JP4596712B2 - Power storage system - Google Patents

Power storage system Download PDF

Info

Publication number
JP4596712B2
JP4596712B2 JP2001274648A JP2001274648A JP4596712B2 JP 4596712 B2 JP4596712 B2 JP 4596712B2 JP 2001274648 A JP2001274648 A JP 2001274648A JP 2001274648 A JP2001274648 A JP 2001274648A JP 4596712 B2 JP4596712 B2 JP 4596712B2
Authority
JP
Japan
Prior art keywords
converter
auxiliary battery
switch
battery
main battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001274648A
Other languages
Japanese (ja)
Other versions
JP2003087997A (en
Inventor
信幸 徳田
泰平 菊岡
竜祐 岩田
秀爾 阪下
哲裕 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Daihen Corp
Original Assignee
Kansai Electric Power Co Inc
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Daihen Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2001274648A priority Critical patent/JP4596712B2/en
Publication of JP2003087997A publication Critical patent/JP2003087997A/en
Application granted granted Critical
Publication of JP4596712B2 publication Critical patent/JP4596712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、充放電可能な主電池および補助電池を備え、交流電源が正常時には上記主電池により負荷平準化を行うとともに、上記補助電池を充電し、停電時には、上記主電池から交流非常用負荷に電力供給を行うとともに、上記補助電池から直流非常用負荷に電力供給を行う電力貯蔵システムに関するものである。
【0002】
【従来の技術】
近年、鉛蓄電池に替わる新形2次電池として、亜鉛臭素電池、亜鉛塩素電池、レドックスフロー電池等の電解液循環型の2次電池が実用化されつつある。そして、これら2次電池を利用して夜間電力を充電し、この蓄えた電力を昼間の需要負荷に供給して負荷平準化またはピークカットを行う電力貯蔵システムが開発されつつある。
【0003】
図10は、この種従来の電力貯蔵システムを示す回路構成図である。図において、1は3相の交流電源、2は交流側がスイッチS7を介して交流電源1に接続されたAC/DC双方向コンバータ、3は一端側がAC/DC双方向コンバータ2の直流側に接続されたDC/DCコンバータA、4はスイッチS1を介してDC/DCコンバータA3の他端側に接続された主電池で、ここでは上述した電解液循環型の2次電池が採用されている。5はスイッチS2を介してDC/DCコンバータA3の他端側に接続された補助電池、6は一端側が補助電池5に接続されたDC/DCコンバータB、7はスイッチS3を介してDC/DCコンバータB6の他端側に接続された直流非常用負荷である。
また、8、9、10は、それぞれスイッチS4、S5、S6を介してAC/DC双方向コンバータ2の交流側に接続された交流非常用負荷、交流一般負荷、電解液循環ポンプである。なお、電解液循環ポンプ10は、主電池4を構成する電池スタックと電解液タンクとの間で電解液を循環するためのものである。
【0004】
次に動作について説明する。交流電源1が正常なときは、主電池4を用いて負荷平準化のための系統連系運転を行う。即ち、スイッチS1、S7を閉路して主電池4は交流電源1との間で充放電動作を行う。このとき、スイッチS2は開路している。また、スイッチS5、S6を閉路して交流一般負荷9および電解液循環ポンプ10に給電される。
また、交流電源1が正常で主電池4が充放電動作をしない休止中は、スイッチS1、S6を開路して電解液循環ポンプ10を停止するとともに、スイッチS2を閉路し交流電源1からAC/DC双方向コンバータ2およびDC/DCコンバータA3を介して補助電池5を浮動充電する。
【0005】
交流電源1が停電になると、スイッチS1、S7を開路、S2を閉路し、また、スイッチS6を閉路、S5を開路して、補助電池5からDC/DCコンバータA3およびAC/DC双方向コンバータ2を介して電解液循環ポンプ10に給電する。更に、スイッチS3を閉路し、補助電池5からDC/DCコンバータB6を介して直流非常用負荷7に給電する。
電解液循環ポンプ10が駆動された後主電池4が運転可能な状態に立ち上がると、スイッチS2を開路すると同時にスイッチS1、S4を閉路し、主電池4から交流非常用負荷8および電解液循環ポンプ10に給電するとともに、直流非常用負荷7へは補助電池5から引き続き給電する。
【0006】
【発明が解決しようとする課題】
主電池4と補助電池5とは、一般にその電圧が異なりまたその動作特性も異なることから、直接に並列接続することはできない。従って、従来の図10の回路では、交流電源1が正常であってスイッチS1が開路されているときのみ、即ち、交流電源1が正常であって主電池4が休止中のときのみスイッチS2を閉路して補助電池5の充電が可能となり、主電池4の充放電動作中は補助電池5の充電はできない。
この結果、補助電池5の充電状態が時として十分ではなく、この充電電圧容量が不十分な状態で交流電源1に停電が発生すると、直流非常用負荷7および電解液循環ポンプ10への電力を供給するという補助電池5の責務を全うできない場合が生じ得るという問題点があった。勿論、専用の充電装置を別途設けて補助電池を常に浮動充電しておく方法が考えられるが、別途専用の充電装置を設置することはシステムのコストアップにつながる。
【0007】
この発明は以上のような問題点を解消するためになされたもので、交流電源の停電時に、補助電池が必要な負荷に電力を確実に供給できる態勢を、簡単な構成で実現できる電力貯蔵システムを得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る電力貯蔵システムは、充放電可能な主電池、交流側が交流電源に接続され直流側が第1の開閉器を介して上記主電池に接続された交流/直流変換装置、一端側が第2の開閉器を介して上記交流/直流変換装置の直流側に接続され他端側が第3の開閉器を介して直流非常用負荷に接続された直流/直流変換装置、およびこの直流/直流変換装置と接続され充放電可能な補助電池を備えるとともに、
上記交流電源の正常時は、上記補助電池を上記直流/直流変換装置の上記他端側に接続して上記第3の開閉器を開路し上記交流電源から上記交流/直流変換装置を介してまたは上記主電池からそれぞれ上記直流/直流変換装置を介して上記補助電池を充電し、上記交流電源の停電時は、上記補助電池を上記直流/直流変換装置の上記一端側に接続して上記第3の開閉器を閉路し上記補助電池から上記直流/直流変換装置を介して上記直流非常用負荷に電力を供給するよう上記補助電池と直流/直流変換装置との接続を切り替える充放電切替手段を備えたものである。
【0009】
また、この発明に係る電力貯蔵システムは、その主電池が電解液循環型の2次電池であって、当該主電池が充放電動作をしない休止中その電解液を循環するポンプを停止させる場合、
交流電源が正常であって、上記主電池が充放電動作中は第1および第2の開閉器を共に閉路して上記交流電源または主電池から直流/直流変換装置を介して補助電池を充電し、上記主電池が休止中は上記第1の開閉器を開路、第2の開閉器を閉路して上記交流電源から上記交流/直流変換装置を介して上記補助電池を充電し、
上記交流電源が停電し上記主電池を立ち上げるときは、上記第1の開閉器を開路、第2の開閉器を閉路し上記補助電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給し、上記主電池が立ち上がった後は、上記第1の開閉器を閉路、第2の開閉器を開路し上記主電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給するようにしたものである。
【0010】
また、この発明に係る電力貯蔵システムは、その交流/直流変換装置を、互いに直列に接続された交流/直流変換器と直流/直流変換器とで構成したものである。
【0011】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を電流可逆チョッパで構成し、補助電池の充電または放電動作を行う場合、上記電流可逆チョッパに要求される電圧変換が昇圧動作か降圧動作かによって上記電流可逆チョッパの入出力端の接続を切り替える昇降圧切替手段を備えたものである。
【0012】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を昇降圧チョッパで構成し、補助電池の充電または放電動作を行う場合、上記補助電池が上記昇降圧チョッパの出力側に接続されるか入力側に接続されるかによって上記昇降圧チョッパに接続する補助電池の極性を切り替える極性切替手段を備えたものである。
【0013】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を入出力間を電気的に絶縁した絶縁形昇降圧チョッパで構成したものである。
【0014】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1における電力貯蔵システムを示す回路構成図である。図において、1は3相の交流電源、2および3は交流/直流変換装置を構成するそれぞれ交流/直流変換器であるAC/DC双方向コンバータおよび直流/直流変換器であるDC/DCコンバータAで、AC/DC双方向コンバータ2の3相交流側はスイッチS7を介して交流電源1に接続され、DC/DCコンバータA3の一端側はAC/DC双方向コンバータ2の直流側に他端側はスイッチS1を介して、電解液循環型の2次電池である主電池4に接続されている。11は、一端側(入力側)がスイッチS2を介してDC/DCコンバータA3の他端側に接続され他端側(出力側)がスイッチS3を介して直流非常用負荷7に接続された直流/直流変換装置であるDC/DCコンバータB、5は充放電切替手段であるスイッチS8を介してDC/DCコンバータB11に接続された補助電池である。
また、8、9、10は、それぞれスイッチS4、S5、S6を介してAC/DC双方向コンバータ2の交流側に接続された交流非常用負荷、交流一般負荷、電解液循環ポンプである。なお、電解液循環ポンプ10は、主電池4を構成する電池スタックと電解液タンクとの間で電解液を循環するためのものである。
【0015】
次に動作について説明する。交流電源1が正常でスイッチS1、S7を閉路し、負荷平準化のため主電池4を系統連系して充電しているときは、スイッチS2を閉路、スイッチS3を開路、スイッチS8を接点A側にして交流電源1→AC/DC双方向コンバータ2→DC/DCコンバータA3→DC/DCコンバータB11→補助電池5の経路で補助電池5を浮動充電する。この場合、DC/DCコンバータB11は、主電池4の充電電圧となるその入力側電圧を、補助電池5の充電電圧に適合する出力側電圧に変換する。
交流電源1が正常でスイッチS1、S7を閉路し、負荷平準化のため主電池4を系統連系して放電しているときは、スイッチS2を閉路、スイッチS3を開路、スイッチS8を接点A側にして主電池4→DC/DCコンバータB11→補助電池5の経路で補助電池5を浮動充電する。この場合、DC/DCコンバータB11は、主電池4の放電電圧となるその入力側電圧を、補助電池5の充電電圧に適合する出力側電圧に変換する。
なお、以上の状態では、スイッチS5、S6を閉路して交流一般負荷9および電解液循環ポンプ10に給電される。
【0016】
交流電源1は正常であるが主電池4が充放電動作をしない休止中は、スイッチS1を開路、スイッチS2、S7を閉路、スイッチS3を開路、スイッチS8を接点B側にして交流電源1→AC/DC双方向コンバータ2→DC/DCコンバータA3→補助電池5の経路で補助電池5を浮動充電する。この場合、DC/DCコンバータA3はその出力側(他端側)電圧が補助電池5の充電電圧に適合するよう電圧変換を行う。
なお、この主電池4の休止中は、スイッチS6を開路して電解液循環ポンプ10は停止させ補機損失の低減を図る。
【0017】
交流電源1が停電したとき(スイッチS7開路)は、スイッチS1が開路で、スイッチS2を閉路、スイッチS8を接点B側にして補助電池5→DC/DCコンバータA3→AC/DC双方向コンバータ2→電解液循環ポンプ10の経路で電解液循環ポンプ10に給電するとともに、スイッチS3を閉路して補助電池5→DC/DCコンバータB11→直流非常用負荷7の経路で直流非常用負荷7に給電する。この場合、DC/DCコンバータA3は、AC/DCコンバータに比較してかなり広い範囲での電圧変換能力を有しているので、補助電池5の電圧が相当低下していても正規の電圧に変換し電解液循環ポンプ10に確実に給電することができる。また、DC/DCコンバータB11は補助電池5の放電電圧となるその入力側電圧を、直流非常用負荷7の電圧に適合するよう電圧変換を行う。 主電池4が立ち上がった後は、スイッチS1を閉路、スイッチS2を開路して主電池4→DC/DCコンバータA3→AC/DC双方向コンバータ2→交流非常用負荷8および電解液循環ポンプ10の経路で、交流非常用負荷8および電解液循環ポンプ10に給電する。勿論、補助電池5→DC/DCコンバータB11→直流非常用負荷7の経路で直流非常用負荷7への給電が続行される。
【0018】
以上のように、この発明の実施の形態1では、交流電源1が正常なとき、主電池4の休止中は勿論、主電池4が充放電動作を行っている間も、補助電池5の浮動充電が可能となり、従来と比べ、補助電池5を浮動充電できる時間帯が大幅に増大する。従って、補助電池5が常に十分な充電状態に保たれ、停電時にその責務を全うすることができる。ここでDC/DCコンバータB11が必要となるが、従来の、直流非常用負荷7へ給電するための電圧調整用DC/DCコンバータB6を流用することで対処でき、スイッチS8のみの追加で実現できる利点がある。
【0019】
実施の形態2.
図2はこの発明の実施の形態2における電力貯蔵システムを示す回路構成図である。先の実施の形態1と異なるのは、補助電池5の充放電時に動作する直流/直流変換装置として電流可逆チョッパのDC/DCコンバータB12を採用し、昇降圧時にその入出力端の接続を切り替える昇降圧切替手段であるスイッチS9およびS10を設けた点のみである。
【0020】
ここで、DC/DCコンバータB12に適用する電流可逆チョッパは、図3に示すように、2個のトランジスタT1、T2と、2個のダイオードD1、D2とから構成され、降圧チョッパ回路と昇圧チョッパ回路とを組み合わせたものである。
トランジスタT1とダイオードD2とによって降圧チョッパが構成され、入力電圧E1が出力電圧E2に降圧される。また、トランジスタT2とダイオードD1とによって昇圧チョッパが構成され、入力電圧E2が出力電圧E1に昇圧される。
【0021】
次に、この電流可逆チョッパ12およびスイッチS9、S10の動作を中心に説明する。即ち、交流電源1の正常時および停電時における補助電池5の充放電の動作自体は、先の実施の形態1の場合と同様であるので説明は省略するが、この実施の形態2においては、DC/DCコンバータB12に要求される電圧変換が昇圧動作か降圧動作かによってスイッチS9、S10の切替が必要となる。
【0022】
このため、スイッチS2を閉路、スイッチS3を開路し、スイッチS8をA側にして補助電池5を浮動充電する場合、充電側の電圧と補助電池5側の電圧を検出し、充電側の電圧が補助電池5側の電圧より高いときは、スイッチS9、S10をB側にしてDC/DCコンバータB12を降圧動作(E1→E2)させ、充電側の電圧が補助電池5側の電圧より低いときは、スイッチS9、S10をA側にしてDC/DCコンバータB12を昇圧動作(E2→E1)させる。
また、スイッチS3を閉路し、スイッチS8をB側にして補助電池5から直流非常用負荷7に給電する場合は、補助電池5の電圧を検出し、この補助電池5の電圧が直流非常用負荷7への供給電圧より高いときは、スイッチS9、S10をB側にしてDC/DCコンバータB12を降圧動作(E1→E2)させ、補助電池5の電圧が直流非常用負荷7への供給電圧より低いときは、スイッチS9、S10をA側にしてDC/DCコンバータB12を昇圧動作(E2→E1)させる。
なお、スイッチS9、S10は、互いに同時にA側とB側とに接触することがないようインターロックをかけておく必要がある。
【0023】
ところで、主電池4および補助電池5の必要容量は、設置する需要家の負荷容量から決まるもので、それぞれ容量が異なれば電池スタックの直列数も異なるため、両者の電圧は一般に一致しない。また、直流非常用負荷7への供給電圧は、DC100Vが一般的であるが、補助電池5の電圧は、その容量によりDC100Vに設定すると不経済設計となることがあり、直流非常用負荷7への供給電圧と補助電池5の電圧も常に一致させることができるとは言えない。特に、補助電池5にも電解液循環型2次電池を適用した場合は、電解液を循環させる上で適当な電極面積や、1スタックの積層数の設定などの問題があり、その電圧をDC100Vに設定できない可能性が高まると言わざるを得ない。
しかるに、この実施の形態2では、以上のように、DC/DCコンバータBを電流可逆チョッパで構成し、更に昇降圧動作に応じて接続を切り替えるスイッチS9、S10を備えたので、主電池4の電圧と補助電池5の電圧、および補助電池5の電圧と直流非常用負荷7への供給電圧の大小関係がいかなる場合おいても、補助電池5の浮動充電動作および直流非常用負荷7への給電動作を支障無く円滑に行うことができる。
【0024】
実施の形態3.
図4はこの発明の実施の形態3における電力貯蔵システムを示す回路構成図である。先の実施の形態1と異なるのは、補助電池5の充放電時に動作する直流/直流変換装置として昇降圧チョッパのDC/DCコンバータB13を採用し、充放電による切替と同時に極性の切替を行うためスイッチS8に加えてS11を設けた点のみである。
【0025】
ここで、DC/DCコンバータB13に適用する昇降圧チョッパは、図5に示すように、トランジスタT1、ダイオードD1、リアクトルLおよびコンデンサCで構成され、トランジスタT1のON時間比であるデューティ比α(α=Ton/Ttotal)を調整することにより入力電圧E1と出力電圧E2との電圧変換比を制御する。
E2=(α/(1−α))・E1
上式から判るように、0<α<0.5では降圧動作、0.5<α<1では昇圧動作を行い、また、入出力電圧E1、E2は、図5に示す極性となり、上述の極性切替が必要となる。
【0026】
次に、この昇降圧チョッパ13およびスイッチS8、S11の動作を中心に説明する。
先ず、スイッチS2を閉路、スイッチS3を開路して補助電池5を浮動充電する場合は、スイッチS8、S11をA側にし、充電側電圧と補助電池5の電圧との大小関係に応じてDC/DCコンバータB13におけるスイッチングのデューティ比を制御することで昇圧あるいは降圧の動作をさせる。
また、スイッチS3を閉路し、補助電池5から直流非常用負荷7に給電する場合は、スイッチS8、S11をB側にし、補助電池5の電圧と直流非常用負荷7への供給電圧との大小関係に応じてDC/DCコンバータB13におけるスイッチングのデューティ比を制御することで昇圧あるいは降圧の動作をさせる。
なお、スイッチS8、S11は、互いに同時にA側とB側とに接触することがないようインターロックをかけておく必要がある。
【0027】
以上のように、この実施の形態3においても、先の実施の形態2と同様、主電池4の電圧と補助電池5の電圧、および補助電池5の電圧と直流非常用負荷7への供給電圧の大小関係がいかなる場合おいても、補助電池5の浮動充電動作および直流非常用負荷7への給電動作を支障無く円滑に行うことができる。更に実施の形態2と比べ、スイッチの数が少なくて済み、その分構成が簡便となる利点がある。
【0028】
実施の形態4.
図6はこの発明の実施の形態4における電力貯蔵システムを示す回路構成図で、先の実施の形態3の昇降圧チョッパを絶縁形の構成にしたDC/DCコンバータB14を採用したものである。
この絶縁形昇降圧チョッパは、図7に示すように、昇降圧チョッパを構成するリアクトルLを、2巻線からなる結合リアクトルで構成することで入力側と出力側とを電気的に絶縁したものである。
【0029】
この絶縁形昇降圧チョッパを採用することにより、補助電池5の充放電動作に伴う接続切替手段を、図1と同じ、スイッチS8のみで構成でき、その分装置が簡便になるとともに、実施の形態3の場合と同様、主電池4の電圧と補助電池5の電圧、および補助電池5の電圧と直流非常用負荷7への供給電圧の大小関係がいかなる場合おいても、補助電池5の浮動充電動作および直流非常用負荷7への給電動作を支障無く円滑に行うことができる。
【0030】
実施の形態5.
図8はこの発明の実施の形態5における電力貯蔵システムを示す回路構成図である。ここでは、電解液循環型の補助電池15を適用している。図において、16は補助電池のスタック、17は電解液のタンク、18は電解液循環用のポンプである。19は補助電池15の電圧を検出する電圧検出器、20は電圧検出値に応じてポンプ18の運転を制御する制御部である。
【0031】
既述したとおり、電解液循環型2次電池では、その補機損失低減のため、当該電池の休止中は通常そのポンプを停止させており、補助電池に適用した場合もその例外ではない。
その場合、これも既述したように、ポンプ18の停止中にスタック16内の電解液が自己放電して電圧が低下し、交流電源1の停電時に直流非常用負荷7に給電するという補助電池としての責務を果たし得ない可能性が生じる。この実施の形態5は、このような問題点を解消するため創案されたものである。
【0032】
次に、補助電池15の休止期間における動作を図9のタイミングチャートを参照して説明する。
図9において、点線の特性は、仮に、補助電池15の休止中もポンプ18を停止させず運転した場合の電圧経過を示す。この場合、スタック16内の電解液が絶えず入れ替わるので、図に示すように、電圧の低下は僅かである。これに対し、実線の特性がこの実施の形態5の場合である。
【0033】
即ち、補助電池15の休止と同時にポンプ18を停止するが、電圧検出器19により補助電池15の電圧を監視し、スタック16内に停滞した電解液の自己放電により電圧が急減して第1設定値(下限値)未満になると制御部20が動作してポンプ18を運転する。この第1設定値としては、これ以上電圧が低下するとポンプ18を運転しても電圧回復ができなくなる限度値に適当な余裕を持たせた値に設定する。
ポンプ18が運転されるとタンク17内の充電された電解液がスタック16に供給されるので、図に示すように電圧は急速に回復し、定格電圧に近い値に設定された第2設定値(上限値)を超えると再び制御部20が動作してポンプ18を停止させる。
【0034】
制御部20は以上の動作を繰り返してポンプ18の間欠運転を行う。従って、補助電池15の休止中のポンプ18の実質運転期間はごく短時間に留まり、補助電池休止中の補機損低減という課題を果たし、且つ、補助電池15を常に良好な状態に保ち、交流電源1の停電時には必要な負荷への電力供給を確実に実現することができる。
【0035】
なお、図8では、従来の図10の回路構成に示す電力貯蔵システムに適用した補助電池を対象にこれを電解液循環型2次電池で構成した場合について説明したが、先の各実施の形態で説明した回路構成の電力貯蔵システムにおける補助電池にも同様に適用でき同等の効果を奏することは勿論である。
【0036】
【発明の効果】
以上のように、この発明に係る電力貯蔵システムは、充放電可能な主電池、交流側が交流電源に接続され直流側が第1の開閉器を介して上記主電池に接続された交流/直流変換装置、一端側が第2の開閉器を介して上記交流/直流変換装置の直流側に接続され他端側が第3の開閉器を介して直流非常用負荷に接続された直流/直流変換装置、およびこの直流/直流変換装置と接続され充放電可能な補助電池を備えるとともに、
上記交流電源の正常時は、上記補助電池を上記直流/直流変換装置の上記他端側に接続して上記第3の開閉器を開路し上記交流電源から上記交流/直流変換装置を介してまたは上記主電池からそれぞれ上記直流/直流変換装置を介して上記補助電池を充電し、上記交流電源の停電時は、上記補助電池を上記直流/直流変換装置の上記一端側に接続して上記第3の開閉器を閉路し上記補助電池から上記直流/直流変換装置を介して上記直流非常用負荷に電力を供給するよう上記補助電池と直流/直流変換装置との接続を切り替える充放電切替手段を備えたので、主電池の充放電動作中も補助電池の充電動作が可能となり、交流電源停電時の補助電池による電力供給能力の信頼性が増大する。
【0037】
また、この発明に係る電力貯蔵システムは、その主電池が電解液循環型の2次電池であって、当該主電池が充放電動作をしない休止中その電解液を循環するポンプを停止させる場合、
交流電源が正常であって、上記主電池が充放電動作中は第1および第2の開閉器を共に閉路して上記交流電源または主電池から直流/直流変換装置を介して補助電池を充電し、上記主電池が休止中は上記第1の開閉器を開路、第2の開閉器を閉路して上記交流電源から上記交流/直流変換装置を介して上記補助電池を充電し、
上記交流電源が停電し上記主電池を立ち上げるときは、上記第1の開閉器を開路、第2の開閉器を閉路し上記補助電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給し、上記主電池が立ち上がった後は、上記第1の開閉器を閉路、第2の開閉器を開路し上記主電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給するようにしたので、主電池の充放電動作中も補助電池の充電動作が可能となり、交流電源停電時の補助電池による電力供給能力の信頼性が増大する。
【0038】
また、この発明に係る電力貯蔵システムは、その交流/直流変換装置を、互いに直列に接続された交流/直流変換器と直流/直流変換器とで構成したので、特に補助電池から上記交流/直流変換装置を介して給電する場合、上記直流/直流変換器の電圧変換能力により補助電池の許容電圧範囲を拡大することができ、交流電源停電時の補助電池による電力供給能力の信頼性が更に増大する。
【0039】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を電流可逆チョッパで構成し、補助電池の充電または放電動作を行う場合、上記電流可逆チョッパに要求される電圧変換が昇圧動作か降圧動作かによって上記電流可逆チョッパの入出力端の接続を切り替える昇降圧切替手段を備えたので、主電池、補助電池および直流非常用負荷の各電圧の大小関係がいかなる場合においても補助電池の充電動作および直流非常用負荷への給電動作が円滑になされる。
【0040】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を昇降圧チョッパで構成し、補助電池の充電または放電動作を行う場合、上記補助電池が上記昇降圧チョッパの出力側に接続されるか入力側に接続されるかによって上記昇降圧チョッパに接続する補助電池の極性を切り替える極性切替手段を備えたので、主電池、補助電池および直流非常用負荷の各電圧の大小関係がいかなる場合においても補助電池の充電動作および直流非常用負荷への給電動作が円滑になされ、しかも切替手段の構成が簡単となる。
【0041】
また、この発明に係る電力貯蔵システムは、その直流/直流変換装置を入出力間を電気的に絶縁した絶縁形昇降圧チョッパで構成したので、主電池、補助電池および直流非常用負荷の各電圧の大小関係がいかなる場合においても補助電池の充電動作および直流非常用負荷への給電動作が円滑になされ、しかも切替手段の構成が一層簡単となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における電力貯蔵システムを示す回路構成図である。
【図2】 この発明の実施の形態2における電力貯蔵システムを示す回路構成図である。
【図3】 図2の電流可逆チョッパ12の内部構成図である。
【図4】 この発明の実施の形態3における電力貯蔵システムを示す回路構成図である。
【図5】 図4の昇降圧チョッパ13の内部構成図である。
【図6】 この発明の実施の形態4における電力貯蔵システムを示す回路構成図である。
【図7】 図6の絶縁形昇降圧チョッパ14の内部構成図である。
【図8】 この発明の実施の形態5における電力貯蔵システムを示す回路構成図である。
【図9】 図8の制御部20によるポンプ制御の動作を説明するためのタイミングチャートである。
【図10】 従来の電力貯蔵システムを示す回路構成図である。
【符号の説明】
1 AC/DC双方向コンバータ、2 AC/DC双方向コンバータ、
3 DC/DCコンバータA、4 主電池、5 補助電池、7 直流非常用負荷、
10 電解液循環ポンプ、11 DC/DCコンバータB、
12 DC/DCコンバータB(電流可逆チョッパ)、
13 DC/DCコンバータB(昇降圧チョッパ)、
14 DC/DCコンバータB(絶縁形昇降圧チョッパ)、
15 補助電池(電解液循環型)、18 循環用ポンプ、19 電圧検出器、
20 制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a chargeable / dischargeable main battery and an auxiliary battery. When the AC power supply is normal, the main battery performs load leveling, and the auxiliary battery is charged. The present invention relates to a power storage system that supplies power to the DC emergency load from the auxiliary battery.
[0002]
[Prior art]
In recent years, electrolyte-circulating secondary batteries such as zinc bromine batteries, zinc chlorine batteries, and redox flow batteries have been put into practical use as new secondary batteries that replace lead-acid batteries. And the electric power storage system which charges nighttime electric power using these secondary batteries, supplies this stored electric power to the daytime demand load, and performs load leveling or peak cut is being developed.
[0003]
FIG. 10 is a circuit configuration diagram showing this type of conventional power storage system. In the figure, 1 is a three-phase AC power source, 2 is an AC / DC bidirectional converter whose AC side is connected to the AC power source 1 via a switch S7, and 3 is one end side connected to the DC side of the AC / DC bidirectional converter 2 The DC / DC converters A and 4 are main batteries connected to the other end of the DC / DC converter A3 via the switch S1, and the above-described electrolyte circulation type secondary battery is used here. 5 is an auxiliary battery connected to the other end of the DC / DC converter A3 via the switch S2, 6 is a DC / DC converter B having one end connected to the auxiliary battery 5, and 7 is a DC / DC converter via the switch S3. This is a DC emergency load connected to the other end of the converter B6.
Reference numerals 8, 9, and 10 denote an AC emergency load, an AC general load, and an electrolyte circulation pump connected to the AC side of the AC / DC bidirectional converter 2 through switches S4, S5, and S6, respectively. The electrolyte circulation pump 10 is for circulating the electrolyte between the battery stack constituting the main battery 4 and the electrolyte tank.
[0004]
Next, the operation will be described. When the AC power supply 1 is normal, the main battery 4 is used to perform grid connection operation for load leveling. That is, the switches S1 and S7 are closed, and the main battery 4 performs a charge / discharge operation with the AC power supply 1. At this time, the switch S2 is open. Further, the switches S5 and S6 are closed to supply power to the AC general load 9 and the electrolyte circulation pump 10.
Further, while the AC power source 1 is normal and the main battery 4 is not charging / discharging, the switches S1 and S6 are opened to stop the electrolyte circulation pump 10, and the switch S2 is closed to connect the AC power source 1 to the AC / AC. The auxiliary battery 5 is float-charged via the DC bidirectional converter 2 and the DC / DC converter A3.
[0005]
When the AC power supply 1 fails, the switches S1 and S7 are opened, the switch S2 is closed, the switch S6 is closed, and the switch S5 is opened, so that the auxiliary battery 5 starts the DC / DC converter A3 and the AC / DC bidirectional converter 2 Power is supplied to the electrolyte circulation pump 10 via Further, the switch S3 is closed to supply power to the DC emergency load 7 from the auxiliary battery 5 via the DC / DC converter B6.
When the main battery 4 is brought into an operable state after the electrolyte circulation pump 10 is driven, the switch S2 is opened and the switches S1 and S4 are closed at the same time, and the AC emergency load 8 and the electrolyte circulation pump are connected from the main battery 4. 10, and the DC emergency load 7 is continuously supplied from the auxiliary battery 5.
[0006]
[Problems to be solved by the invention]
Since the main battery 4 and the auxiliary battery 5 generally have different voltages and different operating characteristics, they cannot be directly connected in parallel. Therefore, in the conventional circuit of FIG. 10, the switch S2 is turned on only when the AC power supply 1 is normal and the switch S1 is open, that is, only when the AC power supply 1 is normal and the main battery 4 is inactive. The auxiliary battery 5 can be charged by closing the circuit, and the auxiliary battery 5 cannot be charged during the charging / discharging operation of the main battery 4.
As a result, the state of charge of the auxiliary battery 5 is sometimes not sufficient, and if a power failure occurs in the AC power supply 1 with this charging voltage capacity insufficient, the power to the DC emergency load 7 and the electrolyte circulation pump 10 is reduced. There is a problem in that the case where the duty of the auxiliary battery 5 to supply cannot be fulfilled may occur. Of course, a method of separately providing a dedicated charging device to always float-charge the auxiliary battery is conceivable, but installing a dedicated charging device leads to an increase in system cost.
[0007]
The present invention has been made to solve the above-described problems, and an electric power storage system capable of realizing a system capable of reliably supplying power to a load that requires an auxiliary battery in the event of a power failure of an AC power supply. The purpose is to obtain.
[0008]
[Means for Solving the Problems]
The power storage system according to the present invention includes a chargeable / dischargeable main battery, an AC / DC converter having an AC side connected to an AC power source and a DC side connected to the main battery via a first switch, and one end side being a second battery. A DC / DC converter connected to the DC side of the AC / DC converter via the switch and the other end connected to a DC emergency load via the third switch, and the DC / DC converter And an auxiliary battery that can be charged and discharged,
When the AC power supply is normal, Connect the auxiliary battery to the other end of the DC / DC converter. Open the third switch and from the AC power source through the AC / DC converter or from the main battery Respectively The auxiliary battery is charged via the DC / DC converter, and when the AC power supply fails, Connect the auxiliary battery to the one end of the DC / DC converter. Charge / discharge switching for switching the connection between the auxiliary battery and the DC / DC converter so that the third switch is closed and power is supplied from the auxiliary battery to the DC emergency load via the DC / DC converter. Means are provided.
[0009]
In the power storage system according to the present invention, the main battery is an electrolyte circulation type secondary battery, and when the main battery stops the pump that circulates the electrolyte during a pause when the charge / discharge operation is not performed,
When the AC power supply is normal and the main battery is in charge / discharge operation, both the first and second switches are closed to charge the auxiliary battery from the AC power supply or the main battery via the DC / DC converter. When the main battery is at rest, the first switch is opened, the second switch is closed, and the auxiliary battery is charged from the AC power source through the AC / DC converter,
When the AC power supply fails and the main battery is started up, the first switch is opened, the second switch is closed, and the auxiliary battery is pumped from the auxiliary battery via the AC / DC converter. After the main battery is started up, the first switch is closed, the second switch is opened, and the main battery pump is passed from the main battery through the AC / DC converter. It is intended to supply power to.
[0010]
In the power storage system according to the present invention, the AC / DC converter is composed of an AC / DC converter and a DC / DC converter connected in series with each other.
[0011]
Further, in the power storage system according to the present invention, when the DC / DC converter is configured with a current reversible chopper and the auxiliary battery is charged or discharged, whether the voltage conversion required for the current reversible chopper is a boost operation. There is provided a step-up / step-down switching means for switching the connection between the input and output terminals of the current reversible chopper depending on the step-down operation.
[0012]
Further, in the power storage system according to the present invention, when the DC / DC converter is configured by a step-up / step-down chopper and the auxiliary battery is charged or discharged, the auxiliary battery is connected to the output side of the step-up / step-down chopper. Or a polarity switching means for switching the polarity of the auxiliary battery connected to the step-up / step-down chopper depending on whether it is connected to the input side.
[0013]
The power storage system according to the present invention comprises the DC / DC converter with an insulating step-up / step-down chopper in which the input and output are electrically insulated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a circuit configuration diagram showing an electric power storage system according to Embodiment 1 of the present invention. In the figure, 1 is a three-phase AC power source, 2 and 3 are AC / DC bidirectional converters that are AC / DC converters and DC / DC converters A that are DC / DC converters constituting an AC / DC converter, respectively. Thus, the three-phase AC side of the AC / DC bidirectional converter 2 is connected to the AC power source 1 via the switch S7, and one end side of the DC / DC converter A3 is connected to the DC side of the AC / DC bidirectional converter 2 at the other end side. Is connected to a main battery 4 which is an electrolyte circulation type secondary battery via a switch S1. 11 is a direct current having one end side (input side) connected to the other end side of the DC / DC converter A3 via the switch S2 and the other end side (output side) connected to the DC emergency load 7 via the switch S3. DC / DC converters B and 5 which are DC / DC converters are auxiliary batteries connected to the DC / DC converter B11 via a switch S8 which is charge / discharge switching means.
Reference numerals 8, 9, and 10 denote an AC emergency load, an AC general load, and an electrolyte circulation pump connected to the AC side of the AC / DC bidirectional converter 2 through switches S4, S5, and S6, respectively. The electrolyte circulation pump 10 is for circulating the electrolyte between the battery stack constituting the main battery 4 and the electrolyte tank.
[0015]
Next, the operation will be described. When the AC power supply 1 is normal and the switches S1 and S7 are closed and the main battery 4 is charged in a grid connection for load leveling, the switch S2 is closed, the switch S3 is opened, and the switch S8 is connected to the contact A. The auxiliary battery 5 is float-charged through a path of the AC power source 1 → AC / DC bidirectional converter 2 → DC / DC converter A3 → DC / DC converter B11 → auxiliary battery 5. In this case, the DC / DC converter B <b> 11 converts the input side voltage, which is the charging voltage of the main battery 4, into an output side voltage that matches the charging voltage of the auxiliary battery 5.
When the AC power supply 1 is normal and the switches S1 and S7 are closed and the main battery 4 is discharged in a grid connection for load leveling, the switch S2 is closed, the switch S3 is opened, and the switch S8 is connected to the contact A. The auxiliary battery 5 is float-charged through the main battery 4 → DC / DC converter B11 → auxiliary battery 5 path. In this case, the DC / DC converter B <b> 11 converts the input side voltage, which is the discharge voltage of the main battery 4, into an output side voltage that matches the charging voltage of the auxiliary battery 5.
In the above state, the switches S5 and S6 are closed to supply power to the AC general load 9 and the electrolyte circulation pump 10.
[0016]
While the AC power supply 1 is normal but the main battery 4 is not charging / discharging, the switch S1 is opened, the switches S2 and S7 are closed, the switch S3 is opened, and the switch S8 is the contact B side. The auxiliary battery 5 is float-charged through a path of AC / DC bidirectional converter 2 → DC / DC converter A3 → auxiliary battery 5. In this case, the DC / DC converter A <b> 3 performs voltage conversion so that the output side (other end side) voltage matches the charging voltage of the auxiliary battery 5.
During the pause of the main battery 4, the switch S6 is opened to stop the electrolyte circulation pump 10 to reduce the auxiliary machine loss.
[0017]
When the AC power supply 1 fails (switch S7 open), the auxiliary battery 5 → DC / DC converter A3 → AC / DC bidirectional converter 2 with the switch S1 being open, the switch S2 being closed, and the switch S8 being the contact B side. → Power is supplied to the electrolyte circulation pump 10 through the path of the electrolyte circulation pump 10, and the switch S3 is closed to supply power to the DC emergency load 7 through the path of the auxiliary battery 5 → DC / DC converter B11 → DC emergency load 7. To do. In this case, since the DC / DC converter A3 has a voltage conversion capability in a considerably wide range compared to the AC / DC converter, even if the voltage of the auxiliary battery 5 is considerably reduced, it is converted into a normal voltage. Therefore, it is possible to reliably supply power to the electrolyte circulation pump 10. Further, the DC / DC converter B11 performs voltage conversion so that the input side voltage, which is the discharge voltage of the auxiliary battery 5, matches the voltage of the DC emergency load 7. After the main battery 4 is started up, the switch S1 is closed and the switch S2 is opened so that the main battery 4 → DC / DC converter A3 → AC / DC bidirectional converter 2 → AC emergency load 8 and electrolyte circulation pump 10 Power is supplied to the AC emergency load 8 and the electrolyte circulation pump 10 through the path. Of course, power supply to the DC emergency load 7 is continued through the path of the auxiliary battery 5 → DC / DC converter B11 → DC emergency load 7.
[0018]
As described above, in the first embodiment of the present invention, when the AC power supply 1 is normal, the auxiliary battery 5 is floated while the main battery 4 is performing the charging / discharging operation as well as during the pause of the main battery 4. Charging becomes possible, and the time period during which the auxiliary battery 5 can be float-charged is greatly increased as compared with the conventional case. Therefore, the auxiliary battery 5 is always kept in a sufficiently charged state, and the duty can be fulfilled at the time of power failure. Here, the DC / DC converter B11 is necessary, but this can be dealt with by diverting the conventional DC / DC converter B6 for voltage adjustment for supplying power to the DC emergency load 7, and can be realized by adding only the switch S8. There are advantages.
[0019]
Embodiment 2. FIG.
FIG. 2 is a circuit configuration diagram showing an electric power storage system according to Embodiment 2 of the present invention. The difference from the first embodiment is that a DC / DC converter B12 of a current reversible chopper is adopted as a DC / DC converter that operates when the auxiliary battery 5 is charged / discharged, and the connection of its input / output terminals is switched during step-up / step-down. It is only the point which provided switch S9 and S10 which are a raising / lowering pressure switching means.
[0020]
Here, the current reversible chopper applied to the DC / DC converter B12 includes two transistors T1 and T2 and two diodes D1 and D2, as shown in FIG. 3, and includes a step-down chopper circuit and a step-up chopper. A combination with a circuit.
The transistor T1 and the diode D2 constitute a step-down chopper, and the input voltage E1 is stepped down to the output voltage E2. The transistor T2 and the diode D1 constitute a boost chopper, and the input voltage E2 is boosted to the output voltage E1.
[0021]
Next, the operation of the current reversible chopper 12 and the switches S9 and S10 will be mainly described. That is, the charging / discharging operation of the auxiliary battery 5 at the time of normal operation and power failure of the AC power supply 1 is the same as in the case of the first embodiment, and the description thereof is omitted, but in this second embodiment, The switches S9 and S10 need to be switched depending on whether the voltage conversion required for the DC / DC converter B12 is a step-up operation or a step-down operation.
[0022]
For this reason, when the switch S2 is closed, the switch S3 is opened, the switch S8 is set to the A side and the auxiliary battery 5 is float-charged, the charging side voltage and the auxiliary battery 5 side voltage are detected, and the charging side voltage is When the voltage is higher than the voltage on the auxiliary battery 5 side, the switches S9 and S10 are set to the B side so that the DC / DC converter B12 is stepped down (E1 → E2), and when the voltage on the charging side is lower than the voltage on the auxiliary battery 5 side The switches S9 and S10 are set to the A side, and the DC / DC converter B12 is boosted (E2 → E1).
When the switch S3 is closed and the switch S8 is set to the B side to supply power to the DC emergency load 7 from the auxiliary battery 5, the voltage of the auxiliary battery 5 is detected, and the voltage of the auxiliary battery 5 is the DC emergency load. When the voltage is higher than the supply voltage to 7, the switches S9 and S10 are set to the B side so that the DC / DC converter B12 is stepped down (E1 → E2), and the voltage of the auxiliary battery 5 is higher than the supply voltage to the DC emergency load 7. When the voltage is low, the switches S9 and S10 are set to the A side, and the DC / DC converter B12 is boosted (E2 → E1).
The switches S9 and S10 must be interlocked so that they do not contact the A side and the B side at the same time.
[0023]
By the way, the required capacity of the main battery 4 and the auxiliary battery 5 is determined by the load capacity of the customer to install, and since the number of battery stacks in series is different if the capacity is different, the voltages of the two generally do not match. Further, the supply voltage to the DC emergency load 7 is generally DC 100 V, but if the voltage of the auxiliary battery 5 is set to DC 100 V due to its capacity, it may be an uneconomical design. It can not be said that the supply voltage and the voltage of the auxiliary battery 5 can always be matched. In particular, when an electrolyte circulation type secondary battery is applied to the auxiliary battery 5, there are problems such as setting an appropriate electrode area and the number of stacks of one stack for circulating the electrolyte, and the voltage is set to DC 100V. I have to say that the possibility of not being able to be set to increases.
However, in the second embodiment, as described above, the DC / DC converter B is configured by a current reversible chopper, and further includes the switches S9 and S10 that switch connection according to the step-up / step-down operation. Whatever the magnitude relationship between the voltage and the voltage of the auxiliary battery 5, and the voltage of the auxiliary battery 5 and the supply voltage to the DC emergency load 7, the floating charging operation of the auxiliary battery 5 and the power supply to the DC emergency load 7 The operation can be performed smoothly without any trouble.
[0024]
Embodiment 3 FIG.
FIG. 4 is a circuit configuration diagram showing an electric power storage system according to Embodiment 3 of the present invention. The difference from the first embodiment is that the DC / DC converter B13 of the step-up / step-down chopper is adopted as the DC / DC converter that operates when the auxiliary battery 5 is charged / discharged, and the polarity is switched simultaneously with the switching by charging / discharging. For this reason, only S11 is provided in addition to the switch S8.
[0025]
Here, as shown in FIG. 5, the step-up / step-down chopper applied to the DC / DC converter B13 includes a transistor T1, a diode D1, a reactor L, and a capacitor C, and a duty ratio α (which is an ON time ratio of the transistor T1). The voltage conversion ratio between the input voltage E1 and the output voltage E2 is controlled by adjusting (α = Ton / Ttotal).
E2 = (α / (1-α)) · E1
As can be seen from the above equation, when 0 <α <0.5, the step-down operation is performed, and when 0.5 <α <1, the step-up operation is performed. The input / output voltages E1 and E2 have the polarities shown in FIG. Polarity switching is required.
[0026]
Next, the operation of the step-up / down chopper 13 and the switches S8 and S11 will be mainly described.
First, when the switch S2 is closed and the switch S3 is opened for floating charging of the auxiliary battery 5, the switches S8 and S11 are set to the A side, and the DC / DC voltage is changed according to the magnitude relationship between the charging side voltage and the auxiliary battery 5 voltage. The step-up or step-down operation is performed by controlling the switching duty ratio in the DC converter B13.
When the switch S3 is closed and power is supplied from the auxiliary battery 5 to the DC emergency load 7, the switches S8 and S11 are set to the B side so that the voltage of the auxiliary battery 5 and the supply voltage to the DC emergency load 7 are large or small. The step-up or step-down operation is performed by controlling the switching duty ratio in the DC / DC converter B13 according to the relationship.
The switches S8 and S11 need to be interlocked so that they do not contact the A side and the B side at the same time.
[0027]
As described above, also in the third embodiment, the voltage of the main battery 4 and the voltage of the auxiliary battery 5 and the voltage of the auxiliary battery 5 and the supply voltage to the DC emergency load 7 are the same as in the second embodiment. In any case, the floating charging operation of the auxiliary battery 5 and the power feeding operation to the DC emergency load 7 can be performed smoothly without any trouble. Further, as compared with the second embodiment, there is an advantage that the number of switches can be reduced and the configuration can be simplified correspondingly.
[0028]
Embodiment 4 FIG.
FIG. 6 is a circuit configuration diagram showing an electric power storage system according to Embodiment 4 of the present invention, and employs a DC / DC converter B14 in which the step-up / step-down chopper of Embodiment 3 has an insulating configuration.
As shown in FIG. 7, this insulated buck-boost chopper is configured by electrically insulating the input side and the output side by configuring the reactor L that constitutes the buck-boost chopper with a coupled reactor consisting of two windings. It is.
[0029]
By adopting this insulated step-up / step-down chopper, the connection switching means associated with the charging / discharging operation of the auxiliary battery 5 can be constituted by only the switch S8, which is the same as in FIG. As in the case of 3, the voltage of the main battery 4 and the voltage of the auxiliary battery 5, and the voltage of the auxiliary battery 5 and the supply voltage to the DC emergency load 7 are in any case in a floating charge. The operation and the power feeding operation to the DC emergency load 7 can be smoothly performed without any trouble.
[0030]
Embodiment 5 FIG.
FIG. 8 is a circuit configuration diagram showing an electric power storage system according to Embodiment 5 of the present invention. Here, the electrolyte circulation type auxiliary battery 15 is applied. In the figure, 16 is a stack of auxiliary batteries, 17 is a tank for electrolyte, and 18 is a pump for circulating electrolyte. Reference numeral 19 denotes a voltage detector that detects the voltage of the auxiliary battery 15, and reference numeral 20 denotes a control unit that controls the operation of the pump 18 in accordance with the detected voltage value.
[0031]
As described above, in the electrolyte circulation type secondary battery, in order to reduce the loss of auxiliary equipment, the pump is normally stopped during the suspension of the battery, and this is no exception when applied to the auxiliary battery.
In this case, as described above, the auxiliary battery in which the electrolyte in the stack 16 is self-discharged while the pump 18 is stopped and the voltage is lowered to supply power to the DC emergency load 7 when the AC power supply 1 is interrupted. May not be able to fulfill its responsibilities. The fifth embodiment has been invented to solve such problems.
[0032]
Next, the operation of the auxiliary battery 15 during the suspension period will be described with reference to the timing chart of FIG.
In FIG. 9, the dotted line characteristic shows the voltage course when the pump 18 is operated without being stopped even when the auxiliary battery 15 is stopped. In this case, since the electrolyte solution in the stack 16 is constantly replaced, the voltage drop is slight as shown in the figure. On the other hand, the characteristic of the solid line is the case of the fifth embodiment.
[0033]
That is, the pump 18 is stopped simultaneously with the suspension of the auxiliary battery 15, but the voltage of the auxiliary battery 15 is monitored by the voltage detector 19, and the voltage is rapidly reduced by the self-discharge of the electrolyte that has stagnated in the stack 16. When it becomes less than the value (lower limit), the control unit 20 operates to operate the pump 18. The first set value is set to a value that gives an appropriate margin to the limit value at which the voltage cannot be recovered even if the pump 18 is operated when the voltage is further reduced.
When the pump 18 is operated, the charged electrolytic solution in the tank 17 is supplied to the stack 16, so that the voltage rapidly recovers as shown in the figure, and the second set value set to a value close to the rated voltage. When (the upper limit value) is exceeded, the control unit 20 operates again to stop the pump 18.
[0034]
The controller 20 repeats the above operation to perform intermittent operation of the pump 18. Therefore, the actual operation period of the pump 18 during the suspension of the auxiliary battery 15 is very short, the problem of reducing the auxiliary machine loss during the suspension of the auxiliary battery is achieved, and the auxiliary battery 15 is always kept in a good state, and the AC In the event of a power failure of the power supply 1, it is possible to reliably realize power supply to a necessary load.
[0035]
In FIG. 8, the case where the auxiliary battery applied to the power storage system shown in the circuit configuration of FIG. 10 in the related art is configured as an electrolyte circulation type secondary battery has been described. Of course, the present invention can be similarly applied to the auxiliary battery in the power storage system having the circuit configuration described in the above item, and has an equivalent effect.
[0036]
【The invention's effect】
As described above, the power storage system according to the present invention includes a chargeable / dischargeable main battery, an AC / DC converter in which an AC side is connected to an AC power supply and a DC side is connected to the main battery via a first switch. A DC / DC converter having one end connected to the DC side of the AC / DC converter via a second switch and the other end connected to a DC emergency load via a third switch; and It has an auxiliary battery that is connected to a DC / DC converter and can be charged and discharged,
When the AC power supply is normal, Connect the auxiliary battery to the other end of the DC / DC converter. Open the third switch and from the AC power source through the AC / DC converter or from the main battery Respectively The auxiliary battery is charged via the DC / DC converter, and when the AC power supply fails, Connect the auxiliary battery to the one end of the DC / DC converter. Charge / discharge switching for switching the connection between the auxiliary battery and the DC / DC converter so that the third switch is closed and power is supplied from the auxiliary battery to the DC emergency load via the DC / DC converter. Since the means is provided, the auxiliary battery can be charged even during the charging / discharging operation of the main battery, and the reliability of the power supply capability of the auxiliary battery at the time of AC power failure is increased.
[0037]
In the power storage system according to the present invention, the main battery is an electrolyte circulation type secondary battery, and when the main battery stops the pump that circulates the electrolyte during a pause when the charge / discharge operation is not performed,
When the AC power supply is normal and the main battery is in charge / discharge operation, both the first and second switches are closed to charge the auxiliary battery from the AC power supply or the main battery via the DC / DC converter. When the main battery is at rest, the first switch is opened, the second switch is closed, and the auxiliary battery is charged from the AC power source through the AC / DC converter,
When the AC power supply fails and the main battery is started up, the first switch is opened, the second switch is closed, and the auxiliary battery is pumped from the auxiliary battery via the AC / DC converter. After the main battery is started up, the first switch is closed, the second switch is opened, and the main battery pump is passed from the main battery through the AC / DC converter. Since the power is supplied to the auxiliary battery, the auxiliary battery can be charged even during the charging / discharging operation of the main battery, and the reliability of the power supply capability of the auxiliary battery at the time of AC power failure is increased.
[0038]
In the power storage system according to the present invention, the AC / DC converter is composed of an AC / DC converter and a DC / DC converter connected in series with each other. When power is supplied through a converter, the allowable voltage range of the auxiliary battery can be expanded by the voltage conversion capability of the DC / DC converter, which further increases the reliability of the power supply capability of the auxiliary battery during an AC power failure. To do.
[0039]
In the power storage system according to the present invention, when the DC / DC converter is configured with a current reversible chopper and the auxiliary battery is charged or discharged, whether the voltage conversion required for the current reversible chopper is a boost operation. Because it has step-up / step-down switching means that switches the connection between the input and output terminals of the current reversible chopper depending on whether it is a step-down operation, the auxiliary battery can be charged regardless of the magnitude relationship between the voltages of the main battery, auxiliary battery and DC emergency load The operation and the power feeding operation to the DC emergency load are smoothly performed.
[0040]
In the power storage system according to the present invention, when the DC / DC converter is constituted by a step-up / step-down chopper and the auxiliary battery is charged or discharged, the auxiliary battery is connected to the output side of the step-up / step-down chopper. Because it has polarity switching means to switch the polarity of the auxiliary battery connected to the above-mentioned step-up / down chopper depending on whether it is connected to the input side or not, in any case the magnitude relationship of each voltage of the main battery, auxiliary battery and DC emergency load In this case, the charging operation of the auxiliary battery and the power feeding operation to the DC emergency load are smoothly performed, and the configuration of the switching means is simplified.
[0041]
Moreover, since the power storage system according to the present invention comprises the DC / DC converter as an insulating step-up / step-down chopper in which the input and output are electrically insulated, each voltage of the main battery, the auxiliary battery, and the DC emergency load In any case, the charging operation of the auxiliary battery and the power feeding operation to the DC emergency load are performed smoothly, and the configuration of the switching means is further simplified.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an electric power storage system according to Embodiment 1 of the present invention.
FIG. 2 is a circuit configuration diagram showing an electric power storage system according to Embodiment 2 of the present invention.
FIG. 3 is an internal configuration diagram of the current reversible chopper 12 of FIG. 2;
FIG. 4 is a circuit configuration diagram showing an electric power storage system according to Embodiment 3 of the present invention.
FIG. 5 is an internal configuration diagram of the step-up / down chopper 13 of FIG. 4;
FIG. 6 is a circuit configuration diagram showing an electric power storage system according to Embodiment 4 of the present invention.
7 is an internal configuration diagram of the insulating buck-boost chopper 14 of FIG. 6. FIG.
FIG. 8 is a circuit configuration diagram showing an electric power storage system according to a fifth embodiment of the present invention.
FIG. 9 is a timing chart for explaining an operation of pump control by the control unit 20 of FIG. 8;
FIG. 10 is a circuit configuration diagram showing a conventional power storage system.
[Explanation of symbols]
1 AC / DC bidirectional converter, 2 AC / DC bidirectional converter,
3 DC / DC converter A, 4 main battery, 5 auxiliary battery, 7 DC emergency load,
10 electrolyte circulation pump, 11 DC / DC converter B,
12 DC / DC converter B (current reversible chopper),
13 DC / DC converter B (buck-boost chopper),
14 DC / DC converter B (insulated buck-boost chopper),
15 Auxiliary battery (electrolyte circulation type), 18 Circulation pump, 19 Voltage detector,
20 Control unit.

Claims (6)

充放電可能な主電池、交流側が交流電源に接続され直流側が第1の開閉器を介して上記主電池に接続された交流/直流変換装置、一端側が第2の開閉器を介して上記交流/直流変換装置の直流側に接続され他端側が第3の開閉器を介して直流非常用負荷に接続された直流/直流変換装置、およびこの直流/直流変換装置と接続され充放電可能な補助電池を備えるとともに、
上記交流電源の正常時は、上記補助電池を上記直流/直流変換装置の上記他端側に接続して上記第3の開閉器を開路し上記交流電源から上記交流/直流変換装置を介してまたは上記主電池からそれぞれ上記直流/直流変換装置を介して上記補助電池を充電し、上記交流電源の停電時は、上記補助電池を上記直流/直流変換装置の上記一端側に接続して上記第3の開閉器を閉路し上記補助電池から上記直流/直流変換装置を介して上記直流非常用負荷に電力を供給するよう上記補助電池と直流/直流変換装置との接続を切り替える充放電切替手段を備えた電力貯蔵システム。
A chargeable / dischargeable main battery, an AC / DC converter having an AC side connected to an AC power source and a DC side connected to the main battery via a first switch, one end side being connected to the AC / DC via a second switch DC / DC converter connected to DC side of DC converter and other end connected to DC emergency load via third switch, and auxiliary battery capable of charging / discharging connected to DC / DC converter With
When the AC power supply is normal, the auxiliary battery is connected to the other end side of the DC / DC converter, the third switch is opened, and the AC power supply is connected via the AC / DC converter or respectively, from the main battery through the DC / DC converter to charge the auxiliary battery, power failure of the AC power source, the third of the auxiliary battery connected to the one end side of the DC / DC converter Charge / discharge switching means for switching the connection between the auxiliary battery and the DC / DC converter so that the switch is closed and power is supplied from the auxiliary battery to the DC emergency load via the DC / DC converter. Power storage system.
主電池が電解液循環型の2次電池であって、当該主電池が充放電動作をしない休止中その電解液を循環するポンプを停止させる場合、
交流電源が正常であって、上記主電池が充放電動作中は第1および第2の開閉器を共に閉路して上記交流電源または主電池から直流/直流変換装置を介して補助電池を充電し、上記主電池が休止中は上記第1の開閉器を開路、第2の開閉器を閉路して上記交流電源から上記交流/直流変換装置を介して上記補助電池を充電し、
上記交流電源が停電し上記主電池を立ち上げるときは、上記第1の開閉器を開路、第2の開閉器を閉路し上記補助電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給し、上記主電池が立ち上がった後は、上記第1の開閉器を閉路、第2の開閉器を開路し上記主電池から上記交流/直流変換装置を介して上記主電池のポンプに電力を供給するようにしたことを特徴とする請求項1記載の電力貯蔵システム。
When the main battery is an electrolyte circulation type secondary battery, and the pump that circulates the electrolyte solution is stopped while the main battery is not charging / discharging,
When the AC power supply is normal and the main battery is in charge / discharge operation, both the first and second switches are closed to charge the auxiliary battery from the AC power supply or the main battery via the DC / DC converter. When the main battery is at rest, the first switch is opened, the second switch is closed, and the auxiliary battery is charged from the AC power source through the AC / DC converter,
When the AC power supply fails and the main battery is started up, the first switch is opened, the second switch is closed, and the auxiliary battery is pumped from the auxiliary battery via the AC / DC converter. After the main battery is started up, the first switch is closed, the second switch is opened, and the main battery pump is passed from the main battery through the AC / DC converter. The power storage system according to claim 1, wherein power is supplied to the power supply.
交流/直流変換装置を、互いに直列に接続された交流/直流変換器と直流/直流変換器とで構成したことを特徴とする請求項2記載の電力貯蔵システム。  3. The power storage system according to claim 2, wherein the AC / DC converter is composed of an AC / DC converter and a DC / DC converter connected in series with each other. 直流/直流変換装置を電流可逆チョッパで構成し、補助電池の充電または放電動作を行う場合、上記電流可逆チョッパに要求される電圧変換が昇圧動作か降圧動作かによって上記電流可逆チョッパの入出力端の接続を切り替える昇降圧切替手段を備えたことを特徴とする請求項1ないし3のいずれかに記載の電力貯蔵システム。  When the DC / DC converter is configured with a current reversible chopper and the auxiliary battery is charged or discharged, the input / output terminal of the current reversible chopper depends on whether the voltage conversion required for the current reversible chopper is a step-up operation or a step-down operation. The power storage system according to any one of claims 1 to 3, further comprising a step-up / step-down switching means for switching the connection. 直流/直流変換装置を昇降圧チョッパで構成し、補助電池の充電または放電動作を行う場合、上記補助電池が上記昇降圧チョッパの出力側に接続されるか入力側に接続されるかによって上記昇降圧チョッパに接続する補助電池の極性を切り替える極性切替手段を備えたことを特徴とする請求項1ないし3のいずれかに記載の電力貯蔵システム。  When the DC / DC converter is composed of a step-up / down chopper and the auxiliary battery is charged or discharged, the step-up / down step depends on whether the auxiliary battery is connected to the output side or the input side of the step-up / down chopper. The power storage system according to any one of claims 1 to 3, further comprising polarity switching means for switching the polarity of the auxiliary battery connected to the pressure chopper. 直流/直流変換装置を入出力間を電気的に絶縁した絶縁形昇降圧チョッパで構成したことを特徴とする請求項1ないし3のいずれかに記載の電力貯蔵システム。  The power storage system according to any one of claims 1 to 3, wherein the DC / DC converter is constituted by an insulating step-up / step-down chopper in which input and output are electrically insulated.
JP2001274648A 2001-09-11 2001-09-11 Power storage system Expired - Fee Related JP4596712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274648A JP4596712B2 (en) 2001-09-11 2001-09-11 Power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274648A JP4596712B2 (en) 2001-09-11 2001-09-11 Power storage system

Publications (2)

Publication Number Publication Date
JP2003087997A JP2003087997A (en) 2003-03-20
JP4596712B2 true JP4596712B2 (en) 2010-12-15

Family

ID=19099649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274648A Expired - Fee Related JP4596712B2 (en) 2001-09-11 2001-09-11 Power storage system

Country Status (1)

Country Link
JP (1) JP4596712B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347362B2 (en) * 2008-07-30 2013-11-20 富士電機株式会社 Emergency power circuit
JP5319236B2 (en) * 2008-10-22 2013-10-16 日立建機株式会社 Power supply and work machine
JP5534710B2 (en) * 2009-04-30 2014-07-02 株式会社Nttファシリティーズ Power supply system in information communication machine room and power supply control method thereof
KR101106705B1 (en) * 2009-12-29 2012-01-18 재단법인 포항산업과학연구원 Remote controlled power supply system
KR101220389B1 (en) 2011-09-01 2013-01-09 현대자동차주식회사 System for power supply electric field load of green car and control method thereof
WO2013114710A1 (en) * 2012-02-03 2013-08-08 株式会社村田製作所 Switching power source device
JP5781012B2 (en) * 2012-05-29 2015-09-16 三菱電機株式会社 Power switching device and house
JP6179855B2 (en) * 2013-08-08 2017-08-16 パナソニックIpマネジメント株式会社 Power supply system, distribution board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530679A (en) * 1991-07-19 1993-02-05 Toshiba Corp Battery power storage system
JPH05207668A (en) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd Charger
JPH07250405A (en) * 1994-03-11 1995-09-26 Fujitsu Denso Ltd Charger for electric automobile
JPH1131522A (en) * 1997-07-09 1999-02-02 Sumitomo Electric Ind Ltd Redox flow battery and its operation method
JP2000250646A (en) * 1999-02-25 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power generation system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530679A (en) * 1991-07-19 1993-02-05 Toshiba Corp Battery power storage system
JPH05207668A (en) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd Charger
JPH07250405A (en) * 1994-03-11 1995-09-26 Fujitsu Denso Ltd Charger for electric automobile
JPH1131522A (en) * 1997-07-09 1999-02-02 Sumitomo Electric Ind Ltd Redox flow battery and its operation method
JP2000250646A (en) * 1999-02-25 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power generation system and method

Also Published As

Publication number Publication date
JP2003087997A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US10404095B2 (en) Uninterruptible power supply unit
JP3973638B2 (en) Power supply unit and power supply system having the same
JP4753753B2 (en) Fuel cell system
JPH1031525A (en) Photovoltaic power generation system
JP4763660B2 (en) Power system
CA2991415A1 (en) Hybrid electrochemical cell systems and methods of operation
KR20160107173A (en) Electrochemical energy accumulator and balancing method
EP1511152B1 (en) Uninterruptible power supply
CN106471705B (en) Uninterruptible power supply device
JP6790713B2 (en) Fuel cell vehicle
JP4596712B2 (en) Power storage system
JP4223653B2 (en) Power storage device and power storage type power supply method
JP4828511B2 (en) Backup power supply and control method thereof
JP2009148110A (en) Charger/discharger and power supply device using the same
JP4767976B2 (en) DC power supply system
JP4168581B2 (en) High voltage battery load starter
CN116231802A (en) Lithium ion energy storage battery system with charge and discharge management function and battery stack
JP2008035573A (en) Electricity accumulation device employing electric double layer capacitor
JP2009118683A (en) Charger, charging method thereof, and power supply system
JP4079107B2 (en) Uninterruptible power system
CN114290902A (en) Vehicle battery system with energy storage
JP2004304931A (en) Charging method and charging device for electric storage device
CN112952926A (en) Multi-battery switching control circuit, device, system and control method
JP4186218B2 (en) Secondary battery pack
CN218940750U (en) Off-line uninterrupted power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4596712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees