JP4595943B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4595943B2
JP4595943B2 JP2007006596A JP2007006596A JP4595943B2 JP 4595943 B2 JP4595943 B2 JP 4595943B2 JP 2007006596 A JP2007006596 A JP 2007006596A JP 2007006596 A JP2007006596 A JP 2007006596A JP 4595943 B2 JP4595943 B2 JP 4595943B2
Authority
JP
Japan
Prior art keywords
refrigerant
volume
pressure
stage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007006596A
Other languages
Japanese (ja)
Other versions
JP2008175066A (en
Inventor
英明 前山
真一 高橋
稔 石井
直隆 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007006596A priority Critical patent/JP4595943B2/en
Publication of JP2008175066A publication Critical patent/JP2008175066A/en
Application granted granted Critical
Publication of JP4595943B2 publication Critical patent/JP4595943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

この発明は、密閉容器内部の圧縮機構部で低圧の冷媒を高圧まで圧縮する圧縮機に関するものである。   The present invention relates to a compressor that compresses a low-pressure refrigerant to a high pressure in a compression mechanism section inside a sealed container.

従来の圧縮機は、密閉容器内に電動機とこの電動機に連結された回転軸により駆動される低段圧縮機構部と高段圧縮機構部からなる圧縮機構部とを備え、低圧(吸入圧)の冷媒を密閉容器に設けられた低段吸入管から低段圧縮機構部に吸入し、そこで中間圧まで圧縮し、低段吐出管より密閉容器内に吐出して密閉容器内を中間圧雰囲気とする。そして密閉容器内に低段圧縮機構部から吐出された中間圧の冷媒を高段吸入管から高段圧縮機構部に吸入し、そこで高圧(吐出圧)まで圧縮し、高段吐出管より密閉容器の外部の冷媒回路に吐出するものである。   A conventional compressor includes an electric motor in a hermetic container, a low-stage compression mechanism unit driven by a rotary shaft connected to the electric motor, and a compression mechanism unit composed of a high-stage compression mechanism unit, and has a low pressure (suction pressure). Refrigerant is sucked into the low-stage compression mechanism from the low-stage suction pipe provided in the sealed container, where it is compressed to an intermediate pressure and discharged from the low-stage discharge pipe into the sealed container to create an intermediate pressure atmosphere in the sealed container. . The intermediate pressure refrigerant discharged from the low-stage compression mechanism into the sealed container is sucked into the high-stage compression mechanism from the high-stage suction pipe, and compressed to a high pressure (discharge pressure) there. It discharges to the refrigerant circuit outside.

高段圧縮機構部にて圧縮された高圧の冷媒は、高段圧縮機構部内に形成され、密閉容器内の中間圧にリークしないようにシールされた小容量の空間であって、高段圧縮機構部の圧縮室と吐出弁を介して連通する高段圧縮機構部の吐出消音室に高段圧縮室から吐出され、密閉容器内に開放されることなく、この小容量の吐出消音室から高段吐出管を経て密閉容器外部に吐出される。この吐出消音室は圧縮機の密閉容器の内部にあり、消音機能を十分に果たすに必要な容積を確保するのは圧縮機設計上難しく、限られた小容量の空間を吐出消音室としているに過ぎないので、高段圧縮機構部から吐出される高圧の冷媒の吐出脈動を十分に消音できず、脈動が十分に消音されていない高圧の冷媒が圧縮機より吐出されるため、圧縮機の騒音や振動が発生したり、圧縮機に接続される冷媒回路の配管に脈動や圧縮機の振動が伝播して配管の騒音や振動が発生したり、場合によってはその振動による繰り返し応力で疲労破壊する問題があった。   The high-pressure refrigerant compressed by the high-stage compression mechanism section is a small-capacity space formed in the high-stage compression mechanism section and sealed so as not to leak to the intermediate pressure in the sealed container. The high-stage compression mechanism that communicates with the compression chamber of the unit through the discharge valve is discharged from the high-stage compression chamber to the high-stage compression chamber without being opened in the sealed container. It is discharged outside the sealed container through the discharge pipe. This discharge silencing chamber is inside the airtight container of the compressor, and it is difficult in terms of compressor design to secure the volume necessary to perform the silencing function sufficiently, and the limited volume of the space is used as the discharge silencing chamber. Therefore, the discharge pulsation of the high-pressure refrigerant discharged from the high-stage compression mechanism cannot be sufficiently silenced, and the high-pressure refrigerant that is not sufficiently silenced is discharged from the compressor. Or vibration, or pulsation or compressor vibration propagates to the refrigerant circuit piping connected to the compressor, causing noise or vibration in the piping, or in some cases, fatigue failure due to repeated stress due to the vibration There was a problem.

このため、吐出冷媒の脈動を消音すべく所定容量を有する容積部であるタンクから成る吐出マフラーを圧縮機密閉容器の外部に設け、この吐出マフラーを密閉容器外面に固定されたブラケットで保持し、密閉容器と一体化させ、高段吐出管をこの吐出マフラーに接続し、この吐出マフラーで脈動を消音させた後で吐出冷媒を冷媒回路に流出させる圧縮機がある。   For this reason, a discharge muffler comprising a tank that is a volume part having a predetermined capacity to mute the pulsation of the discharged refrigerant is provided outside the compressor hermetic container, and the discharge muffler is held by a bracket fixed to the outer surface of the hermetic container, There is a compressor that is integrated with a hermetic container, connects a high-stage discharge pipe to the discharge muffler, silences pulsation by the discharge muffler, and then discharges the discharged refrigerant to the refrigerant circuit.

高段圧縮機構部から吐出される高圧の冷媒は、高段圧縮機構部から直接的に高段吐出管を経て密閉容器外部の冷媒回路の配管に吐出されるので、高段圧縮機構部に吸入される冷媒に含まれている圧縮機の冷凍機油も高圧の冷媒といっしょに密閉容器外部の冷媒回路に吐出されてしまい、この吐出された冷媒に含まれる冷凍機油を圧縮機に戻す工夫がなされていないと、圧縮機密閉容器内部の冷凍機油の枯渇による圧縮機の摺動特性やシール性の低下や、冷媒回路での冷媒循環へ支障を来たすといった問題が生じる。   The high-pressure refrigerant discharged from the high-stage compression mechanism section is discharged directly from the high-stage compression mechanism section through the high-stage discharge pipe to the piping of the refrigerant circuit outside the sealed container. The compressor refrigeration oil contained in the refrigerant to be discharged is discharged together with the high-pressure refrigerant into the refrigerant circuit outside the sealed container, and the refrigeration oil contained in the discharged refrigerant is returned to the compressor. If not, problems such as deterioration of the sliding characteristics and sealing performance of the compressor due to exhaustion of the refrigerating machine oil inside the compressor hermetic container, and hindrance to refrigerant circulation in the refrigerant circuit occur.

このような問題を生じさせないために、圧縮機より吐出された高圧の冷媒に含まれる冷凍機油を所定容量の容積部の内部で冷媒から分離させ、圧縮機に戻す油分離器があるが、上記の吐出マフラーが所定容量の容積部のタンクから成るものであるので、この油分離機構を吐出マフラーが兼ね備えるものがある。 In order not to cause such a problem, there is an oil separator that separates the refrigeration oil contained in the high-pressure refrigerant discharged from the compressor from the refrigerant inside the volume part of a predetermined capacity and returns it to the compressor. Since the discharge muffler is composed of a tank having a volume part with a predetermined capacity, there is a discharge muffler that has this oil separation mechanism.

圧縮機密閉容器にブラケットを介して固定保持される所定容量の容積部である縦長円筒形タンクから成る吐出マフラーの内部空間を上下に仕切る形で油分離具を設け、吐出マフラーの内部に吐出マフラーの下方から内部に流入した吐出冷媒がこの油分離具を通過する際に、吐出冷媒に含まれる冷凍機油を油分離具に付着させることで冷媒から分離させるものである。分離された冷凍機油は、吐出マフラーのタンク底部に流下貯留され、一方を吐出マフラーのタンク底部に、他方を圧縮機密閉容器内の電動機と圧縮機構部との間に開口する油戻し管を通って圧縮機密閉容器内に流入し、密閉容器底部の油溜めに帰還する(例えば、特許文献1参照)。   An oil separator is provided in the form of a vertical partition that separates the internal space of the discharge muffler, which is a vertically long cylindrical tank that is fixed to the compressor sealed container via a bracket, and the discharge muffler is provided inside the discharge muffler. When the discharged refrigerant flowing into the inside from below passes through the oil separator, the refrigerating machine oil contained in the discharged refrigerant is separated from the refrigerant by adhering to the oil separator. The separated refrigerating machine oil flows down and is stored at the bottom of the discharge muffler tank, one through the tank bottom of the discharge muffler and the other through an oil return pipe that opens between the motor and the compression mechanism in the compressor hermetic container. Then, it flows into the compressor sealed container and returns to the oil sump at the bottom of the sealed container (see, for example, Patent Document 1).

特開2004−239204号公報(請求項1、図1、0012欄〜0044欄)JP-A-2004-239204 (Claim 1, FIG. 1, columns 0012 to 0044)

従来の圧縮機は、密閉容器に固定保持され、油分離機構を兼ね備えた吐出マフラーを備えているが、油分離機構が吐出マフラーの容積部の内部空間を上下に仕切る形で油分離具を設けて構成されているので、吐出マフラー容積部の内部空間を分断してしまい、分断された個々の空間の容積が小さくなってしまい、そのため吐出マフラーで、圧縮機構部から吐出された高圧な吐出冷媒の脈動成分を広い周波数域で消音できず、吐出冷媒の脈動を十分に消音できないという問題があった。   Conventional compressors are equipped with a discharge muffler that is fixedly held in a sealed container and also has an oil separation mechanism. However, the oil separation mechanism is provided with an oil separation tool that divides the internal space of the volume part of the discharge muffler up and down. Therefore, the internal space of the discharge muffler volume part is divided, and the volume of each divided space is reduced. Therefore, the high-pressure discharge refrigerant discharged from the compression mechanism part by the discharge muffler. The pulsating component of the refrigerant cannot be silenced over a wide frequency range, and the pulsation of the discharged refrigerant cannot be sufficiently silenced.

また吐出マフラーで分離された冷凍機油を吐出マフラーの容積部から排出し、密閉容器内部に流入させる油戻し管を、密閉容器内部の電動機と圧縮機構部との間に開口しているので、圧縮機密閉容器内の油溜めに戻る吐出マフラーで分離された冷凍機油が、密閉容器内に流入後、密閉容器底部の油溜めに帰還する途中で、低段圧縮機構部から吐出され、密閉容器内を満たす中間圧の冷媒が、高段圧縮機構部に吸入されるべく冷媒導出管に流出する際の冷媒の流れに巻き込まれ、中間圧冷媒によって冷媒導出管に持ち出され、高段圧縮機構部へ吸入されてしまい、油溜めに十分に帰還できず、最後には油溜めの冷凍機油が枯渇して、圧縮機の摺動特性やシール性が低下、最悪の場合は摺動部の潤滑不良によりロックして運転不能となる問題があった。 In addition, the oil return pipe that discharges the refrigeration oil separated by the discharge muffler from the volume part of the discharge muffler and flows into the inside of the sealed container is opened between the motor inside the sealed container and the compression mechanism, so compression The refrigeration machine oil separated by the discharge muffler that returns to the oil reservoir in the machine closed container flows into the sealed container and then is discharged from the low-stage compression mechanism while returning to the oil reservoir at the bottom of the sealed container. The intermediate pressure refrigerant that satisfies the condition is drawn into the refrigerant flow when it flows out to the refrigerant outlet pipe to be sucked into the high stage compression mechanism section, and is taken out by the intermediate pressure refrigerant to the refrigerant outlet pipe to the high stage compression mechanism section. It is inhaled and cannot fully return to the oil sump. Finally, the oil in the oil sump in the sump is depleted, and the sliding characteristics and sealing performance of the compressor deteriorates. There is a problem of being locked and unable to drive It was.

この発明は上記のような問題点を解決するためになされたもので、油分離機構を備えた吐出マフラーにより、圧縮機構部から吐出される高圧な吐出冷媒の脈動を十分に消音するとともに、高圧な吐出冷媒に含まれる冷凍機油を冷媒から分離させ、分離した冷凍機油を確実に密閉容器底部の油溜めに帰還させることのできる圧縮機を得るものである。   The present invention has been made to solve the above-described problems. The discharge muffler provided with the oil separation mechanism sufficiently silences the pulsation of the high-pressure discharged refrigerant discharged from the compression mechanism section, and is It is possible to obtain a compressor capable of separating the refrigerating machine oil contained in the discharged refrigerant from the refrigerant and reliably returning the separated refrigerating machine oil to the oil reservoir at the bottom of the sealed container.

この発明に係わる圧縮機においては、電動機と、低段圧縮機構部と高段圧縮機構部から構成され、電動機に連結された回転軸にて駆動され低圧の冷媒を高圧まで圧縮して吐出する圧縮機構部と、を密閉容器の内部に収納するとともに、低段圧縮機構部にて低圧の冷媒を中間圧まで圧縮して密閉容器内部に吐出し、密閉容器内部を中間圧として、この密閉容器内部の中間圧の冷媒を高段圧縮機構部にて高圧まで圧縮して吐出する圧縮機であって、高段圧縮機構部から吐出された冷凍機油を含む高圧の吐出冷媒が供給され、この高圧の吐出冷媒の脈動を消音する容積を有する容積部と、高圧の吐出冷媒を容積部の内面に沿うように吹き出し、高圧の吐出冷媒を旋回流とするように容積部の内部空間に供給する供給管と、容積部の底部に設けられ、旋回流の遠心力によって容積部の内部空間にて高圧の吐出冷媒から分離された冷凍機油を容積部から容積部の外部に排出する油戻し管と、容積部の内部で供給管高圧の吐出冷媒吹き出位置より容積部の底部側に一方を開口し、容積部の外部に他方を開口して冷凍機油が分離された高圧の吐出冷媒を容積部の内部空間から外部に吐出する吐出管と、から成る吐出マフラーを密閉容器の外部に備え、容積部から油戻し管に排出された冷凍機油を、低圧の冷媒とともに低段圧縮機構部の圧縮室に供給するとともに、容積部から油戻し管に排出された冷凍機油の一部を、中間圧の冷媒とともに高段圧縮機構部の圧縮室に供給するものである。 In the compressor according to the present invention, an electric motor, is composed of a low-stage compression mechanism portion and the high-stage compression mechanism is driven by linked rotary shaft to the motor compressing and discharging low pressure refrigerant to a high pressure The compression mechanism is housed inside the sealed container, and a low-pressure refrigerant is compressed to an intermediate pressure by the low-stage compression mechanism and discharged to the inside of the sealed container. A compressor that compresses and discharges an internal intermediate-pressure refrigerant to a high pressure by a high- stage compression mechanism, and is supplied with a high-pressure discharge refrigerant that includes refrigeration oil discharged from the high- stage compression mechanism. A volume part that has a volume that silences the pulsation of the discharged refrigerant, and a high-pressure discharged refrigerant that blows along the inner surface of the volume part and supplies the high-pressure discharged refrigerant to the internal space of the volume part so as to make a swirl flow a tube, provided at the bottom of the volume An oil return pipe for discharging the refrigerating machine oil separated from the high-pressure refrigerant discharged by the internal space of the volume by the centrifugal force handed circumfluence from volume to outside of the volume, the discharge supply pipe of the high pressure within the volume open one on the bottom side of the volume than to position blown refrigerant, external to the other to open the refrigerating machine oil volume is discharged to the outside from the interior space of the volume of the refrigerant discharged from the high pressure separated discharge comprising a tube, a discharge muffler comprising a outside of the sealed container, the refrigerating machine oil discharged to the oil return pipe from the volume, and supplies to the compression chamber of the low-stage compression mechanism with low-pressure refrigerant, the oil from the volume A part of the refrigerating machine oil discharged to the return pipe is supplied to the compression chamber of the high stage compression mechanism together with the intermediate pressure refrigerant .

また、この発明に係わる圧縮機においては、電動機と、低段圧縮機構部と高段圧縮機構部から構成され、電動機に連結された回転軸にて駆動され低圧の冷媒を高圧まで圧縮して吐出する圧縮機構部と、を密閉容器の内部に収納するとともに、低段圧縮機構部にて低圧の冷媒を中間圧まで圧縮して密閉容器内部に吐出し、密閉容器内部を中間圧と、この密閉容器内部の中間圧の冷媒を高段圧縮機構部にて高圧まで圧縮して吐出する圧縮機であって、高段圧縮機構部から吐出された冷凍機油を含む高圧の吐出冷媒が供給され、この高圧の吐出冷媒から冷凍機油を分離する油分離機能を有する容積部と、高圧の吐出冷媒をこの容積部の内部空間に供給する供給管と、容積部の底部に設けられ、容積部の内部空間で高圧の吐出冷媒から分離された冷凍機油を容積部から容積部の外部に排出する油戻し管と、冷凍機油が分離された高圧の吐出冷媒を容積部の内部空間から外部に吐出する吐出管と、を密閉容器の外部に備え、容積部から油戻し管に排出された冷凍機油を、低圧の冷媒とともに低段圧縮機構部の圧縮室に供給するとともに、容積部から油戻し管に排出された冷凍機油の一部を、中間圧の冷媒とともに高段圧縮機構部の圧縮室に供給するものである。 The compressor according to the present invention includes an electric motor, a low-stage compression mechanism section, and a high-stage compression mechanism section, and is driven by a rotating shaft connected to the motor to compress a low-pressure refrigerant to a high pressure. a compression mechanism portion for discharging, while housed inside of the sealed vessel, a low-pressure refrigerant in the low-stage compressing unit compresses the sealed container inside the discharge to an intermediate pressure, and the sealed container inside the intermediate pressure , a discharging that compressor and compressed to a high pressure Te the refrigerant in the sealed container inside the intermediate pressure to the high-stage compression mechanism, a high pressure discharge refrigerant containing refrigerating machine oil discharged from the high-stage compression mechanism section is supplied, a volume having an oil separating function of separating refrigeration oil from refrigerant discharged this pressure, a supply pipe for supplying the interior space of the volume of the high-pressure discharge refrigerant, provided in the bottom of the volume, volume It is separated from the high-pressure refrigerant discharged within the space of the product portion An oil return pipe for discharging to the outside of the volume of the refrigerating machine oil from the volume, and the discharge pipe refrigerating machine oil is discharged to the outside from the interior space of the volume of the refrigerant discharged from the high pressure separated, outside the sealed container provided, the refrigeration oil discharged to the oil return pipe from the volume product unit, the rewritable supplied with low-pressure refrigerant into the compression chamber of the low-stage compression mechanism, a part of the refrigerating machine oil discharged to the oil return pipe from the volume Are supplied to the compression chamber of the high-stage compression mechanism along with the intermediate-pressure refrigerant .

この発明によれば、容積部の内部空間にて高段圧縮機構部から吐出された高圧の吐出冷媒から冷凍機油分離と、この高圧の吐出冷媒の広い周波数域での脈動成分の音ができるとともに、高圧の吐出冷媒から分離された冷凍機が低圧の冷媒とともに低段圧縮機構部の圧縮室に供給され、この圧縮室のシール性と低段圧縮機機構部の摺動部の潤滑性を向上させ、さらに高圧の吐出冷媒から分離された冷凍機の一部が中間圧の冷媒とともに高段圧縮機構部の圧縮室に供給され、この圧縮室のシール性と高段圧縮機機構部の摺動部の潤滑性を向上させるので、高効率で信頼性の高い圧縮機となる効果が得られるAccording to the present invention, the pulsating component of the at the inner space of the volume product portion, and the separation of refrigeration oil from the high pressure discharge refrigerant discharged from the high-stage compression mechanism, in the frequency domain have a wide discharge refrigerant in the high pressure it is the Mute, refrigerator separated from the high-pressure discharge refrigerant is supplied with low-pressure refrigerant into the compression chamber of the low-stage compression mechanism, the sliding of the sealing property and the low-stage compressor mechanism portion of the compression chamber A part of the refrigerator separated from the high-pressure discharged refrigerant is supplied to the compression chamber of the high-stage compression mechanism together with the intermediate-pressure refrigerant, and the sealability and high-stage compression of this compression chamber are improved. Since the lubricity of the sliding portion of the machine mechanism is improved, the effect of becoming a highly efficient and reliable compressor can be obtained .

またこの発明によれば、容積部の内部空間にて高圧の吐出冷媒から分離され、低圧冷媒とともに低段圧縮機構部の圧縮室に供給された冷凍機油が、低段圧縮機構部から中間圧の冷媒とともに密閉容器内部に吐出され、密閉容器内部中間圧の冷媒から分離して密閉容器底部の油溜めに帰還できるので、油溜めの冷凍機油が枯渇することなく、油溜めの冷凍機油の貯油量を適量に維持することができる信頼性の高い圧縮機となる効果が得られるAccording to the invention, the refrigerating machine oil separated from the high-pressure discharge refrigerant in the internal space of the volume portion and supplied to the compression chamber of the low-stage compression mechanism unit together with the low-pressure refrigerant is supplied from the low-stage compression mechanism unit to the intermediate pressure. is discharged into the sealed container part together with the refrigerant, since it returns to sump of the sealed container bottom and separated from the intermediate-pressure refrigerant in the sealed container interior without sump refrigerating machine oil is depleted, the oil sump of the refrigerating machine oil The effect of becoming a highly reliable compressor capable of maintaining an appropriate amount of oil storage is obtained .

実施の形態1.
図1は、この発明を実施するための実施の形態1における内部中間圧型2段圧縮式の圧縮機1を示す説明用縦断面図である。圧縮機1は、密閉容器10の内部に低段圧縮機構部11(以後、低段部11)と高段圧縮機構部12(以後、高段部12)とからなる2段圧縮式の圧縮機構部と、これらの圧縮機構部11、12を回転軸14を介して回転駆動させる電動機13を備え、また密閉容器10の外面に保持される吐出マフラー27を備える。電動機13の下方に2段圧縮式の圧縮機構部11、12が配置され、密閉容器10の底側に低段部11が、低段部11の上部に高段部12が配置される。圧縮する冷媒としては二酸化炭素が使用されている。
Embodiment 1 FIG.
FIG. 1 is an explanatory longitudinal sectional view showing an internal intermediate pressure type two-stage compression compressor 1 according to Embodiment 1 for carrying out the present invention. The compressor 1 includes a two-stage compression type compression mechanism that includes a low-stage compression mechanism section 11 (hereinafter, low-stage section 11) and a high-stage compression mechanism section 12 (hereinafter, high-stage section 12) in an airtight container 10. And an electric motor 13 that rotationally drives the compression mechanisms 11 and 12 via the rotation shaft 14, and a discharge muffler 27 that is held on the outer surface of the sealed container 10. Two-stage compression type compression mechanism portions 11 and 12 are disposed below the electric motor 13, the low-stage portion 11 is disposed on the bottom side of the sealed container 10, and the high-stage portion 12 is disposed above the low-stage portion 11. Carbon dioxide is used as the refrigerant to be compressed.

密閉容器10は上下を開口した円筒容器10aに上蓋10bおよび底蓋10cが溶接等で接合されることで密閉がなされる。なお密閉容器10は絞り加工等で形成した有底の円筒容器に上蓋10bを接合する2分割構成としてもよい。密閉容器10の底部には、圧縮機構部11、12に供給され、それらの摺動部の潤滑や圧縮室のシールなどに使われる冷凍機油が貯留される油溜め17が設けられている。ここで冷凍機油はPAG(ポリアルキレングリコール)油を使用している。   The sealed container 10 is hermetically sealed by joining an upper lid 10b and a bottom lid 10c to a cylindrical container 10a that is open at the top and bottom by welding or the like. The sealed container 10 may have a two-part configuration in which the top lid 10b is joined to a bottomed cylindrical container formed by drawing or the like. An oil sump 17 is provided at the bottom of the hermetic container 10 for storing refrigerating machine oil supplied to the compression mechanisms 11 and 12 and used for lubrication of the sliding parts and sealing of the compression chamber. Here, the refrigerating machine oil uses PAG (polyalkylene glycol) oil.

電動機13は、固定子13aと回転子13bから構成される。回転子13bの外周と固定子13a内周には、エアギャップと呼ばれる径方向のすきまが全周に渡ってほぼ均一に設けられる。固定子13aは図示しないが、積層され互いにかしめ固定された略円環状の電磁鋼板の内側歯部にコイルが集中巻き方式で巻かれており、その積層された電磁鋼板の外周が密閉容器10の内周に焼嵌めにより固定される。固定子13aの積層された電磁鋼板外周には部分的に切欠きが複数設けられているので、密閉容器10内周と固定子13aの外周の間には、それら切欠きにより固定子13aの上下を連通する流路が形成される。 The electric motor 13 includes a stator 13a and a rotor 13b. In the outer periphery of the rotor 13b and the inner periphery of the stator 13a, a radial clearance called an air gap is provided substantially uniformly over the entire periphery. Although the stator 13a is not illustrated, a coil is wound in a concentrated winding manner on the inner teeth of substantially annular electromagnetic steel plates that are laminated and caulked and fixed, and the outer periphery of the laminated electromagnetic steel plates is enclosed by the sealed container 10. It is fixed to the inner circumference by shrink fitting. Since a plurality of cutouts are partially provided on the outer periphery of the electromagnetic steel plates on which the stator 13a is laminated, the upper and lower sides of the stator 13a are formed between the inner periphery of the hermetic container 10 and the outer periphery of the stator 13a by the cutouts. Is formed.

回転子13bも図示しないが、固定子13a同様に円環状の電磁鋼板が積層され互いにかしめ固定されたもので、電磁鋼板の内部に希土類磁石やフェライト磁石等の永久磁石が埋設され、また積層された電磁鋼板の上下を連通するように複数の風穴が流路として設けられている。回転子13bは積層された電磁鋼板の内周が回転軸14と焼嵌められており、固定子13aに電力が供給されると、回転軸14は回転子13bと一体となって回転する。図示しないが、密閉容器10の上蓋10bには、ガラスターミナルが溶接固定されていて、このガラスターミナルと固定子13aがリード線で接続され、外部から供給される電力がガラスターミナルを中継して電動機13に付与される。 Although the rotor 13b is not shown in the figure, similarly to the stator 13a, annular electromagnetic steel plates are laminated and fixed by caulking, and permanent magnets such as rare earth magnets and ferrite magnets are embedded and laminated inside the electromagnetic steel plates. A plurality of air holes are provided as flow paths so as to communicate with the upper and lower sides of the magnetic steel sheet. In the rotor 13b, the inner periphery of the laminated electromagnetic steel sheets is shrink-fitted with the rotating shaft 14, and when electric power is supplied to the stator 13a, the rotating shaft 14 rotates integrally with the rotor 13b. Although not shown, a glass terminal is welded and fixed to the upper lid 10b of the sealed container 10, the glass terminal and the stator 13a are connected by lead wires, and electric power supplied from outside relays the glass terminal to the motor. 13.

低段部11と高段部12はいずれもローラーがシリンダ内を偏心回転しベーンにより吸入室と仕切られた圧縮室の容積を減じて圧縮を行うロータリ圧縮機構を備えており、図示しないが、低段部11と高段部12の互いの圧縮室は低段部11と高段部12の間に配置される仕切板により隔てられている。電動機13に電力が供給され、回転軸14が電動機13により回転駆動すると、一方がこの圧縮機1を使用する冷媒回路の低圧配管50に接続し、他方が低段部11に接続する低段吸入管20から低段部11に吸入圧の冷媒(低圧の冷媒)が吸入される。そして低段部11で中間圧まで圧縮され、密閉容器10内で、電動機13と圧縮機構部である高段部12の間の空間である空間A30に開口する低段吐出管21から、中間圧の冷媒が密閉容器10内部に全量吐出される。それにより密閉容器10の内部が中間圧雰囲気となる。 Each of the low-stage part 11 and the high-stage part 12 includes a rotary compression mechanism that performs compression by reducing the volume of the compression chamber partitioned from the suction chamber by the vane while the roller rotates eccentrically in the cylinder. The compression chambers of the low step portion 11 and the high step portion 12 are separated by a partition plate arranged between the low step portion 11 and the high step portion 12. When electric power is supplied to the electric motor 13 and the rotary shaft 14 is rotationally driven by the electric motor 13, one is connected to the low-pressure pipe 50 of the refrigerant circuit using the compressor 1, and the other is connected to the low-stage section 11. A suction-pressure refrigerant (low-pressure refrigerant) is sucked into the lower stage portion 11 from the pipe 20. Then, the intermediate pressure is compressed from the low-stage discharge pipe 21 which is compressed to the intermediate pressure in the low-stage portion 11 and opens in the space A30 which is a space between the electric motor 13 and the high-stage portion 12 which is the compression mechanism portion in the sealed container 10. The entire amount of the refrigerant is discharged into the sealed container 10. Thereby, the inside of the sealed container 10 becomes an intermediate pressure atmosphere.

密閉容器10内の中間圧の冷媒は、電動機13と高段部12との間で空間A30に臨む密閉容器10壁部に設置され密閉容器10内部に一端を開口する冷媒導出管22より一旦密閉容器10の外部に導出される。そして中間圧の冷媒は、密閉容器10の外部で一端をこの冷媒導出管22に接続され、他端を高段吸入管23に接続される中間圧接続管25と、高段吸入管23を経由して、高段部12に吸入され、高段部12にて吐出圧(高圧)まで圧縮され、高段部12より高段吐出管24を通過して直接密閉容器10外部へ吐出される。高段吐出管24から吐出される高圧の冷媒である吐出冷媒には、高段圧縮室に供給された冷凍機油が含まれている。 The intermediate-pressure refrigerant in the hermetic container 10 is temporarily sealed from the refrigerant outlet tube 22 that is installed on the wall of the hermetic container 10 facing the space A30 between the electric motor 13 and the high stage portion 12 and opens at one end inside the hermetic container 10. It is led out of the container 10. The intermediate-pressure refrigerant is connected to the refrigerant outlet pipe 22 at one end outside the sealed container 10 and the intermediate-pressure connecting pipe 25 connected to the high-stage suction pipe 23 at the other end and the high-stage suction pipe 23. Then, it is sucked into the high stage part 12, compressed to the discharge pressure (high pressure) at the high stage part 12, passes through the high stage discharge pipe 24 from the high stage part 12, and is discharged directly to the outside of the sealed container 10. The discharge refrigerant, which is a high-pressure refrigerant discharged from the high-stage discharge pipe 24, contains refrigeration oil supplied to the high-stage compression chamber.

中間圧接続管25は一本の管を曲げて形成されるが、複数の管をつないで形成してもよい。中間圧接続管25を介さずに、冷媒導出管22もしくは高段吸入管23のどちらか一方を長く形成して、または冷媒導出管22と高段吸入管23のそれぞれを長く形成して直接冷導出管22と高段吸入管23を接続してもよい。冷媒導出管22と高段吸入管23を接続するということは、途中に中間圧接続管25を介して接続する場合も、両管22,23を直接接続する場合も含むものである。また冷媒導出管22と中間圧接続管25をまとめて冷媒導出管と判断してもよいし、中間圧接続管25と高段吸入管23をまとめて高段吸入管と判断してもよい。 The intermediate pressure connection pipe 25 is formed by bending a single pipe, but may be formed by connecting a plurality of pipes. Without the intermediate pressure connection pipe 25, either the refrigerant outlet pipe 22 or the high stage suction pipe 23 is formed long, or each of the refrigerant outlet pipe 22 and the high stage suction pipe 23 is formed long and directly cooled. The outlet pipe 22 and the high stage suction pipe 23 may be connected. The connection of the refrigerant outlet pipe 22 and the high stage suction pipe 23 includes the case of connecting via the intermediate pressure connection pipe 25 in the middle and the case of connecting both pipes 22 and 23 directly. Further, the refrigerant outlet pipe 22 and the intermediate pressure connecting pipe 25 may be collectively determined as a refrigerant outlet pipe, or the intermediate pressure connecting pipe 25 and the high stage suction pipe 23 may be collectively determined as a high stage suction pipe.

図示しないが、高段部12は、内周に高段圧縮室を形成する高段シリンダの電動機13側の開口面をシリンダ上面に伸張して閉塞し、また回転軸14を半径方向に支承する軸受を有するフレームを備え、このフレームの上面の一部を覆うカバーと、フレーム上面との間に小容量の空間が形成される。この空間は高段圧縮室と吐出弁を介して連通しており、冷媒が高段圧縮室で吐出圧力まで圧縮されると、吐出冷媒は吐出弁を開き、この空間に吐出される。なお高段シリンダの反電動機13側(油溜め17側)には仕切板が接する。   Although not shown, the high stage portion 12 extends and closes the opening surface on the motor 13 side of the high stage cylinder that forms the high stage compression chamber on the inner periphery, and supports the rotary shaft 14 in the radial direction. A small-capacity space is formed between a frame including a bearing and a cover that covers a part of the upper surface of the frame and the upper surface of the frame. This space communicates with the high-stage compression chamber via the discharge valve. When the refrigerant is compressed to the discharge pressure in the high-stage compression chamber, the discharge refrigerant opens the discharge valve and is discharged into this space. In addition, a partition plate is in contact with the anti-motor 13 side (oil sump 17 side) of the high stage cylinder.

この空間はカバーとフレーム上面の間にシール材を狭持しており、吐出冷媒が密閉容器10内部の中間圧へリークすることを防いでいる。この空間で吐出冷媒の脈動が一部緩和されるが、小容量であるため脈動の消音は十分でない。この密閉容器内部に形成され、高段圧縮室から吐出冷媒が吐出される小容量な空間を吐出消音室と呼んでいる。この吐出消音室に一方が密閉容器10の外部に開口している高段吐出管24の他方が開口しており、吐出冷媒は、密閉容器10外部に高段部12から直接吐出されるのである。なお吐出弁はフレームに設置されている。 This space holds a seal material between the cover and the upper surface of the frame, and prevents the discharged refrigerant from leaking to the intermediate pressure inside the sealed container 10. Although the pulsation of the discharged refrigerant is partially relieved in this space, the pulsation is not sufficiently silenced due to the small capacity. A small-capacity space formed inside the hermetic container and discharged from the high-stage compression chamber is called a discharge silencer chamber. The other end of the high-stage discharge pipe 24 that opens to the outside of the sealed container 10 is opened in the discharge silencer chamber, and the discharged refrigerant is directly discharged from the high-stage portion 12 to the outside of the sealed container 10. . The discharge valve is installed on the frame.

密閉容器10の側面、図1では円筒容器10a外周面にブラケット26が溶接固定される。このブラケット26は、本実施の形態の特徴である吐出マフラー27の保持具であり、略コの字状にプレス成形された鋼板である。図2は図1に示す圧縮機要部の上面図であり、ここでの要部は吐出マフラー27の近傍を指す。図2に示すようにブラケット26は略コの字状の中央となる曲面部26aが円筒容器10aの外周面の半径に近い半径となっており、この曲面部26aが円筒容器10aの外周面と溶接され、密閉容器10の側面に固定される。その溶接は抵抗溶接でもよいし、曲面部26aの軸方向の端部、または水平方向の端部をアーク溶接してもよい。ブラケット26は曲面部26aに連続して保持部26bを水平方向の両側に有し、保持部26bは吐出マフラー27の外径に合わせた所定の角度で、曲面部26aから密閉容器10とは反対側の方向に折り曲げられている。   A bracket 26 is welded and fixed to the side surface of the sealed container 10, that is, the outer peripheral surface of the cylindrical container 10a in FIG. The bracket 26 is a holder for the discharge muffler 27, which is a feature of the present embodiment, and is a steel plate press-formed in a substantially U-shape. FIG. 2 is a top view of the main part of the compressor shown in FIG. 1, where the main part indicates the vicinity of the discharge muffler 27. As shown in FIG. 2, in the bracket 26, a curved surface portion 26a, which is a substantially U-shaped center, has a radius close to the radius of the outer peripheral surface of the cylindrical container 10a, and the curved surface portion 26a is connected to the outer peripheral surface of the cylindrical container 10a. It is welded and fixed to the side surface of the sealed container 10. The welding may be resistance welding, or the end of the curved surface portion 26a in the axial direction or the end in the horizontal direction may be arc-welded. The bracket 26 has a holding portion 26b on both sides in the horizontal direction continuously to the curved surface portion 26a. The holding portion 26b is opposite to the sealed container 10 from the curved surface portion 26a at a predetermined angle according to the outer diameter of the discharge muffler 27. It is bent in the direction of the side.

吐出マフラー27は所定容量の縦長円筒形タンク等の容積部27aを備え、この容積部27aは密閉容器10と同様に円筒容器の上下に蓋を溶接して形成してもよいし、絞り加工された有底のカップ状の容器2ヶを互いの開口部を重ねて溶接して形成してもよい。この容積部27aが、ブラケット26の保持部26bに溶接固定されることで、吐出マフラー27が圧縮機1の密閉容器10に固定保持され、圧縮機1と一体化される。ここで容積部27aとブラケット保持部26bを溶接固定せず、両側の保持部26bにバンドを固定し、そのバンドと保持部26bで容積部27aを狭持する、いわゆるバンド固定で吐出マフラー27を圧縮機1の密閉容器10に固定保持してもよい。バンド固定の際には、保持部26bにバンドを引っ掛ける爪部を設けてバンドをブラケット26に固定したり、保持部26bに延長して保持部26bから連続的に折り曲げられた接合部を形成し、その接合部にてバンドをブラケット26にボルトで固定したりする。 The discharge muffler 27 includes a volume portion 27a such as a vertically long cylindrical tank having a predetermined capacity. The volume portion 27a may be formed by welding lids on the upper and lower sides of the cylindrical container as in the case of the sealed container 10 or may be drawn. Alternatively, two cup-shaped containers having a bottom may be formed by overlapping the openings of each other and welding. By fixing the volume portion 27 a to the holding portion 26 b of the bracket 26 by welding, the discharge muffler 27 is fixedly held in the sealed container 10 of the compressor 1 and integrated with the compressor 1. Here, the volume 27a and the bracket holding part 26b are not fixed by welding, but the band is fixed to the holding parts 26b on both sides, and the volume part 27a is held between the band and the holding part 26b. The airtight container 10 of the compressor 1 may be fixed and held. When the band is fixed, a claw portion for hooking the band is provided on the holding portion 26b to fix the band to the bracket 26, or the extension portion is extended to the holding portion 26b to form a joint portion bent continuously from the holding portion 26b. The band is fixed to the bracket 26 with bolts at the joint.

吐出マフラー27は、容積部27aの上面に容積部27aの内部に伸長して一方を開口し、他方を容積部27aの外部に開口する供給管27bと吐出管27cを備える。供給管27bの容積部27a外部に開口する一端は、一方を高段吐出管24に接続される吐出圧接続管29の他方が接続され、高段吐出管24から吐出された高圧の冷媒である吐出冷媒が、吐出圧接続管29を経て供給管27bから吐出マフラー27(容積部27a)内部へ吹き出される。高段部12で吐出圧まで圧縮された冷媒は、高段吐出管24から吐出マフラー27に吐出される。   The discharge muffler 27 is provided with a supply pipe 27b and a discharge pipe 27c that extend on the upper surface of the volume part 27a and open one side and open the other side to the outside of the volume part 27a. One end of the supply pipe 27 b that opens to the outside of the volume portion 27 a is a high-pressure refrigerant that is discharged from the high-stage discharge pipe 24, one of which is connected to the other of the discharge pressure connection pipe 29 that is connected to the high-stage discharge pipe 24. The discharged refrigerant is blown out from the supply pipe 27b into the discharge muffler 27 (volume part 27a) through the discharge pressure connection pipe 29. The refrigerant compressed to the discharge pressure in the high stage portion 12 is discharged from the high stage discharge pipe 24 to the discharge muffler 27.

吐出圧接続管29は一本の管を曲げて形成されるが、複数の管をつないで形成してもよい。吐出圧接続管29を介さずに、高段吐出管24もしくは供給管27bのどちらか一方を長く形成して、または高段吐出管24と供給管27bのそれぞれを長く形成して直接高段吐出管24と供給管27bを接続してもよい。高段吐出管24と供給管27bを接続するということは、途中に吐出圧接続管29を介して接続する場合も、両管24、27bを直接接続する場合も含むものである。また高段吐出管24と吐出圧接続管29をまとめて高段吐出管と判断してもよいし、吐出圧接続管29と供給管27bをまとめて供給管と判断してもよい。   The discharge pressure connecting pipe 29 is formed by bending a single pipe, but may be formed by connecting a plurality of pipes. Without passing through the discharge pressure connection pipe 29, either the high stage discharge pipe 24 or the supply pipe 27b is formed long, or each of the high stage discharge pipe 24 and the supply pipe 27b is formed long to directly perform the high stage discharge. You may connect the pipe | tube 24 and the supply pipe | tube 27b. The connection of the high-stage discharge pipe 24 and the supply pipe 27b includes a case where the high-pressure discharge pipe 24 and the supply pipe 27b are connected via the discharge pressure connection pipe 29 and a case where both the pipes 24 and 27b are directly connected. Further, the high-stage discharge pipe 24 and the discharge pressure connection pipe 29 may be collectively determined as a high-stage discharge pipe, or the discharge pressure connection pipe 29 and the supply pipe 27b may be collectively determined as a supply pipe.

図1に示すように、供給管27bは容積部27aの上面を軸線方向に貫通し、外周面を容積部27aにロウ付固定されるが、容積部27aの内部で容積部27a上面に近い位置で端部が略90°屈曲され、供給管27bの容積部27a内部の一端はほぼ水平方向(容積部27aの軸線方向に垂直な方向)に向いて開口する。また図2に示すように、供給管27bは、容積部27a内部で屈曲して水平方向に伸びる部位である端部が、周状である容積部27a内面の接線と概ね平行な方向に伸びた状態となるよう取り付けられている。このため供給管27bから容積部27aに吹き出された吐出冷媒は、図2の実線矢印で示すように容積部27aの内面に沿って流れるようになる。 As shown in FIG. 1, the supply pipe 27b penetrates the upper surface of the volume portion 27a in the axial direction, and the outer peripheral surface is brazed and fixed to the volume portion 27a, but the position close to the upper surface of the volume portion 27a inside the volume portion 27a. The end is bent by approximately 90 °, and one end inside the volume portion 27a of the supply pipe 27b opens in a substantially horizontal direction (a direction perpendicular to the axial direction of the volume portion 27a). Further, as shown in FIG. 2, the supply pipe 27b has an end that is a portion that bends and extends in the horizontal direction inside the volume 27a and extends in a direction substantially parallel to a tangent to the inner surface of the volume 27a that is circumferential. It is attached to be in a state. For this reason, the discharge refrigerant blown out from the supply pipe 27b to the volume portion 27a flows along the inner surface of the volume portion 27a as shown by the solid line arrow in FIG.

なお供給管27bは容積部27aの上面を貫通せず、容積部27a側面を貫通して水平方向に取り付けられてもよい。その場合供給管27bを容積部27a内部で屈曲させる必要はない。また供給管27bを直管として、吐出圧接続管29の端部を屈曲して直管である供給管27bに接続してもよい。図3は、容積部27a側面に供給管27bを取り付ける場合の供給管27bの取り付け方向を示す模式図であり、図3(a)は、内部に供給管27bが伸長するものである。供給管27bは、容積部27aの中心線とずれて、供給管27bの端部が周状である容積部27a内面の接線と概ね平行な方向となるように取り付けられ、水平方向を向いて開口する。 The supply pipe 27b may be attached in the horizontal direction through the side surface of the volume portion 27a without passing through the upper surface of the volume portion 27a. In that case, it is not necessary to bend supply pipe 27b inside volume 27a. Alternatively, the supply pipe 27b may be a straight pipe, and the end of the discharge pressure connection pipe 29 may be bent and connected to the supply pipe 27b which is a straight pipe. FIG. 3 is a schematic view showing the attachment direction of the supply pipe 27b when the supply pipe 27b is attached to the side surface of the volume portion 27a, and FIG. 3 (a) shows the supply pipe 27b extending inside. The supply pipe 27b is attached so that the end of the supply pipe 27b is substantially parallel to the tangential line of the inner surface of the volume part 27a, which is shifted from the center line of the volume part 27a, and opens in the horizontal direction. To do.

容積部27aの側面に供給管27bを取り付ける場合では、供給管27bを容積部27aの内部に侵入させなくても、吐出冷媒を容積部27aの内面に沿って供給でき、図3(b)に示すように、図3(a)と同様な方向で取り付けるが、供給管27bは容積部27a内部に侵入せず、容積部27a内面に臨んで水平方向に開口するようにしてもよい。 In the case where the supply pipe 27b is attached to the side surface of the volume part 27a, the discharged refrigerant can be supplied along the inner surface of the volume part 27a without allowing the supply pipe 27b to enter the volume part 27a, as shown in FIG. As shown in FIG. 3A, the supply pipe 27b may be attached in the same direction as in FIG. 3A, but the supply pipe 27b does not enter the volume 27a and opens in the horizontal direction facing the inner surface of the volume 27a.

なお供給管27bから吐出される吐出冷媒が、容積部27a内面に沿うよう流れるものであれば、容積部27a内部での供給管27bの端部の方向や形状は図2や図3に限るものではない。吐出冷媒を容積部27a内面に沿うように供給しようとすれば、供給管27bの端部の方向は、容積部27aの半径方向とはならず、半径方向から接線方向側に傾斜することになり、接線方向と平行となるのがいちばんよいが、半径方向から接線方向側に傾斜角が設けてあれば、供給管27bから供給される吐出冷媒を、容積部27a内面に沿うように流すことができる。また供給管27bの容積部27a内部での開口する向きは、吐出冷媒が容積部27a内面に沿うように供給されるのであれば、水平方向から傾斜していてもよい。 In addition, if the discharge refrigerant | coolant discharged from the supply pipe | tube 27b flows along the inner surface of the volume part 27a, the direction and shape of the edge part of the supply pipe 27b inside the volume part 27a will be restricted to FIG.2 and FIG.3. is not. If the discharged refrigerant is to be supplied along the inner surface of the volume portion 27a, the direction of the end of the supply pipe 27b is not the radial direction of the volume portion 27a, but is inclined from the radial direction to the tangential side. It is best to be parallel to the tangential direction, but if an inclination angle is provided from the radial direction to the tangential direction, the discharged refrigerant supplied from the supply pipe 27b can flow along the inner surface of the volume 27a. it can. Further, the opening direction of the supply pipe 27b inside the volume portion 27a may be inclined from the horizontal direction as long as the discharged refrigerant is supplied along the inner surface of the volume portion 27a.

吐出マフラー27には、供給管27bと同様に、吐出管27cが容積部27a上面を軸線方向に貫通し、外周面を容積部27aにロウ付固定される。図2においては、供給管27bと吐出管27cの容積部27a上面への取り付け位置が容積部27aの中心を通る同一の直線上に、すなわち両管27b、27cの位相差が180°に配置されているが、これに限定されるものではなく、両管27b、27cの取り付け位置の位相は、180°以外の角度であってもよい。吐出管27cは容積部27aの内部で複数箇所(図1では2ヶ所)屈曲し、容積部27aのほぼ中央で、軸線方向に容積部27aの底部に向いて開口させるようにする。吐出管27cの容積部27a内部での軸線方向の開口位置は、供給管27bの吹き出し位置となる供給管27bの容積部27a内部の開口位置より容積部27aの底部側となるようにし、容積部27aの底面に近い位置とする。なお、吐出管27cを屈曲させずに直管で形成し、その直管を容積部27a上面のほぼ中央に固定するようにしてもよい。吐出管27cの容積部27a外部の開口端部は、この圧縮機1を用いる冷媒回路の高圧配管51に接続する。 Similarly to the supply pipe 27b, the discharge pipe 27c penetrates the upper surface of the volume portion 27a in the axial direction, and the outer peripheral surface of the discharge muffler 27 is fixed to the volume portion 27a by brazing. In FIG. 2, the attachment positions of the supply pipe 27b and the discharge pipe 27c to the upper surface of the volume portion 27a are arranged on the same straight line passing through the center of the volume portion 27a, that is, the phase difference between both tubes 27b and 27c is 180 °. However, the present invention is not limited to this, and the phase of the attachment position of both the tubes 27b and 27c may be an angle other than 180 °. The discharge pipe 27c is bent at a plurality of locations (two locations in FIG. 1) inside the volume portion 27a, and is opened toward the bottom of the volume portion 27a in the axial direction at substantially the center of the volume portion 27a. The opening position in the axial direction inside the volume portion 27a of the discharge pipe 27c is set to be closer to the bottom side of the volume portion 27a than the opening position inside the volume portion 27a of the supply pipe 27b serving as the blowing position of the supply pipe 27b. The position is close to the bottom surface of 27a. Alternatively, the discharge pipe 27c may be formed as a straight pipe without being bent, and the straight pipe may be fixed to substantially the center of the upper surface of the volume portion 27a. The opening end outside the volume 27a of the discharge pipe 27c is connected to a high-pressure pipe 51 of a refrigerant circuit that uses the compressor 1.

吐出マフラー27は容積部27aの底部に設置される油戻し管27dを備える。油戻し管27dは容積部27aの底面中央に接続しており、一方を容積部27a内部に開口し、他方を圧縮機1の密閉容器10内部に開口するように設置される。油戻し管27dの両端部は、それぞれ容積部27aの底面と密閉容器10側面(円筒容器10a)にロウ付固定される。油戻し管27dは複数の管を接続して形成してもよい。ここで油戻し管27dの密閉容器10内部への開口位置が、冷媒導出管22の密閉容器10内部への開口位置よりも、回転軸14の軸線方向に密閉容器10底部の油溜め17側(図1において下方)となるように設置する。冷媒導出管22の密閉容器10内部への開口範囲と、油戻し管27dの密閉容器10内部への開口範囲が回転軸14の軸線方向に重ならない状態となっている。 The discharge muffler 27 includes an oil return pipe 27d installed at the bottom of the volume 27a. The oil return pipe 27 d is connected to the center of the bottom surface of the volume portion 27 a, and is installed so that one opens to the inside of the volume portion 27 a and the other opens to the inside of the sealed container 10 of the compressor 1. Both end portions of the oil return pipe 27d are fixed to the bottom surface of the volume portion 27a and the side surface of the sealed container 10 by brazing (cylindrical container 10a). The oil return pipe 27d may be formed by connecting a plurality of pipes. Here, the opening position of the oil return pipe 27d to the inside of the sealed container 10 is closer to the oil reservoir 17 side of the bottom of the sealed container 10 in the axial direction of the rotating shaft 14 than the opening position of the refrigerant outlet pipe 22 to the inside of the sealed container 10 ( It is installed so as to be downward) in FIG. The opening range of the refrigerant outlet pipe 22 into the sealed container 10 and the opening range of the oil return pipe 27d into the sealed container 10 are not overlapped with each other in the axial direction of the rotary shaft 14.

また油戻し管27dの密閉容器10内部への開口位置と、冷媒導出管22の密閉容器10内部への開口位置の位相をずらしている。図1においては両者の位相差をほぼ180°となるように設置しているが、これに限定されるものではなく、冷媒導出管22の密閉容器10内部への開口範囲と、油戻し管27dの密閉容器10内部への開口範囲が回転軸14の回転方向に全く重ならないように設置する。 The phase of the opening position of the oil return pipe 27d into the sealed container 10 and the position of the opening position of the refrigerant outlet pipe 22 into the sealed container 10 are shifted. In FIG. 1, the phase difference between the two is set to be approximately 180 °. However, the present invention is not limited to this, and the opening range of the refrigerant outlet pipe 22 into the sealed container 10 and the oil return pipe 27d are not limited thereto. The opening range to the inside of the hermetic container 10 is installed so as not to overlap the rotation direction of the rotary shaft 14 at all.

このような吐出マフラー27を保持する圧縮機1では、高段吐出管24から吐出された冷凍機油を含む高圧の冷媒である吐出冷媒は、吐出圧接続管29を通って吐出マフラー27に導かれる。図4は、吐出マフラー27内部の吐出冷媒の流れを示す説明図である。吐出マフラー27へ導かれた吐出冷媒は、供給管27bから容積部27a内部に吹き出される。この時、容積部27a内部の上面側にあって水平方向の開口端を有する屈曲した供給管27bの端部が、周状である容積部27aの内面の接線方向に近い方向に伸びた状態であるので、供給管27bから容積部27aに吹き出された吐出冷媒は、図4で実線矢印にて示すように、容積部27aの内面に沿って吐出管27cの周りを旋回する。そして吐出管27cが容積部27a内部で、供給管27bの吐出冷媒の吹き出し位置より底部側に開口しているので、旋回流となった高圧の吐出冷媒は、吐出管27cを通って容積部27a外部に吐出しようと容積部27aの内部空間を旋回しながら底部側に向かって下降する。高圧の吐出冷媒を容積部27aの内部空間で旋回流として、吐出管27cの容積部27a内部での開口に向けて、底部側に旋回しながら下降させるために、供給管27bの吐出冷媒の吹き出し位置である開口を水平方向から底部側に傾斜させてもよい。 In the compressor 1 holding such a discharge muffler 27, the discharge refrigerant, which is a high-pressure refrigerant including refrigeration oil discharged from the high-stage discharge pipe 24, is guided to the discharge muffler 27 through the discharge pressure connection pipe 29. . FIG. 4 is an explanatory diagram showing the flow of the discharge refrigerant inside the discharge muffler 27. The discharged refrigerant guided to the discharge muffler 27 is blown out from the supply pipe 27b into the volume portion 27a. At this time, in the state where the end of the bent supply pipe 27b having the open end in the horizontal direction on the upper surface side inside the volume 27a extends in a direction close to the tangential direction of the inner surface of the volume 27a that is circumferential. Therefore, the discharge refrigerant blown out from the supply pipe 27b to the volume part 27a swirls around the discharge pipe 27c along the inner surface of the volume part 27a as shown by the solid line arrow in FIG. Since the discharge pipe 27c is open to the bottom side from the discharge position of the discharge refrigerant in the supply pipe 27b inside the volume part 27a, the high-pressure discharge refrigerant that has turned into the swirl flow passes through the discharge pipe 27c. It descends toward the bottom side while turning in the internal space of the volume portion 27a to discharge to the outside. In order to lower the high pressure discharge refrigerant as a swirling flow in the internal space of the volume portion 27a toward the opening inside the volume portion 27a of the discharge pipe 27c while swirling toward the bottom side, the discharge refrigerant discharges from the supply pipe 27b. The opening which is the position may be inclined from the horizontal direction to the bottom side.

吐出マフラー27にて容積部27a内部に供給管27bより吹き出された冷凍機油を含む高圧な吐出冷媒は、容積部27a内部空間を旋回流となって下降するので、冷凍機油の密度が冷媒の密度より大きいことから、吐出冷媒に含まれる冷凍機油が旋回流の遠心力によって、冷媒から分離し、容積部27a内面に付着する。そして付着した冷凍機油滴は、単独で、あるいは他の冷凍機油滴と接触し結合して自重により容積部27a内面に沿って容積部27aの底部に流れ落ちる。このように吐出マフラー27は旋回流式の油分離機能を備えている。容積部27a底部には分離された冷凍機油が集合するので、吐出管27cの容積部27a内部での開口は底部に近い位置とするものの、容積部27aの底部に集合した冷凍機油の油面に接触しない位置としなければならない。 The high-pressure discharge refrigerant containing the refrigeration oil blown out from the supply pipe 27b into the volume 27a by the discharge muffler 27 descends as a swirling flow in the internal space of the volume 27a. Therefore, the density of the refrigeration oil becomes the density of the refrigerant. Since it is larger, the refrigerating machine oil contained in the discharged refrigerant is separated from the refrigerant by the swirling centrifugal force and adheres to the inner surface of the volume 27a. The attached refrigeration oil droplets are contacted with or combined with other refrigeration oil droplets, and flow down to the bottom of the volume portion 27a along the inner surface of the volume portion 27a by their own weight. Thus, the discharge muffler 27 has a swirling flow type oil separation function. Since the separated refrigerating machine oil gathers at the bottom of the volume 27a, the opening inside the volume 27a of the discharge pipe 27c is located close to the bottom, but the oil surface of the refrigerating machine oil gathered at the bottom of the volume 27a. Must be in a non-contact position.

旋回流の遠心力によって冷凍機油が分離された後の高圧な冷媒である吐出冷媒は、旋回流を解除して容積部27aの底部に向けて開口している吐出管27cにその開口から入り込み、その吐出管27cを通って外部に吐出されるが、吐出管27cはこの圧縮機1を用いる冷媒回路の高圧配管51に接続しているので、この高圧配管51に吐出される。容積部27aは所定の内容積(容量)を保有しており、容積部27a内部に、容積部27aの内部空間を上下に仕切るような油分離具等を設けていないため、この所定の内容積をほぼ全量マフラー空間として使用できる。ほぼ全量としたのは、容積部27a内部に伸長される供給管27bと吐出管27cの体積が減じられるためである。 The discharge refrigerant, which is a high-pressure refrigerant after the refrigerating machine oil is separated by the centrifugal force of the swirling flow, enters the discharge pipe 27c opened to the bottom of the volume portion 27a by releasing the swirling flow from the opening, The discharge pipe 27c is discharged to the outside, and since the discharge pipe 27c is connected to the high-pressure pipe 51 of the refrigerant circuit using the compressor 1, it is discharged to the high-pressure pipe 51. Since the volume portion 27a has a predetermined internal volume (capacity), and the oil separation tool or the like that partitions the internal space of the volume portion 27a up and down is not provided in the volume portion 27a, the predetermined internal volume Can be used almost as a muffler space. The reason for the almost total amount is that the volumes of the supply pipe 27b and the discharge pipe 27c that are extended inside the volume portion 27a are reduced.

したがって、ほぼ全量マフラー空間として使用できる容積部27aの所定の内容量を、吐出冷媒の脈動を消音する容積としておけば、この容積部27a内で、高段部12の吐出消音室で消音しきれなかった吐出冷媒の脈動を十分に消音することができる。特許文献1では容積部であるタンクの内部を上下に仕切る油分離具を設置するため、タンクの内部空間はそれらの油分離具により分断された状態となり、分断された個々の空間の容積が小さくなってしまい、実質的には小容量の空間を連続して通過する多段マフラー状となってしまう。 Therefore, if the predetermined internal volume of the volume 27a that can be used as almost the entire amount of the muffler space is set to a volume that silences the pulsation of the discharged refrigerant, the sound can be completely silenced in the discharge muffler chamber of the high stage 12 within the volume 27a. The pulsation of the discharged refrigerant that has not occurred can be sufficiently silenced. In Patent Document 1, since an oil separator that partitions the inside of the tank, which is a volume portion, is installed, the internal space of the tank is divided by these oil separators, and the volume of each divided space is small. As a result, it becomes a multistage muffler that passes through a small volume of space substantially.

小容量のマフラーでは、特に低周波の脈動成分が消音されにくく、広い周波数域での脈動成分の消音効果が得られない。特許文献1のタンクを例えば本実施の形態の容積部27aと同容量(内容積)としても、実質的にはその容量より容量の小さい空間を複数所有する多段マフラーであるので、低周波の脈動成分が本実施の形態の吐出マフラー27より消音されにくい。本実施の形態の吐出マフラー27は、容積部27aの内容積のほぼ全量を一つのマフラー空間として利用できるので、同容量の特許文献1に比べて、低周波まで含む広い周波数域で高圧の冷媒である吐出冷媒の圧力脈動成分を消音でき、吐出冷媒の脈動を十分に消音することができる。特許文献1では得ることが難しかった低周波域での脈動の消音効果が得られる。 In the case of a small-capacity muffler, the low-frequency pulsation component is particularly difficult to mute, and the muffler effect of the pulsation component in a wide frequency range cannot be obtained. Even if the tank of Patent Document 1 has the same capacity (inner volume) as that of the volume part 27a of the present embodiment, for example, it is a multistage muffler that substantially owns a plurality of spaces having a capacity smaller than that capacity. The component is less likely to be silenced than the discharge muffler 27 of the present embodiment. Since the discharge muffler 27 of the present embodiment can use almost the entire inner volume of the volume portion 27a as one muffler space, it is a high-pressure refrigerant in a wide frequency range including a low frequency compared to Patent Document 1 of the same capacity. The pressure pulsation component of the discharged refrigerant can be silenced, and the pulsation of the discharged refrigerant can be sufficiently silenced. The silencing effect of the pulsation in the low frequency range, which was difficult to obtain in Patent Document 1, is obtained.

また吐出マフラー27は、高段部12で圧縮され吐出された吐出冷媒の脈動を十分に消音し、圧縮機1の振動や騒音を低減させる消音効果と合わせて、外部マフラー27に導入された吐出冷媒を容積部27aの内部空間で旋回流とし、吐出冷媒から冷凍機油を分離する旋回流式の油分離機能を有するものである。また吐出マフラー27は、密閉容器10側面に固定保持されるので、圧縮機1本体から離れて別部品としてマフラーや油分離器を設置する構造の冷媒回路に比べ、省スペース化が図れるとともに、圧縮機1に吐出マフラー27が一体化していることで、冷媒回路の設計の自由度が向上し、生産性も向上する効果がある。 Further, the discharge muffler 27 sufficiently discharges the pulsation of the discharged refrigerant that is compressed and discharged by the high stage portion 12, and is combined with the noise reduction effect that reduces the vibration and noise of the compressor 1, and the discharge introduced into the external muffler 27. The refrigerant has a swirling flow type oil separation function in which the refrigerant is swirled in the internal space of the volume portion 27a and the refrigerating machine oil is separated from the discharged refrigerant. Further, since the discharge muffler 27 is fixedly held on the side surface of the hermetic container 10, it can save space and can be compressed as compared with a refrigerant circuit having a structure in which a muffler and an oil separator are installed as separate parts away from the main body of the compressor 1. Since the discharge muffler 27 is integrated with the machine 1, the degree of freedom in designing the refrigerant circuit is improved and the productivity is improved.

容積部27a内部は吐出冷媒により高圧(吐出圧)であり、密閉容器10内部は低段吐出管21から吐出された中間圧の冷媒で満たされ中間圧であるので、容積部27a内部で分離され、容積部27a底部に落下した冷凍機油は、図1に点線矢印で示すように、圧力差により容積部27a底面に開口した油戻し管27dを通って容積部27aの外部に排出される。油戻し管27dの他方(反容積部27a側)は、密閉容器10内部に開口しているので、容積部27a内部で分離された冷凍機油は、油戻し管27dを通って圧縮機1の密閉容器10内部に流入し、密閉容器10底部の油溜め17に戻る。 The inside of the volume portion 27a is at a high pressure (discharge pressure) due to the discharged refrigerant, and the inside of the sealed container 10 is filled with the intermediate pressure refrigerant discharged from the low-stage discharge pipe 21, and thus is separated inside the volume portion 27a. The refrigerating machine oil falling to the bottom of the volume 27a is discharged to the outside of the volume 27a through an oil return pipe 27d opened at the bottom of the volume 27a due to a pressure difference, as indicated by a dotted arrow in FIG. Since the other of the oil return pipe 27d (on the side opposite to the volume part 27a) is opened inside the sealed container 10, the refrigerating machine oil separated inside the volume part 27a passes through the oil return pipe 27d and is sealed in the compressor 1. It flows into the container 10 and returns to the oil sump 17 at the bottom of the sealed container 10.

ここで油戻し管27dの密閉容器10内部への開口が、中間圧冷媒を高段部12に導く冷媒導出管22の密閉容器10内部への開口位置よりも油溜め17側(図1において下方)に位置しているので、油戻し管27dから密閉容器10内部に流入した冷凍機油が、密閉容器10内部の空間A30から冷媒導出管22に流出する中間圧冷媒の流れに巻き込まれて、中間圧冷媒といっしょに冷媒導出管22に流出してしまうことはなく、確実に油溜め17に帰還できる。よって油溜め17の冷凍機油が枯渇してしまうことはなく、油溜め17の冷凍機油の貯油量を適量に維持することができるので、圧縮機1の摺動特性やシール性の低下の危険は回避される。 Here, the opening of the oil return pipe 27d to the inside of the sealed container 10 is closer to the oil reservoir 17 (lower side in FIG. 1) than the opening position of the refrigerant outlet pipe 22 that guides the intermediate pressure refrigerant to the high stage portion 12 to the inside of the sealed container 10. ), The refrigerating machine oil that has flowed into the sealed container 10 from the oil return pipe 27d is caught in the flow of the intermediate pressure refrigerant flowing out of the space A30 in the sealed container 10 into the refrigerant outlet pipe 22, The refrigerant does not flow out into the refrigerant outlet pipe 22 together with the pressure refrigerant, and can be reliably returned to the oil sump 17. Therefore, the refrigerating machine oil in the oil sump 17 will not be depleted, and the amount of refrigerating machine oil stored in the oil sump 17 can be maintained at an appropriate amount. Avoided.

また、この吐出マフラー27での油分離の方法が、旋回流の遠心力を利用して高圧の吐出冷媒に含まれる冷凍機油を分離するものであるので、特許文献1に開示されるような容積部内部を上下に仕切る油分離具に吐出冷媒の流れをぶつけて冷凍機油を分離する、いわゆる邪魔板方式の油分離に比べ、吐出冷媒の急激な流速の低下がなく、吐出冷媒の圧損を減少することができ、圧損による圧縮機効率の低下を回避し、高効率な圧縮機とすることができる。 Further, since the method of oil separation in the discharge muffler 27 is to separate the refrigerating machine oil contained in the high-pressure discharge refrigerant using the centrifugal force of the swirling flow, the volume as disclosed in Patent Document 1 is used. Compared to so-called baffle plate oil separation, where the flow of discharged refrigerant is applied to an oil separator that divides the interior of the unit into upper and lower parts, there is no sudden drop in the flow rate of discharged refrigerant, and pressure loss of discharged refrigerant is reduced. Therefore, a reduction in compressor efficiency due to pressure loss can be avoided, and a highly efficient compressor can be obtained.

この吐出マフラー27は、吐出管27cの容積部27a内部の開口端を容積部27aのほぼ中央に開口するようにしているが、容積部27aに吹き出された吐出冷媒が容積部27a内面に沿って旋回流を起こすことができれば、中央でなくてもよく、吐出管27cを直管として、容積部27a中央から偏心した位置に設置してもよい。また吐出管27cの容積部27a内部の開口する向きも旋回流の吐出冷媒を取り込まない程度であれば軸線方向から傾斜していてもよい。   In the discharge muffler 27, the opening end inside the volume portion 27a of the discharge pipe 27c is opened to the approximate center of the volume portion 27a, but the discharged refrigerant blown out to the volume portion 27a extends along the inner surface of the volume portion 27a. As long as a swirl flow can be generated, the center does not have to be the center, and the discharge pipe 27c may be installed as a straight pipe at a position eccentric from the center of the volume 27a. Further, the opening direction inside the volume portion 27a of the discharge pipe 27c may be inclined from the axial direction as long as it does not take in the swirling flow of discharged refrigerant.

また吐出マフラー27は、油戻し管27dの容積部27a内部への開口位置を容積部27aのほぼ中央としたが、それは中央部が最も容積部27aの軸線方向で下方に位置しているからであり、中央部に限ったものでなく、容積部27a底面で最も下方に位置する部位近郊に設けるものである。これにより容積部27aで分離され底部に集合した冷凍機油を容積部27aの底部に残留させないようにする。   The discharge muffler 27 has an opening position of the oil return pipe 27d to the inside of the volume portion 27a substantially at the center of the volume portion 27a because the center portion is located most downward in the axial direction of the volume portion 27a. Yes, it is not limited to the central portion, but is provided in the vicinity of the lowermost portion of the bottom surface of the volume portion 27a. As a result, the refrigerating machine oil separated at the volume 27a and gathered at the bottom is prevented from remaining at the bottom of the volume 27a.

油戻し管27dは、高圧の空間である容積部27a内部から中間圧の空間である密閉容器10内部に連通するものであるので、通過する流体である冷凍機油、あるいは冷凍機油が容積部27a内部に存在しない場合には吐出冷媒の一部を減圧させるために、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。   The oil return pipe 27d communicates from the inside of the volume portion 27a, which is a high-pressure space, to the inside of the sealed container 10, which is an intermediate-pressure space. In order to reduce the pressure of a part of the discharged refrigerant, it is preferable to form it with a capillary tube or to interpose a pressure reducing valve in the middle.

また圧縮機1は油戻し管27dの密閉容器10内部への開口位置と、冷媒導出管22の密閉容器10内部への開口位置の位相をほぼ180°となるように設置しているが、これは、油戻し管27dを通った冷凍機油の冷媒導出管22からの流出を阻止するために、両者を最大限に引き離したものである。しかし密閉容器10の内部には、回転軸14が回転しているため、その回転方向への流れが存在する。よって密閉容器10内部の中間圧冷媒の流れを考慮すると、油戻し管27dを通った冷凍機油の冷媒導出管22からの流出を阻止するためには、油戻し管27dの密閉容器10内部への開口位置を、冷媒導出管22の密閉容器10内部への開口位置とは重ならないで、冷媒導出管22の密閉容器10内部への開口位置から回転軸14の回転方向に180°進んだ位置までの間となるように設置するのがよい。   The compressor 1 is installed so that the phase of the opening position of the oil return pipe 27d into the sealed container 10 and the opening position of the refrigerant outlet pipe 22 into the sealed container 10 is approximately 180 °. These are maximally separated from each other in order to prevent the refrigerating machine oil from flowing out from the refrigerant outlet pipe 22 through the oil return pipe 27d. However, since the rotating shaft 14 is rotating inside the sealed container 10, there is a flow in the rotating direction. Therefore, in consideration of the flow of the intermediate pressure refrigerant in the closed container 10, in order to prevent the refrigerating machine oil from flowing out from the refrigerant outlet pipe 22 through the oil return pipe 27d, the oil return pipe 27d into the closed container 10 is prevented. The opening position does not overlap with the opening position of the refrigerant outlet tube 22 into the sealed container 10, and the position where the refrigerant outlet tube 22 opens into the sealed container 10 is advanced 180 ° in the rotation direction of the rotary shaft 14. It is good to install so that it is between.

図1に示す圧縮機1では、空間A30に低段吐出管21が電動機13側に向いて開口しており、またその開口位置も油戻し管27dの密閉容器10内部の開口位置よりも電動機13側(図1において上方)にあるので、油戻し管27dを通った冷凍機油を低段吐出管21から吐出される冷媒の流れに巻き込む危険は少ないが、低段吐出管21の開口向きが水平方向もしくは軸線方向から傾斜している方向である圧縮機であれば、低段吐出管21から密閉容器10内部に吐出される中間圧冷媒に油戻し管27dを通った冷凍機油がその吐出された中間圧冷媒の流れに巻き込まれないように、油戻し管27dの密閉容器10内部の開口位置を、低段吐出管21の開口位置よりも密閉容器10底部の油溜め17側となるように設置しなければならない。   In the compressor 1 shown in FIG. 1, the low-stage discharge pipe 21 opens in the space A30 toward the electric motor 13 side, and the opening position of the electric motor 13 is also larger than the opening position of the oil return pipe 27d inside the sealed container 10. 1 (upper in FIG. 1), there is little risk of the refrigerating machine oil passing through the oil return pipe 27d being caught in the flow of the refrigerant discharged from the low stage discharge pipe 21, but the opening direction of the low stage discharge pipe 21 is horizontal. If the compressor is in the direction or the direction inclined from the axial direction, the refrigerating machine oil that has passed through the oil return pipe 27d is discharged to the intermediate pressure refrigerant discharged from the low-stage discharge pipe 21 into the sealed container 10. Installed so that the opening position of the oil return pipe 27d inside the sealed container 10 is closer to the oil reservoir 17 at the bottom of the sealed container 10 than the opening position of the low-stage discharge pipe 21 so as not to get caught in the flow of the intermediate pressure refrigerant. I have to .

また低段吐出管21が電動機13側に向いて開口するものであっても、低段吐出管21の密閉容器10内部の開口位置が、油戻し管27dの密閉容器10内部への開口位置よりも油溜め17に近いと、両者の位相差によっては低段吐出管21から吐出された中間圧冷媒に、油戻し管27dを通った冷凍機油が巻き込まれるので、油戻し管27dの密閉容器10内部への開口位置は、低段吐出管21の開口位置よりも油溜め17側に設置しなければならない。   Even if the low-stage discharge pipe 21 opens toward the electric motor 13, the opening position of the low-stage discharge pipe 21 inside the sealed container 10 is higher than the opening position of the oil return pipe 27 d inside the sealed container 10. However, if it is close to the oil sump 17, depending on the phase difference between the two, the intermediate pressure refrigerant discharged from the low-stage discharge pipe 21 is entrapped in the refrigeration oil that has passed through the oil return pipe 27 d, and thus the sealed container 10 of the oil return pipe 27 d. The opening position to the inside must be installed closer to the oil sump 17 than the opening position of the low stage discharge pipe 21.

圧縮機1において、低段吐出管21から吐出された中間圧冷媒には、低段部11の低段圧縮室に供給された冷凍機油が含まれており、中間圧冷媒が冷媒導出管22に至る前に密閉容器10の内部でこの冷凍機油を分離して、高段部12の高段圧縮室に供給される冷凍機油が過多とならないようにしなければならない。また中間圧冷媒によって、電動機13を冷却し、モータ効率の低下を防止する必要もある。そのため、低段吐出管21の開口位置と冷媒導出管22の密閉容器10内部への開口位置には位相差を設け、低段吐出管21から吐出された中間圧冷媒が、密閉容器10の内部をほとんど循環することなく冷媒導出管22に流出し、高段部12に供給されてしまうことを防いでいる。   In the compressor 1, the intermediate pressure refrigerant discharged from the low stage discharge pipe 21 includes refrigeration oil supplied to the low stage compression chamber of the low stage portion 11, and the intermediate pressure refrigerant is supplied to the refrigerant outlet pipe 22. Before reaching, it is necessary to separate the refrigerating machine oil inside the hermetic container 10 so that the refrigerating machine oil supplied to the high stage compression chamber of the high stage 12 is not excessive. Further, it is necessary to cool the electric motor 13 with the intermediate pressure refrigerant to prevent the motor efficiency from being lowered. Therefore, a phase difference is provided between the opening position of the low-stage discharge pipe 21 and the opening position of the refrigerant outlet pipe 22 into the sealed container 10, so that the intermediate pressure refrigerant discharged from the low-stage discharge pipe 21 flows into the closed container 10. It flows out to the refrigerant | coolant derivation | leading-out pipe | tube 22 almost without circulating, and is prevented from being supplied to the high stage part 12. FIG.

圧縮機1では、冷媒導出管22の密閉容器10内部への開口位置に対して、低段吐出管21の開口位置(中間圧冷媒を密閉容器10内部へ吐出する位置)と油戻し管27dの密閉容器10内部への開口位置をほぼ180°位相がずれたところとしている。 In the compressor 1, the opening position of the low-stage discharge pipe 21 (position for discharging intermediate pressure refrigerant into the sealed container 10) and the oil return pipe 27 d with respect to the opening position of the refrigerant outlet pipe 22 into the sealed container 10. The opening position to the inside of the sealed container 10 is set to a position where the phase is shifted by approximately 180 °.

ただし上記3者の開口位置はこれに限定されるものではなく、油戻し管27dの密閉容器10内部への開口位置は、油戻し管27dを通って密閉容器10内部に流入した冷凍機油が冷媒導出管22から持ち出されないような位置に、また低段吐出管21の開口位置は、低段吐出管21から吐出された中間圧冷媒が密閉容器10の内部を循環できる位置に、冷媒導出管22の密閉容器10内部への開口位置に対して、それぞれが所定の位相差を有して設置していればよい。   However, the opening positions of the three members are not limited to this, and the opening position of the oil return pipe 27d to the inside of the sealed container 10 is that the refrigerating machine oil flowing into the sealed container 10 through the oil return pipe 27d is a refrigerant. The refrigerant outlet pipe is positioned so as not to be taken out from the outlet pipe 22 and the opening position of the lower stage discharge pipe 21 is at a position where the intermediate pressure refrigerant discharged from the lower stage discharge pipe 21 can circulate inside the sealed container 10. What is necessary is just to install each with the predetermined | prescribed phase difference with respect to the opening position to 22 inside of the airtight container 10. FIG.

例えば、油戻し管27dの密閉容器10内部への開口位置を、冷媒導出管22の密閉容器10内部への開口位置から回転軸14の回転方向に180°進んだ位置までの間に設置し、低段吐出管21の開口位置を、冷媒導出管22の密閉容器10内部への開口位置からほぼ180°の位相差となるように設置したり、3者の開口位置の位相差がそれぞれほぼ120°で均等になるように設置したりしてもよい。 For example, the opening position of the oil return pipe 27d to the inside of the sealed container 10 is installed between the opening position of the refrigerant outlet pipe 22 to the inside of the sealed container 10 and a position advanced by 180 ° in the rotation direction of the rotary shaft 14, The opening position of the low-stage discharge pipe 21 is set so as to have a phase difference of approximately 180 ° from the opening position of the refrigerant outlet pipe 22 into the sealed container 10, and the phase difference between the three opening positions is approximately 120 respectively. It may be installed evenly at °.

圧縮機1は以上のように構成されているので、密閉容器10に固定保持され、高圧の吐出冷媒を容積部27aの内部空間にて旋回流とし、旋回流の遠心力によって吐出冷媒から冷凍機油を分離する吐出マフラー27により、吐出マフラーの容積部27aの内部空間を上下に仕切る油分離具等で分断させることなく、容積部全体を一つの大きなマフラー空間とすることができ、旋回流の遠心力により圧縮機構部から吐出された高圧の吐出冷媒から冷凍機油を分離できるとともに、この吐出冷媒の脈動成分を広い周波数域で消音でき、高圧の吐出冷媒の脈動を十分に消音することができる。   Since the compressor 1 is configured as described above, the compressor 1 is fixedly held in the sealed container 10, and the high-pressure discharged refrigerant is swirled in the internal space of the volume portion 27 a, and the refrigerating machine oil is converted from the discharged refrigerant by the centrifugal force of the swirling flow. The discharge muffler 27 separates the inner volume of the discharge muffler volume 27a without dividing it by an oil separator or the like that vertically divides the volume muffler space into one large muffler space. Refrigerating machine oil can be separated from the high-pressure discharged refrigerant discharged from the compression mechanism by force, and the pulsation component of the discharged refrigerant can be silenced in a wide frequency range, and the pulsation of the high-pressure discharged refrigerant can be sufficiently silenced.

また吐出マフラーの容積部27aにて吐出冷媒から分離され、油戻し管27dを通って密閉容器10内部に流入した冷凍機油が、密閉容器10内部で冷媒導出管22に流出する中間圧の冷媒の流れに巻き込まれて、冷媒導出管22から流出して高段部12に供給されてしまうことはなく、確実に密閉容器10底部の油溜め17に帰還させることができ、油溜め17の冷凍機油枯渇の危険を回避し、油溜め17の冷凍機油の貯油量を適量に維持できる。また吐出マフラー27での油分離の際、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離するので、吐出冷媒の圧損を減じることができ、また吐出マフラーの圧縮機本体との一体化により省スペース化が図れ、冷媒回路の設計の自由度や生産性が向上するといった効果が得られる。 In addition, the refrigerant oil separated from the discharged refrigerant in the volume part 27a of the discharge muffler and flowing into the sealed container 10 through the oil return pipe 27d flows into the refrigerant outlet pipe 22 inside the sealed container 10 and the intermediate pressure refrigerant flows. It is not caught in the flow, flows out of the refrigerant outlet pipe 22 and is not supplied to the high stage portion 12, and can be reliably returned to the oil reservoir 17 at the bottom of the sealed container 10. The risk of exhaustion can be avoided and the amount of refrigerating machine oil stored in the oil sump 17 can be maintained at an appropriate level. Further, when separating the oil in the discharge muffler 27, the centrifugal force of the swirling flow is used to separate the refrigerating machine oil from the discharged refrigerant, so that the pressure loss of the discharged refrigerant can be reduced and the discharge muffler is integrated with the compressor body. Thus, space saving can be achieved, and the effect of improving the degree of freedom and productivity of the refrigerant circuit design can be obtained.

圧縮機1では、冷媒導出管22を備え、密閉容器10内部の中間圧冷媒を、密閉容器10外部に導出した後で、一端が密閉容器10外部に位置する高段吸入管23を経由して高段圧縮機構部12に吸入させるようにしていたが、冷媒導出管22を備えず、高段吸入管を密閉容器10内部に収納し、その高段吸入管の一端を密閉容器10内部に開口し、他端を高段圧縮機構部12に接続するように構成する圧縮機もある。この場合、低段圧縮機構部11で圧縮され、低段吐出管21から密閉容器10内部に吐出された中間圧冷媒は、密閉容器10の外部に出ることなく、密閉容器10内部に開口する高段吸入管から高段圧縮機構部12に吸入される。 In the compressor 1, the refrigerant outlet pipe 22 is provided, and after the intermediate pressure refrigerant inside the sealed container 10 is led out to the outside of the sealed container 10, one end passes through the high-stage suction pipe 23 positioned outside the sealed container 10. The high stage compression mechanism 12 is designed to be sucked, but the refrigerant outlet pipe 22 is not provided, the high stage suction pipe is accommodated in the sealed container 10, and one end of the high stage suction pipe is opened in the sealed container 10. However, there is also a compressor configured to connect the other end to the high-stage compression mechanism unit 12. In this case, the intermediate pressure refrigerant compressed by the low-stage compression mechanism 11 and discharged from the low-stage discharge pipe 21 to the inside of the sealed container 10 does not go out of the sealed container 10 and opens to the inside of the sealed container 10. It is sucked into the high stage compression mechanism 12 from the stage suction pipe.

上記のような高段吸入管を密閉容器10内部に収納する内部循環形式の内部中間圧型2段圧縮式の圧縮機においては、油戻し管27dの密閉容器10内部への開口が、中間圧冷媒を高段部12に吸入する高段吸入管の密閉容器10内部の開口位置、すなわち高段吸入管の中間圧冷媒吸い込み口の位置、よりも油溜め17側に位置させることで、油戻し管27dから密閉容器10内部に流入した冷凍機油が、密閉容器10内部の中間圧冷媒といっしょに密閉容器10内に収納された高段吸入管に流入するのを防止して、確実に油溜め17に帰還させることができる。 In the internal circulation type internal intermediate pressure type two-stage compression compressor in which the high-stage suction pipe as described above is accommodated in the closed container 10, the opening of the oil return pipe 27d into the closed container 10 is an intermediate pressure refrigerant. By placing the high-stage suction pipe for sucking the high-stage portion 12 inside the closed container 10, that is, the position of the intermediate pressure refrigerant suction port of the high-stage suction pipe, closer to the oil reservoir 17, the oil return pipe The refrigerating machine oil that has flowed into the sealed container 10 from 27d is prevented from flowing into the high-stage suction pipe housed in the sealed container 10 together with the intermediate pressure refrigerant in the sealed container 10 to ensure the oil reservoir 17 Can be returned to.

また上記のような内部循環形式の内部中間圧型2段圧縮式の圧縮機においては、油戻し管27d、低段吐出管21、高段吸入管の3者の周方向の配置(位相差)は、圧縮機1の冷媒導出管22の密閉容器10内部への開口位置を、密閉容器10内部に収納された高段吸入管の開口位置(中間圧冷媒吸い込み口)に置き換えて適用することができ、同様な効果が得られる。 Further, in the internal circulation type internal intermediate pressure type two-stage compression compressor as described above, the circumferential arrangement (phase difference) of the oil return pipe 27d, the low-stage discharge pipe 21, and the high-stage suction pipe is as follows. The opening position of the refrigerant outlet pipe 22 of the compressor 1 into the sealed container 10 can be replaced with the opening position (intermediate pressure refrigerant suction port) of the high-stage suction pipe stored in the sealed container 10. A similar effect can be obtained.

実施の形態2.
図5は、この発明を実施するための実施の形態2における内部中間圧型2段圧縮式の圧縮機2を示す説明用縦断面図である。なお図5において図1と同一の符号で示すものは、図1の圧縮機1と同一もしくは同様な部品であり、ここでの説明は省略する。図5に示す圧縮機2が図1に示す圧縮機1と異なる点は、油戻し管27eの密閉容器10内部への開口位置が、油溜め17に臨んでいる点である。油戻し管27eが油溜め17に貯留されている冷凍機油中に開口している。吐出マフラー27にて吐出冷媒から分離された冷凍機油を直接油溜め17の冷凍機油中に戻すのである。
Embodiment 2. FIG.
FIG. 5 is an explanatory longitudinal sectional view showing an internal intermediate pressure type two-stage compression compressor 2 according to Embodiment 2 for carrying out the present invention. 5 that are the same as those in FIG. 1 are the same or similar parts as the compressor 1 in FIG. 1, and a description thereof is omitted here. The compressor 2 shown in FIG. 5 is different from the compressor 1 shown in FIG. 1 in that the opening position of the oil return pipe 27 e into the sealed container 10 faces the oil sump 17. An oil return pipe 27 e is opened in the refrigerating machine oil stored in the oil sump 17. The refrigerating machine oil separated from the discharged refrigerant by the discharge muffler 27 is directly returned to the refrigerating machine oil in the oil sump 17.

よって、油戻し管27eの油溜め17側の領域には、密閉容器10内部の油溜め17にある冷凍機油の油面高さと圧力的に釣り合う高さまで冷凍機油が存在する。圧縮機1同様に、油戻し管27eは、複数の管を接続して形成してもよく、高圧空間から中間圧空間に連通するものであるので、通過する流体である冷凍機油、あるいは冷凍機油が容積部27a内部に存在しない場合には吐出冷媒の一部を、中間圧まで減圧させるために、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。 Therefore, the refrigerating machine oil exists in a region on the oil sump 17 side of the oil return pipe 27e up to a height that is pressure-balanced with the oil level height of the refrigerating machine oil in the oil sump 17 inside the closed container 10. Similar to the compressor 1, the oil return pipe 27e may be formed by connecting a plurality of pipes and communicates from the high pressure space to the intermediate pressure space. Is not present inside the volume 27a, it is preferable to form a part of the discharged refrigerant by a capillary tube or to interpose a pressure reducing valve in the middle in order to reduce the pressure of the discharged refrigerant to an intermediate pressure.

圧縮機2では、油戻し管27eから直接油溜め17の冷凍機油中に吐出マフラー27で吐出冷媒から分離された冷凍機油を帰還させることができるので、密閉容器10内部の中間圧冷媒の流れに影響を受けることがない。 In the compressor 2, the refrigeration oil separated from the discharge refrigerant by the discharge muffler 27 can be returned directly from the oil return pipe 27 e to the refrigeration oil in the oil sump 17, so that the flow of the intermediate pressure refrigerant in the sealed container 10 can be reduced. Not affected.

そのため、冷媒導出管22の密閉容器10内部への開口位置に対する油戻し管27eの密閉容器10内部への開口位置(位相差)がどこであっても、油戻し管27eを通った冷凍機油が中間圧冷媒によって冷媒導出管22に持ち出されてしまうことを回避できるので、実施の形態1の効果に加えて、油戻し管27eと冷媒導出管22の密閉容器10周方向の配置に関する設計自由度が高めることができ、油戻し管27eの密閉容器10への接続に関する作業性が向上できる効果が得られる。 Therefore, the refrigerating machine oil passing through the oil return pipe 27e is intermediate regardless of the position (phase difference) of the oil return pipe 27e into the closed container 10 with respect to the opening position of the refrigerant outlet pipe 22 into the closed container 10. Since it is possible to avoid being taken out to the refrigerant outlet pipe 22 by the pressurized refrigerant, in addition to the effects of the first embodiment, the degree of freedom in designing the arrangement of the oil return pipe 27e and the refrigerant outlet pipe 22 in the circumferential direction of the sealed container 10 is increased. The effect which can improve the workability | operativity regarding the connection to the airtight container 10 of the oil return pipe | tube 27e can be acquired.

圧縮機2においても、吐出マフラー27の供給管27bや吐出管27cや中間圧接続管25や吐出圧接続管29、ブラケット26等の構成は、実施の形態1で述べた種々の構成が同様に適用できるものであり、容積部27aの内部空間では圧縮機1同様に、吐出冷媒を旋回流として、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離し、分離した冷凍機油を油戻し管27eから圧力差により油溜め17に帰還させる。また中間圧導出管22と低段吐出管21の密閉容器10内部での開口位置の関係も実施の形態1同様である。 In the compressor 2 as well, the configurations of the supply pipe 27b, the discharge pipe 27c, the intermediate pressure connection pipe 25, the discharge pressure connection pipe 29, the bracket 26, etc. of the discharge muffler 27 are the same as those in the first embodiment. In the internal space of the volume portion 27a, similarly to the compressor 1, the discharged refrigerant is used as a swirling flow, and the refrigerating machine oil is separated from the discharged refrigerant using the centrifugal force of the swirling flow. It is returned to the oil sump 17 by the pressure difference from the return pipe 27e. The relationship between the opening positions of the intermediate pressure outlet pipe 22 and the low-stage discharge pipe 21 inside the sealed container 10 is the same as that of the first embodiment.

圧縮機2は、冷媒導出管22を備え、密閉容器10内部の中間圧冷媒を、密閉容器10外部に導出した後で、一端が密閉容器10外部に位置する高段吸入管23を経由して高段圧縮機構部12に吸入させるようにしていたが、冷媒導出管22を備えず、高段吸入管を密閉容器10内部に収納し、その高段吸入管の一端を密閉容器10内部に開口し、他端を高段圧縮機構部12に接続するように構成する内部循環形式の内部中間圧型2段圧縮式の圧縮機に適用しても、同様な効果が得られる。 The compressor 2 includes a refrigerant outlet pipe 22, and after the intermediate pressure refrigerant inside the sealed container 10 is led out to the outside of the sealed container 10, one end thereof passes through a high-stage suction pipe 23 positioned at the outside of the sealed container 10. The high stage compression mechanism 12 is designed to be sucked, but the refrigerant outlet pipe 22 is not provided, the high stage suction pipe is accommodated in the sealed container 10, and one end of the high stage suction pipe is opened in the sealed container 10. However, the same effect can be obtained by applying to an internal circulation type internal intermediate pressure type two-stage compression compressor configured to connect the other end to the high-stage compression mechanism section 12.

実施の形態3.
図6は、この発明を実施するための実施の形態3における内部中間圧型2段圧縮式の圧縮機3を示す説明用縦断面図である。なお図6において図1、図5と同一の符号で示すものは、図1の圧縮機1および図5の圧縮機2と同一もしくは同様な部品であり、ここでの説明は省略する。図6に示す圧縮機3が図1に示す圧縮機1または図5に示す圧縮機2と異なる点は、油戻し管27fの容積部27a側とは反対側の開口端が、密閉容器10内部に開口しているのではなく、低段吸入管20に開口している点である。油戻し管27fの一方が容積部27a内部に、他方(反容積部27a側)が吸入圧(低圧)空間に連通しているのである。
Embodiment 3 FIG.
FIG. 6 is an explanatory longitudinal sectional view showing an internal intermediate pressure type two-stage compression compressor 3 according to Embodiment 3 for carrying out the present invention. 6 that are the same as those in FIGS. 1 and 5 are the same as or similar to those in the compressor 1 in FIG. 1 and the compressor 2 in FIG. 5, and a description thereof is omitted here. The compressor 3 shown in FIG. 6 is different from the compressor 1 shown in FIG. 1 or the compressor 2 shown in FIG. 5 in that the opening end of the oil return pipe 27f on the side opposite to the volume 27a side is inside the sealed container 10. It is a point that it opens to the low stage suction pipe 20 instead of opening. One of the oil return pipes 27f communicates with the inside of the volume portion 27a, and the other (on the opposite volume portion 27a side) communicates with the suction pressure (low pressure) space.

このため容積部27a内部で吐出冷媒から分離された冷凍機油は、一方が容積部27a内の吐出圧(高圧)で、他方が吸入圧空間に連通する油戻し管27fを圧力差により通過して、吸入圧空間である低段吸入管20内に流入し、低段吸入管20を流れる低圧冷媒とともに、低段部11の低段吸入室から低段圧縮室に供給され、低段圧縮室のシールや低段部11の摺動部の潤滑に寄与する。吐出マフラー27で吐出冷媒から分離された冷凍機油を、密閉容器10内部に流入させて油溜め17に帰還させるのでなく、低段部11の低段圧縮室に全量供給するものである。 For this reason, one of the refrigerating machine oil separated from the discharge refrigerant inside the volume 27a passes through the oil return pipe 27f communicating with the suction pressure space by the discharge pressure (high pressure) in the volume 27a due to the pressure difference. The low-pressure refrigerant flows into the low-pressure suction pipe 20 which is the suction pressure space and flows through the low-pressure suction pipe 20 and is supplied from the low-pressure suction chamber of the low-pressure section 11 to the low-pressure compression chamber. This contributes to the lubrication of the seal and the sliding portion of the low step portion 11. The refrigerating machine oil separated from the discharge refrigerant by the discharge muffler 27 is not fed into the sealed container 10 and returned to the oil sump 17 but is supplied in its entirety to the low-stage compression chamber of the low-stage portion 11.

低段圧縮室に供給された油戻し管27fを通った冷凍機油は、低段圧縮室からそこで圧縮された中間圧冷媒といっしょに低段吐出管21から空間A30に吐出され、中間圧冷媒が冷媒導出管22に流出する以前に、密閉容器10内部で中間圧冷媒から分離し、油溜め17に帰還する。この圧縮機3では、吐出マフラー27で吐出冷媒から分離された冷凍機油は、油戻し管27fから低段部11を経由して油溜め17に帰還することになるのである。圧縮機1および圧縮機2では、吐出マフラー27で吐出冷媒から分離した冷凍機油を油溜め17に帰還させ、油溜め17から低段部11に冷凍機油が供給されることになるが、圧縮機3では、吐出マフラー27で吐出冷媒から分離した冷凍機油を油溜め17に帰還する以前に、低段部11の低段圧縮室に供給するのである。 The refrigerating machine oil that has passed through the oil return pipe 27f supplied to the low-stage compression chamber is discharged from the low-stage discharge pipe 21 into the space A30 together with the intermediate-pressure refrigerant compressed there, and the intermediate-pressure refrigerant is Before flowing out to the refrigerant outlet pipe 22, the refrigerant is separated from the intermediate pressure refrigerant inside the sealed container 10 and returned to the oil sump 17. In this compressor 3, the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 returns to the oil sump 17 through the low stage portion 11 from the oil return pipe 27f. In the compressor 1 and the compressor 2, the refrigeration oil separated from the refrigerant discharged by the discharge muffler 27 is returned to the oil reservoir 17, and the refrigeration oil is supplied from the oil reservoir 17 to the lower stage portion 11. 3, the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 is supplied to the low-stage compression chamber of the low-stage portion 11 before returning to the oil sump 17.

ここで油戻し管27fは、複数の配管を接続して形成してもよく、高圧空間から低圧空間に連通するものであるので、通過する流体である冷凍機油、あるいは冷凍機油が容積部27a内部に存在しない場合には吐出冷媒の一部を、低圧まで減圧させるので、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。 Here, the oil return pipe 27f may be formed by connecting a plurality of pipes and communicates from the high-pressure space to the low-pressure space. If not, a part of the discharged refrigerant is depressurized to a low pressure, so it is preferable to form it with a capillary tube or to interpose a depressurization valve in the middle.

圧縮機3は、吐出マフラー27で吐出冷媒から分離した冷凍機油を、油戻し管27fと低段吸入管20を経由させ低圧冷媒とともに低段部11の低段圧縮室に供給したので、低段圧縮室のシール性が向上し、高効率な圧縮機となる効果が得られる。圧縮機3は、使用する冷媒が二酸化炭素であり、動作圧力が極めて高く、低段圧縮室の圧力と吸入圧と差圧も大きく、低段圧縮室から漏れを抑えて漏れ損失の増加を防止するために、従来のHFC冷媒等の冷媒を使用する圧縮機に比べ高いシール効果が要求されるので、吐出マフラー27で吐出冷媒から分離した冷凍機油を、低段部11の低段圧縮室に供給することは、低段圧縮室のシール性向上に貢献する。また低段部11の摺動部の潤滑性向上により、信頼性の高い圧縮機となる効果が得られる。 The compressor 3 supplies the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 to the low-stage compression chamber of the low-stage portion 11 together with the low-pressure refrigerant via the oil return pipe 27f and the low-stage suction pipe 20. The sealing property of the compression chamber is improved, and the effect of becoming a highly efficient compressor is obtained. The compressor 3 uses carbon dioxide, the operating pressure is extremely high, the pressure in the low-stage compression chamber, the suction pressure, and the differential pressure are large, preventing leakage from the low-stage compression chamber and preventing an increase in leakage loss. Therefore, since a higher sealing effect is required compared to a compressor using a refrigerant such as a conventional HFC refrigerant, the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 is transferred to the low stage compression chamber of the low stage 11. Supplying contributes to improving the sealing performance of the low-stage compression chamber. Moreover, the effect of becoming a highly reliable compressor is acquired by the lubricity improvement of the sliding part of the low step part 11. FIG.

また吐出マフラー27により高段部12から吐出される吐出冷媒の脈動を十分に消音できるとともに、油分離機構により吐出冷媒から分離された冷凍機油は、低段部11から密閉容器10内に吐出されて密閉容器10内で油分離されるので、密閉容器10底部の油溜め17に帰還させることができ、油溜め17の冷凍機油枯渇の危険を回避し、油溜め17の冷凍機油の貯油量を適量に維持することができる。 Further, the pulsation of the refrigerant discharged from the high stage portion 12 can be sufficiently silenced by the discharge muffler 27, and the refrigerating machine oil separated from the refrigerant discharged by the oil separation mechanism is discharged from the low stage portion 11 into the sealed container 10. Since the oil is separated in the sealed container 10, it can be returned to the oil reservoir 17 at the bottom of the sealed container 10, avoiding the risk of exhausting the refrigerating machine oil in the oil reservoir 17, and reducing the amount of refrigerating machine oil stored in the oil reservoir 17. An appropriate amount can be maintained.

さらに圧縮機1同様に、吐出マフラー27での油分離の際、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離するので、吐出冷媒の圧損を減じることができ、また吐出マフラーの圧縮機本体との一体化により省スペース化が図れ、冷媒回路の設計の自由度や生産性が向上するといった効果が得られる。 Further, similar to the compressor 1, when separating the oil in the discharge muffler 27, the centrifugal oil of the swirling flow is used to separate the refrigerating machine oil from the discharged refrigerant, so that the pressure loss of the discharged refrigerant can be reduced, and the discharge muffler Space saving can be achieved by integrating with the compressor body, and the effect of improving the degree of freedom and productivity of designing the refrigerant circuit can be obtained.

なお圧縮機3では、油戻し管27fの吸入圧空間への連通を、低段吸入管20と接続する構成としたが、油戻し管27fの他方(反容積部27a側)を冷媒回路の低圧配管50に開口するように接続してもよく、また密閉容器10を貫通して、低段吸入室など低段部11の吸入圧空間に開口するように接続しても同様な効果が得られる。 In the compressor 3, the connection of the oil return pipe 27f to the suction pressure space is configured to be connected to the low-stage suction pipe 20. However, the other side of the oil return pipe 27f (on the opposite volume portion 27a side) is connected to the low pressure of the refrigerant circuit. A similar effect can be obtained by connecting to the pipe 50 so as to open, or connecting through the sealed container 10 so as to open to the suction pressure space of the low stage portion 11 such as the low stage suction chamber. .

圧縮機3においても、吐出マフラー27の供給管27bや吐出管27cや中間圧接続管25や吐出圧接続管29、ブラケット26等の構成は、実施の形態1で述べた種々の構成が同様に適用できるものであり、容積部27aの内部空間では圧縮機1同様に、吐出冷媒を旋回流として、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離する。また中間圧導出管22と低段吐出管21の密閉容器10内部での開口位置の関係も実施の形態1同様である。 In the compressor 3 as well, the configurations of the supply pipe 27b, the discharge pipe 27c, the intermediate pressure connection pipe 25, the discharge pressure connection pipe 29, the bracket 26, and the like of the discharge muffler 27 are the same as those in the first embodiment. In the internal space of the volume portion 27a, as in the compressor 1, the discharged refrigerant is used as a swirling flow, and the refrigerating machine oil is separated from the discharged refrigerant using the centrifugal force of the swirling flow. The relationship between the opening positions of the intermediate pressure outlet pipe 22 and the low-stage discharge pipe 21 inside the sealed container 10 is the same as that of the first embodiment.

圧縮機3は、冷媒導出管22を備え、密閉容器10内部の中間圧冷媒を、密閉容器10外部に導出した後で、一端が密閉容器10外部に位置する高段吸入管23を経由して高段圧縮機構部12に吸入させるようにしていたが、冷媒導出管22を備えず、高段吸入管を密閉容器10内部に収納し、その高段吸入管の一端は密閉容器10内部に開口し、他端を高段圧縮機構部12に接続するように構成する内部循環形式の内部中間圧型2段圧縮式の圧縮機に適用しても、同様な効果が得られる。 The compressor 3 includes a refrigerant outlet pipe 22, and after the intermediate pressure refrigerant inside the sealed container 10 is led out to the outside of the sealed container 10, one end thereof passes through a high-stage suction pipe 23 positioned at the outside of the sealed container 10. The high stage compression mechanism 12 is designed to be sucked in, but the refrigerant outlet pipe 22 is not provided, the high stage suction pipe is accommodated in the sealed container 10, and one end of the high stage suction pipe is opened in the sealed container 10. However, the same effect can be obtained by applying to an internal circulation type internal intermediate pressure type two-stage compression compressor configured to connect the other end to the high-stage compression mechanism section 12.

実施の形態4.
図7は、この発明を実施するための実施の形態4における内部中間圧型2段圧縮式の圧縮機4を示す説明用縦断面図である。なお図7において図1、図5、図6と同一の符号で示すものは、図1の圧縮機1、図5の圧縮機2および図6の圧縮機3と同一もしくは同様な部品であり、ここでの説明は省略する。図7に示す圧縮機4が図1に示す圧縮機1、図5に示す圧縮機2および図6の圧縮機3と異なる点は、油戻し管を2本備え、一方の油戻し管27gが図5の圧縮機3同様に、容積部27a側とは反対側の開口端を低段吸入管20に開口しており、他方の油戻し管27hが、容積部27a側とは反対側の開口端を高段吸入管23に開口している点である。油戻し管27gの一方が容積部27a内部に、他方(反容積部27a側)が吸入圧(低圧)空間に連通し、油戻し管27hの一方が容積部27a内部に、他方(反容積部27a側)が高段部12の吸入空間に連通しているのである。
Embodiment 4 FIG.
FIG. 7 is an explanatory longitudinal sectional view showing an internal intermediate pressure type two-stage compression compressor 4 according to Embodiment 4 for carrying out the present invention. 7, the same reference numerals as those in FIGS. 1, 5, and 6 are the same or similar parts as the compressor 1 in FIG. 1, the compressor 2 in FIG. 5, and the compressor 3 in FIG. 6. The description here is omitted. The compressor 4 shown in FIG. 7 differs from the compressor 1 shown in FIG. 1, the compressor 2 shown in FIG. 5 and the compressor 3 shown in FIG. 6 in that two oil return pipes are provided, and one oil return pipe 27g Similar to the compressor 3 of FIG. 5, the opening end on the opposite side to the volume portion 27a side is opened to the low-stage suction pipe 20, and the other oil return pipe 27h is opened on the opposite side to the volume portion 27a side. The end is open to the high-stage suction pipe 23. One of the oil return pipes 27g communicates with the inside of the volume part 27a, the other (reverse volume part 27a side) communicates with the suction pressure (low pressure) space, and one of the oil return pipes 27h enters the interior of the volume part 27a and the other (anti-volume part 27a side) communicates with the suction space of the high step portion 12.

油戻し管27gの吸入圧空間への連通は、油戻し管27fの他方(反容積部27a側)を冷媒回路の低圧配管50に開口するように接続してもよく、また密閉容器10を貫通して、低段部11の低段吸入室などの吸入圧空間に開口するように接続してもよい。また油戻し管27hの高段部12の吸入空間への連通は、油戻し管27hの他方(反容積部27a側)を中間圧接続管25または冷媒導出管22に開口するように接続してもよく、また密閉容器10を貫通して、高段部12の高段吸入室などの中間圧空間に開口するように接続してもよい。油戻し管27hの他方(反容積部27a側)は、冷媒導出管22から高段吸入管23を経て高段部12の高段吸入室に至る高段部12の吸入空間に接続するものである。以降、低圧空間に連通する油戻し管27gを低段油戻し管27g、高段部12の吸入空間に連通する油戻し管27hを高段油戻し管27hと呼ぶものとする。 The oil return pipe 27g can be connected to the suction pressure space by connecting the other side of the oil return pipe 27f (on the opposite volume 27a side) to the low-pressure pipe 50 of the refrigerant circuit or through the sealed container 10. Then, it may be connected so as to open to a suction pressure space such as a low-stage suction chamber of the low-stage portion 11. Further, the communication of the oil return pipe 27h to the suction space of the high stage portion 12 is performed by connecting the other side (the opposite volume portion 27a side) of the oil return pipe 27h to the intermediate pressure connection pipe 25 or the refrigerant outlet pipe 22. Alternatively, it may be connected so as to pass through the sealed container 10 and open to an intermediate pressure space such as a high stage suction chamber of the high stage 12. The other of the oil return pipe 27h (on the opposite volume part 27a side) is connected to the suction space of the high stage part 12 from the refrigerant outlet pipe 22 through the high stage suction pipe 23 to the high stage suction chamber of the high stage part 12. is there. Hereinafter, the oil return pipe 27g communicating with the low pressure space is referred to as a low stage oil return pipe 27g, and the oil return pipe 27h communicating with the suction space of the high stage portion 12 is referred to as a high stage oil return pipe 27h.

圧縮機4では、容積部27a内部で吐出冷媒から分離された冷凍機油は、一方が容積部27a内の吐出圧(高圧)で、他方が吸入圧空間に連通する低段油戻し管27gを圧力差により通過して、吸入圧空間である低段吸入管20内に流入するものと、一方が容積部27a内の吐出圧(高圧)で、他方が高段部12の吸入空間となる中間圧空間に連通する高段油戻し管27hを圧力差により通過して、高段吸入管23内に流入するものとに分けられる。 In the compressor 4, the refrigerating machine oil separated from the refrigerant discharged inside the volume portion 27 a is one of the discharge pressure (high pressure) in the volume portion 27 a and the other is pressured through the low-stage oil return pipe 27 g communicating with the suction pressure space. Passing through the difference and flowing into the low-stage suction pipe 20 which is the suction pressure space, one is the discharge pressure (high pressure) in the volume portion 27a, and the other is the intermediate pressure that becomes the suction space of the high-stage portion 12 The high pressure oil return pipe 27h communicated with the space passes through the high pressure oil pressure pipe 27h and flows into the high pressure suction pipe 23.

2本の油戻し管27g、27hは出入口での圧力差が異なり、圧力差の大きい低段油戻し管27gを通過する冷凍機油の体積の方が高段油戻し管27hを通過する冷凍機油の体積より多くなる。低段油戻し管27gを通って低段吸入管20内に流入した冷凍機油は、低段吸入管20を流れる低圧冷媒とともに、低段部11の低段圧縮室に供給され、低段圧縮室のシールや低段部11の摺動部の潤滑に寄与する。そして低段圧縮室から低段部11で圧縮された中間圧冷媒といっしょに低段吐出管21から空間A30に吐出され、中間圧冷媒が冷媒導出管22に流出する以前に、密閉容器10内部で中間圧冷媒から分離し、油溜め17に帰還する。 The two oil return pipes 27g and 27h have different pressure differences at the inlet and outlet, and the volume of the refrigerating machine oil that passes through the low-stage oil return pipe 27g having a large pressure difference is larger than that of the refrigerating machine oil that passes through the high-stage oil return pipe 27h. More than the volume. The refrigerating machine oil that has flowed into the low-stage suction pipe 20 through the low-stage oil return pipe 27g is supplied to the low-stage compression chamber of the low-stage portion 11 together with the low-pressure refrigerant flowing through the low-stage suction pipe 20. This contributes to the lubrication of the seal and the sliding portion of the low step portion 11. Then, the intermediate pressure refrigerant compressed in the low stage portion 11 from the low stage compression chamber is discharged into the space A30 from the low stage discharge pipe 21, and before the intermediate pressure refrigerant flows into the refrigerant outlet pipe 22, The refrigerant is separated from the intermediate pressure refrigerant and returned to the oil sump 17.

一方、高段油戻し管27hを通って高段吸入管23内に流入した冷凍機油は、高段吸入管23を流れる中間圧冷媒とともに、高段部12の高段圧縮室に供給され、高段圧縮室のシールや高段部12の摺動部の潤滑に寄与する。そして高段圧縮室から高段部12で圧縮された吐出冷媒といっしょに高段吐出管24から吐出圧接続管29を経由して、再び吐出マフラー27へ到達し、容積部27a内で吐出冷媒から分離される。 On the other hand, the refrigerating machine oil that has flowed into the high-stage intake pipe 23 through the high-stage oil return pipe 27h is supplied to the high-stage compression chamber of the high-stage portion 12 together with the intermediate pressure refrigerant flowing through the high-stage intake pipe 23. This contributes to lubrication of the seal of the stage compression chamber and the sliding part of the high stage part 12. Then, together with the discharge refrigerant compressed in the high stage portion 12 from the high stage compression chamber, it reaches the discharge muffler 27 again via the discharge pressure connecting pipe 29 from the high stage discharge pipe 24, and discharge refrigerant in the volume portion 27a. Separated from.

高段油戻し管27hを通って高段部12に供給される冷凍機油は、吐出マフラー27で吐出冷媒から分離された冷凍機油の全量ではなく、一部であり、低段油戻し管27gを通って吸入圧空間に供給される冷凍機油の量の方が多いので、吐出マフラー27で吐出冷媒から分離した冷凍機油を高段部12に供給して再び吐出マフラー27に戻して吐出冷媒から分離する循環を行っても油溜め17の冷凍機油が枯渇することはない。 The refrigerating machine oil supplied to the high stage part 12 through the high stage oil return pipe 27h is not the total amount of the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27, but a part of the refrigerating machine oil. Since the amount of the refrigerating machine oil supplied through the suction pressure space is larger, the refrigerating machine oil separated from the discharged refrigerant by the discharge muffler 27 is supplied to the high stage 12 and returned to the discharge muffler 27 to be separated from the discharged refrigerant. Even if the circulation is performed, the refrigerating machine oil in the oil sump 17 is not exhausted.

ここで低段油戻し管27gおよび高段油戻し管27hは、複数の配管を接続して形成してもよく、低段油戻し管27gは高圧空間から低圧空間に連通するものであるので、通過する流体である冷凍機油あるいは吐出冷媒の一部を、低圧まで減圧させるので、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。同様に高段油戻し管27hは高圧空間から中間圧空間に連通するものであるので、通過する流体である冷凍機油あるいは吐出冷媒の一部を、中間圧まで減圧させるので、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。 Here, the low-stage oil return pipe 27g and the high-stage oil return pipe 27h may be formed by connecting a plurality of pipes, and the low-stage oil return pipe 27g communicates from the high pressure space to the low pressure space. Since a part of the refrigeration oil or the discharged refrigerant, which is a fluid passing therethrough, is decompressed to a low pressure, it is preferably formed by a capillary tube or a decompression valve interposed in the middle. Similarly, since the high stage oil return pipe 27h communicates from the high pressure space to the intermediate pressure space, a part of the refrigeration oil or discharged refrigerant that is a fluid passing therethrough is reduced to the intermediate pressure. It is preferable to interpose a pressure reducing valve in the middle.

圧縮機4では、2本の油戻し管27g、27hを容積部27a内部へ開口させるので、容積部27aの底面が球面状であると、最も容積部27aの軸線方向で下方に位置する中央部近傍に2本の油戻し管27g、27hを設置するのは、ロウ付または溶接作業が困難である。2本の油戻し管27g、27hの容積部27a底面への取り付け位置間には距離が必要である。そのため容積部27aの底面に平坦面部を形成し、その平坦面部に2本の油戻し管27g、27hを設置する、あるいは容積部27a底面の球面半径を大きくして、容積部27a内に分離された冷凍機油が滞留してしまうのを回避する、あるいは少量に抑制するようにしなければならない。 In the compressor 4, the two oil return pipes 27g and 27h are opened to the inside of the volume portion 27a. Therefore, when the bottom surface of the volume portion 27a is spherical, the central portion positioned most downward in the axial direction of the volume portion 27a. It is difficult to braze or weld the two oil return pipes 27g and 27h in the vicinity. A distance is required between the positions at which the two oil return pipes 27g and 27h are attached to the bottom surface of the volume portion 27a. Therefore, a flat surface portion is formed on the bottom surface of the volume portion 27a, and two oil return pipes 27g and 27h are installed on the flat surface portion, or the spherical radius of the bottom surface of the volume portion 27a is increased to be separated into the volume portion 27a. In addition, it is necessary to prevent or reduce the amount of refrigerating machine oil to a small amount.

実施の形態4では、吐出マフラー27で吐出冷媒から分離された冷凍機油を、密閉容器10内部に流入させて油溜め17に帰還させるのでなく、低段部11の低段圧縮室と高段部12の高段圧縮室に分けて全量供給するものである。実施の形態1および2では、吐出マフラー27で吐出冷媒から分離した冷凍機油を油溜め17に帰還させ、油溜め17から低段部11または高段部12に冷凍機油が供給されることになるが、実施の形態4では、吐出マフラー27で吐出冷媒から分離した冷凍機油が油溜め17に帰還する以前に、低段部11の低段圧縮室および高段部12の高段圧縮室に供給されるのである。 In the fourth embodiment, the refrigerating machine oil separated from the discharge refrigerant by the discharge muffler 27 does not flow into the sealed container 10 and return to the oil sump 17, but instead of the low-stage compression chamber and the high-stage section of the low-stage section 11. The total amount is divided into 12 high-stage compression chambers. In the first and second embodiments, the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 is returned to the oil sump 17 and the refrigerating machine oil is supplied from the oil sump 17 to the low stage part 11 or the high stage part 12. However, in the fourth embodiment, the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 is supplied to the low-stage compression chamber of the low-stage section 11 and the high-stage compression chamber of the high-stage section 12 before returning to the oil sump 17. It is done.

圧縮機4は、吐出マフラー27で吐出冷媒から分離した冷凍機油を、低段油戻し管27gと低段吸入管20を経由させ低圧冷媒とともに低段部11の低段圧縮室に供給したので、低段圧縮室のシール性が向上し、また低段部11の摺動部の潤滑性が向上する。更に、吐出マフラー27で吐出冷媒から分離した冷凍機油の一部を、高段油戻し管27hと高段吸入管23を経由させ中間圧冷媒とともに高段部12の高段圧縮室に供給したので、高段圧縮室のシール性が向上し、また高段部12の摺動部の潤滑性が向上するので、高効率で信頼性の高い圧縮機となる効果が得られる。 Since the compressor 4 supplies the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 to the low-stage compression chamber of the low-stage part 11 together with the low-pressure refrigerant via the low-stage oil return pipe 27g and the low-stage suction pipe 20. The sealing performance of the low-stage compression chamber is improved, and the lubricity of the sliding portion of the low-stage portion 11 is improved. Further, a part of the refrigeration oil separated from the refrigerant discharged by the discharge muffler 27 is supplied to the high-stage compression chamber of the high-stage portion 12 together with the intermediate-pressure refrigerant through the high-stage oil return pipe 27h and the high-stage suction pipe 23. Since the sealing performance of the high-stage compression chamber is improved and the lubricity of the sliding portion of the high-stage portion 12 is improved, the effect of becoming a highly efficient and highly reliable compressor can be obtained.

また吐出マフラー27により高段部12から吐出される吐出冷媒の脈動を十分に消音できるとともに、油分離機構により吐出冷媒から分離された冷凍機油の多くは、低段部11から密閉容器10内に吐出されて密閉容器10内で油分離されるので、密閉容器10底部の油溜め17に帰還させることができ、油溜め17の冷凍機油枯渇の危険を回避し、油溜め17の冷凍機油の貯油量を適量に維持できる。 Further, the pulsation of the discharged refrigerant discharged from the high stage portion 12 can be sufficiently silenced by the discharge muffler 27, and most of the refrigerating machine oil separated from the discharged refrigerant by the oil separation mechanism is transferred from the low stage portion 11 into the sealed container 10. Since the oil is discharged and separated in the airtight container 10, it can be returned to the oil sump 17 at the bottom of the airtight container 10, avoiding the danger of exhausting the refrigerating machine oil in the oil sump 17, and storing the refrigerating machine oil in the oil sump 17. The amount can be maintained at an appropriate amount.

さらに圧縮機1同様に、吐出マフラー27での油分離の際、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離するので、吐出冷媒の圧損を減じることができ、また吐出マフラーの圧縮機本体との一体化により省スペース化が図れ、冷媒回路の設計の自由度や生産性が向上するといった効果が得られる。 Further, similar to the compressor 1, when separating the oil in the discharge muffler 27, the centrifugal oil of the swirling flow is used to separate the refrigerating machine oil from the discharged refrigerant, so that the pressure loss of the discharged refrigerant can be reduced, and the discharge muffler Space saving can be achieved by integrating with the compressor body, and the effect of improving the degree of freedom and productivity of designing the refrigerant circuit can be obtained.

実施の形態4においても、吐出マフラー27の供給管27bや吐出管27cや中間圧接続管25や吐出圧接続管29、ブラケット26等の構成は、実施の形態1で述べた種々の構成が同様に適用できるものであり、容積部27a内部では圧縮機1同様に、吐出冷媒を旋回流として、旋回流の遠心力を利用して吐出冷媒から冷凍機油を分離する。また中間圧導出管22と低段吐出管21の密閉容器10内部での開口位置の関係も実施の形態1同様である。 Also in the fourth embodiment, the configurations of the supply pipe 27b, the discharge pipe 27c, the intermediate pressure connection pipe 25, the discharge pressure connection pipe 29, the bracket 26, and the like of the discharge muffler 27 are the same as the various configurations described in the first embodiment. As in the compressor 1, the refrigerant discharged from the discharged refrigerant is separated from the discharged refrigerant by using the swirling flow as a swirling flow and using the centrifugal force of the swirling flow. The relationship between the opening positions of the intermediate pressure outlet pipe 22 and the low-stage discharge pipe 21 inside the sealed container 10 is the same as that of the first embodiment.

圧縮機4は、冷媒導出管22を備え、密閉容器10内部の中間圧冷媒を、密閉容器10外部に導出した後で、一端が密閉容器10外部に位置する高段吸入管23を経由して高段圧縮機構部12に吸入させるようにしていたが、冷媒導出管22を備えず、高段吸入管を密閉容器10内部に収納し、その高段吸入管の一端は密閉容器10内部に開口し、他端を高段圧縮機構部12に接続するように構成する内部循環形式の内部中間圧型2段圧縮式の圧縮機に適用しても、同様な効果が得られる。 The compressor 4 includes a refrigerant outlet pipe 22, and after the intermediate pressure refrigerant inside the sealed container 10 is led out to the outside of the sealed container 10, one end thereof passes through a high-stage suction pipe 23 positioned at the outside of the sealed container 10. The high stage compression mechanism 12 is designed to be sucked in, but the refrigerant outlet pipe 22 is not provided, the high stage suction pipe is accommodated in the sealed container 10, and one end of the high stage suction pipe is opened in the sealed container 10. However, the same effect can be obtained by applying to an internal circulation type internal intermediate pressure type two-stage compression compressor configured to connect the other end to the high-stage compression mechanism section 12.

実施の形態5.
図8は、この発明を実施するための実施の形態5における内部中間圧型2段圧縮式の圧縮機5を示す説明用縦断面図である。なお図8において図7と同一の符号で示すものは、図7に示す圧縮機4と同一もしくは同様な部品であり、ここでの説明は省略する。図8に示す圧縮機5は、吐出マフラー27で吐出冷媒から分離した冷凍機油を吸入圧空間と高段部12の吸入空間である中間圧空間に分けて供給する点で同じであるが、図7の圧縮機4と異なる点は、油戻し管27kの容積部27a内部への開口が1ヶ所であり、油戻し管27kの途中から油戻し管27kが分岐して、一方が低段吸入管20に接続し、他方が高段吸入管23に接続している点である。
Embodiment 5 FIG.
FIG. 8 is an explanatory longitudinal sectional view showing an internal intermediate pressure type two-stage compression compressor 5 according to Embodiment 5 for carrying out the present invention. 8 that are the same as those in FIG. 7 are the same or similar parts as the compressor 4 shown in FIG. 7, and a description thereof is omitted here. The compressor 5 shown in FIG. 8 is the same in that the refrigerating machine oil separated from the refrigerant discharged by the discharge muffler 27 is supplied separately to the suction pressure space and the intermediate pressure space that is the suction space of the high stage portion 12. 7 differs from the compressor 4 in that there is one opening to the inside of the volume 27a of the oil return pipe 27k, the oil return pipe 27k branches off from the middle of the oil return pipe 27k, and one of them is a low-stage suction pipe. 20, and the other is connected to the high-stage suction pipe 23.

油戻し管27kは、基管部27kaが容積部27a内部へ開口し、その開口位置が容積部27a底面のほぼ中央部となるように設置する。油戻し管27kの容積部27aの開口はこの基管部27kaの開口のみであり、容積部27aへの油戻し管27kのロウ付または溶接はこの1箇所だけであるので、容積部27a底面の中央部に設置することができる。そして基管部27kaの他端(反容積部27a側)から2本の配管が分岐する。一方が吸入圧空間である低段吸入管20に開口する低段油戻し管部27kbで、他方が、高段部12の吸入空間(中間圧空間)である高段吸入管23に開口する高段油戻し管部27kcである。 The oil return pipe 27k is installed such that the base pipe part 27ka opens into the volume part 27a and the opening position thereof is substantially at the center of the bottom surface of the volume part 27a. The opening of the volume part 27a of the oil return pipe 27k is only the opening of the base pipe part 27ka, and the oil return pipe 27k is brazed or welded to the volume part 27a at only one place. Can be installed in the center. And two piping branches from the other end (countervolume part 27a side) of the base tube part 27ka. One is a low-stage oil return pipe portion 27 kb that opens to a low-stage intake pipe 20 that is a suction pressure space, and the other is a high-stage that opens to a high-stage suction pipe 23 that is a suction space (intermediate pressure space) of the high stage portion 12. A step oil return pipe portion 27kc.

低段油戻し管部27kbは、冷媒回路の低圧配管50に開口するように接続してもよく、また密閉容器10を貫通して、低段部11の低段吸入室などの低圧空間に開口するように接続してもよい。また高段油戻し管部27kcは、中間圧接続管25または冷媒導出管22に開口するように接続してもよく、また密閉容器10を貫通して、高段部12の高段吸入室などの中間圧空間に開口するように接続してもよい。 The low-stage oil return pipe portion 27 kb may be connected so as to open to the low-pressure pipe 50 of the refrigerant circuit, or penetrates the sealed container 10 and opens into a low-pressure space such as a low-stage suction chamber of the low-stage portion 11. You may connect as you do. Further, the high-stage oil return pipe portion 27kc may be connected so as to open to the intermediate pressure connection pipe 25 or the refrigerant outlet pipe 22, and penetrates the sealed container 10 to form a high-stage suction chamber of the high-stage section 12 or the like. The intermediate pressure space may be connected so as to open.

低段油戻し管部27kbおよび高段油戻し管部27kcは、複数の配管を接続して形成してもよく、低段油戻し管部27kbは高圧空間から低圧空間に連通するものであるので、通過する流体である冷凍機油あるいは吐出冷媒の一部を、低圧まで減圧させるので、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。同様に高段油戻し管部27kcは高圧空間から中間圧空間に連通するものであるので、通過する流体である冷凍機油あるいは吐出冷媒の一部を、中間圧まで減圧させるので、毛細管で形成したり、途中に減圧弁を介在させたりするのがよい。 The low stage oil return pipe part 27kb and the high stage oil return pipe part 27kc may be formed by connecting a plurality of pipes, and the low stage oil return pipe part 27kb communicates from the high pressure space to the low pressure space. Since a part of the refrigeration oil or the discharged refrigerant, which is a fluid passing therethrough, is decompressed to a low pressure, it is preferably formed by a capillary tube or a pressure reducing valve interposed in the middle. Similarly, since the high-stage oil return pipe portion 27kc communicates from the high pressure space to the intermediate pressure space, a part of the refrigerating machine oil or discharged refrigerant that is a fluid passing therethrough is reduced to the intermediate pressure. Or a pressure reducing valve in the middle.

また基管部27kaも複数の配管を接続して形成してもよく、基管部27kaを毛細管で形成したり、途中に減圧弁を介在させたりして中間圧まで減圧し、高段油戻し管部27kcでは減圧させずに通過させ、低段油戻し管部27kbではさらに吸入圧まで減圧するようにしてもよい。 The base tube portion 27ka may also be formed by connecting a plurality of pipes. The base tube portion 27ka is formed by a capillary tube, or the pressure is reduced to an intermediate pressure by interposing a pressure reducing valve in the middle to return the high stage oil. The pipe portion 27kc may be allowed to pass without being reduced, and the low-stage oil return pipe portion 27kb may be further reduced to the suction pressure.

圧縮機5は油戻し管27kが以上のように構成されているので、実施の形態4に示す圧縮機4の効果に加え、容積部27a底面を球面状に形成しても、容積部27aの軸線方向に最も下方に位置する部位である中央部に油戻し管27kを開口させることができるので、容積部27a内部に吐出冷媒から分離した冷凍機油が滞留することを回避できる効果が得られる。また容積部27aの底面に平坦面部を形成する必要がなくなるので、容積部27aをプレス成形する際に平坦面部形成のための工程を削除できるので製造コストを安価にできる。 Since the compressor 5 is configured with the oil return pipe 27k as described above, in addition to the effects of the compressor 4 shown in the fourth embodiment, even if the bottom surface of the volume portion 27a is formed in a spherical shape, Since the oil return pipe 27k can be opened at the central portion, which is the lowest position in the axial direction, it is possible to avoid the refrigeration oil separated from the discharged refrigerant from staying inside the volume portion 27a. In addition, since it is not necessary to form a flat surface portion on the bottom surface of the volume portion 27a, the process for forming the flat surface portion can be eliminated when the volume portion 27a is press-molded, so that the manufacturing cost can be reduced.

圧縮機5は、冷媒導出管22を備え、密閉容器10内部の中間圧冷媒を、密閉容器10外部に導出した後で、一端が密閉容器10外部に位置する高段吸入管23を経由して高段圧縮機構部12に吸入させるようにしていたが、冷媒導出管22を備えず、高段吸入管を密閉容器10内部に収納し、その高段吸入管の一端は密閉容器10内部に開口し、他端を高段圧縮機構部12に接続するように構成する内部循環形式の内部中間圧型2段圧縮式の圧縮機に適用しても、同様な効果が得られる。 The compressor 5 includes a refrigerant outlet pipe 22, and after the intermediate pressure refrigerant inside the sealed container 10 is led out to the outside of the sealed container 10, one end thereof passes through a high-stage suction pipe 23 positioned at the outside of the sealed container 10. The high stage compression mechanism 12 is designed to be sucked in, but the refrigerant outlet pipe 22 is not provided, the high stage suction pipe is accommodated in the sealed container 10, and one end of the high stage suction pipe is opened in the sealed container 10. However, the same effect can be obtained by applying to an internal circulation type internal intermediate pressure type two-stage compression compressor configured to connect the other end to the high-stage compression mechanism section 12.

以上の実施の形態1〜5に示した圧縮機は、冷媒として二酸化炭素を吸入し圧縮する。二酸化炭素を冷媒とする、例えばヒートポンプ式給湯装置のような冷媒回路に上記の圧縮機を使用するのである。二酸化炭素はHFCやHC(炭化水素)などの従来の冷媒に比べて動作圧力が高いことはよく知られている。動作圧力が高いので、圧縮機構部で圧縮されて吐出された吐出冷媒(高圧の冷媒)の圧力脈動も従来の冷媒に比べて相対的に大きい。 The compressors shown in the first to fifth embodiments suck carbon dioxide as a refrigerant and compress it. For example, the compressor is used in a refrigerant circuit such as a heat pump type hot water supply apparatus using carbon dioxide as a refrigerant. It is well known that carbon dioxide has a higher operating pressure than conventional refrigerants such as HFC and HC (hydrocarbon). Since the operating pressure is high, the pressure pulsation of the discharged refrigerant (high-pressure refrigerant) compressed and discharged by the compression mechanism section is also relatively larger than that of the conventional refrigerant.

このため吐出冷媒の脈動を十分に消音するためには、マフラー(消音)空間としてより大きな容積が必要になる。上記した吐出マフラー27の容積部27aは、内部空間が上下に仕切られずに、容積部27aの内部空間全体を一つのマフラー空間として有効に活用できるもので、圧力脈動が大きい二酸化炭素の吐出冷媒の圧力脈動を広い周波数域に渡って消音でき、十分に脈動を消音できる内容積を所有するものである。マフラーは一般的に空間容積が大きい方が特に低周波域の圧力脈動成分の消音効果が高く、吐出マフラー27は容積部27aの内部空間全体をマフラー空間として大きく活用できるので、消音し難かった例えば1kHz以下のような低周波数域の消音効果が得られ、広い周波数域に渡って消音させることができる。 For this reason, in order to sufficiently silence the pulsation of the discharged refrigerant, a larger volume is required as a muffler (silence) space. The volume part 27a of the discharge muffler 27 described above can effectively utilize the entire internal space of the volume part 27a as one muffler space without partitioning the internal space up and down. It possesses an internal volume that can mute pressure pulsations over a wide frequency range and can sufficiently mute pulsations. In general, the muffler has a larger space volume, and in particular, the effect of silencing the pressure pulsation component in the low frequency region is higher. The discharge muffler 27 can be used as the muffler space largely because the entire inner space of the volume portion 27a is difficult to mute. A silencing effect in a low frequency range such as 1 kHz or less is obtained, and the noise can be muted over a wide frequency range.

また二酸化炭素は動作圧力が高いため、圧縮機構部での圧縮前後の圧力差が大きく、圧縮後または圧縮途中の冷媒の圧縮室から吸入室への漏れや、圧縮機構部で圧縮され吐出された冷媒の圧縮途中の圧縮室や吸入室への漏れが従来冷媒に比べて多くなりやすい。そのためこれらの漏れを少なくするために、圧縮機構部の吸入室や圧縮室に積極的に冷凍機油を供給して、その油によって吸入室や圧縮室のシール性を高める必要がある。二酸化炭素を冷媒として使用する圧縮機では従来冷媒の時に比べて、多くの冷凍機油を圧縮室に供給するのである。 Since carbon dioxide has a high operating pressure, there is a large pressure difference before and after compression in the compression mechanism, and refrigerant after compression or during compression leaks from the compression chamber to the suction chamber or is compressed and discharged by the compression mechanism. Leakage to the compression chamber and the suction chamber during the compression of the refrigerant tends to increase compared to the conventional refrigerant. Therefore, in order to reduce these leaks, it is necessary to positively supply the refrigerating machine oil to the suction chamber and the compression chamber of the compression mechanism section, and to improve the sealing performance of the suction chamber and the compression chamber by the oil. In a compressor using carbon dioxide as a refrigerant, more refrigeration oil is supplied to the compression chamber than in the case of a conventional refrigerant.

それにより圧縮機構部から吐出された吐出冷媒には従来冷媒時に比べ多くの冷凍機油が含まれることになる。密閉容器10の外部に吐出される吐出冷媒に多くの冷凍機油が含まれていると、その冷凍機油を冷媒から分離して回収し、密閉容器10内部に戻さないと、いずれ密閉容器10内部の冷凍機油は枯渇してしまうので、吐出冷媒から冷凍機油を分離して回収し、密閉容器10内部に戻す油分離機構が必要となる。 As a result, the refrigerant discharged from the compression mechanism section contains more refrigeration oil than in the conventional refrigerant. If a large amount of refrigerating machine oil is contained in the refrigerant discharged to the outside of the hermetic container 10, the refrigerating machine oil is separated from the refrigerant and recovered and returned to the inside of the hermetic container 10. Since the refrigerating machine oil will be depleted, an oil separation mechanism is required that separates and collects the refrigerating machine oil from the discharged refrigerant and returns it to the inside of the sealed container 10.

特許文献1に開示されるような内部空間を上下に仕切る油分離具を備え、その油分離具に通過する高圧の吐出冷媒を接触させ吐出冷媒に含まれる冷凍機油を分離する、いわゆる邪魔板方式の油分離機構では、冷凍機油は分離できるが、内部空間を油分離具により区切った状態としてしまうため、区切られた個々の空間の容積が小さくなってしまい、実質的には小容量の空間を連続して通過する多段マフラー状となる。そして実質的な多段マフラーの個々のマフラー空間容積は小さいので、低周波側の圧力脈動成分の消音ができず、吐出冷媒の脈動を十分に消音できない。 A so-called baffle plate system comprising an oil separator that vertically divides an internal space as disclosed in Patent Document 1 and separating a refrigerating machine oil contained in the discharged refrigerant by contacting a high-pressure discharged refrigerant passing through the oil separator. In this oil separation mechanism, the refrigeration oil can be separated, but the internal space is separated by the oil separator, so that the volume of each divided space is reduced, and a small capacity space is substantially reduced. It becomes a multistage muffler that passes continuously. And since the individual muffler space volume of the substantial multistage muffler is small, the pressure pulsation component on the low frequency side cannot be silenced, and the pulsation of the discharged refrigerant cannot be sufficiently silenced.

しかし実施の形態1〜5に示した圧縮機の吐出マフラー27は、油分離機構が容積部27aの空間容積を区切ることなく、容積部27aの内部空間をそのままに容積すべてを使用して冷凍機油を高圧の吐出冷媒から分離でき、かつその内部空間の容積すべてを一つのマフラー空間として使用できるので、大きな容積のマフラーとなって、高圧な吐出冷媒の低周波域の圧力脈動成分も消音でき、広い周波数域での消音効果が得られ、吐出冷媒の脈動を十分に消音することができる。 However, in the compressor discharge muffler 27 shown in the first to fifth embodiments, the oil separation mechanism does not divide the space volume of the volume portion 27a, and uses the entire volume without changing the space volume of the volume portion 27a. Can be separated from the high-pressure discharge refrigerant, and the entire volume of the internal space can be used as a single muffler space, so it becomes a large-volume muffler, and the low-frequency pressure pulsation component of the high-pressure discharge refrigerant can be silenced, A silencing effect in a wide frequency range can be obtained, and the pulsation of the discharged refrigerant can be sufficiently silenced.

冷媒として二酸化炭素を吸入し圧縮して吐出する圧縮機においては、シール性向上のために圧縮室に多くの冷凍機油を供給するので、高圧の吐出冷媒に含まれる冷凍機油を分離回収しなければならず、また吐出冷媒の圧力脈動が大きいので、大きな空間容積のマフラーで吐出冷媒の脈動を消音しなければならない。実施の形態1〜5に示した圧縮機の吐出マフラー27は、これらを両立して達成できるので、特に冷媒として二酸化炭素を使用する圧縮機、例えばヒートポンプ式給湯装置に用いられる圧縮機に有効である。ただし、冷媒として二酸化炭素に拘るものではなく、現在では冷凍空調用に主に使用されているHFC冷媒やHC冷媒においても適用でき、同様な効果を奏することができる。冷凍機油も同様に、PAG油に限らず使用する冷媒に適応した冷凍機油を用いればよい。 In a compressor that sucks in carbon dioxide as a refrigerant, compresses and discharges it, a large amount of refrigeration oil is supplied to the compression chamber to improve the sealing performance. Therefore, the refrigeration oil contained in the high-pressure discharge refrigerant must be separated and recovered. In addition, since the pressure pulsation of the discharged refrigerant is large, the pulsation of the discharged refrigerant must be silenced with a muffler having a large space volume. Since the discharge muffler 27 of the compressor shown in Embodiments 1 to 5 can achieve both of them, it is particularly effective for a compressor using carbon dioxide as a refrigerant, for example, a compressor used in a heat pump hot water supply device. is there. However, the present invention is not limited to carbon dioxide, but can be applied to HFC refrigerants and HC refrigerants that are currently mainly used for refrigeration and air conditioning, and the same effects can be achieved. Similarly, the refrigerating machine oil is not limited to the PAG oil, and refrigerating machine oil adapted to the refrigerant to be used may be used.

実施の形態1〜5に示した圧縮機はいずれも内部中間圧型2段圧縮式のロータリ圧縮機で説明したが、これに限るものではなく、圧縮機構がロータリ式でなく、レシプロ式やスクロール式であっても、また密閉容器10の内部を中間圧とせず、低圧(吸入圧)としても、さらには電動機の上方に圧縮機構部を配置する構造であっても同様な効果が得られる。また実施の形態1〜3においては、2段圧縮式に限らず、単段式の圧縮機構部を密閉容器内部に収納した圧縮機であっても同様な効果を得ることができる。 Although all the compressors shown in the first to fifth embodiments have been described as internal intermediate pressure type two-stage compression type rotary compressors, the present invention is not limited to this, and the compression mechanism is not a rotary type, but a reciprocating type or a scroll type. Even in this case, the same effect can be obtained even if the inside of the sealed container 10 is not set to an intermediate pressure, and the pressure is low (suction pressure), or the compression mechanism is disposed above the electric motor. In the first to third embodiments, the same effect can be obtained not only in the two-stage compression type but also in a compressor in which a single-stage compression mechanism is housed in the sealed container.

また実施の形態1〜5に示した圧縮機はいずれも吐出マフラー27を密閉容器10の外面に保持させていたが、省スペース化は図れないが、本発明の旋回流式油分離機能付き吐出マフラーを密閉容器10に保持させずに、密閉容器10の外部に設置しても同様な効果が得られる。また例えば容積部を密閉容器10の内面と圧縮機構部外面で囲まれた空間で構成するような、本発明の旋回流式油分離機能付き吐出マフラーを密閉容器10内部に収納する構造であっても同様な効果を得ることができる。 Moreover, although the compressor shown to Embodiment 1-5 hold | maintained the discharge muffler 27 on the outer surface of the airtight container 10, space saving cannot be achieved, but discharge with the swirl type oil separation function of this invention is achieved. Even if the muffler is not held in the sealed container 10 and installed outside the sealed container 10, the same effect can be obtained. Further, for example, the discharge muffler with a swirl type oil separation function of the present invention is configured to be housed in the sealed container 10 such that the volume part is configured by a space surrounded by the inner surface of the sealed container 10 and the outer surface of the compression mechanism unit. The same effect can be obtained.

本発明の吐出マフラー27のように容積部にて消音する形式である膨張形マフラーは、特に波長が長い低周波数域の脈動の消音に対しては、マフラー容積部の容積の影響が支配的となる。二酸化炭素冷媒は、R410A等の従来冷媒に比べて冷媒中の音速が大きく、波長が長くなる傾向があるため、マフラー容積部の容積の影響が支配的となる周波数範囲が広くなる。そして膨張形マフラーはマフラー容積部の容積を大きくするほど低い周波数の圧力脈動に対する消音効果が大きくなる傾向がある。そのため本発明の旋回流式油分離機能付き吐出マフラー27は、容積部27aの内部空間の容積が圧縮機構部の行程容積の10倍以上あることが望ましい。 The expansion type muffler that is silenced at the volume portion, such as the discharge muffler 27 of the present invention, has an influence of the volume of the muffler volume portion on the silencing of the pulsation in a low frequency region with a long wavelength. Become. Since the carbon dioxide refrigerant has a higher sound speed in the refrigerant and the wavelength tends to be longer than that of the conventional refrigerant such as R410A, the frequency range in which the influence of the volume of the muffler volume is dominant is widened. And the expansion type muffler tends to have a greater silencing effect on low-frequency pressure pulsations as the volume of the muffler volume increases. Therefore, in the discharge muffler 27 with the swirling flow type oil separation function of the present invention, the volume of the internal space of the volume portion 27a is preferably 10 times or more the stroke volume of the compression mechanism portion.

また容積部27a内部で高圧の冷媒を旋回流にして、高圧の冷媒に含まれる冷凍機油を分離するためには、高圧の冷媒が供給管27bより容積部27a内部に供給されてから、吐出管27cに入り込むまでに適当な回数の旋回を高圧の冷媒に行わせることが必要であり、そのためには供給管27bの冷媒吹き出し位置と吐出管27cの冷媒入り込み位置との軸線方向距離が、容積部27a内面の直径以上であることが望ましい。 In order to separate the refrigerating machine oil contained in the high-pressure refrigerant by turning the high-pressure refrigerant inside the volume 27a, the discharge pipe is used after the high-pressure refrigerant is supplied into the volume 27a from the supply pipe 27b. It is necessary to cause the high-pressure refrigerant to make an appropriate number of turns before entering 27c. For this purpose, the axial distance between the refrigerant blowing position of the supply pipe 27b and the refrigerant entering position of the discharge pipe 27c is determined by the volume portion. It is desirable that it is more than the diameter of the inner surface of 27a.

なお、吐出マフラーが備える油分離機能が旋回流式でなく、例えば特許文献1に開示されている邪魔板方式など他の油分離機能であっても、吐出マフラーの油戻し管の密閉容器内部への開口位置や油戻し管が吐出冷媒から分離された冷凍機油を供給する箇所を実施の形態1〜5に示された位置や箇所にすることで、高圧の吐出冷媒から分離した冷凍機油を確実に密閉容器底部の油溜めに帰還させることができ、油溜めの冷凍機油の枯渇がない信頼性の高い圧縮機となる効果や圧縮機構部の圧縮室のシール性を向上させ高効率な圧縮機となる効果は得ることができる。 Even if the oil separation function provided in the discharge muffler is not a swirling flow type, and other oil separation functions such as the baffle plate method disclosed in Patent Document 1, for example, the oil return pipe of the discharge muffler enters the inside of the sealed container. By making the opening position and the location where the oil return pipe supplies the refrigerating machine oil separated from the discharged refrigerant into the positions and places shown in the first to fifth embodiments, the refrigerating machine oil separated from the high-pressure discharged refrigerant can be reliably obtained. The compressor can be returned to the oil reservoir at the bottom of the closed container, and the highly efficient compressor improves the effect of becoming a highly reliable compressor without exhaustion of the oil in the oil reservoir of the oil reservoir and the sealing performance of the compression chamber of the compression mechanism The following effects can be obtained.

この発明の実施の形態1を示す圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which shows Embodiment 1 of this invention. 図1に示す圧縮機の要部の上面図である。It is a top view of the principal part of the compressor shown in FIG. 供給管27bを容積部27a側面に取り付け場合の実施例を示す模式図である。It is a schematic diagram which shows the Example in the case of attaching the supply pipe | tube 27b to the volume part 27a side surface. 吐出マフラー27内部の吐出冷媒の流れを示す説明図である。FIG. 4 is an explanatory diagram showing the flow of discharged refrigerant inside the discharged muffler 27. この発明の実施の形態2を示す圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which shows Embodiment 2 of this invention. この発明の実施の形態3を示す圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which shows Embodiment 3 of this invention. この発明の実施の形態4を示す圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which shows Embodiment 4 of this invention. この発明の実施の形態5を示す圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

1、2、3、4、5 圧縮機、10 密閉容器、10a 円筒容器、10b 上蓋、10c 底蓋、11 低段圧縮機構部(低段部)、12 高段圧縮機構部(高段部)、13 電動機、13a 固定子、13b 回転子、14 回転軸、17 油溜め、20 低段吸入管、21 低段吐出管、22 冷媒導出管、23 高段吸入管、24 高段吐出管、25 中間圧接続管、26 ブラケット、26a 曲面部、26b 保持部、27 吐出マフラー、27a 容積部、27b 供給管、27c 吐出管、29 吐出圧接続管、30 空間A、27d、27e、27f、27k 油戻し管、27g 低段油戻し管、27h 高段油戻し管、27ka 基管部、27kb 低段油戻し管部、27kc 高段油戻し管部、50 低圧配管、51 高圧配管。   1, 2, 3, 4, 5 Compressor, 10 Sealed container, 10a Cylindrical container, 10b Upper lid, 10c Bottom lid, 11 Low stage compression mechanism (low stage), 12 High stage compression mechanism (high stage) , 13 Motor, 13a Stator, 13b Rotor, 14 Rotating shaft, 17 Oil sump, 20 Low stage suction pipe, 21 Low stage discharge pipe, 22 Refrigerant outlet pipe, 23 High stage suction pipe, 24 High stage discharge pipe, 25 Intermediate pressure connection pipe, 26 Bracket, 26a Curved part, 26b Holding part, 27 Discharge muffler, 27a Volume part, 27b Supply pipe, 27c Discharge pipe, 29 Discharge pressure connection pipe, 30 Space A, 27d, 27e, 27f, 27k Oil Return pipe, 27g Low stage oil return pipe, 27h High stage oil return pipe, 27ka Base pipe part, 27kb Low stage oil return pipe part, 27kc High stage oil return pipe part, 50 Low pressure pipe, 51 High pressure pipe.

Claims (5)

電動機と、低段圧縮機構部と高段圧縮機構部から構成され、前記電動機に連結された回転軸にて駆動され低圧の冷媒を高圧まで圧縮して吐出する圧縮機構部と、を密閉容器の内部に収納するとともに、前記低段圧縮機構部にて低圧の冷媒を中間圧まで圧縮して前記密閉容器内部に吐出し、前記密閉容器内部を中間圧として、この密閉容器内部の中間圧の冷媒を前記高段圧縮機構部にて高圧まで圧縮して吐出する圧縮機であって、
前記高段圧縮機構部から吐出された冷凍機油を含む高圧の吐出冷媒が供給され、この高圧の吐出冷媒の脈動を消音する容積を有する容積部と、
前記高圧の吐出冷媒を前記容積部の内面に沿うように吹き出し、前記高圧の吐出冷媒を旋回流とするように前記容積部の内部空間に供給する供給管と、
前記容積部の底部に設けられ、前記旋回流の遠心力によって前記容積部の内部空間にて前記高圧の吐出冷媒から分離された冷凍機油を前記容積部から前記容積部の外部に排出する油戻し管と、
前記容積部の内部で前記供給管前記高圧の吐出冷媒吹き出位置より前記容積部の底部側に一方を開口し、前記容積部の外部に他方を開口して冷凍機油が分離された前記高圧の吐出冷媒を前記容積部の内部空間から外部に吐出する吐出管と、
から成る吐出マフラーを前記密閉容器の外部に備え
前記容積部から前記油戻し管に排出された冷凍機油を、前記低圧の冷媒とともに前記低段圧縮機構部の圧縮室に供給するとともに、前記容積部から前記油戻し管に排出された冷凍機油の一部を、前記中間圧の冷媒とともに前記高段圧縮機構部の圧縮室に供給することを特徴とする圧縮機。
An electric motor, is composed of a low-stage compression mechanism portion and the high-stage compression mechanism, the sealed container and a compression mechanism for ejecting compressed to high pressure refrigerant is driven by coupled rotational shaft to the electric motor The low-stage compression mechanism unit compresses the low-pressure refrigerant to an intermediate pressure and discharges it into the sealed container. The inside of the sealed container is used as an intermediate pressure. A compressor that compresses and discharges the refrigerant to a high pressure in the high-stage compression mechanism ,
A high- pressure discharge refrigerant containing refrigeration oil discharged from the high- stage compression mechanism is supplied, and a volume portion having a volume that silences the pulsation of the high-pressure discharge refrigerant;
Blown discharge refrigerant of the high pressure along the inner surface of the volume, a supply pipe for supplying the refrigerant discharged the pressure in the internal space of the volume to the swirling flow,
Provided at the bottom of the volume, the return oil is discharged refrigerating machine oil separated from the discharge refrigerant of the high pressure in the inner space of the volume by the centrifugal force of the swirling flow to the outside of the volume from the volume Tube,
Wherein said feed pipe inside the volume is open one to the bottom side of the volume than to position blown the discharge refrigerant of the high pressure, the refrigerating machine oil has been separated is open and the other to the outside of the volume A discharge pipe for discharging high-pressure discharge refrigerant from the internal space of the volume part to the outside;
A discharge muffler comprising :
The refrigerating machine oil discharged from the volume part to the oil return pipe is supplied to the compression chamber of the low-stage compression mechanism part together with the low-pressure refrigerant, and the refrigerating machine oil discharged from the volume part to the oil return pipe A part of the compressor is supplied to the compression chamber of the high-stage compression mechanism along with the intermediate pressure refrigerant .
電動機と、低段圧縮機構部と高段圧縮機構部から構成され、前記電動機に連結された回転軸にて駆動され低圧の冷媒を高圧まで圧縮して吐出する圧縮機構部と、を密閉容器の内部に収納するとともに、前記低段圧縮機構部にて低圧の冷媒を中間圧まで圧縮して前記密閉容器内部に吐出し、前記密閉容器内部を中間圧と、この密閉容器内部中間圧の冷媒を前高段圧縮機構部にて高圧まで圧縮して吐出する圧縮機であって、
前記高段圧縮機構部から吐出された冷凍機油を含む高圧の吐出冷媒が供給され、この高圧の吐出冷媒から冷凍機油を分離する油分離機能を有する容積部と、
前記高圧の吐出冷媒をこの容積部の内部空間に供給する供給管と、
前記容積部の底部に設けられ、前記容積部の内部空間で前記高圧の吐出冷媒から分離された冷凍機油を前記容積部から前記容積部の外部に排出する油戻し管と、
冷凍機油が分離された前記高圧の吐出冷媒を前記容積部の内部空間から外部に吐出する吐出管と、を前記密閉容器の外部に備え、
記容積部から前記油戻し管に排出された冷凍機油を、前記低圧の冷媒とともに前記低段圧縮機構部の圧縮室に供給するとともに、前記容積部から前記油戻し管に排出された冷凍機油の一部を、前記中間圧の冷媒とともに前記高段圧縮機構部の圧縮室に供給することを特徴とする圧縮機。
An electric motor, is composed of a low-stage compression mechanism portion and the high-stage compression mechanism, the sealed container and a compression mechanism for ejecting compressed to high pressure refrigerant is driven by coupled rotational shaft to the electric motor while housed inside of said at low-stage compression mechanism compresses low-pressure refrigerant to an intermediate pressure discharged into the interior of the sealed container, and with the closed container inside the intermediate pressure, the sealed container inside the intermediate a discharges that compressor and compressed to a high pressure Te before Symbol high-stage compression mechanism to the refrigerant pressure,
A high- pressure discharge refrigerant containing refrigeration oil discharged from the high- stage compression mechanism is supplied, and a volume portion having an oil separation function for separating the refrigeration oil from the high-pressure discharge refrigerant;
A supply pipe for supplying the high-pressure discharge refrigerant to the internal space of the volume part;
Provided at the bottom of the volume, and the oil return pipe for discharging the refrigerating machine oil separated from the discharge refrigerant of the high pressure in the inner space of the volume outside of the volume from the volume,
A discharge pipe for discharging the high-pressure discharge refrigerant from which the refrigerating machine oil is separated from the internal space of the volume part to the outside, and provided outside the sealed container,
The by refrigeration oil discharged to the oil return pipe from the front Symbol volume, The rewritable supplied with the low-pressure refrigerant into the compression chamber of the low-stage compression mechanism, which is discharged to the pipe returning the oil from the volume refrigeration A compressor characterized in that a part of the machine oil is supplied to the compression chamber of the high-stage compression mechanism section together with the intermediate pressure refrigerant .
前記吐出マフラーを前記密閉容器の外面に保持させたことを特徴とする請求項に記載の圧縮機。 The compressor according to claim 1 , wherein the discharge muffler is held on an outer surface of the sealed container. 前記油戻し管を2本備え、Two oil return pipes are provided,
一方の油戻し管が、一端を前記容積部の内部空間に、他端を前記低段圧縮機構部の低圧空間に開口するように接続されるとともに、One oil return pipe is connected so that one end opens to the internal space of the volume part and the other end opens to the low pressure space of the low-stage compression mechanism part,
他方の油戻し管が、一端を前記容積部の内部空間に、他端を前記高段圧縮機構部の吸入空間に開口するように接続されていることを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。The other oil return pipe is connected so that one end thereof opens to the internal space of the volume part and the other end opens to the suction space of the high-stage compression mechanism part. The compressor in any one of.
前記油戻し管は、一端が前記容積部の内部空間に開口する基管部と、この基管部の他端から分岐する低段油戻し管部および高段油戻し管部と、を有し、The oil return pipe has a base pipe part whose one end opens into the internal space of the volume part, and a low-stage oil return pipe part and a high-stage oil return pipe part branched from the other end of the base pipe part. ,
前記低段油戻し管部が、前記低段圧縮機構部の低圧空間に開口するように接続されるとともに、The low stage oil return pipe part is connected to open to the low pressure space of the low stage compression mechanism part,
前記高段油戻し管部が、前記高段圧縮機構部の吸入空間に開口するように接続されていることを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。The compressor according to any one of claims 1 to 3, wherein the high-stage oil return pipe portion is connected so as to open to a suction space of the high-stage compression mechanism portion.
JP2007006596A 2007-01-16 2007-01-16 Compressor Expired - Fee Related JP4595943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006596A JP4595943B2 (en) 2007-01-16 2007-01-16 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006596A JP4595943B2 (en) 2007-01-16 2007-01-16 Compressor

Publications (2)

Publication Number Publication Date
JP2008175066A JP2008175066A (en) 2008-07-31
JP4595943B2 true JP4595943B2 (en) 2010-12-08

Family

ID=39702267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006596A Expired - Fee Related JP4595943B2 (en) 2007-01-16 2007-01-16 Compressor

Country Status (1)

Country Link
JP (1) JP4595943B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609583B2 (en) * 2009-03-25 2011-01-12 ダイキン工業株式会社 Discharge muffler and two-stage compressor equipped with a discharge muffler
JP5481938B2 (en) * 2009-05-28 2014-04-23 アイシン精機株式会社 Oil separator for air conditioner
JP2013231356A (en) * 2010-08-26 2013-11-14 Sanyo Electric Co Ltd Compressor
US9284955B2 (en) 2011-03-18 2016-03-15 Panasonic Intellectual Property Management Co., Ltd. Compressor
WO2012127825A1 (en) 2011-03-18 2012-09-27 パナソニック株式会社 Compressor
JP5126387B2 (en) * 2011-05-25 2013-01-23 パナソニック株式会社 Compressor
JP5360258B2 (en) * 2012-04-04 2013-12-04 パナソニック株式会社 Compressor
WO2014041960A1 (en) * 2012-09-13 2014-03-20 日産自動車株式会社 Heat-pump-type air-conditioning device
MX2016006780A (en) * 2013-11-25 2016-09-07 Coca Cola Co Compressor with an oil separator.
EP3318822B1 (en) * 2015-07-03 2020-11-25 Mitsubishi Electric Corporation Heat pump device
CN107614987B (en) * 2015-07-03 2019-11-05 三菱电机株式会社 Heat pump assembly
JP2017227197A (en) * 2016-06-24 2017-12-28 サンデンホールディングス株式会社 Compressor and lubricating oil separation method
CN112771324A (en) 2018-09-28 2021-05-07 大金工业株式会社 Multi-stage compression system
JP6773095B2 (en) * 2018-09-28 2020-10-21 ダイキン工業株式会社 Multi-stage compression system
WO2020067196A1 (en) 2018-09-28 2020-04-02 ダイキン工業株式会社 Multistage compression system
CN112771323A (en) 2018-09-28 2021-05-07 大金工业株式会社 Multi-stage compression system
JP2023076190A (en) 2021-11-22 2023-06-01 三菱重工サーマルシステムズ株式会社 compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166472A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Compressor
JP2003201964A (en) * 2002-01-09 2003-07-18 Seiko Instruments Inc Gas compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176231U (en) * 1984-05-01 1985-11-21 日立造船株式会社 Water/oil separator for compressed air
JPS61116186U (en) * 1985-01-08 1986-07-22
JPS6261975U (en) * 1985-10-09 1987-04-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166472A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Compressor
JP2003201964A (en) * 2002-01-09 2003-07-18 Seiko Instruments Inc Gas compressor

Also Published As

Publication number Publication date
JP2008175066A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4595943B2 (en) Compressor
US8096794B2 (en) Compressor with oil separation and storage
JP3832369B2 (en) High and low pressure dome type compressor
JP6015055B2 (en) Rotary compressor
JP2007100513A (en) Refrigerant compressor and refrigerant cycle device having the same
JP2014145318A (en) Rotary compressor
JP7452685B2 (en) hermetic compressor
JP5112090B2 (en) Scroll compressor
JP2011043084A (en) Rotary compressor
CN115218569B (en) Reservoir for compressor and compressor provided with same
JP6331786B2 (en) Compressor
JP2010144526A (en) Compressor
JP6779712B2 (en) Scroll compressor
JP2003129960A (en) Accumulator integrated compressor
JP7306436B2 (en) hermetic compressor
JP5595324B2 (en) Compressor
WO2022260008A1 (en) Hermetic compressor
JP6111695B2 (en) Rotary compressor
KR101870180B1 (en) 2 stage rotary compressor
WO2018043328A1 (en) Scroll compressor
JP2017096116A (en) Compressor
JP3873813B2 (en) Scroll compressor
JP5556368B2 (en) Scroll compressor
JP2023133843A (en) Hermetic compressor and manufacturing method thereof
KR101337109B1 (en) Two stage rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R151 Written notification of patent or utility model registration

Ref document number: 4595943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees