fuel cell stack 20 (S15). The control unit 30 stores map data such as the limiting rate of the load 60 and the reaction gas supply amount in accordance with the integrated current value IT in advance, and the control means 33 refers to this map data, and the fuel cell stack 20. The output restriction is implemented. The output of the fuel cell stack 20 may be limited by feedback of the integrated current value IT. On the other hand, when the integrated current value IT is equal to or greater than the predetermined value W1 (S14; YES), the control means 33 stops the battery operation (S16) in order to prevent the fuel cell stack 20 from being damaged.

本実施例によれば、発電異常時に流れた電流量を積分(積算)することにより発電異常時に流れたセル電流の大きさとその継続時間を異常判定に反映させることができるため、どの程度の異常状態がどの程度継続したかを把握することが可能となり、燃料電池スタック20の異常度合いを適正に判定することができる。   According to the present embodiment, by integrating (accumulating) the amount of current that has flown at the time of power generation abnormality, the magnitude of the cell current that has flowed at the time of power generation abnormality and its duration can be reflected in the abnormality determination. It is possible to grasp how long the state has continued, and it is possible to appropriately determine the degree of abnormality of the fuel cell stack 20.

図2は本実施例の異常判定装置を備えた燃料電池システム11の主要構成図である。図1に付した符号と同一符号の装置等については同一の装置等を示すものとし、その詳細な説明を省略する。本実施例ではセル電流検出手段42を省略し、セル電圧検出手段41が検出したセル電圧によって、上述の1次判定と2次判定を行っている。1次判定手段31は、実施例1と同様に、セル電圧検出手段41によって検出されたセル電圧が所定の閾値電圧V0以下に低下したか否かを1次判定する。図6に示すように、2次判定手段32は1次判定においてセル電圧が閾値電圧V0以下に低下したと判定されてからの経過時間を加味したセル電圧の時間積分値(積算電圧値VT)を計算し、この積算電圧値VTに基づいて発電異常の度合いを2次判定する。積算電圧値VTの積分時間は1次判定においてセル電圧が閾値電圧V0以下に低下したと判定されてからの経過時間である。セル電圧の時間積分はセル電圧が閾値電圧V0以下であることを条件として実施される。   FIG. 2 is a main configuration diagram of the fuel cell system 11 including the abnormality determination device of the present embodiment. The devices having the same reference numerals as those in FIG. 1 indicate the same devices and the like, and detailed description thereof is omitted. In this embodiment, the cell current detection means 42 is omitted, and the above-described primary determination and secondary determination are performed based on the cell voltage detected by the cell voltage detection means 41. Similar to the first embodiment, the primary determination unit 31 performs a primary determination as to whether or not the cell voltage detected by the cell voltage detection unit 41 has decreased to a predetermined threshold voltage V0 or less. As shown in FIG. 6, the secondary determination means 32 is a time integral value (integrated voltage value VT) of the cell voltage taking into account the elapsed time since it was determined in the primary determination that the cell voltage has fallen below the threshold voltage V0. And the degree of power generation abnormality is secondarily determined based on the integrated voltage value VT. The integration time of the integrated voltage value VT is an elapsed time after it is determined in the primary determination that the cell voltage has dropped below the threshold voltage V0. The time integration of the cell voltage is performed on condition that the cell voltage is equal to or lower than the threshold voltage V0.

図5は燃料電池スタックの発電異常を判定して電池運転を制御する処理ルーチンを示している。同処理ルーチンを参照しつつ、上述の説明を再述する。1次判定手段31はセル電圧検出手段41から出力されるセンサ信号を取得し、各々のセル電圧を監視する(S21)。セル電圧Vが閾値電圧V0以上の場合は(S22;NO)、発電状態は正常なのでS21に再帰する。セル電圧Vが閾値電圧V0以下になると(S22;YES)、発電状態は異常なので、2次判定手段32はセル電圧検出手段41が検出したセル電圧の時間積分を行う(S23)。積算電圧値VTが所定値W2未満の場合には(S24;NO)、制御手段33は燃料電池スタック20の出力制限を実施する(S25)。制御部30には積算電圧値VTに応じた、負荷60の制限率や、反応ガス供給量などのマップデータが予め記憶されており、制御手段33はこのマップデータを参照して燃料電池スタック20の出力制限を実施する。また、積算電圧値VTのフィードバックによって燃料電池スタック20の出力制限を実施してもよい。一方、積算電圧値VTが所定値W2以上の場合には(S24;YES)、燃料電池スタック20の破損を防止するため、制御手段33は電池運転を停止する(S26)。   FIG. 5 shows a processing routine for determining the power generation abnormality of the fuel cell stack and controlling the battery operation. The above description will be described again with reference to the processing routine. The primary determination means 31 acquires the sensor signal output from the cell voltage detection means 41, and monitors each cell voltage (S21). If the cell voltage V is equal to or higher than the threshold voltage V0 (S22; NO), the power generation state is normal, and the process returns to S21. When the cell voltage V becomes equal to or lower than the threshold voltage V0 (S22; YES), since the power generation state is abnormal, the secondary determination means 32 performs time integration of the cell voltage detected by the cell voltage detection means 41 (S23). When the integrated voltage value VT is less than the predetermined value W2 (S24; NO), the control means 33 performs output limitation of the fuel cell stack 20 (S25). The control unit 30 stores in advance map data such as the limiting rate of the load 60 and the reaction gas supply amount in accordance with the integrated voltage value VT, and the control means 33 refers to this map data to store the fuel cell stack 20. The output restriction is implemented. Further, the output of the fuel cell stack 20 may be limited by feedback of the integrated voltage value VT. On the other hand, when the integrated voltage value VT is equal to or greater than the predetermined value W2 (S24; YES), the control means 33 stops the battery operation to prevent the fuel cell stack 20 from being damaged (S26).

本実施例によれば、発電異常時のセル電圧を積分(積算)することにより発電異常の程度とその継続時間を異常判定に反映させることができるため、どの程度の異常状態がどの程度継続したかを把握することが可能となり、燃料電池スタック20の異常度合いを適正に判定することができる。また、セル電流検出手段42が不要なのでシステム構成を簡略化できる。   According to the present embodiment, by integrating (accumulating) the cell voltage at the time of power generation abnormality, the degree of power generation abnormality and its duration can be reflected in the abnormality determination. This makes it possible to determine whether or not the fuel cell stack 20 is abnormal. Further, since the cell current detecting means 42 is unnecessary, the system configuration can be simplified.

実施例1の燃料電池システムの主要構成図である。1 is a main configuration diagram of a fuel cell system of Example 1. FIG. 実施例1の発電異常判定処理ルーチンである。It is an electric power generation abnormality determination processing routine of Example 1. FIG. 実施例1のセル電流の時間積分の説明図である。It is explanatory drawing of the time integration of the cell current of Example 1. 実施例2の燃料電池システムの主要構成図である。FIG. 4 is a main configuration diagram of a fuel cell system of Example 2. 実施例2の発電異常判定処理ルーチンである。7 is a power generation abnormality determination processing routine according to a second embodiment. 実施例2のセル電圧の時間積分の説明図である。It is explanatory drawing of the time integration of the cell voltage of Example 2.

符号の説明Explanation of symbols

10,11…燃料電池システム 20…燃料電池スタック 30…制御部 31…1次判定手段 32…2次判定手段 33…制御手段 41…セル電圧検出手段 42…セル電流検出手段 51…燃料ガス供給装置 52…酸化ガス供給装置 60…負荷 61…ダイオード 62…スイッチ DESCRIPTION OF SYMBOLS 10, 11 ... Fuel cell system 20 ... Fuel cell stack 30 ... Control part 31 ... Primary determination means 32 ... Secondary determination means 33 ... Control means 41 ... Cell voltage detection means 42 ... Cell current detection means 51 ... Fuel gas supply apparatus 52 ... Oxidizing gas supply device 60 ... Load 61 ... Diode 62 ... Switch

Claims (4)

複数のセルを積層して成る燃料電池スタックの発電異常を判定する装置であって、セル電圧が所定の閾値電圧以下に低下したか否かを1次判定する1次判定手段と、前記1次判定において前記セル電圧が前記閾値電圧以下に低下したと判定されてからの経過時間を加味した前記セルの出力積算値に基づいて発電異常の度合いを2次判定する2次判定手段とを備える、異常判定装置。   An apparatus for determining a power generation abnormality of a fuel cell stack formed by stacking a plurality of cells, wherein primary determination means for primarily determining whether or not a cell voltage has dropped below a predetermined threshold voltage; and the primary Secondary determination means for secondary determination of the degree of power generation abnormality based on the integrated output value of the cell taking into account the elapsed time since it was determined in the determination that the cell voltage has dropped below the threshold voltage; Abnormality judgment device. 請求項に記載の異常判定装置であって、前記セルの出力積算値は前記1次判定において前記セル電圧が前記閾値電圧以下に低下したと判定されてからの経過時間にわたってセル電流を積分した積算電流値である、異常判定装置。 A malfunction determining device according to claim 1, the output integrated value of the cell is the integral of the cell current over elapsed time since it is determined that the cell voltage in the primary determining drops below the threshold voltage An abnormality determination device that is an integrated current value. 請求項に記載の異常判定装置であって、前記セルの出力積算値は前記1次判定において前記セル電圧が前記閾値電圧以下に低下したと判定されてからの経過時間にわたってセル電圧を積分した積算電圧値である、異常判定装置。 2. The abnormality determination device according to claim 1 , wherein the integrated output value of the cell is obtained by integrating the cell voltage over an elapsed time after it is determined in the primary determination that the cell voltage has decreased below the threshold voltage. An abnormality determination device that is an integrated voltage value. 請求項1乃至請求項のうち何れか1項に記載の異常判定装置であって、前記2次判定に基づいて前記燃料電池スタックの出力制限又は運転停止を制御する制御手段を更に備える、異常判定装置。 The abnormality determination device according to any one of claims 1 to 3 , further comprising a control unit that controls output limitation or shutdown of the fuel cell stack based on the secondary determination. Judgment device.
JP2004153855A 2004-05-24 2004-05-24 Abnormality judgment device for fuel cell stack Expired - Fee Related JP4600642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153855A JP4600642B2 (en) 2004-05-24 2004-05-24 Abnormality judgment device for fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153855A JP4600642B2 (en) 2004-05-24 2004-05-24 Abnormality judgment device for fuel cell stack

Publications (2)

Publication Number Publication Date
JP2005339848A JP2005339848A (en) 2005-12-08
JP4600642B2 true JP4600642B2 (en) 2010-12-15

Family

ID=35493187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153855A Expired - Fee Related JP4600642B2 (en) 2004-05-24 2004-05-24 Abnormality judgment device for fuel cell stack

Country Status (1)

Country Link
JP (1) JP4600642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146928A1 (en) 2007-05-29 2008-12-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245826A (en) * 1996-02-29 1997-09-19 Aqueous Res:Kk Fuel cell stack operating state discrimination method and operation control method
JPH11260385A (en) * 1999-01-18 1999-09-24 Mitsubishi Electric Corp Fuel cell protection method, protection device, and fuel cell device
JP2002184438A (en) * 2000-12-18 2002-06-28 Toyota Motor Corp Fuel cell system having gas humidifying function
JP2003197230A (en) * 2001-12-26 2003-07-11 Toyota Motor Corp Fuel cell power generation system and its operating method
JP2003289601A (en) * 2002-03-28 2003-10-10 Honda Motor Co Ltd Feeding device for vehicle driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245826A (en) * 1996-02-29 1997-09-19 Aqueous Res:Kk Fuel cell stack operating state discrimination method and operation control method
JPH11260385A (en) * 1999-01-18 1999-09-24 Mitsubishi Electric Corp Fuel cell protection method, protection device, and fuel cell device
JP2002184438A (en) * 2000-12-18 2002-06-28 Toyota Motor Corp Fuel cell system having gas humidifying function
JP2003197230A (en) * 2001-12-26 2003-07-11 Toyota Motor Corp Fuel cell power generation system and its operating method
JP2003289601A (en) * 2002-03-28 2003-10-10 Honda Motor Co Ltd Feeding device for vehicle driving device

Also Published As

Publication number Publication date
JP2005339848A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4495111B2 (en) Contactor failure detection device in fuel cell system
JP5238191B2 (en) Fuel cell system
US8546033B2 (en) Fuel cell apparatus comprising a high potential avoidance voltage setting device
US8084151B2 (en) Fuel cell system and method therefor
JP4381443B2 (en) Fuel cell system
JP4424419B2 (en) Fuel cell system
WO2008047603A1 (en) Fuel cell system and its operation method
JP2008147102A (en) Fuel cell system
JP4758466B2 (en) Fuel cell vehicle
JP5786952B2 (en) Fuel cell output control device
KR101151750B1 (en) Fuel cell system
JP4615379B2 (en) Fuel cell system
JP6237426B2 (en) Fuel cell system
JP4099957B2 (en) Fuel cell power generator
JP5062395B2 (en) Fuel cell system
KR20070096372A (en) Method and system for selection controlling of fuel cell or battery
JP2010238531A (en) Fuel battery system and electric vehicle with fuel battery system mounted
JP4495110B2 (en) Contactor failure detection method and apparatus in fuel cell system
JP4600642B2 (en) Abnormality judgment device for fuel cell stack
JP2004146118A (en) Fuel cell system
JP2007109568A (en) Fuel cell system
JP5099580B2 (en) Fuel cell system
JP2010244980A (en) Fuel cell system and electric vehicle mounted with the same
JP2006196221A (en) Fuel cell system
JP2010257751A (en) Method of controlling fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4600642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees