JP4598223B2 - Phosgene production method and polycarbonate resin - Google Patents

Phosgene production method and polycarbonate resin Download PDF

Info

Publication number
JP4598223B2
JP4598223B2 JP2000083949A JP2000083949A JP4598223B2 JP 4598223 B2 JP4598223 B2 JP 4598223B2 JP 2000083949 A JP2000083949 A JP 2000083949A JP 2000083949 A JP2000083949 A JP 2000083949A JP 4598223 B2 JP4598223 B2 JP 4598223B2
Authority
JP
Japan
Prior art keywords
phosgene
bis
polycarbonate resin
activated carbon
hydroxyphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000083949A
Other languages
Japanese (ja)
Other versions
JP2001261321A (en
Inventor
昭良 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Chemicals Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2000083949A priority Critical patent/JP4598223B2/en
Publication of JP2001261321A publication Critical patent/JP2001261321A/en
Application granted granted Critical
Publication of JP4598223B2 publication Critical patent/JP4598223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ホスゲン化触媒として特定の活性炭を用いて四塩化炭素含有量の少ないホスゲンを製造する方法および該ホスゲンからのポリカーボネート樹脂に関する。更に詳しくは、充填密度0.420〜0.455g/ml、比表面積1200〜1300m2/g、細孔容積0.90〜1.00ml/g、粒密度0.65〜0.80g/ml、平均細孔径1.65〜1.95nmの活性炭(好ましくは椰子殻活性炭)を用いてホスゲンを製造し、次いで該ホスゲンを蒸留することを特徴とするホスゲンの製造方法および該ホスゲンを用いて製造されたポリカーボネート樹脂に関する。
【0002】
【従来の技術】
ホスゲンを製造するにおいて、ホスゲン化触媒として活性炭を用いてホスゲンを製造する方法に関しては公知であると共に種々の製造方法が提案されている。
【0003】
例えば、特公昭55−14044号公報においては一酸化炭素/塩素のモル比を1.000程度で反応せしめて、四塩化炭素含有量250ppm程度のホスゲン製造する方法、特開昭62−297320号公報において四塩化炭素500ppm含有するホスゲンを蒸留してホスゲン中の四塩化炭素5ppmにする方法や特開平10−226724号公報においては塩素分子含有量500〜1000ppmのホスゲンを製造し、該ホスゲンを活性炭吸着する方法によってホスゲン中の塩素分子を少なくする方法が開示されている。しかし、何れの方法においても四塩化炭素と塩素分子含有量を各々単独で低減する方法であって、両者を同時に効率よく低減することは出来なかった。また、蒸留で残った四塩化炭素、の処理や塩素分子を吸着した活性炭を処理することが必須になり経済的にも負担が多く、地球環境への負荷も大きい。即ち、このような不純物の発生の少ないホスゲンの製造方法が望まれている。
【0004】
また、WO97/30932号公報には、特定条件で段階的に加熱した時の加熱減量が少なく、且つ金属含有量が1000ppm以下の活性炭を用いて、四塩化炭素の少ないホスゲンの製造方法が開示されている。しかしながら、かかる活性炭は、製造プロセスが複雑の上、活性炭の純度が高いため、触媒毒に敏感であり、触媒としての寿命が短い欠点があった。更に、かかる公報にはホスゲン中の塩素分子についても、何らの考慮がなされていない。
【0005】
【発明が解決しようとする課題】
本発明者らは、上記課題を解決すべく鋭意検討した結果、ホスゲン化触媒として充填密度0.420〜0.455g/ml、比表面積1200〜1300m2/g、細孔容積0.90〜1.00ml/g、粒密度0.65〜0.80g/ml、平均細孔径1.65〜1.95nmの活性炭を用いてホスゲンを製造することによって、驚くべきことに、四塩化炭素、塩素分子等(特に四塩化炭素)の含有量の少ないホスゲンが得られることまた、該ホスゲンを用いて製造したポリカーボネート樹脂が色相が良好であることを究明し、本発明を完成した。
【0006】
【課題を解決するための手段】
本発明の目的は、四塩化炭素、塩素分子等(特に四塩化炭素)の含有不純物の少ないホスゲンを効率よく製造する方法および該ホスゲンからのポリカーボネート樹脂を提供するものである。
【0007】
即ち、本発明の第1の目的は、ホスゲン化触媒として充填密度0.420〜0.455g/ml、比表面積1200〜1300m2/g、細孔容積0.90〜1.00ml/g、粒密度0.65〜0.80g/ml、平均細孔径1.65〜1.95nmの活性炭を用いてホスゲンを製造し、次いで該ホスゲンを蒸留することを特徴とするホスゲンの製造方法によって達成される。第2の目的は、該ホスゲンを用いて製造されたポリカーボネート樹脂によって達成される。
【0008】
以下、本発明を更に詳細に説明する。
本発明のホスゲンの製造に用いるホスゲン化触媒として、充填密度は0.420〜0.455g/mlであり、0.425〜0.450g/mlが好ましい。充填密度が0.420g/ml未満の場合は品質的には特に問題ないが、設備が極大化すると共に、設備費が増大するので好ましくない。0.455g/mlを越えると圧力損失が大きくなり、系内圧力上昇により高圧ガス規制法で生産量が制限されるので好ましくない。
【0009】
ホスゲン化触媒の比表面積は1200〜1300m2/gである。比表面積は1200m2/g未満の場合はホスゲン中の四塩化炭素含有量は少なく出来るが塩素分子含有量が多くなるので好ましくない。また、1300m2/gを越えると塩素分子含有量は少なく出来るが四塩化炭素含有量が多くなるので好ましくない。
【0010】
ホスゲン化触媒の細孔容積は0.90〜1.00ml/gである。細孔容積が0.90ml/g未満の場合はホスゲン中の四塩化炭素含有量は少なく出来るが塩素分子含有量が多くなるので好ましくない。1.00ml/gを越えるとホスゲン中の塩素分子含有量は少なく出来るが四塩化炭素含有量が多くなるので好ましくない。
【0011】
ホスゲン化触媒の粒密度は0.65〜0.80g/mlである。粒密度は0.65g/ml未満の場合は、ホスゲン中の塩素分子含有量は少なく出来るが四塩化炭素含有量が多くなるので好ましくない。0.80g/ml越えるとホスゲン中の四塩化炭素含有量は少なく出来るが塩素分子含有量が多くなるので好ましくない。
【0012】
ホスゲン化触媒の平均細孔径は1.65〜1.95nmが好ましい。平均細孔径1.95nmを越えるとホスゲン中の四塩化炭素含有量は少なく出来るが塩素分子含有量が多くなるので好ましくない。1.65nm未満は生産効率上悪くなるので好ましくない。
【0013】
ホスゲン化触媒に用いる活性炭は椰子殻が好ましく、石炭系の活性炭は産地によって品質のバラツキがあるので好ましくない。
【0014】
尚、本発明に用いる活性炭は十分乾燥行い、水分を少なくして用いることが好ましく、また、ホスゲンの原料である一酸化炭素はCOS、CS2、H2S等の硫黄化合物や水分などの不純物の少ない物を用いることが望ましい。
【0015】
本発明のホスゲンの製造方法の一例として、一酸化炭素(以下、COと略称する)と塩素(以下、Cl2と略称する)とを反応熱を除去するための機能を有し、且つ、反応塔の周方向に1箇所以上、及び反応塔の高さ位置の異なる1箇所以上の箇所に塩素導入口を設けた反応塔で反応させる方法があげられる。この反応塔の周方向の塩素導入口は1箇所以上であるが1〜10箇所が好ましく、2〜5箇所がより好ましい。導入箇所10箇所以内にすると装置が簡便で経済的に有利である。また、反応塔の高さ位置の異なる塩素導入口は2箇所以上であるが、3〜10箇所が好ましく、3〜6箇所がより好ましい。
【0016】
また、反応塔は2段以上の多段の反応槽で行うことが好ましい。この多段の反応槽は2〜10段が好ましく、2〜6段がより好ましく、3〜4段が最も好ましい。その4段の例として、反応熱を除去するための機能を有した装置に活性炭の総比表面積を第4反応槽の総比表面積に対し20〜40%の活性炭を充填した第1反応槽、反応熱除去するための機能を有した装置に活性炭の総比表面積を第4反応槽の総比表面積に対し40〜60%の活性炭を充填した第2反応槽、反応熱を除去するための機能を有した装置に活性炭の総比表面積を第4反応槽の総比表面積に対し70〜80%の活性炭を充填した第3反応槽、反応熱を除去するための機能を有した装置に活性炭のみを充填した第4反応槽を直列に接続した構成があげられる。更に塩素分子含有量を低くするためには、第4反応槽の後に反応熱を除去するための機能を有し、金属アンチモンを充填した槽を設けるとよい。この金属アンチモン充填槽の後に、一般的には−20℃のブラインを通液したコンデンサーと重量測定装置を付設した液化ホスゲン貯槽を設ける。これらの装置を直列に接続し、第1反応槽から、COとのモル比(CO/Cl2のモル比)が1.015以上になるようにCOとCl2ガスを通気することによって得られる。より四塩化炭素の生成量を少なくする方法としてはCOとCl2ガスの通気量を少なくし、槽内での発熱量を少なくすればよい。更に少なくするにはホスゲンを蒸留分離する方法があるが蒸留分離する方法では塩素分子含有量を下げる効果は殆どない。また、CO/Cl2のモル比が高い方が金属アンチモンを少なくして塩素分子含有量を少なくできるがCO/Cl2のモル比が高過ぎると収率が低下するので、CO/Cl2のモル比は1.015〜1.060の範囲が好ましく、1.020〜1.045の範囲がより好ましい。
【0017】
CO/Cl2のモル比が1.015〜1.060の範囲であるとホスゲン中の塩素分子含有量が少なく、ポリカーボネート樹脂の色相が良くなると共に揮発性ガスの発生が少なくなる。
【0018】
ホスゲンの蒸留は、単蒸留ないし蒸留段数が数段の蒸留装置を用いて行う。例えば、ウイドマー精留管を用いて蒸留する方法、スルーザーパッキングを充填した蒸留塔(理論段数数段)を用いて精留する方法等があげられる。
【0019】
本発明の方法で得られたホスゲンは品質に優れているので、ポリカーボネート樹脂やイソシアネート及び染料等の製造に好適に用いることができ、特にポリカーボネート樹脂の製造に極めて好適である。
【0020】
かかるポリカーボネート樹脂は通常二価フェノールとホスゲンとを界面重合法で反応させて得られたもの、またはホスゲンを原料としたジアリルカーボネートと二価フェノールを用いて溶融重合法で反応させて得られたものである。特に界面重合法で反応させて得られたポリカーボネート樹脂の製造に、極めて好適である。
【0021】
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(3,5−ジブロモ−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテルおよび4,4’−ジヒドロキシジフェニルエステル等があげられ、これらは単独または2種以上を混合して使用できる。
【0022】
なかでもビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選ばれた少なくとも1種の二価フェノールより得られる単独重合体または共重合体が好ましく、特に、ビスフェノールAの単独重合体および1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンとビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパンまたはα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンとの共重合体が好ましく使用される。
【0023】
上記二価フェノールとホスゲンを界面重合法によって反応させてポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤等を使用する。またポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂にすることもできる。
【0024】
二価フェノールとホスゲンとの反応には、酸結合剤および有機溶媒の存在させる。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0〜40℃、反応時間は10分〜5時間程度、反応中のpHは9以上に保つのが好ましい。
【0025】
また、かかる重合反応において、通常末端停止剤が使用される。かかる末端停止剤として単官能フェノール類を使用することができる。単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られたポリカーボネート樹脂は、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる単官能フェノール類としては、一般にはフェノール又は低級アルキル置換フェノールであって、下記一般式(1)で表される単官能フェノール類を示すことができる。
【0026】
【化1】

Figure 0004598223
【0027】
[式中、Aは水素原子、炭素数1〜9の直鎖又は分岐のアルキル基、或いはフェニル基置換アルキル基であり、rは1〜5、好ましくは1〜3の整数である。]上記単官能フェノール類の具体例としては、例えばフェノール、p−tert−ブチルフェノール、p−クミルフェノールおよびイソオクチルフェノール等1ケの水酸基を有するフェノール化合物がが挙げられる。
【0028】
このようにして界面重合反応によって得られるポリカーボネート溶液は電解物質が無くなるまで有機相を洗浄し、最終的には有機相から溶媒を除去して、粒状体、フレーク等の固形物とし、この固形物を乾燥してポリカーボネート樹脂が得られるが一般的には乾燥した固形物を溶融押出しし、ペレット化した物を成形用に好ましく供される。
【0029】
成形用に供されるポリカーボネート樹脂の粘度平均分子量は10,000〜100,000程度であり、好ましくは11,000〜45,000程度であり、光ディスク用のポリカーボネート樹脂の分子量は、粘度平均分子量で10,000〜22,000が好ましく、12,000〜20,000がより好ましく、13,000〜18,000が特に好ましい。かかる粘度平均分子量を有するポリカーボネート樹脂は、光学用材料として十分な強度が得られ、また、成形時の溶融流動性も良好であり成形歪みが発生せず好ましい。
【0030】
シリコンウエハー等の精密機材収納容器に用いられるポリカーボネート樹脂の分子量は、粘度平均分子量で14,000〜30,000が好ましく、14,500〜25,000がより好ましく、15,000〜24,000がさらに好ましい。かかる粘度平均分子量を有する芳香族ポリカーボネート樹脂は、一定の機械的強度を有し成形時の流動性も良好であり好ましい。
【0031】
上記ポリカーボネート樹脂に離型剤、帯電防止剤、増白剤、熱安定剤、酸化防止剤、紫外線吸収剤(耐候剤)、抗菌剤等の改質改良剤を適宜添加して用いることができる。
【0032】
【実施例】
以下実施例にしたがって、本発明を具体的に説明するが本発明の要旨を越えない限り、これらの実施例によって限定されるものではない。尚、評価は次に示す方法で行った。
(1)活性炭の充填密度の測定
JISK−1474記載の方法に従って測定した。
(2)活性炭の比表面積の測定
BET式窒素ガス吸着法で測定した。
(3)活性炭の細孔容積、粒密度、平均細孔径の測定
水銀圧入法で測定した。
(4)ホスゲン中の四塩化炭素の測定
得られたホスゲン1μlを電子捕獲型検出器付きガスクロマトグラフ装置(日立製作所製)に注入し測定した。
(5)ホスゲン中の塩素分子含有量の測定
得られたホスゲンを100gサンプリングし、これを気化させて、NaOH溶液に吸収させて、NaClOとして酸化還元滴定し、その絶対量を測定して、ホスゲン中の塩素含有量とした。
【0033】
[比較例1]
反応熱を除去する機能を有した多管式反応槽のシェル側に10℃の冷水を通水し、チューブ側に充填密度0.400g/ml、比表面積1400m2/g、細孔容積1.10ml/g、粒密度0.60g/ml、平均細孔径16.0nmの椰子殻活性炭50kgを充填した反応槽の後に−25℃のブラインを通液したコンデンサーと重量測定装置を付設した液化ホスゲン貯槽を設け、これらの装置を直列に接続し、反応槽から、CO/Cl2のモル比1.010になるようにCO10.10m3/HrとCl2ガス10.00m3/Hrを通気して液化ホスゲンを得た。このホスゲン中の塩素分子15ppm、四塩化炭素含有量135ppmであった。得られたホスゲンの評価結果を表1にまとめた。
【0034】
[比較例2]
反応熱を除去する機能を有した多管式反応槽のシェル側に10℃の冷水を通水し、チューブ側に充填密度0.480g/ml、比表面積1100m2/g、細孔容積0.85ml/g、粒密度0.85g/ml、平均細孔径20.3nmの椰子殻活性炭50kgを充填した反応槽の後に−25℃のブラインを通液したコンデンサーと重量測定装置を付設した液化ホスゲン貯槽を設け、これらの装置を直列に接続し、反応槽から、CO/Cl2のモル比1.020になるようにCO10.20m3/HrとCl2ガス10.00m3/Hrを通気して液化ホスゲンを得た。このホスゲン中の塩素分子8ppm、四塩化炭素含有量70ppmであった。得られたホスゲンの評価結果を表1にまとめた。
【0035】
[実施例1]
反応熱を除去する機能を有した多管式反応槽のシェル側に10℃の冷水を通水し、チューブ側に充填密度0.430g/ml、比表面積1300m2/g、細孔容積0.98ml/g、粒密度0.69g/ml、平均細孔径17.0nmの椰子殻活性炭50kgを充填した反応槽の後に−25℃のブラインを通液したコンデンサーと重量測定装置を付設した液化ホスゲン貯槽を設け、これらの装置を直列に接続し、反応槽から、CO/Cl2のモル比1.020になるようにCO10.20m3/HrとCl2ガス10.00m3/Hrを通気して液化ホスゲンを得た。このホスゲン中の塩素分子4ppm、四塩化炭素含有量64ppmであった。この液化ホスゲンを住友重機械工業(株)製スルーザーパッキングを充填した蒸留塔(理論段数6)を用いて還流比0.4、ホスゲンフィード温度31.0℃、塔頂温度27.0℃の条件で精留した。得られたホスゲンの評価結果を表1にまとめた。
【0036】
次に、かかるホスゲンを用いてポリカーボネート樹脂を製造した。温度計、撹拌機及び還流冷却器付き反応器にイオン交換水219.4部、48%水酸化ナトリウム水溶液40.2部を仕込み、これに2,2−ビス(4−ヒドロキシフェニル)プロパン57.5部およびハイドロサルファイト0.12部を溶解した後、塩化メチレン181部を加え、撹拌下15〜25℃で上記ホスゲン28.3部を40分要して吹込んだ。ホスゲン吹き込み終了後、48%水酸化ナトリウム水溶液7.2部およびp−tert−ブチルフェノール2.42部を加え、撹拌を始め、乳化後トリエチルアミン0.06部を加え、さらに28〜33℃で1時間撹拌して反応を終了した。反応終了後生成物を塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで、軸受け部に異物取出口を有する隔離室を設けたニーダーにて塩化メチレンを蒸発して、粘度平均分子量15,100のポリカーボネート樹脂パウダーを得た。このパウダーを145℃、6時間乾燥し、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイトを0.004重量%、ステアリン酸モノグリセリドを0.06重量%加えた。次に、かかるパウダーをベント式二軸押出機[神戸製鋼(株)製KTX−46]によりシリンダー温度240℃、ベントガス吸引度−667Paで脱気しながら溶融混練し、ペレットを得た。このペレットは、色相が良好であった。
【0037】
[実施例2]
反応熱を除去する機能を有した多管式反応槽のシェル側に10℃の冷水を通水し、チューブ側に充填密度0.450g/ml、比表面積1200m2/g、細孔容積0.91ml/g、粒密度0.78g/ml、平均細孔径18.5nmの椰子殻活性炭50kgを充填した反応槽の後に−25℃のブラインを通液したコンデンサーと重量測定装置を付設した液化ホスゲン貯槽を設け、これらの装置を直列に接続し、反応槽から、CO/Cl2のモル比1.020になるようにCO10.20m3/HrとCl2ガス10.00m3/Hrを通気して液化ホスゲンを得た。このホスゲン中の塩素分子5ppm、四塩化炭素含有量61ppmであった。この液化ホスゲンを住友重機械工業(株)製スルーザーパッキングを充填した蒸留塔(理論段数6)を用いて還流比0.4、ホスゲンフィード温度31.0℃、塔頂温度27.0℃の条件で精留した。得られたホスゲンの評価結果を表1にまとめた。
【0038】
次に、かかるホスゲンを用いてポリカーボネート樹脂を製造した。実施例1のポリカーボネート樹脂を製造するにおいて、p−tert−ブチルフェノール1.55部に変更した以外は実施例1と同じ方法で行い、粘度平均分子量23,500のポリカーボネート樹脂ペレットを得た。得られたペレットは、色相が良好であった。
【0039】
【表1】
Figure 0004598223
【0040】
【発明の効果】
本発明は、四塩化炭素、塩素分子等(特に四塩化炭素)の含有不純物の少ないホスゲンを効率よく製造できるのでポリカーボネート樹脂、イソシアネート、医薬及び染料等広範囲の分野の原料として好適である。特にポリカーボネート樹脂の製造に好適に用いられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing phosgene having a low carbon tetrachloride content using a specific activated carbon as a phosgenation catalyst, and a polycarbonate resin from the phosgene. More specifically, packing density 0.420-0.455 g / ml, specific surface area 1200-1300 m 2 / g, pore volume 0.90-1.00 ml / g, grain density 0.65-0.80 g / ml, A process for producing phosgene characterized by producing phosgene using activated carbon (preferably coconut shell activated carbon) having an average pore diameter of 1.65 to 1.95 nm, and then distilling the phosgene. Relates to the polycarbonate resin.
[0002]
[Prior art]
In producing phosgene, a method for producing phosgene using activated carbon as a phosgenation catalyst is known and various production methods have been proposed.
[0003]
For example, Japanese Patent Publication No. 55-14044 discloses a method for producing phosgene having a carbon tetrachloride content of about 250 ppm by reacting at a carbon monoxide / chlorine molar ratio of about 1.000. In which phosgene containing 500 ppm of carbon tetrachloride is distilled to carbon tetrachloride in phosgene to 5 ppm, or in JP-A-10-226724, phosgene having a chlorine molecule content of 500 to 1000 ppm is produced, and the phosgene is adsorbed on activated carbon. A method for reducing chlorine molecules in phosgene is disclosed. However, in either method, the carbon tetrachloride and chlorine molecule contents are each reduced alone, and it has not been possible to efficiently reduce both at the same time. In addition, it is essential to treat carbon tetrachloride remaining after distillation or to treat activated carbon adsorbed with chlorine molecules, which is economically burdensome and has a heavy impact on the global environment. That is, a method for producing such phosgene with less generation of impurities is desired.
[0004]
WO97 / 30932 discloses a method for producing phosgene with a low carbon tetrachloride by using activated carbon with a small amount of heat loss when heated stepwise under specific conditions and a metal content of 1000 ppm or less. ing. However, such activated carbon has a drawback in that the manufacturing process is complicated and the purity of the activated carbon is high, so that it is sensitive to catalyst poison and has a short life as a catalyst. Furthermore, this publication does not consider any chlorine molecules in phosgene.
[0005]
[Problems to be solved by the invention]
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a packing density of 0.420 to 0.455 g / ml, a specific surface area of 1200 to 1300 m 2 / g, and a pore volume of 0.90 to 1 as a phosgenation catalyst. Surprisingly, carbon tetrachloride, chlorine molecules were produced by producing phosgene using activated carbon having 0.000 ml / g, particle density of 0.65 to 0.80 g / ml, and average pore size of 1.65 to 1.95 nm. The present invention was completed by investigating that phosgene with a low content of carbon tetrachloride, etc. (especially carbon tetrachloride) was obtained, and that the polycarbonate resin produced using the phosgene had good hue.
[0006]
[Means for Solving the Problems]
An object of the present invention is to provide a method for efficiently producing phosgene with less impurities such as carbon tetrachloride and chlorine molecules (particularly carbon tetrachloride) and a polycarbonate resin from the phosgene.
[0007]
That is, the first object of the present invention is to provide a packing density of 0.420 to 0.455 g / ml, a specific surface area of 1200 to 1300 m 2 / g, a pore volume of 0.90 to 1.00 ml / g as a phosgenation catalyst, It is achieved by a method for producing phosgene, characterized in that phosgene is produced using activated carbon having a density of 0.65 to 0.80 g / ml and an average pore diameter of 1.65 to 1.95 nm, and then the phosgene is distilled. . The second object is achieved by a polycarbonate resin produced using the phosgene.
[0008]
Hereinafter, the present invention will be described in more detail.
As a phosgenation catalyst used for the production of phosgene of the present invention, the packing density is 0.420 to 0.455 g / ml, preferably 0.425 to 0.450 g / ml. When the packing density is less than 0.420 g / ml, there is no particular problem in terms of quality, but it is not preferable because the equipment is maximized and the equipment cost is increased. If it exceeds 0.455 g / ml, the pressure loss increases, and the production amount is restricted by the high-pressure gas regulation method due to an increase in system pressure, which is not preferable.
[0009]
The specific surface area of the phosgenation catalyst is 1200 to 1300 m 2 / g. When the specific surface area is less than 1200 m 2 / g, the carbon tetrachloride content in phosgene can be reduced, but the chlorine molecule content increases, which is not preferable. On the other hand, if it exceeds 1300 m 2 / g, the chlorine molecule content can be reduced, but the carbon tetrachloride content is increased, which is not preferable.
[0010]
The pore volume of the phosgenation catalyst is 0.90 to 1.00 ml / g. When the pore volume is less than 0.90 ml / g, the carbon tetrachloride content in phosgene can be reduced, but the chlorine molecule content increases, which is not preferable. If it exceeds 1.00 ml / g, the chlorine molecule content in phosgene can be reduced, but the carbon tetrachloride content increases, which is not preferable.
[0011]
The particle density of the phosgenation catalyst is 0.65 to 0.80 g / ml. When the particle density is less than 0.65 g / ml, the chlorine molecule content in phosgene can be reduced, but the carbon tetrachloride content increases, which is not preferable. If it exceeds 0.80 g / ml, the carbon tetrachloride content in phosgene can be reduced, but the chlorine molecule content increases, which is not preferable.
[0012]
The average pore diameter of the phosgenation catalyst is preferably 1.65 to 1.95 nm. If the average pore diameter exceeds 1.95 nm, the carbon tetrachloride content in phosgene can be reduced, but the chlorine molecule content increases, which is not preferable. If it is less than 1.65 nm, the production efficiency is deteriorated.
[0013]
Activated carbon used for the phosgenation catalyst is preferably coconut shell, and coal-based activated carbon is not preferable because of variations in quality depending on the production area.
[0014]
The activated carbon used in the present invention is preferably sufficiently dried and used with reduced moisture, and carbon monoxide, which is a raw material for phosgene, is an impurity such as sulfur compounds such as COS, CS 2 , H 2 S and moisture. It is desirable to use a product with a small amount.
[0015]
As an example of the method for producing phosgene of the present invention, carbon monoxide (hereinafter abbreviated as CO) and chlorine (hereinafter abbreviated as Cl2) have a function of removing reaction heat, and a reaction tower There is a method of reacting in a reaction tower provided with a chlorine inlet at one or more places in the circumferential direction and at one or more places where the height of the reaction tower is different. Although the number of chlorine inlets in the circumferential direction of this reaction tower is one or more, 1 to 10 is preferable, and 2 to 5 is more preferable. If it is within 10 introduction points, the apparatus is simple and economically advantageous. Moreover, although the chlorine inlets from which the height position of a reaction tower differs are two or more places, 3-10 places are preferable and 3-6 places are more preferable.
[0016]
The reaction tower is preferably carried out in a multistage reaction tank having two or more stages. The multistage reaction tank preferably has 2 to 10 stages, more preferably 2 to 6 stages, and most preferably 3 to 4 stages. As an example of the four stages, a first reaction tank in which an apparatus having a function for removing reaction heat is filled with activated carbon having a total specific surface area of activated carbon of 20 to 40% of the total specific surface area of the fourth reaction tank, A second reaction tank filled with activated carbon whose total specific surface area of activated carbon is 40 to 60% of the total specific surface area of the fourth reaction tank in a device having a function for removing reaction heat, a function for removing reaction heat A third reaction tank filled with activated carbon having a total specific surface area of activated carbon of 70 to 80% of the total specific surface area of the fourth reaction tank in an apparatus having a function, only activated carbon in an apparatus having a function for removing reaction heat The structure which connected the 4th reaction tank with which it was filled in series is mention | raise | lifted. In order to further reduce the chlorine molecule content, it is preferable to provide a tank filled with metal antimony having a function for removing reaction heat after the fourth reaction tank. After this metal antimony filling tank, a liquefied phosgene storage tank equipped with a condenser and a weight measuring device, which are generally passed through a brine of −20 ° C., is provided. These devices are connected in series, and CO and Cl2 gas are vented from the first reaction tank so that the molar ratio with CO (CO / Cl2 molar ratio) is 1.015 or more. As a method for reducing the amount of carbon tetrachloride produced, the amount of CO and Cl2 gas can be reduced and the amount of heat generated in the tank can be reduced. In order to further reduce the amount, phosgene can be distilled and separated, but the method of distilling and separating has almost no effect of lowering the chlorine molecule content. In addition, the higher the CO / Cl2 molar ratio, the smaller the metal antimony and the lower the chlorine molecule content. However, if the CO / Cl2 molar ratio is too high, the yield decreases, so the CO / Cl2 molar ratio is The range of 1.015 to 1.060 is preferable, and the range of 1.020 to 1.045 is more preferable.
[0017]
When the molar ratio of CO / Cl2 is in the range of 1.015 to 1.060, the content of chlorine molecules in phosgene is small, the hue of the polycarbonate resin is improved, and the generation of volatile gas is reduced.
[0018]
The distillation of phosgene is performed using a single distillation or a distillation apparatus having several distillation stages. For example, there are a method of distillation using a Widmer rectification tube, a method of rectification using a distillation column (several theoretical plates) packed with a sulzer packing, and the like.
[0019]
Since phosgene obtained by the method of the present invention is excellent in quality, it can be suitably used for the production of polycarbonate resins, isocyanates and dyes, and is particularly suitable for the production of polycarbonate resins.
[0020]
Such a polycarbonate resin is usually obtained by reacting dihydric phenol and phosgene by an interfacial polymerization method, or obtained by reacting diallyl carbonate using phosgene as a raw material and dihydric phenol by a melt polymerization method. It is. In particular, it is extremely suitable for the production of a polycarbonate resin obtained by reacting by an interfacial polymerization method.
[0021]
Representative examples of the dihydric phenol used here include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl). Phenyl} methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly referred to as bisphenol A) ), 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis {(3 , 5-dibromo-4-hydroxy) phenyl} propane, 2,2-bis {(3-isopropyl-4-hydroxy) phenyl} propane, 2,2-bis {(4-hydroxy-3-phenyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2, 2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2- Bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4 -Hydroxyphenyl) -3,3,5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methyl) phenyl} fluorene, α, α′-bis (4-hydroxyphenyl) -o-diisopropylbenzene, α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α , Α′-bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4′-dihydroxydiphenylsulfone, 4,4′- Examples include dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl ether, and 4,4′-dihydroxydiphenyl ester. These may be used alone or in combination of two or more. Can be used in combination.
[0022]
Among them, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3 -Methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-hydroxyphenyl) Homopolymer or copolymer obtained from at least one dihydric phenol selected from the group consisting of 3,3,5-trimethylcyclohexane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene In particular, a homopolymer of bisphenol A and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethyl A copolymer of cyclohexane and bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane or α, α'-bis (4-hydroxyphenyl) -m-diisopropylbenzene is preferably used. The
[0023]
When the polycarbonate resin is produced by reacting the dihydric phenol with phosgene by an interfacial polymerization method, a catalyst, a terminal terminator, a dihydric phenol antioxidant, or the like is used as necessary. The polycarbonate resin may be a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound.
[0024]
An acid binder and an organic solvent are present in the reaction between the dihydric phenol and phosgene. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In order to accelerate the reaction, a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide or tetra-n-butylphosphonium bromide, a quaternary ammonium compound or a quaternary phosphonium compound may be used. it can. At that time, the reaction temperature is usually 0 to 40 ° C., the reaction time is preferably about 10 minutes to 5 hours, and the pH during the reaction is preferably maintained at 9 or more.
[0025]
In such a polymerization reaction, a terminal stopper is usually used. Monofunctional phenols can be used as such end terminators. Monofunctional phenols are commonly used as end terminators for molecular weight control, and the resulting polycarbonate resins are compared to those that do not because the ends are blocked by groups based on monofunctional phenols. Excellent thermal stability. Such monofunctional phenols are generally phenols or lower alkyl-substituted phenols, and can be monofunctional phenols represented by the following general formula (1).
[0026]
[Chemical 1]
Figure 0004598223
[0027]
[In formula, A is a hydrogen atom, a C1-C9 linear or branched alkyl group, or a phenyl group substituted alkyl group, r is an integer of 1-5, Preferably it is 1-3. Specific examples of the monofunctional phenols include phenol compounds having one hydroxyl group such as phenol, p-tert-butylphenol, p-cumylphenol and isooctylphenol.
[0028]
Thus, the polycarbonate solution obtained by the interfacial polymerization reaction is washed with the organic phase until the electrolytic substance is eliminated, and finally the solvent is removed from the organic phase to form solids such as granules and flakes. Is dried to obtain a polycarbonate resin. In general, a dried solid material is melt-extruded and a pelletized material is preferably used for molding.
[0029]
The viscosity average molecular weight of the polycarbonate resin used for molding is about 10,000 to 100,000, preferably about 11,000 to 45,000. The molecular weight of the polycarbonate resin for optical discs is the viscosity average molecular weight. 10,000 to 22,000 are preferable, 12,000 to 20,000 are more preferable, and 13,000 to 18,000 are particularly preferable. A polycarbonate resin having such a viscosity average molecular weight is preferable because it provides sufficient strength as an optical material and has good melt fluidity during molding and does not cause molding distortion.
[0030]
The molecular weight of the polycarbonate resin used in a precision equipment storage container such as a silicon wafer is preferably 14,000 to 30,000, more preferably 14,500 to 25,000, and more preferably 15,000 to 24,000 in terms of viscosity average molecular weight. Further preferred. An aromatic polycarbonate resin having such a viscosity average molecular weight is preferable because it has a certain mechanical strength and good fluidity during molding.
[0031]
A modifying agent such as a release agent, an antistatic agent, a brightening agent, a heat stabilizer, an antioxidant, an ultraviolet absorber (weathering agent), an antibacterial agent, and the like can be appropriately added to the polycarbonate resin.
[0032]
【Example】
Hereinafter, the present invention will be described in detail according to examples. However, the present invention is not limited to these examples as long as the gist of the present invention is not exceeded. The evaluation was performed by the following method.
(1) Measurement of packing density of activated carbon It measured according to the method of JISK-1474.
(2) Measurement of specific surface area of activated carbon It was measured by the BET nitrogen gas adsorption method.
(3) Measurement of pore volume, particle density, and average pore diameter of activated carbon.
(4) Measurement of carbon tetrachloride in phosgene 1 μl of the obtained phosgene was injected into a gas chromatograph with an electron capture detector (manufactured by Hitachi, Ltd.) and measured.
(5) Measurement of chlorine molecule content in phosgene 100 g of the obtained phosgene was sampled, vaporized, absorbed in NaOH solution, redox titrated as NaClO, and its absolute amount was measured. The chlorine content in the inside.
[0033]
[Comparative Example 1]
Cold water at 10 ° C. is passed through the shell side of the multitubular reactor having a function of removing reaction heat, the packing density is 0.400 g / ml, the specific surface area is 1400 m 2 / g, and the pore volume is 1. A liquefied phosgene storage tank equipped with a condenser and a gravimetric measuring device through which a brine of −25 ° C. is passed after a reaction tank filled with 50 kg of coconut shell activated carbon having a particle density of 0.60 g / ml and an average pore diameter of 16.0 nm. These devices were connected in series, and 10.10 m 3 / Hr of CO and 10.00 m 3 / Hr of Cl 2 gas were aerated from the reaction vessel so that the molar ratio of CO / Cl 2 was 1.010. Got. This phosgene had a chlorine molecule of 15 ppm and a carbon tetrachloride content of 135 ppm. The evaluation results of the obtained phosgene are summarized in Table 1.
[0034]
[Comparative Example 2]
Cold water at 10 ° C. was passed through the shell side of a multi-tubular reactor having a function of removing reaction heat, the packing density was 0.480 g / ml, the specific surface area was 1100 m 2 / g, and the pore volume was 0. A liquefied phosgene storage tank equipped with a condenser and a gravimetric measuring device with -25 ° C brine after a reaction tank filled with 85 kg / g, particle density 0.85 g / ml and 50 kg of coconut shell activated carbon with an average pore diameter of 20.3 nm These devices were connected in series, and 10.20 m 3 / Hr of CO and 10.00 m 3 / Hr of Cl 2 gas were vented from the reaction vessel so that the molar ratio of CO / Cl 2 was 1.020. Got. The phosgene contained 8 ppm chlorine molecules and a carbon tetrachloride content of 70 ppm. The evaluation results of the obtained phosgene are summarized in Table 1.
[0035]
[Example 1]
Cold water of 10 ° C. was passed through the shell side of the multi-tubular reactor having the function of removing reaction heat, the packing density was 0.430 g / ml, the specific surface area was 1300 m 2 / g, and the pore volume was 0. A liquefied phosgene storage tank equipped with a condenser and a gravimetric measuring device through which a brine of −25 ° C. is passed after a reaction tank filled with 98 kg of coconut shell activated carbon having a particle density of 0.69 g / ml and an average pore diameter of 17.0 nm These devices were connected in series, and 10.20 m 3 / Hr of CO and 10.00 m 3 / Hr of Cl 2 gas were vented from the reaction vessel so that the molar ratio of CO / Cl 2 was 1.020. Got. This phosgene had a chlorine molecule of 4 ppm and a carbon tetrachloride content of 64 ppm. Using a distillation column (theoretical plate number 6) filled with sulzer packing made by Sumitomo Heavy Industries, Ltd., this liquefied phosgene had a reflux ratio of 0.4, a phosgene feed temperature of 31.0 ° C., and a tower top temperature of 27.0 ° C. Rectified under conditions. The evaluation results of the obtained phosgene are summarized in Table 1.
[0036]
Next, a polycarbonate resin was produced using such phosgene. A reactor equipped with a thermometer, a stirrer, and a reflux condenser was charged with 219.4 parts of ion-exchanged water and 40.2 parts of 48% sodium hydroxide aqueous solution, and 2,2-bis (4-hydroxyphenyl) propane 57. After 5 parts and 0.12 part of hydrosulfite were dissolved, 181 parts of methylene chloride was added, and 28.3 parts of the above phosgene was added for 40 minutes at 15 to 25 ° C. with stirring. After completion of the phosgene blowing, 7.2 parts of 48% aqueous sodium hydroxide and 2.42 parts of p-tert-butylphenol were added, stirring was started, and after emulsification, 0.06 part of triethylamine was added, and further at 28 to 33 ° C. for 1 hour. The reaction was terminated by stirring. After completion of the reaction, the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and when the conductivity of the aqueous phase is almost the same as that of ion-exchanged water, an isolation chamber having a foreign matter outlet at the bearing is formed. The methylene chloride was evaporated with the provided kneader to obtain a polycarbonate resin powder having a viscosity average molecular weight of 15,100. This powder was dried at 145 ° C. for 6 hours, and 0.004% by weight of tris (2,4-di-tert-butylphenyl) phosphite and 0.06% by weight of stearic acid monoglyceride were added. Next, the powder was melt-kneaded while venting at a cylinder temperature of 240 ° C. and a vent gas suction of −667 Pa using a vented twin-screw extruder [KTX-46 manufactured by Kobe Steel Co., Ltd.] to obtain pellets. This pellet had a good hue.
[0037]
[Example 2]
Cold water at 10 ° C. was passed through the shell side of a multi-tubular reactor having a function of removing reaction heat, the packing density was 0.450 g / ml, the specific surface area was 1200 m 2 / g, and the pore volume was 0. A liquefied phosgene storage tank equipped with a condenser and a gravimetric measuring device with -25 ° C brine passed after a reaction tank filled with 91 kg / g, grain density 0.78 g / ml, and 50 kg of coconut shell activated carbon with an average pore diameter of 18.5 nm These devices were connected in series, and 10.20 m 3 / Hr of CO and 10.00 m 3 / Hr of Cl 2 gas were vented from the reaction vessel so that the molar ratio of CO / Cl 2 was 1.020. Got. The phosgene had a chlorine molecule content of 5 ppm and a carbon tetrachloride content of 61 ppm. This liquefied phosgene was used in a distillation column (theoretical plate number: 6) filled with Sulzer Packing manufactured by Sumitomo Heavy Industries, Ltd., with a reflux ratio of 0.4, a phosgene feed temperature of 31.0 ° C, and a tower top temperature of 27.0 ° C. Rectified under conditions. The evaluation results of the obtained phosgene are summarized in Table 1.
[0038]
Next, a polycarbonate resin was produced using such phosgene. The production of the polycarbonate resin of Example 1 was carried out in the same manner as in Example 1 except that the amount was changed to 1.55 parts of p-tert-butylphenol, to obtain a polycarbonate resin pellet having a viscosity average molecular weight of 23,500. The obtained pellets had a good hue.
[0039]
[Table 1]
Figure 0004598223
[0040]
【The invention's effect】
The present invention is suitable as a raw material in a wide range of fields such as polycarbonate resins, isocyanates, pharmaceuticals, and dyes because phosgene containing few impurities such as carbon tetrachloride and chlorine molecules (particularly carbon tetrachloride) can be efficiently produced. In particular, it is suitably used for the production of polycarbonate resin.

Claims (3)

ホスゲン化触媒として充填密度0.420〜0.455g/ml、比表面積1200〜1300m/g、細孔容積0.90〜1.00ml/g、粒密度0.65〜0.80g/ml、平均細孔径1.65〜1.95nmの活性炭を用いてホスゲンを製造し、次いで該ホスゲンを蒸留することを特徴とするホスゲンの製造方法。As a phosgenation catalyst, packing density 0.420-0.455 g / ml, specific surface area 1200-1300 m 2 / g, pore volume 0.90-1.00 ml / g, particle density 0.65-0.80 g / ml, A process for producing phosgene, comprising producing phosgene using activated carbon having an average pore diameter of 1.65 to 1.95 nm and then distilling the phosgene. 活性炭が椰子殻活性炭である請求項1記載のホスゲンの製造方法。  The method for producing phosgene according to claim 1, wherein the activated carbon is coconut shell activated carbon. 請求項1または2のいずれか1項記載の製造方法によってホスゲンを製造し、製造されたホスゲンと二価フェノールとを反応させるポリカーボネート樹脂の製造方法。 The manufacturing method of the polycarbonate resin which manufactures phosgene by the manufacturing method of any one of Claim 1 or 2, and makes the manufactured phosgene and dihydric phenol react .
JP2000083949A 2000-03-24 2000-03-24 Phosgene production method and polycarbonate resin Expired - Fee Related JP4598223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083949A JP4598223B2 (en) 2000-03-24 2000-03-24 Phosgene production method and polycarbonate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083949A JP4598223B2 (en) 2000-03-24 2000-03-24 Phosgene production method and polycarbonate resin

Publications (2)

Publication Number Publication Date
JP2001261321A JP2001261321A (en) 2001-09-26
JP4598223B2 true JP4598223B2 (en) 2010-12-15

Family

ID=18600502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083949A Expired - Fee Related JP4598223B2 (en) 2000-03-24 2000-03-24 Phosgene production method and polycarbonate resin

Country Status (1)

Country Link
JP (1) JP4598223B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073342B2 (en) * 2003-03-17 2008-04-09 アサヒビール株式会社 Method for producing fermented malt beverage and activated carbon for purine body removal of fermented malt beverage
JP4076901B2 (en) * 2003-04-21 2008-04-16 アサヒビール株式会社 Method for producing fermented malt beverage
CN102089242B (en) * 2008-07-15 2013-11-20 帝人化成株式会社 Method for producing carbonyl chloride
JP5795975B2 (en) 2012-03-13 2015-10-14 出光興産株式会社 Continuous production method of polycarbonate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297320A (en) * 1986-06-18 1987-12-24 Mitsubishi Chem Ind Ltd Production of carbonate bond-containing resin
JPH0959012A (en) * 1995-08-23 1997-03-04 Mitsubishi Gas Chem Co Inc Production of phosgene
JPH10226724A (en) * 1996-12-09 1998-08-25 Mitsubishi Chem Corp Polycarbonate resin reduced in volatile chlorine and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297320A (en) * 1986-06-18 1987-12-24 Mitsubishi Chem Ind Ltd Production of carbonate bond-containing resin
JPH0959012A (en) * 1995-08-23 1997-03-04 Mitsubishi Gas Chem Co Inc Production of phosgene
JPH10226724A (en) * 1996-12-09 1998-08-25 Mitsubishi Chem Corp Polycarbonate resin reduced in volatile chlorine and its production

Also Published As

Publication number Publication date
JP2001261321A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US10479860B2 (en) Method for preparing highly transparent and highly heat-resistant polycarbonate ester
JP5857425B2 (en) Method for producing polycarbonate
JP5242001B2 (en) Thermally stabilized polycarbonate composition
KR100870850B1 (en) Industrial process for production of high-purity diphenyl carbonate
JP5857852B2 (en) Polycarbonate production method, polycarbonate pellet and transparent film
JP5393676B2 (en) Method for producing carbonyl chloride
JP4169425B2 (en) Method for producing phosgene
JP4598223B2 (en) Phosgene production method and polycarbonate resin
KR20030092361A (en) Method for preparing high molecular weight polycarbonate
WO2007083721A1 (en) Process for continuous production of polycarbonate oligomer
JP4290793B2 (en) Method for producing phosgene
US6835797B2 (en) Process for producing oligocarbonates
JP5319327B2 (en) Method for producing carbonyl chloride
JPS6339611B2 (en)
KR100554773B1 (en) Polycarbonate resin containing less volatile chlorine and its manufacturing method
US6706848B1 (en) Method for producing polycarbonate
JP2000203824A (en) Production of phosgene
JP3282584B2 (en) Storage container for precision parts
WO2013183173A1 (en) 9,9-bis(4-(2-hydroxyethoxy)phenyl)fluorene powder material
JPH10226724A (en) Polycarbonate resin reduced in volatile chlorine and its production
KR102625057B1 (en) Diol compound, polycarbonate and method for preparing the same
DE112004000332T5 (en) Polycarbonate prepolymer for solid state polymerization and process for producing polycarbonate
JP2000248059A (en) Polycarbonate resin and its production
JP2023550948A (en) Monomer composition for synthesizing recycled plastics, method for producing the same, recycled plastics using the same, and molded products
JP2000154244A (en) Polycarbonate resin and preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees