JP4595347B2 - Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder - Google Patents

Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder Download PDF

Info

Publication number
JP4595347B2
JP4595347B2 JP2004048942A JP2004048942A JP4595347B2 JP 4595347 B2 JP4595347 B2 JP 4595347B2 JP 2004048942 A JP2004048942 A JP 2004048942A JP 2004048942 A JP2004048942 A JP 2004048942A JP 4595347 B2 JP4595347 B2 JP 4595347B2
Authority
JP
Japan
Prior art keywords
gas
resin powder
powder
polyester resin
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004048942A
Other languages
Japanese (ja)
Other versions
JP2004277723A (en
Inventor
寿 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004048942A priority Critical patent/JP4595347B2/en
Publication of JP2004277723A publication Critical patent/JP2004277723A/en
Application granted granted Critical
Publication of JP4595347B2 publication Critical patent/JP4595347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

本発明はポリエステル樹脂粉体の製造方法に関する。詳しくは、ポリエステル樹脂粉体に加熱されたガスを接触させる際、一層効率的に樹脂粉体を熱処理することが出来かつ製品品質を一層均質化することが出来る、ポリエステル樹脂粉体の熱処理によるポリエステル樹脂粉体の製造方法に関する。   The present invention relates to a method for producing a polyester resin powder. Specifically, when the heated gas is brought into contact with the polyester resin powder, the polyester resin powder can be heat-treated more efficiently and the product quality can be further homogenized. The present invention relates to a method for producing resin powder.

一般的に、ポリエステルは、テレフタル酸等の芳香族ジカルボン酸成分とエチレングリコール等のジオール成分のエステル化、エステル化物の溶融重合により製造され、必要により固相重合される。ところで、ポリエステルの固相重合は、樹脂粉体中のジオール成分の拡散時間が反応律速となっており、この律速を小さくするには、温度を上げて拡散速度を大きくする方法、粉体粒径を小さくして拡散距離を小さくする方法等が知られている。   In general, polyester is produced by esterification of an aromatic dicarboxylic acid component such as terephthalic acid and a diol component such as ethylene glycol, and melt polymerization of the esterified product, and solid phase polymerization is performed as necessary. By the way, in the solid phase polymerization of polyester, the diffusion time of the diol component in the resin powder is reaction-controlled, and in order to reduce this rate-limiting, a method of increasing the diffusion rate by increasing the temperature, powder particle size A method for reducing the diffusion distance by reducing the distance is known.

現在、工業的に広く使用されている連続式固相重合装置は、上部から連続的に原料を供給し、下部から連続的に製品を排出するタワー式固定床(移動床)方式の装置である。斯かる方式では、粉体の滞留時間分布は小さくなるが、例えば1mm以下の小粒径の粉体についてはブリッヂングの発生により取り扱いが困難になるという問題がある。従って、上記の様な装置は、粉体粒径を小さくする前記の方法には不向きである。   Currently, industrial solid-phase polymerization equipment widely used industrially is a tower-type fixed bed (moving bed) type apparatus that continuously supplies raw materials from the top and continuously discharges products from the bottom. . In such a system, the residence time distribution of the powder becomes small, but there is a problem that, for example, a powder having a small particle diameter of 1 mm or less becomes difficult to handle due to the occurrence of bridging. Therefore, the apparatus as described above is not suitable for the above-described method for reducing the particle size of the powder.

これに対し、不活性ガスを流すことにより流動床を形成するならば、概ね1.5mm以下の小粒径の樹脂粉体と不活性ガスとを効率的に接触させることが可能である。従って、反応時間を短縮すべく粉体粒径を小さくし、拡散距離を小さくする方法により固相重合反応を行うためには、流動床を形成させることが望ましい。この様な流動床を使用した技術は数多く開示されており、ポリエステルの固相重合への適用例も知られている(例えば、特許文献1、2参照)。   On the other hand, if the fluidized bed is formed by flowing an inert gas, it is possible to efficiently contact the resin powder having a small particle diameter of approximately 1.5 mm or less and the inert gas. Therefore, it is desirable to form a fluidized bed in order to perform the solid phase polymerization reaction by a method of reducing the particle size of the powder and reducing the diffusion distance in order to shorten the reaction time. Many techniques using such a fluidized bed have been disclosed, and examples of application to solid phase polymerization of polyester are also known (see, for example, Patent Documents 1 and 2).

米国特許第4165420号公報U.S. Pat. No. 4,165,420 米国特許第4205157号公報US Pat. No. 4,205,157

例えば、ポリエステルの固相重合の様に、反応時間(滞留時間)により、分子量、アセトアルデヒド含有量等の品質が変化するプロセスにおいては、滞留時間分布を極力小さくすることが重要である。一般に、流動床は、完全混合層となる特徴があるため、流動床反応器を含む連続プロセスにおいて、連続的に原料の供給、製品の排出を行うと、当該流動床反応器における製品の滞留時間分布が大きくなり、反応が未完了の製品や、過度に反応が進んだ製品が排出されるという問題がある。すなわち、上記のポリエステルの固相重合を流動床で行う公知の方法では、1つの流動床を使用するため、製品の滞留時間分布が大きくなり、製品品質が安定しないという問題がある。   For example, in a process in which the quality such as molecular weight and acetaldehyde content changes depending on the reaction time (residence time), such as solid phase polymerization of polyester, it is important to make the residence time distribution as small as possible. In general, since a fluidized bed is characterized by being a completely mixed bed, when a raw material is continuously supplied and a product is discharged in a continuous process including a fluidized bed reactor, the residence time of the product in the fluidized bed reactor. There is a problem that the distribution becomes large and products that have not yet been reacted or products that have reacted excessively are discharged. That is, in the known method in which the above-described solid phase polymerization of polyester is performed in a fluidized bed, since one fluidized bed is used, there is a problem that the residence time distribution of the product becomes large and the product quality is not stable.

本発明は、上記の実情に鑑みなされたものであり、その目的は、ポリエステル樹脂粉体に加熱されたガスを接触させ、一層効率的にポリエステル樹脂粉体を熱処理することが出来、しかも、製品品質を一層均質化することが出来る、ポリエステル樹脂粉体の熱処理によるポリエステル樹脂粉体の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is to make it possible to heat the polyester resin powder more efficiently by bringing the heated gas into contact with the polyester resin powder. An object of the present invention is to provide a method for producing polyester resin powder by heat treatment of polyester resin powder, which can further homogenize the quality.

本発明者等は、上記目的を達成すべく鋭意検討した結果、流動床を構成する複数の処理容器を並列に使用すると共に、複数の処理容器に対してポリエステル樹脂粉体を切替供給し、処理容器におけるポリエステル樹脂粉体の熱処理および処理容器からの処理済ポリエステル樹脂粉体の排出を処理容器毎に位相差を持たせて逐次実行することにより、連続的な処理を行うことが出来、かつ、一層均質なポリエステル樹脂粉体が得られることを見出し、本発明を完成した。   As a result of intensive investigations to achieve the above object, the present inventors have used a plurality of processing containers constituting a fluidized bed in parallel, and switched and supplied polyester resin powder to the plurality of processing containers. By successively executing the heat treatment of the polyester resin powder in the container and the discharge of the treated polyester resin powder from the treatment container with a phase difference for each treatment container, continuous treatment can be performed, and The inventors have found that a more uniform polyester resin powder can be obtained and completed the present invention.

本発明の第1の要旨は、複数の処理容器にポリエステル樹脂粉体を収容し、ポリエステル樹脂粉体に加熱されたガスを接触させるポリエステル樹脂粉体を熱処理するポリエステル樹脂粉体の製造方法であって、(a)処理容器に対して一定量のポリエステル樹脂粉体を供給する工程と、(b)前記処理容器に対して加熱されたガスを一定時間供給してポリエステル樹脂粉体を熱処理する工程と、(c)前記処理容器から処理済のポリエステル樹脂粉体を排出する工程、とを繰り返すと共に、上記の工程を各処理容器毎に位相差を持たせて逐次実行することを特徴とするポリエステル樹脂粉体の製造方法に存する。   The first gist of the present invention is a method for producing a polyester resin powder in which a polyester resin powder is accommodated in a plurality of processing containers, and the polyester resin powder is brought into contact with a heated gas. (A) supplying a certain amount of polyester resin powder to the processing container; and (b) supplying heat gas to the processing container for a predetermined time to heat-treat the polyester resin powder. And (c) a step of discharging the treated polyester resin powder from the processing container, and the above steps are sequentially performed with a phase difference for each processing container. It exists in the manufacturing method of resin powder.

そして、上記第1の要旨に記載の本発明に於いてポリエステル樹脂粉体の熱処理を行うに際し、ポリエステル樹脂粉体の熱処理装置を使用し、当該熱処理装置は、上部に粉体充填口(2)およびガス排出口(5)が設けられ、下部に粉体排出口が設けられ且つ底部にガス導入口(4)が設けられた複数の処理容器と、これら処理容器の粉体充填口の上流側に配置され、これら粉体充填口に対して樹脂粉体を切替供給する粉体供給機構(7)と、前記各処理容器のガス導入口の上流側に配置され、これらガス導入口に対して前記各処理容器内の樹脂粉体を流動化状態にし得る流量のガスを供給するガス供給機構(8)と、当該ガス供給機構から供給されるガスを加熱する加熱機構(10)と、前記ガス供給機構から前記各処理容器のガス導入口へ至る個別の流路にそれぞれ配置された流量制御弁(9)と、前記各処理容器の粉体排出口の下流側にそれぞれ配置された粉体排出弁(13)とを備えていることが好ましい。   In the present invention described in the first aspect, when the heat treatment of the polyester resin powder is performed, a heat treatment apparatus for the polyester resin powder is used, and the heat treatment apparatus has a powder filling port (2) at the top. And a plurality of processing vessels provided with a gas outlet (5), a powder outlet at the bottom and a gas inlet (4) at the bottom, and upstream of the powder filling port of these processing vessels And a powder supply mechanism (7) for switching and supplying resin powder to the powder filling ports, and arranged upstream of the gas inlets of the processing containers. A gas supply mechanism (8) for supplying a gas having a flow rate capable of bringing the resin powder in each processing vessel into a fluidized state, a heating mechanism (10) for heating the gas supplied from the gas supply mechanism, and the gas Gas supply port of each processing container from the supply mechanism It is preferable to include a flow rate control valve (9) disposed in each individual flow path, and a powder discharge valve (13) disposed on the downstream side of the powder discharge port of each processing container. .

また、本発明の第2の要旨は、上記第1の要旨に記載のポリエステル樹脂粉体の製造方法でポリエステル樹脂粉体を製造する工程と、得られたポリエステル樹脂粉体を樹脂ペレット化することなくポリエステルプリフォームに成形する工程とから成るポリエステルプリフォームの製造方法に存する。当該製造方法によれば、ポリエステル樹脂粉体から樹脂ペレットを製造することなくプリフォームを製造するため、製造工程を簡略化してボトル等の成型体を製造できる。 Moreover, the 2nd summary of this invention is the process of manufacturing a polyester resin powder with the manufacturing method of the polyester resin powder as described in the said 1st summary, and pelletizing the obtained polyester resin powder. And a method for producing a polyester preform comprising a step of forming a polyester preform. According to the manufacturing method, since the preform is manufactured without manufacturing the resin pellet from the polyester resin powder, the manufacturing process can be simplified and a molded body such as a bottle can be manufactured.

さらに、本発明の第3の要旨は、ポリエステル樹脂粉体の熱処理用装置であって、当該熱処理装置は、上部に粉体充填口およびガス排出口が設けられ、下部に粉体排出口が設けられ且つ底部にガス導入口が設けられた複数の処理容器と、これら処理容器の粉体充填口の上流側に配置され、これら粉体充填口に対して樹脂粉体を切替供給する粉体供給機構と、前記各処理容器のガス導入口の上流側に配置され、これらガス導入口に対して前記各処理容器内の樹脂粉体を流動化状態にし得る流量のガスを供給するガス供給機構と、当該ガス供給機構から供給されるガスを加熱する加熱機構と、前記ガス供給機構から前記各処理容器のガス導入口へ至る個別の流路にそれぞれ配置された流量制御弁と、前記各処理容器の粉体排出口の下流側にそれぞれ配置された粉体排出弁とを備えており、熱処理温度が20℃以上250℃以下であり、熱処理によるポリエステル樹脂粉体の極限粘度の増分が0.20dl/g以上であることを特徴とする装置に存する。 Furthermore, a third aspect of the present invention is an apparatus for heat treatment of polyester resin powder, wherein the heat treatment apparatus is provided with a powder filling port and a gas discharge port at an upper portion and a powder discharge port at a lower portion. And a plurality of processing containers provided with gas inlets at the bottom, and a powder supply which is arranged upstream of the powder filling ports of these processing containers and which switches the resin powder to these powder filling ports And a gas supply mechanism that is disposed upstream of the gas inlets of the processing containers and supplies gas at a flow rate that can make the resin powder in the processing containers fluidized to the gas inlets. A heating mechanism for heating the gas supplied from the gas supply mechanism, a flow rate control valve disposed in an individual flow path from the gas supply mechanism to a gas inlet of each processing container, and each processing container On the downstream side of the powder outlet And a deployed powder discharge valve, the heat treatment temperature is at 20 ° C. or higher 250 ° C. or less, increment of intrinsic viscosity of the polyester resin powder by heat treatment, characterized in that at 0.20 dl / g or more Exists in the device.

本発明によれば、樹脂粉体を複数の処理用容器に切替供給し、供給が完了した処理容器から順次に熱処理を行い、熱処理が完了した処理容器から順次に排出すると共に、これらの操作を各処理容器毎に位相差を持たせて逐次に実行するため、流動床による熱処理を略連続的に行うことが出来、一層効率的に樹脂粉体を熱処理することが出来、しかも、個々の処理容器において加熱処理自体をバッチ処理で行うため、製品品質を一層均質化することが出来る。   According to the present invention, the resin powder is switched and supplied to a plurality of processing containers, heat treatment is sequentially performed from the processing containers for which supply has been completed, the heat treatment is sequentially discharged from the processing containers, and these operations are performed. Since each processing container is sequentially executed with a phase difference, heat treatment using a fluidized bed can be performed substantially continuously, resin powder can be heat-treated more efficiently, and individual processing can be performed. Since the heat treatment itself is performed in a batch process in the container, the product quality can be further homogenized.

本発明はポリエステル樹脂粉体の製造方法であるが、以下、本発明について図面を参照して詳細に説明する。図1は、本発明に係わるポリエステル樹脂粉体の熱処理によるポリエステル樹脂粉体の製造方法を実施する際に好適に使用される熱処理装置の一例の主要な構成を示すフロー図である。図2は、熱処理装置に使用される粉体供給機構の一構成例を示すフロー図であり、複数の三方弁から成る粉体供給機構の図である。図3は、熱処理装置に使用される粉体供給機構の他の構成例を示す模式的な斜視図であり、回転分配方式の粉体供給機構の図である。図4は、本発明に係る樹脂粉体の熱処理装置の他の例の主要な構成を示すフロー図であり、ガス供給機構が2系列配置された態様の図である。図5は、処理容器を5基有する熱処理装置による熱処理方法の各工程を示す工程図である。なお、以下の説明においては、樹脂粉体の熱処理装置を「熱処理装置」と略記し、ポリエステル樹脂粉体の熱処理によるポリエステル樹脂の製造方法を「熱処理による樹脂の製造方法」と略記する。   The present invention is a method for producing a polyester resin powder. Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a flow diagram showing a main configuration of an example of a heat treatment apparatus suitably used in carrying out a method for producing polyester resin powder by heat treatment of polyester resin powder according to the present invention. FIG. 2 is a flowchart showing an example of the configuration of a powder supply mechanism used in the heat treatment apparatus, and is a diagram of the powder supply mechanism including a plurality of three-way valves. FIG. 3 is a schematic perspective view showing another configuration example of the powder supply mechanism used in the heat treatment apparatus, and is a view of a powder distribution mechanism of a rotational distribution type. FIG. 4 is a flowchart showing the main configuration of another example of the heat treatment apparatus for resin powder according to the present invention, and is a diagram showing an embodiment in which two series of gas supply mechanisms are arranged. FIG. 5 is a process diagram showing each process of a heat treatment method using a heat treatment apparatus having five treatment containers. In the following description, a heat treatment apparatus for resin powder is abbreviated as “heat treatment apparatus”, and a method for producing polyester resin by heat treatment of polyester resin powder is abbreviated as “method for producing resin by heat treatment”.

先ず、本発明で好適に使用される熱処理装置について説明する。当該熱処理装置は、樹脂粉体に加熱されたガスを接触させる熱処理装置であり、例えば樹脂の固相重合の処理に好適に使用される。上記熱処理装置は、流動床を構成する処理容器を並列に複数配置して成り、各処理容器をバッチ方式で運転し且つこれらを逐次に切り替えることにより、原料としての樹脂粉体を連続的に供給し、製品としての処理済の樹脂粉体を連続的に排出するものである。   First, the heat processing apparatus used suitably by this invention is demonstrated. The said heat processing apparatus is a heat processing apparatus which contacts the gas heated with the resin powder, for example, is used suitably for the process of solid phase polymerization of resin. The heat treatment apparatus is configured by arranging a plurality of processing containers constituting a fluidized bed in parallel, and continuously supplying resin powder as a raw material by operating each processing container in a batch system and switching them sequentially. The processed resin powder as a product is continuously discharged.

上記熱処理装置は、図1に示す様に、上部に粉体充填口(2)及びガス排出口(5)が設けられ、下部に粉体排出口(3)が設けられ且つ底部にガス導入口(4)が設けられた複数の処理容器(1)と、これら処理容器(1)の粉体充填口(2)の上流側に配置され、これら粉体充填口(2)に対して樹脂粉体を切替供給する粉体供給機構(7)と、各処理容器(1)のガス導入口(4)の上流側に配置され、これらガス導入口(4)に対して各処理容器(1)内の樹脂粉体を流動化状態にし得る流量のガスを供給するガス供給機構(8)と、当該ガス供給機構から供給されるガスを加熱する加熱機構(10)と、ガス供給機構(8)から各処理容器(1)のガス導入口(4)へ至る個別の流路にそれぞれ配置された流量制御弁(9)と、各処理容器(1)の粉体排出口(3)の下流側にそれぞれ配置された粉体排出弁(13)とを備えている。   As shown in FIG. 1, the heat treatment apparatus has a powder filling port (2) and a gas discharge port (5) at the top, a powder discharge port (3) at the bottom, and a gas introduction port at the bottom. A plurality of processing containers (1) provided with (4) and disposed upstream of the powder filling port (2) of these processing containers (1), and resin powder with respect to these powder filling ports (2) The powder supply mechanism (7) for switching and supplying the body, and the upstream side of the gas inlet (4) of each processing container (1), each processing container (1) with respect to these gas inlets (4) A gas supply mechanism (8) for supplying a gas at a flow rate that can make the resin powder in a fluidized state, a heating mechanism (10) for heating the gas supplied from the gas supply mechanism, and a gas supply mechanism (8) Flow control valves (9) respectively disposed in individual flow paths from each to the gas inlet (4) of each processing vessel (1), Includes hairdressing apparatus (1) powder discharge port (3) a powder discharge valve which are disposed in the downstream side of the (13).

処理容器(1)の形状は特に制限は無いが、処理容器(1)は、通常、円柱状または多角柱状に形成され、中心線が垂直となる様に配置される。好ましくは、処理容器(1)は、水平断面積が大きくなされた部分が上部に設けられる。すなわち、処理容器(1)においては、胴部の途中から上部に向かうに従い水平断面積を漸次大きくすることにより、ガス線速を下げ、流動化状態における樹脂粉体の上昇距離を小さくすることが出来る。処理容器(1)の高さは、特に制限は無いが、供給される樹脂粉体の静置層高に対して3〜5倍程度の高さとされるのが好ましい。また、処理容器(1)の内部は、中心線に沿って仕切り板を設けることにより、複数の処理空間に分割されてもよい。   The shape of the processing container (1) is not particularly limited, but the processing container (1) is usually formed in a columnar shape or a polygonal column shape, and is arranged so that the center line is vertical. Preferably, the processing container (1) is provided with a portion having a large horizontal sectional area at the top. That is, in the processing container (1), by gradually increasing the horizontal cross-sectional area from the middle of the body part to the upper part, the gas linear velocity can be lowered and the rising distance of the resin powder in the fluidized state can be reduced. I can do it. The height of the processing container (1) is not particularly limited, but is preferably about 3 to 5 times the stationary layer height of the supplied resin powder. Moreover, the inside of the processing container (1) may be divided into a plurality of processing spaces by providing a partition plate along the center line.

通常、樹脂粉体を供給する粉体充填口(2)は、処理容器(1)の頂部を含む上半部、好ましくは頂部を含む高さの1/3に相当する上側部分に設けられ、例えば、処理容器(1)の頂部に設けられる。製品としての処理済の樹脂粉体を排出する粉体排出口(3)は、処理容器(1)の底部を含む下半部、好ましくは底部を含む高さの1/3に相当する下側部分に設けられ、例えば、処理容器(1)の下部の側面部分に設けられる。また、通常、高温のガスを供給するガス導入口(4)は、処理容器(1)の底部の最低部に設けられる。使用済のガスを排出するガス排出口(5)は、処理容器(1)の頂部を含む上半部、好ましくは頂部を含む高さの1/3に相当する上側部分に設けられ、例えば、処理容器(1)の天面または上部側面に設けられる。また、処理容器(1)の内部には、供給されるガスを分散させるための多孔構造のガス分散板(6)が略水平に配置される。ガス分散板(6)は、出来る限り、ガス導入口(4)の直上であって、粉体排出口(3)の直下に配置されるのが好ましい。   Usually, the powder filling port (2) for supplying the resin powder is provided in the upper half part including the top part of the processing container (1), preferably in the upper part corresponding to 1/3 of the height including the top part, For example, it is provided on the top of the processing container (1). The powder discharge port (3) for discharging the processed resin powder as a product is a lower half portion including the bottom portion of the processing container (1), preferably a lower side corresponding to 1/3 of the height including the bottom portion. For example, it is provided on the side surface portion of the lower portion of the processing container (1). In general, the gas inlet (4) for supplying high-temperature gas is provided at the lowest part of the bottom of the processing vessel (1). The gas discharge port (5) for discharging the used gas is provided in the upper half part including the top part of the processing vessel (1), preferably in the upper part corresponding to 1/3 of the height including the top part. It is provided on the top surface or upper side surface of the processing container (1). In addition, a gas dispersion plate (6) having a porous structure for dispersing the supplied gas is disposed substantially horizontally inside the processing container (1). The gas dispersion plate (6) is preferably disposed immediately above the gas inlet (4) and directly below the powder outlet (3) as much as possible.

粉体供給機構(7)は、各処理容器(1)へ樹脂粉体を順次に切替供給する機構であり、粉体供給機構(7)としては、単一の原料供給ラインから複数の処理容器(1)に原料粉体を順次供給し得る構造を有している限り、各種の機構を採用できるが、例えば、図2に示す様に、三方弁(71)を1つ又は複数個使用して樹脂粉体の供給先を選択する方式の機構が挙げられる。斯かる粉体供給機構(7)は、処理容器(1)の設置数よりも1つ少ない数の三方弁(71)を組み合わせ、流路の切替操作を組み合わせることにより、所定の処理容器(1)へ樹脂粉体を供給できる。   The powder supply mechanism (7) is a mechanism for sequentially switching and supplying resin powder to each processing container (1). The powder supply mechanism (7) includes a plurality of processing containers from a single raw material supply line. Various mechanisms can be adopted as long as (1) has a structure capable of sequentially supplying the raw material powder. For example, as shown in FIG. 2, one or more three-way valves (71) are used. And a mechanism for selecting a supply destination of the resin powder. Such a powder supply mechanism (7) combines a number of three-way valves (71), which is one less than the number of processing containers (1) installed, and a predetermined processing container (1) by combining the switching operations of the flow paths. ) Can be supplied with resin powder.

また、粉体供給機構(7)の他の例としては、図3に示す様に、頂部から周面に沿って内部に流路が配置された略円錐状の回転部材(72)と、当該回転部材の前記流路の先端の移動位置に対応して処理容器(1)の設置数だけ流路が並列配置された受入部材(73)とから成る回転分配方式の機構を使用ことも出来る。斯かる粉体供給機構(7)は、回転部材(72)の回転制御により、当該回転部材の流路に通じる受入部材(73)の流路を選択し、所定の処理容器(1)へ樹脂粉体を供給する様になされている。   Further, as another example of the powder supply mechanism (7), as shown in FIG. 3, a substantially conical rotating member (72) in which a flow path is arranged from the top along the circumferential surface, It is also possible to use a rotation distribution type mechanism comprising receiving members (73) in which the flow paths are arranged in parallel by the number of processing containers (1) corresponding to the movement position of the tip of the flow path of the rotation member. The powder supply mechanism (7) selects the flow path of the receiving member (73) that communicates with the flow path of the rotating member by controlling the rotation of the rotating member (72), and transfers the resin to the predetermined processing container (1). It is designed to supply powder.

図1に示すガス供給機構(8)としては、処理容器(1)内の樹脂粉体を流動化し得るものであれば特に制限は無いが、通常は一般的なコンプレッサーやブロワーが使用される。上記熱処理装置においては、必要に応じてガスを加熱して各処理容器(1)に供給するため、ガス供給機構(8)の下流側に加熱機構(10)が連結されている。ガスを加熱する加熱機構(10)としては、例えば、プレート式または多管式の公知の熱交換器あるいはガス加熱炉が使用できる。   The gas supply mechanism (8) shown in FIG. 1 is not particularly limited as long as the resin powder in the processing container (1) can be fluidized, but generally a general compressor or blower is used. In the heat treatment apparatus, a heating mechanism (10) is connected to the downstream side of the gas supply mechanism (8) in order to heat the gas as needed and supply it to each processing vessel (1). As the heating mechanism (10) for heating the gas, for example, a well-known plate-type or multi-tube heat exchanger or a gas heating furnace can be used.

流量制御弁(9)は、ガス供給機構(8)から各処理容器(1)のガス導入口(4)へ至る個別の流路、例えば共通の流路から各処理容器(1)のガス導入口(4)へ分岐した分岐流路にそれぞれ配置される。流量制御弁(9)としては、各処理容器(1)に供給するガスの流量を個別に独立して制御可能なものであれば特に制限は無く、代表的にはエアー作動弁などの開度調節可能な制御弁が使用され、斯かる弁は、後述の制御機構(図示省略)によって作動を制御される様になされている。具体的には、流量制御弁(9)の開度調節により、処理容器(1)への樹脂粉体の供給と処理容器(1)からの樹脂粉体の排出の際は、ガスの流量、すなわち、処理容器(1)におけるガスの流速を小さくし、加熱処理時はガスの流量、すなわち、処理容器(1)におけるガスの流速を大きくする様な操作を行なうことが出来る。   The flow rate control valve (9) introduces gas from the gas supply mechanism (8) to the gas introduction port (4) of each processing container (1), for example, gas from each processing container (1) through a common flow path. It arrange | positions at the branch flow path branched to the opening | mouth (4), respectively. The flow rate control valve (9) is not particularly limited as long as the flow rate of the gas supplied to each processing container (1) can be individually controlled independently, and typically the opening of an air operation valve or the like. An adjustable control valve is used, and the operation of such a valve is controlled by a control mechanism (not shown) described later. Specifically, by supplying the resin powder to the processing container (1) and discharging the resin powder from the processing container (1) by adjusting the opening of the flow control valve (9), the gas flow rate, That is, the gas flow rate in the processing vessel (1) can be reduced, and an operation can be performed to increase the gas flow rate, that is, the gas flow rate in the processing vessel (1) during the heat treatment.

粉体排出弁(13)は、処理済の樹脂粉体を処理容器(1)から取り出すために粉体排出口(3)の下流側にそれぞれ配置される。粉体排出弁(13)としては、仕切弁として開閉制御可能な電磁作動弁、エアー作動弁などの制御弁が使用される。   The powder discharge valve (13) is arranged on the downstream side of the powder discharge port (3) in order to take out the processed resin powder from the processing container (1). As the powder discharge valve (13), a control valve such as an electromagnetically operated valve or an air operated valve that can be controlled to open and close is used as a gate valve.

また、図1に示す様に、上記熱処理装置においては、ガス消費量を低減すると共に、高温のガスの熱を有効利用して加熱コストを低減するため、各処理容器(1)のガス排出口(5)から排出された使用済のガスをガス供給機構(8)へ返流するガス循環ライン(15)が備えられていてもよい。符号(14)はガス排出弁を示す。   Moreover, as shown in FIG. 1, in the said heat processing apparatus, in order to reduce gas consumption and also to effectively utilize the heat of high temperature gas and to reduce heating cost, the gas discharge port of each processing container (1) A gas circulation line (15) for returning the used gas discharged from (5) to the gas supply mechanism (8) may be provided. Reference numeral (14) denotes a gas discharge valve.

更に、上記のガス循環ライン(15)には微粉除去器(11)が設置されているのが好ましい。微粉除去器(11)としては、公知のサイクロン、バグフィルタ等を使用できる。ガス循環ライン(15)に微粉除去器(11)が設置されている場合には、ガス循環ライン(15)、各流量制御弁(9)、各ガス分散板(6)、ガス供給機構(8)などにおける微粉による閉塞を防止でき、後述する不純物除去器(12)の負荷を低減できる。また、下限界未満の粒径の粉体を除去して製品品質の低下を防止できる。しかも、除去回収した微粉から使用可能な粉体を更に選別し、原料に混合して処理容器(1)に戻すことにより、原料の歩留まりを向上させ且つ廃棄物の発生量を低減させることが出来る。   Furthermore, it is preferable that a fine powder remover (11) is installed in the gas circulation line (15). A known cyclone, bag filter, or the like can be used as the fine powder remover (11). When the fine powder remover (11) is installed in the gas circulation line (15), the gas circulation line (15), each flow control valve (9), each gas dispersion plate (6), gas supply mechanism (8) ) And the like can be prevented, and the load on the impurity remover (12) described later can be reduced. Further, it is possible to remove the powder having a particle size less than the lower limit and prevent the product quality from being deteriorated. Moreover, by further selecting usable powder from the removed and recovered fine powder, mixing it with the raw material and returning it to the processing container (1), the yield of the raw material can be improved and the amount of waste generated can be reduced. .

また、循環ガスの純度を向上させて製品品質の安定化を図り、かつ、循環ガス中の水やジオール成分、エチレングリコール(EG)等を除去して反応速度を向上させるため、上記のガス循環ライン(15)には、水および/または有機不純物を除去する不純物除去器(12)が設置されるのが好ましい。なお、水および/または有機不純物としては、例えば、原料樹脂中に含まれる水、EG、アセトアルデヒド、環状三量体、線状オリゴマー等の低沸点(低分子量)化合物、重縮合反応により発生する水、EG等の低沸点(低分子量)化合物、樹脂の熱分解などにより副生するアセトアルデヒド等の低沸点(低分子量)化合物が挙げられる。上記の不純物除去器(12)としては、ガスバーナーの他、有機物含有量の分析値に応じて酸素(空気)を取り入れ、触媒や熱で有機物を酸化する装置、あるいは、湿式または乾式コンデンサーやEGスクラバー等が例示できる。   In addition, the above gas circulation is used to improve the reaction rate by improving the purity of the circulating gas to stabilize the product quality and removing water, diol components, ethylene glycol (EG), etc. in the circulating gas. The line (15) is preferably provided with an impurity remover (12) for removing water and / or organic impurities. Examples of water and / or organic impurities include water, EG, acetaldehyde, cyclic trimers, linear oligomers, and other low-boiling (low molecular weight) compounds contained in the raw resin, and water generated by polycondensation reaction. And low boiling point (low molecular weight) compounds such as EG and low boiling point (low molecular weight) compounds such as acetaldehyde by-produced by thermal decomposition of the resin. As the impurity remover (12), in addition to a gas burner, oxygen (air) is taken in according to the analysis value of the organic substance content, and an organic substance is oxidized by a catalyst or heat, or a wet or dry condenser or EG An example is a scrubber.

なお、図示しないが、上記熱処理装置においては、ガス循環ライン(15)を設けずに、各処理容器(1)のガス排出口(5)から排出された使用済のガスを系外へ排出する様になされ、ガス供給機構(8)によりガス導入口に対して常に新たなガスを供給する様になされていてもよい。その場合、作業環境を良好に維持し、安全性の確保する観点から、使用済のガスを清浄化して系外へ排出するため、ガス排出口(5)の下流側には、上記の様な微粉除去器(11)が設置されるのが好ましく、また、水および/または有機不純物を除去する不純物除去器(12)が設置されるのが好ましい。   Although not shown, in the heat treatment apparatus, the used gas discharged from the gas discharge port (5) of each processing vessel (1) is discharged out of the system without providing the gas circulation line (15). The gas supply mechanism (8) may always supply a new gas to the gas inlet. In that case, from the viewpoint of maintaining a good working environment and ensuring safety, the used gas is cleaned and discharged out of the system, so the downstream side of the gas discharge port (5) is as described above. A fine powder remover (11) is preferably installed, and an impurity remover (12) for removing water and / or organic impurities is preferably installed.

また、上記熱処理装置においては、処理容器(1)に供給する高温のガスの温度を例えば固相重合や乾燥、結晶化などの処理の進行過程に応じて調節可能に構成されていてもよい。すなわち、本発明の他の態様においては、ガス供給機構を複数系列設置し、処理容器(1)へ供給するガスの目標温度に応じて各系列のガス温度を相互に異なる温度とし、各系列からのガスを任意の比率で混合して各処理容器(1)に供給する様になされている。   Further, the heat treatment apparatus may be configured such that the temperature of the high-temperature gas supplied to the processing vessel (1) can be adjusted according to the progress of the processing such as solid phase polymerization, drying, and crystallization. That is, in another aspect of the present invention, a plurality of gas supply mechanisms are installed, and the gas temperatures of the respective systems are set to different temperatures according to the target temperature of the gas supplied to the processing container (1). These gases are mixed at an arbitrary ratio and supplied to each processing container (1).

具体的には、図4に示す様に、熱処理装置は、前述の構成に加え、各処理容器(1)のガス導入口(4)の上流側に配置され、ガス供給機構(8)によって供給されるガスとは異なる温度のガスを各ガス導入口(4)に対して供給する第2のガス供給機構(8b)と、当該第2のガス供給機構から各ガス導入口(4)へ至る個別の流路にそれぞれ配置された第2の流量制御弁(9b)とを備えている。   Specifically, as shown in FIG. 4, in addition to the above-described configuration, the heat treatment apparatus is arranged on the upstream side of the gas inlet (4) of each processing vessel (1) and is supplied by the gas supply mechanism (8). A second gas supply mechanism (8b) for supplying a gas having a temperature different from that of the gas to be supplied to each gas inlet (4), and the second gas supply mechanism to each gas inlet (4). And a second flow rate control valve (9b) disposed in each individual flow path.

図4に例示した熱処理装置は、ガス供給機構(8)と第2のガス供給機構(8b)の2系列のガス供給機構を備えたものであり、勿論、更に他のガス供給機構が備えられていてもよい。図4中の符号(10b)は、上記の加熱機構(10)と同様の第2の加熱機構を示す。図4に示す様な態様の熱処理装置においては、熱処理の工程で処理容器(1)に供給するガスの温度を後述する様に例えば3段階に切り替えることが出来、一層均質な製品を得ることが出来る。また、同一の熱処理装置において、結晶化、固相重合、冷却の3つの処理を実施することが出来る。   The heat treatment apparatus illustrated in FIG. 4 includes two series of gas supply mechanisms, that is, a gas supply mechanism (8) and a second gas supply mechanism (8b), and of course, further includes another gas supply mechanism. It may be. The code | symbol (10b) in FIG. 4 shows the 2nd heating mechanism similar to said heating mechanism (10). In the heat treatment apparatus as shown in FIG. 4, the temperature of the gas supplied to the treatment vessel (1) in the heat treatment step can be switched to, for example, three stages as described later, and a more homogeneous product can be obtained. I can do it. In the same heat treatment apparatus, three processes of crystallization, solid phase polymerization, and cooling can be performed.

上記熱処理装置においては、粉体供給機構(7)、各流量制御弁(9)及び各粉体排出弁(13)の作動がプロセス制御用コンピューター等の制御機構(図示省略)によって制御可能に構成されており、斯かる制御により、後述する様に樹脂粉体の供給、加熱処理および排出を各処理容器(1)毎に位相差を持たせて順次に行い、全体として実質的に略連続操作で熱処理を行う状態とするため、一層効率的に樹脂粉体を熱処理することが出来る。   In the heat treatment apparatus, the operation of the powder supply mechanism (7), each flow control valve (9) and each powder discharge valve (13) can be controlled by a control mechanism (not shown) such as a process control computer. By such control, as will be described later, the supply of the resin powder, the heat treatment, and the discharge are sequentially performed with a phase difference for each processing container (1), and the operation is substantially substantially continuous as a whole. Therefore, the resin powder can be heat-treated more efficiently.

すなわち、上記の制御機構は、各処理容器(1)の粉体充填口(2)に対して所定量の樹脂粉体を順次に供給すべく粉体供給機構(7)を制御する機能と、樹脂粉体の供給後に逐次各処理容器(1)に対して加熱されたガスを一定時間供給すべく各流量制御弁(9)を制御する機能と、一定時間ガス供給後に逐次各処理容器(1)から樹脂粉体を排出すべく各粉体排出弁(13)を制御する機能とを有し、かつ、粉体供給機構(7)、各流量制御弁(9)及び各粉体排出弁(13)に対する上記の制御を各処理容器(1)毎に位相差を持たせて逐次実行する機能を有している。   That is, the control mechanism has a function of controlling the powder supply mechanism (7) so as to sequentially supply a predetermined amount of resin powder to the powder filling port (2) of each processing container (1); A function of controlling each flow rate control valve (9) so as to supply a heated gas to each processing container (1) sequentially after the resin powder is supplied for a certain period of time, and each processing container (1 sequentially after supplying the gas for a certain period of time. ) To control the respective powder discharge valves (13) to discharge the resin powder, and the powder supply mechanism (7), each flow control valve (9) and each powder discharge valve ( 13) has a function of sequentially executing the above control with a phase difference for each processing container (1).

更に、図4に示す熱処理装置においては、第2の流量制御弁(9b)が制御機構によって制御可能に構成され、制御機構は、上記の機能に加え、樹脂粉体の供給後に逐次各処理容器(1)に対して加熱されたガスおよび/または異なる温度のガスを供給すべく各流量制御弁(9)及び第2の流量制御弁(9b)を制御する機能を有している。そして、図4に示す熱処理装置においては、各処理容器(1)に供給されるガスの温度が各処理容器(1)毎に独立して制御される様になされている。   Further, in the heat treatment apparatus shown in FIG. 4, the second flow rate control valve (9b) is configured to be controllable by a control mechanism, and the control mechanism sequentially adds each processing container after the resin powder is supplied in addition to the above function. It has a function of controlling each flow rate control valve (9) and the second flow rate control valve (9b) so as to supply heated gas and / or gas of different temperature to (1). In the heat treatment apparatus shown in FIG. 4, the temperature of the gas supplied to each processing container (1) is controlled independently for each processing container (1).

次に、上記熱処理装置における機能と共に、上記熱処理装置を使用した本発明のポリエステル樹脂粉体の製造方法について説明する。本発明のポリエステル樹脂粉体の製造方法は、複数の処理容器(1)にポリエステル樹脂粉体を収容し、ポリエステル樹脂粉体に加熱されたガスを接触させるポリエステル樹脂粉体の熱処理による方法であり、例えばポリエステル樹脂の乾燥、脱揮、固相重合などの処理に好適に使用される。   Next, the manufacturing method of the polyester resin powder of the present invention using the heat treatment apparatus will be described together with the function of the heat treatment apparatus. The method for producing polyester resin powder of the present invention is a method by heat treatment of polyester resin powder in which polyester resin powder is accommodated in a plurality of processing containers (1) and heated gas is brought into contact with the polyester resin powder. For example, it is suitably used for treatments such as drying, devolatilization and solid phase polymerization of polyester resins.

本発明において、樹脂粉体としては、ポリエステルが使用される。以下ポリエステルの固相重合を例として説明すると、ポリエステルとしては、公知の何れのものも適用でき、例えば、テレフタル酸またはテレフタル酸ジメチル等の芳香族ジカルボン酸またはそのエステル誘導体とエチレングリコール等のジオール成分とのエステル化またはエステル交換物を溶融重合したものが挙げられる。   In the present invention, polyester is used as the resin powder. In the following, solid phase polymerization of polyester will be described as an example, and any known polyester can be applied. For example, aromatic dicarboxylic acid such as terephthalic acid or dimethyl terephthalate or ester derivative thereof and diol component such as ethylene glycol And those obtained by melt polymerization of an esterified or transesterified product.

ポリエステルは、その重合度に特に制限は無いが、本発明の熱処理により重合度を増加させることを考慮すると、極限粘度(IV)が比較的低いものであってもよく、極限粘度(IV)が通常0.20〜0.66dl/g、好ましくは0.25〜0.60dl/g、特に好ましくは0.27〜0.55dl/gの範囲のポリエステルが使用される。また、本発明においては、処理容器(1)内での熱処理による極限粘度(IV)の増分が通常0.20dl/g以上、好ましくは0.25dl/g以上、特に好ましくは0.28以上である。極限粘度(IV)の増分が上記の範囲にある場合は、本発明を適用することにより生産性が向上する。なお、極限粘度(IV)の測定は、フェノール/テトラクロロエタン混合溶媒(重量比1/1)にポリエステル樹脂粉体を溶解させ、ウベローデ型粘度計を用いて30℃で行なう。   The degree of polymerization of the polyester is not particularly limited, but considering that the degree of polymerization is increased by the heat treatment of the present invention, the intrinsic viscosity (IV) may be relatively low, and the intrinsic viscosity (IV) is Usually, polyesters in the range of 0.20 to 0.66 dl / g, preferably 0.25 to 0.60 dl / g, particularly preferably 0.27 to 0.55 dl / g are used. In the present invention, the increment of the intrinsic viscosity (IV) by heat treatment in the processing vessel (1) is usually 0.20 dl / g or more, preferably 0.25 dl / g or more, particularly preferably 0.28 or more. is there. When the increment of the intrinsic viscosity (IV) is in the above range, the productivity is improved by applying the present invention. The intrinsic viscosity (IV) is measured by dissolving the polyester resin powder in a phenol / tetrachloroethane mixed solvent (weight ratio 1/1) and using an Ubbelohde viscometer at 30 ° C.

ポリエステル樹脂粉体の重量平均粒径は、通常0.05〜1.0mm、好ましくは0.08〜0.50mm、特に好ましくは0.10〜0.40mmである。樹脂粉体の粒径が小さすぎると、流動化状態と静置状態の層高さの比が大きく、処理容器(1)の高さを大きくする必要がある。また、ガス排出口(5)から同伴して排出される粉体量が多くなり、歩留まりが低下することがある。ポリエステル樹脂粉体の粒径分布は小さい方が好ましい。具体的には、縦軸を重量頻度、横軸を粒径としてプロットしたときの分布の半値幅は、重量平均粒径の通常2倍以下、好ましくは1.5倍以下である。なお、樹脂粉体の粒径の測定は、分散剤を添加した水に樹脂粉体を分散させ、レーザー回折式の粒径分布測定機にて常温で行なう。   The weight average particle diameter of the polyester resin powder is usually 0.05 to 1.0 mm, preferably 0.08 to 0.50 mm, and particularly preferably 0.10 to 0.40 mm. If the particle size of the resin powder is too small, the ratio of the bed height between the fluidized state and the stationary state is large, and it is necessary to increase the height of the processing container (1). Moreover, the amount of powder discharged along with the gas discharge port (5) increases, and the yield may decrease. The particle size distribution of the polyester resin powder is preferably smaller. Specifically, the half width of the distribution when plotted with the weight frequency on the vertical axis and the particle diameter on the horizontal axis is usually twice or less, preferably 1.5 times or less of the weight average particle diameter. The particle size of the resin powder is measured at room temperature using a laser diffraction type particle size distribution measuring device by dispersing the resin powder in water to which a dispersant has been added.

ポリエステル樹脂粉体を熱処理する本発明のポリエステル樹脂粉体の製造方法においては、(a)処理容器(1)に対して一定量のポリエステル樹脂粉体を供給する工程と、(b)処理容器(1)に対して加熱されたガスを一定時間供給してポリエステル樹脂粉体を熱処理する工程と、(c)処理容器(1)から処理済の樹脂粉体を排出する工程、とを繰り返すと共に、上記の制御機構による粉体供給機構(7)、各流量制御弁(9)及び各粉体排出弁(13)の作動制御などにより、上記の工程を各処理容器(1)毎に位相差を持たせて逐次実行する。   In the method for producing a polyester resin powder of the present invention in which the polyester resin powder is heat-treated, (a) a step of supplying a certain amount of polyester resin powder to the processing container (1), and (b) a processing container ( 1) repeating the process of supplying the heated gas for a certain period of time to heat-treat the polyester resin powder, and (c) discharging the processed resin powder from the processing container (1), The above steps are performed for each processing container (1) by controlling the operation of the powder supply mechanism (7), each flow control valve (9), and each powder discharge valve (13) by the above control mechanism. Hold it and execute it sequentially.

上記の熱処理における第1の工程は、処理容器(1)に一定量のポリエステル樹脂粉体を供給する工程であり、原料供給ラインを通じて供給されるポリエステル樹脂粉体を粉体供給機構(7)の切替制御によって各処理容器(1)の粉体充填口(2)に対して順次に振分け、各処理容器(1)一定量のポリエステル樹脂粉体を順次に供給する。   The first step in the heat treatment is a step of supplying a certain amount of polyester resin powder to the processing vessel (1), and the polyester resin powder supplied through the raw material supply line is supplied to the powder supply mechanism (7). By switching control, the powder filling port (2) of each processing container (1) is sequentially distributed, and a certain amount of polyester resin powder is sequentially supplied to each processing container (1).

第2の工程は、処理容器(1)に加熱されたガスを供給してポリエステル樹脂粉体を熱処理する工程であり、ガス供給機構(8)から一定温度に加熱されたガスを一定流量で各処理容器(1)のガス導入口(4)に向けて供給すると共に、各処理容器(1)の流量制御弁(9)の制御により、第1の工程が完了した処理容器(1)にガスを供給して順次に熱処理を行う。   The second step is a step of supplying the heated gas to the processing container (1) to heat-treat the polyester resin powder. Each gas heated to a constant temperature from the gas supply mechanism (8) is supplied at a constant flow rate. While supplying toward the gas inlet (4) of a processing container (1), gas is supplied to the processing container (1) which completed the 1st process by control of the flow control valve (9) of each processing container (1). To sequentially perform heat treatment.

上記の第2の工程において、ガスの供給開始は、処理容器(1)に対するポリエステル樹脂粉体の充填完了後であっても、充填完了以前であってもよく、充填完了以前にガスの供給を開始する場合には、ポリエステル樹脂粉体の充填開始時はガス線速を小さくし、ポリエステル樹脂粉体の充填量が増えるに従い徐々に流速を上げか、あるいは、ポリエステル樹脂粉体の充填完了時点で流速を上げるのが好ましい。   In the second step, the gas supply may be started after the polyester resin powder is completely filled into the processing container (1) or before the filling is completed, and the gas is supplied before the filling is completed. When starting to fill the polyester resin powder, reduce the gas linear velocity and gradually increase the flow rate as the polyester resin powder filling amount increases, or when the polyester resin powder filling is completed It is preferable to increase the flow rate.

ガス線速(空塔速度)は、流動化状態が維持でき、ポリエステル樹脂粉体が同伴飛散しない範囲であれば特に制約はないが、通常は0.1〜1.0m/s程度とする。通常、ガス分散板(6)の鉛直下方から上方に向けてガスを吹き込み、そのガス流によりポリエステル樹脂粉体を上方に吹き上げて流動化させる。その際、ポリエステル樹脂粉体はガスにより上方に吹き上げられ、重力により下方に落下する運動がランダムに起こり、完全混合状態となる。なお、供給されるガスとしては、通常は不活性ガス、好ましくは窒素ガスが使用される。   The gas linear velocity (superficial velocity) is not particularly limited as long as the fluidized state can be maintained and the polyester resin powder is not entrained and scattered, but is usually about 0.1 to 1.0 m / s. Usually, gas is blown upward from the vertically lower side of the gas dispersion plate (6), and the polyester resin powder is blown upward by the gas flow to be fluidized. At that time, the polyester resin powder is blown upward by the gas, and the motion of dropping downward by gravity occurs randomly, resulting in a completely mixed state. As the gas to be supplied, an inert gas, preferably nitrogen gas is usually used.

第3の工程は、処理容器(1)から処理済のポリエステル樹脂粉体を排出する工程であり、各処理容器(1)の粉体排出口(3)の下流側に配置された粉体排出弁(13)を開放することにより、第2工程を終了した処理容器(1)から、逐次、ポリエステル樹脂粉体を排出し、包装などを行う後段の後処理工程(図示せず)に製品としてのポリエステル樹脂粉体を移送する。   The third step is a step of discharging the treated polyester resin powder from the processing container (1), and the powder discharge disposed on the downstream side of the powder discharge port (3) of each processing container (1). By opening the valve (13), the polyester resin powder is sequentially discharged from the processing container (1) that has completed the second step, and is used as a product in a subsequent post-processing step (not shown) for packaging and the like. The polyester resin powder is transferred.

本発明においては、各処理容器(1)について上記の第1〜3の各工程を繰り返すと共に、上記の工程を各処理容器(1)毎に位相差を持たせて逐次実行する。すなわち、複数の処理容器(1)間において、充填および排出工程が重ならない様に工程の実行時期をずらし、かつ、各処理容器(1)において、アイドルタイムが最小となる様に一連の工程を逐次実行する。これにより、システム全体として流動床による処理を略連続的に行い且つ製品の熱処理時間を略一定とすることが出来、一層効率的に樹脂粉体を熱処理することが出来る。   In the present invention, the above first to third steps are repeated for each processing container (1), and the above steps are sequentially executed with a phase difference for each processing container (1). That is, the process execution timing is shifted so that the filling and discharging processes do not overlap among the plurality of processing containers (1), and the series of processes is performed so that the idle time is minimized in each processing container (1). Run sequentially. As a result, the treatment by the fluidized bed can be performed substantially continuously as a whole system, the heat treatment time of the product can be made substantially constant, and the resin powder can be heat treated more efficiently.

上記熱処理装置を使用したポリエステル樹脂粉体の連続的な熱処理によるポリエステル樹脂粉体の製造方法における操作の具体例を更に以下の表に示す。表1に例示した熱処理は、容器1、容器2及び容器3の3基の処理用容器(1)を使用たものであり、1操作サイクルにおいては、容器に1時間掛けて原料の樹脂粉体を充填し(表中に「充填」と略記)、引き続き1時間の熱処理を行い(表中に「熱処理」と略記)、更に1時間掛けて製品を排出している(表中に「排出」と略記)。   Specific examples of operations in the method for producing polyester resin powder by continuous heat treatment of the polyester resin powder using the heat treatment apparatus are further shown in the following table. The heat treatment illustrated in Table 1 uses three processing containers (1) of container 1, container 2 and container 3, and in one operation cycle, the resin powder as a raw material is taken for 1 hour. (Abbreviated as “filling” in the table), followed by heat treatment for 1 hour (abbreviated as “heat treatment” in the table), and discharging the product over an additional hour (“discharge” in the table) Abbreviated).

ポリエステル樹脂粉体の充填および排出時間に比べて熱処理時間を長くする必要がある場合は、処理用容器(1)の数を増やして行なうことが好ましい。ポリエステル樹脂粉体の熱処理時間を長くする場合は、例えば、処理用容器(1)を5基使用し、図5に示す様に操作の位相をずらして操作を行なう。   When it is necessary to lengthen the heat treatment time as compared with the filling and discharging time of the polyester resin powder, it is preferable to increase the number of treatment containers (1). In order to lengthen the heat treatment time of the polyester resin powder, for example, five processing containers (1) are used, and the operation is performed with the operation phase shifted as shown in FIG.

また、図4に示す熱処理装置を使用した本発明の好ましい態様の熱処理においては、前述の作動制御に加え、各第2の流量制御弁(9b)の作動制御により、上記の工程を各処理容器(1)毎に位相差を持たせて逐次実行する。そして、本発明の熱処理においては、樹脂粉体を熱処理する工程(上記の第2の工程)で反応の進行に応じてガスの温度3段階に温度制御する。   In addition, in the heat treatment according to a preferred embodiment of the present invention using the heat treatment apparatus shown in FIG. 4, in addition to the above-described operation control, the above-mentioned steps are performed by the operation control of each second flow rate control valve (9b). (1) Each phase is sequentially executed with a phase difference. In the heat treatment of the present invention, the temperature of the resin powder is controlled in three stages according to the progress of the reaction in the step of heat-treating the resin powder (the second step described above).

すなわち、本発明の熱処理は、樹脂粉体を熱処理する工程において、熱処理開始時のガスの温度をT1、熱処理中のガスの温度をT2、熱処終了時のガスの温度をT3とした場合、以下の条件を満足する様に、各処理容器(1)に供給するガスの温度を調節する。なお、温度T1、T2、T3は、何れも処理容器(1)へ導入する際の入口でのガス温度である。   That is, in the heat treatment of the present invention, in the heat treatment of the present invention, the gas temperature at the start of heat treatment is T1, the gas temperature during the heat treatment is T2, and the gas temperature at the end of the heat treatment is T3. The temperature of the gas supplied to each processing container (1) is adjusted so as to satisfy the following conditions. The temperatures T1, T2, and T3 are all gas temperatures at the inlet when introduced into the processing container (1).

熱処理開始時のガスの温度T1は、通常120〜220℃、好ましくは160〜210℃、特に好ましくは180〜205℃であり、熱処理中のガスの温度T2は、通常180〜250℃、好ましくは190〜245℃、特に好ましくは200〜240℃であり、熱処終了時のガスの温度T3は、通常20〜220℃、好ましくは120〜210℃、特に好ましくは180〜205℃である。但し、上記の各温度はT1<T2で且つT3<T2を満足する様に調節する。   The gas temperature T1 at the start of the heat treatment is usually 120 to 220 ° C., preferably 160 to 210 ° C., particularly preferably 180 to 205 ° C., and the gas temperature T2 during the heat treatment is usually 180 to 250 ° C., preferably It is 190-245 degreeC, Most preferably, it is 200-240 degreeC, and temperature T3 of the gas at the time of completion | finish of heat processing is 20-220 degreeC normally, Preferably it is 120-210 degreeC, Most preferably, it is 180-205 degreeC. However, the above temperatures are adjusted so that T1 <T2 and T3 <T2.

熱処理開始時の温度T1から熱処理中の温度T2に切り替える際は、徐々に昇温していくことが好ましい。温度の昇降は、前述した様に、例えば2系列のガス供給機構(8)及び第2のガス供給機構(8b)を設置し、各系列のガス温度を相互に異なる温度とし、目標温度に応じて各系列からのガスを任意の比率で混合して各処理容器(1)に供給し、例えば、温度T1のガス流量を徐々に下げ(又は上げ)、温度T2のガス流量を徐々に上げる(又は下げる)ことで制御することが出来る。あるいは、目標のガス温度と実際のガス温度とを比較しながら、加熱機構(10)の出力を調節することで制御することが出来る。   When switching from the temperature T1 at the start of the heat treatment to the temperature T2 during the heat treatment, it is preferable to gradually raise the temperature. As described above, for example, two series of gas supply mechanisms (8) and a second gas supply mechanism (8b) are installed, and the temperature of each series is set to a different temperature, depending on the target temperature. The gas from each series is mixed at an arbitrary ratio and supplied to each processing container (1). For example, the gas flow rate at temperature T1 is gradually reduced (or increased), and the gas flow rate at temperature T2 is gradually increased ( Or lower). Alternatively, it can be controlled by adjusting the output of the heating mechanism (10) while comparing the target gas temperature with the actual gas temperature.

本発明のポリエステル樹脂粉体の熱処理によるポリエステル樹脂粉体の製造方法によれば、ポリエステルの固相重合処理などの樹脂粉体の熱処理を行うに当り、樹脂粉体を複数の処理用容器(1)に粉体供給機構(7)によって切り替え、各処理容器(1)に順次に供給し、供給が完了した処理容器(1)から順次に熱処理を行い、熱処理が完了した処理容器(1)から順次に排出すると共に、これらの操作を各処理容器(1)毎に位相差を持たせて逐次に実行するため、システム全体として流動床による処理を略連続的に且つ熱処理時間を略一定として行うことが出来、一層効率的に樹脂粉体を熱処理することが出来、製品品質を一層均質化することが出来る。   According to the method for producing polyester resin powder by heat treatment of the polyester resin powder of the present invention, the resin powder is treated with a plurality of processing containers (1 ) By the powder supply mechanism (7), sequentially supplied to each processing container (1), sequentially subjected to heat treatment from the processing container (1) for which supply has been completed, and from the processing container (1) for which heat treatment has been completed. In addition to the sequential discharge, these operations are sequentially performed with a phase difference for each processing vessel (1), so that the processing by the fluidized bed is performed substantially continuously and the heat treatment time is substantially constant as the entire system. It is possible to heat-treat the resin powder more efficiently and to further homogenize the product quality.

更に、本発明によれば、個々の処理容器(1)における一連の処理を各処理容器(1)毎に異なるタイミングで逐次に実行するため、単独の処理容器で回分処理を行う従来システムに比べ、樹脂粉体の供給、排出、ガスの供給などを行う配管系やガス供給機構(8)などの個々の付帯設備をより小型化できる。   Furthermore, according to the present invention, since a series of processing in each processing container (1) is sequentially performed at different timings for each processing container (1), compared with a conventional system that performs batch processing in a single processing container. In addition, it is possible to further downsize individual incidental facilities such as a piping system for supplying and discharging resin powder, and supplying gas, and a gas supply mechanism (8).

上記の、ポリエステル樹脂粉体の熱処理によるポリエステル樹脂粉体の製造方法により得られるポリエステル樹脂粉体を使用して、樹脂ペレットを製造することなく、ポリエステル樹脂プリフォームを製造することが出来る。上記ポリエステル樹脂粉体を使用してボトル等の成形物を得る方法としては、基本的に、ペレットを使用する従来公知の成形方法を採用できる。公知の成形方法としては、例えば、空気、窒素などの不活性ガス雰囲気下で、110℃〜190℃で2〜24時間加熱処理したのち、公知の成形機等に供給し、溶融成形する方法が挙げられる。加熱処理温度、時間が上記範囲内の場合、ポリエステル樹脂の乾燥を十分行なうことが出来、溶融成形時の分子量低下や色調の変化が小さいため、一層好ましい。   A polyester resin preform can be produced without producing resin pellets by using the polyester resin powder obtained by the above-described method for producing polyester resin powder by heat treatment of polyester resin powder. As a method for obtaining a molded product such as a bottle using the polyester resin powder, a conventionally known molding method using pellets can be basically employed. As a known molding method, for example, there is a method in which heat treatment is performed at 110 ° C. to 190 ° C. for 2 to 24 hours in an inert gas atmosphere such as air or nitrogen, and then the mixture is supplied to a known molding machine and melt-molded. Can be mentioned. When the heat treatment temperature and time are within the above ranges, the polyester resin can be sufficiently dried, and the decrease in molecular weight and change in color tone during melt molding are further preferred.

なお、ポリエステル樹脂の平均粒径が概ね0.5mm以下である場合は、内部に攪拌機能を有する加熱処理装置や、流動床式の加熱処理装置を使用すると、粒子同士の固着(ブロッキング)を回避できるため、一層好ましい。   If the average particle size of the polyester resin is approximately 0.5 mm or less, use of a heat treatment device having a stirring function inside or a fluidized bed heat treatment device avoids sticking between particles (blocking). Since it can do, it is still more preferable.

本発明の熱処理により得られるポリエステル樹脂粉体は、例えば、射出成形によってプリフォームに成形した後、延伸ブロー成形することによって、或いは、押出成形によって成形したパリソンをブロー成形することによって、ボトル等に成形し、又、押出成形によってシートに成形した後、熱成形することによってトレイや容器等に成形し、或いは、当該シートを二軸延伸してフィルム等とし、特に飲食品の包装資材などとして有用な成形品となる。中でも、射出成形によって得られたプリフォームを二軸延伸するブロー成形法によってボトルに成形するのに好適に使用でき、例えば、炭酸飲料、アルコール飲料、醤油、ソース、みりん、ドレッシング等の液体調味料などの容器として、更に、ヒートセットを施して、果汁飲料、ビタミン飲料、フレーバーティー、ミネラルウォーター等の飲料等の容器として、好適に使用される。   The polyester resin powder obtained by the heat treatment of the present invention can be formed into a bottle or the like by, for example, forming a preform by injection molding and then stretch-blow molding or blow-molding a parison molded by extrusion molding. Molded or formed into a sheet by extrusion molding, then formed into a tray or container by thermoforming, or biaxially stretched into a film or the like, particularly useful as a packaging material for food and drink It becomes a simple molded product. Among them, it can be suitably used for molding into a bottle by a blow molding method in which a preform obtained by injection molding is biaxially stretched. For example, liquid seasonings such as carbonated beverages, alcoholic beverages, soy sauce, sauces, mirin, and dressings In addition, it is preferably used as a container for beverages such as fruit juice drinks, vitamin drinks, flavor teas, mineral waters, etc., after heat setting.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

(A)装置:
図1に示すような装置を使用する。すなわち、処理容器(1)は並列に4台配置されており、処理容器(1)は、内径が1mφ、ガス分散板(6)上面からガス排出口(5)下端までの垂直距離が5mであるような円柱状処理容器である。
(A) Device:
An apparatus as shown in FIG. 1 is used. That is, four processing containers (1) are arranged in parallel, the processing container (1) has an inner diameter of 1 mφ, and a vertical distance from the upper surface of the gas dispersion plate (6) to the lower end of the gas discharge port (5) is 5 m. It is a cylindrical processing container.

(B)原料:
極限粘度が約0.30dl/g、結晶化度が約40%、平均粒径が約0.3mmの、球状ホモポリエチレンテレフタレート樹脂を使用する。
(B) Raw material:
A spherical homopolyethylene terephthalate resin having an intrinsic viscosity of about 0.30 dl / g, a crystallinity of about 40%, and an average particle size of about 0.3 mm is used.

(C)熱処理方法:
上流工程から、100kg/時間の供給量で前記の原料を連続供給する。
(C) Heat treatment method:
From the upstream process, the raw material is continuously supplied at a supply rate of 100 kg / hour.

処理容器(1)の第1室(以下、「容器1」等と表現する)に、200℃の窒素を空塔線速0.6m/sで流通させながら、0時間目から1時間目まで、100kg/時間の供給量で原料を1時間連続充填する。   From the 0th hour to the 1st hour while flowing 200 ° C. nitrogen at a superficial linear velocity of 0.6 m / s in the first chamber (hereinafter referred to as “vessel 1”, etc.) of the processing vessel (1). The raw material is continuously filled for 1 hour at a supply rate of 100 kg / hour.

1時間目に、粉体供給機構(7)を切り替え、充填先を容器2に変更する。以下、1時間毎に、充填先を容器3、容器4、容器1、容器2、容器3の順に切り替える。以下、容器1での実施内容を説明するが、他の容器も、位相が異なるのみで、実施内容は同様である。
容器1において、1時間目から1時間30分目までの間、供給する窒素の温度を10℃/分の昇温速度で200℃から230℃まで上昇させる。この間、空塔線速は0.6m/sとする。
In the first hour, the powder supply mechanism (7) is switched and the filling destination is changed to the container 2. Hereinafter, the filling destination is switched in the order of container 3, container 4, container 1, container 2, and container 3 every hour. Hereinafter, although the implementation contents in the container 1 will be described, the implementation contents of the other containers are the same except that the phases are different.
In the container 1, the temperature of nitrogen to be supplied is increased from 200 ° C. to 230 ° C. at a rate of temperature increase of 10 ° C./min from the first hour to the first hour 30 minutes. During this time, the superficial linear velocity is 0.6 m / s.

1時間30分目から3時間30分目までの間、供給する窒素の温度を230℃、空塔線速を0.6m/sに維持したまま、熱処理を行う。   From 1 hour 30 minutes to 3 hours 30 minutes, heat treatment is performed while maintaining the temperature of the supplied nitrogen at 230 ° C. and the superficial linear velocity at 0.6 m / s.

3時間30分目から4時間目までの間、容器1に供給する窒素の温度を200℃に低下させながら、容器1の粉体排出弁(13)を開け、熱処理後の製品を下流工程に排出する。この間、容器1内の空塔線速は0.3m/sとする。   While the temperature of nitrogen supplied to the container 1 is lowered to 200 ° C. from 3 hours 30 minutes to 4 hours, the powder discharge valve (13) of the container 1 is opened and the product after the heat treatment is moved to the downstream process. Discharge. During this time, the superficial linear velocity in the container 1 is set to 0.3 m / s.

排出完了後は、0時間目に戻ったと見なし、前記と同様の工程を繰り返す。   After the discharge is completed, it is considered that the process has returned to the 0th hour, and the same process as described above is repeated.

このようにして、溶融成形用に適した粘度を有するポリエチレンテレフタレート樹脂が連続的に得られる。   In this way, a polyethylene terephthalate resin having a viscosity suitable for melt molding is continuously obtained.

なお、前記各工程において、供給する窒素の空塔線速を間欠的に変動させてもよい。また、各処理容器(1)の内部に攪拌翼を設けたり、サイクロンやバッグフィルタのような微粉除去器を内蔵させてもよい。特にバッグフィルタを内蔵させる場合は、250℃以上の耐熱性を有する材質のフィルタを使用することが好ましく、金属製の焼結金属フィルタを使用することが特に好ましい。金属の材質としては、ステンレス鋼を使用することが、耐食性、経済性の面で好ましい。   In each of the above steps, the superficial linear velocity of nitrogen to be supplied may be changed intermittently. Moreover, a stirring blade may be provided in each processing container (1), or a fine powder remover such as a cyclone or a bag filter may be incorporated. In particular, when a bag filter is built in, it is preferable to use a filter having a heat resistance of 250 ° C. or higher, and it is particularly preferable to use a metal sintered metal filter. As the metal material, it is preferable to use stainless steel in terms of corrosion resistance and economy.

(D)成形方法:
窒素雰囲気下145℃の温度で、前記の熱処理方法で得られたポリエチレンテレフタレート樹脂を16時間乾燥させた後、射出成形機(日精樹脂工業社製ASB−50TH)にて、シリンダ設定温度270℃、背圧約1MPa、射出時間約13秒、成形サイクル約40秒の条件で、重量約33gの溶融成形体であるプリフォームを射出成形する。次いで、延伸ブロー成形機(三菱化学社製)を使用し、得られるプリフォームを加熱時間75秒でブロー成形し、内容0.5Lのボトルに成形する。
(D) Molding method:
After drying the polyethylene terephthalate resin obtained by the above heat treatment method at a temperature of 145 ° C. for 16 hours under a nitrogen atmosphere, the cylinder set temperature is 270 ° C. with an injection molding machine (ASB-50TH manufactured by Nissei Plastic Industrial Co., Ltd.) A preform, which is a molten molded body having a weight of about 33 g, is injection-molded under the conditions of a back pressure of about 1 MPa, an injection time of about 13 seconds, and a molding cycle of about 40 seconds. Next, using a stretch blow molding machine (manufactured by Mitsubishi Chemical Corporation), the resulting preform is blow-molded with a heating time of 75 seconds and molded into a 0.5 L bottle.

このようにして、飲料包装用等に適したブローボトルが得られる。   In this way, a blow bottle suitable for beverage packaging and the like is obtained.

本発明の製造方法に好適に使用される樹脂粉体の熱処理装置の一例の主要な構成を示すフロー図である。It is a flowchart which shows the main structures of an example of the heat processing apparatus of the resin powder used suitably for the manufacturing method of this invention. 熱処理装置に使用される粉体供給機構の一構成例を示すフロー図である。It is a flowchart which shows one structural example of the powder supply mechanism used for the heat processing apparatus. 熱処理装置に使用される粉体供給機構の他の構成例を示す模式的な斜視図である。It is a typical perspective view which shows the other structural example of the powder supply mechanism used for the heat processing apparatus. 本発明の製造方法に好適に使用される樹脂粉体の熱処理装置の他の例の主要な構成を示すフロー図である。It is a flowchart which shows the main structures of the other example of the heat processing apparatus of the resin powder used suitably for the manufacturing method of this invention. 処理容器を5基有する熱処理装置による熱処理方法の各工程を示す工程図である。It is process drawing which shows each process of the heat processing method by the heat processing apparatus which has five processing containers.

符号の説明Explanation of symbols

1 :処理容器
2 :粉体充填口
3 :粉体排出口
4 :ガス導入口
5 :ガス排出口
6 :ガス分散板
7 :粉体供給機構
8 :ガス供給機構
8b :第2のガス供給機構
9 :流量制御弁
9b :第2の流量制御弁
10 :加熱機構
10b:第2の加熱機構
11 :微粉除去器
12 :不純物除去器
13 :粉体排出弁
14 :ガス排出弁
15 :ガス循環ライン
DESCRIPTION OF SYMBOLS 1: Processing container 2: Powder filling port 3: Powder discharge port 4: Gas introduction port 5: Gas discharge port 6: Gas dispersion plate 7: Powder supply mechanism 8: Gas supply mechanism 8b: 2nd gas supply mechanism 9: Flow control valve 9b: Second flow control valve 10: Heating mechanism 10b: Second heating mechanism 11: Fine powder remover 12: Impurity remover 13: Powder discharge valve 14: Gas discharge valve 15: Gas circulation line

Claims (13)

複数の処理容器にポリエステル樹脂粉体を収容し、ポリエステル樹脂粉体に加熱されたガスを接触させるポリエステル樹脂粉体を熱処理するポリエステル樹脂粉体の製造方法であって、当該製造方法は(a)処理容器に対して一定量のポリエステル樹脂粉体を供給する工程と、(b)前記処理容器に対して加熱されたガスを一定時間供給してポリエステル樹脂粉体を熱処理する工程と、(c)前記処理容器から処理済のポリエステル樹脂粉体を排出する工程、とを繰り返すと共に、上記の工程を各処理容器毎に位相差を持たせて逐次実行することから成り、処理容器内での熱処理によるポリエステル樹脂粉体の極限粘度の増分が0.20dl/g以上であり、ポリエステル樹脂粉体を熱処理する工程(b)において、熱処理開始時のガスの温度をT1、熱処理中のガスの温度をT2、熱処理終了時のガスの温度をT3とした場合、以下の条件を満足する様に、各処理容器に供給するガスの温度を調節することを特徴とするポリエステル樹脂粉体の製造方法。
Containing a polyester resin powder into a plurality of processing vessels, a process for making a polyester resin powder of heat-treating the polyester resin powder contacting the gas heated in the polyester resin powder, the manufacturing method (a) A step of supplying a certain amount of polyester resin powder to the processing container; (b) a step of supplying a heated gas to the processing container for a predetermined time to heat-treat the polyester resin powder; And repeating the step of discharging the treated polyester resin powder from the processing container, and sequentially performing the above steps with a phase difference for each processing container , by heat treatment in the processing container The increase in intrinsic viscosity of the polyester resin powder is 0.20 dl / g or more, and in the step (b) of heat-treating the polyester resin powder, the temperature of the gas at the start of heat treatment The T1, and characterized in adjusting if the temperature of the gas in the heat treatment T2, the temperature of the heat treatment at the end of the gas was set to T3, so as to satisfy the following conditions, the temperature of the gas supplied to the processing chamber To produce polyester resin powder.
熱処理がポリエステル樹脂粉体の固相重合処理である請求項1に記載の樹脂粉体の製造方法。   The method for producing a resin powder according to claim 1, wherein the heat treatment is a solid phase polymerization treatment of the polyester resin powder. 処理容器に供給するポリエステル樹脂粉体の極限粘度が0.20〜0.66dl/gである請求項1又は2に記載のポリエステル樹脂粉体の製造方法。   The method for producing a polyester resin powder according to claim 1 or 2, wherein the intrinsic viscosity of the polyester resin powder supplied to the treatment container is 0.20 to 0.66 dl / g. ポリエステル樹脂粉体の重量平均粒径が0.03〜1.5mmである請求項1〜3の何れかに記載のポリエステル樹脂粉体の製造方法。 The method for producing a polyester resin powder according to any one of claims 1 to 3 , wherein the polyester resin powder has a weight average particle diameter of 0.03 to 1.5 mm. ポリエステル樹脂粉体を熱処理する工程において、ガスとして不活性ガスを供給する請求項1〜4の何れかに記載のポリエステル樹脂粉体の製造方法。 The method for producing a polyester resin powder according to any one of claims 1 to 4 , wherein an inert gas is supplied as a gas in the step of heat-treating the polyester resin powder. ポリエステル樹脂粉体の熱処理を行うに際しポリエステル樹脂粉体の熱処理装置を使用し、当該熱処理装置は、上部に粉体充填口(2)およびガス排出口(5)が設けられ、下部に粉体排出口が設けられ且つ底部にガス導入口(4)が設けられた複数の処理容器と、これら処理容器の粉体充填口の上流側に配置され、これら粉体充填口に対して樹脂粉体を切替供給する粉体供給機構(7)と、前記各処理容器のガス導入口の上流側に配置され、これらガス導入口に対して前記各処理容器内の樹脂粉体を流動化状態にし得る流量のガスを供給するガス供給機構(8)と、当該ガス供給機構から供給されるガスを加熱する加熱機構(10)と、前記ガス供給機構から前記各処理容器のガス導入口へ至る個別の流路にそれぞれ配置された流量制御弁(9)と、前記各処理容器の粉体排出口の下流側にそれぞれ配置された粉体排出弁(13)とを備えている請求項1〜5の何れかに記載のポリエステル樹脂粉体の製造方法。 A polyester resin powder heat treatment apparatus is used for heat treatment of the polyester resin powder. The heat treatment apparatus is provided with a powder filling port (2) and a gas discharge port (5) at the upper part and a powder discharge port at the lower part. A plurality of processing containers provided with outlets and provided with gas introduction ports (4) at the bottom, and disposed upstream of the powder filling ports of these processing containers, and the resin powder is supplied to these powder filling ports A powder supply mechanism (7) to be switched and a flow rate that is arranged upstream of the gas inlets of the processing containers and can flow the resin powder in the processing containers into a fluidized state with respect to the gas inlets. A gas supply mechanism (8) for supplying the gas, a heating mechanism (10) for heating the gas supplied from the gas supply mechanism, and individual flows from the gas supply mechanism to the gas inlets of the processing containers. Flow control valve arranged in each path 9), the production of the polyester resin powder according to claim 1 and a powder outlet powder discharge valve which are disposed in the downstream side (13) of each processing chamber Method. 熱処理装置が、粉体供給機構、各流量制御弁および各粉体排出弁の作動を制御する制御機構を備え、当該制御機構は、各処理容器の粉体充填口に対して一定量の樹脂粉体を順次
に供給すべく粉体供給機構を制御する機能と、樹脂粉体の供給後に逐次前記各処理容器に対して加熱されたガスを一定時間供給すべく各流量制御弁を制御する機能と、一定時間ガス供給後に逐次前記各処理容器から樹脂粉体を排出すべく各粉体排出弁を制御する機能とを有し、かつ、前記粉体供給機構、各流量制御弁および各粉体排出弁に対する上記の制御を前記各処理容器毎に位相差を持たせて逐次実行する機能を有している請求項6に記載のポリエステル樹脂粉体の製造方法。
The heat treatment apparatus includes a control mechanism that controls the operation of the powder supply mechanism, each flow control valve, and each powder discharge valve, and the control mechanism has a certain amount of resin powder with respect to the powder filling port of each processing container. A function of controlling the powder supply mechanism to sequentially supply the body, and a function of controlling each flow rate control valve to sequentially supply the heated gas to each of the processing containers for a predetermined time after the resin powder is supplied. And a function of controlling each powder discharge valve so as to sequentially discharge resin powder from each processing container after gas supply for a certain period of time, and the powder supply mechanism, each flow control valve and each powder discharge The manufacturing method of the polyester resin powder of Claim 6 which has the function to perform sequentially said control with respect to a valve for each said processing container to give a phase difference.
熱処理装置が、各処理容器のガス導入口の上流側に配置され、ガス供給機構によって供給されるガスとは異なる温度のガスを前記各ガス導入口に対して供給する第2のガス供給機構(8b)と、当該第2のガス供給機構から前記各ガス導入口へ至る個別の流路にそれぞれ配置された第2の流量制御弁(9b)とを備え、かつ、当該第2の流量制御弁が制御機構によって制御可能に構成され、そして、制御機構は、樹脂粉体の供給後に逐次各処理容器に対して加熱されたガス及び/又は異なる温度のガスを供給すべく各流量制御弁および前記第2の流量制御弁を制御する機能を有し、前記各処理容器に供給されるガスの温度が各処理容器毎に独立して制御される様になされている請求項7に記載のポリエステル樹脂粉体の製造方法。 A heat treatment apparatus is disposed on the upstream side of the gas introduction port of each processing container, and a second gas supply mechanism that supplies a gas having a temperature different from the gas supplied by the gas supply mechanism to each gas introduction port ( 8b) and a second flow rate control valve (9b) disposed in a separate flow path from the second gas supply mechanism to each of the gas inlets, and the second flow rate control valve Is configured to be controllable by the control mechanism, and the control mechanism sequentially supplies the heated gas and / or the gas at different temperatures to each processing container after the supply of the resin powder. The polyester resin according to claim 7 , having a function of controlling a second flow rate control valve, wherein the temperature of the gas supplied to each processing container is controlled independently for each processing container. Powder manufacturing method. 熱処理装置が、各処理容器のガス排出口から排出されたガスをガス供給機構へ返流するガス循環ライン(15)が備えられているものである請求項6〜8の何れかに記載のポリエステル樹脂粉体の製造方法。 The polyester according to any one of claims 6 to 8 , wherein the heat treatment apparatus is provided with a gas circulation line (15) for returning the gas discharged from the gas discharge port of each processing container to the gas supply mechanism. Manufacturing method of resin powder. 熱処理装置が、ガス排出口の下流側またはガス循環ラインに微粉除去器(11)が設置されているものである請求項6〜9の何れかに記載のポリエステル樹脂粉体の製造方法。 The method for producing a polyester resin powder according to any one of claims 6 to 9 , wherein the heat treatment apparatus is one in which a fine powder remover (11) is installed on the downstream side of the gas discharge port or in the gas circulation line. 水および/または有機不純物を除去する除去器(12)がガス排出口の下流側またはガス循環ラインに設置されている請求項6〜10の何れかに記載のポリエステル樹脂粉体の製造方法。 The method for producing polyester resin powder according to any one of claims 6 to 10 , wherein a remover (12) for removing water and / or organic impurities is installed on the downstream side of the gas discharge port or on the gas circulation line. 請求項1〜11の何れかに記載のポリエステル樹脂粉体の製造方法でポリエステル樹脂粉体を製造する工程と、得られたポリエステル樹脂粉体を樹脂ペレット化することなくポリエステルプリフォームに成形する工程とから成るポリエステルプリフォームの製造方法。 The process of manufacturing a polyester resin powder with the manufacturing method of the polyester resin powder in any one of Claims 1-11, and the process of shape | molding in the polyester preform, without forming the obtained polyester resin powder into resin pellets A method for producing a polyester preform comprising : ポリエステル樹脂粉体の熱処理用装置であって、当該熱処理装置は、上部に粉体充填口およびガス排出口が設けられ、下部に粉体排出口が設けられ且つ底部にガス導入口が設けられた複数の処理容器と、これら処理容器の粉体充填口の上流側に配置され、これら粉体充填口に対して樹脂粉体を切替供給する粉体供給機構と、前記各処理容器のガス導入口の上流側に配置され、これらガス導入口に対して前記各処理容器内の樹脂粉体を流動化状態にし得る流量のガスを供給するガス供給機構と、当該ガス供給機構から供給されるガスを加熱する加熱機構と、前記ガス供給機構から前記各処理容器のガス導入口へ至る個別の流路にそれぞれ配置された流量制御弁と、前記各処理容器の粉体排出口の下流側にそれぞれ配置された粉体排出弁とを備えており、熱処理温度が20℃以上250℃以下であり、熱処理によるポリエステル樹脂粉体の極限粘度の増分が0.20dl/g以上であることを特徴とする装置。 An apparatus for heat treatment of polyester resin powder, wherein the heat treatment apparatus is provided with a powder filling port and a gas discharge port at the top, a powder discharge port at the bottom, and a gas introduction port at the bottom. A plurality of processing containers, a powder supply mechanism that is disposed upstream of the powder filling ports of these processing containers and that switches the resin powder to these powder filling ports, and a gas inlet of each of the processing containers A gas supply mechanism for supplying a gas having a flow rate capable of bringing the resin powder in each processing vessel into a fluidized state with respect to these gas inlets, and a gas supplied from the gas supply mechanism. A heating mechanism for heating, a flow rate control valve disposed in a separate flow path from the gas supply mechanism to the gas inlet of each processing container, and a downstream of the powder discharge port of each processing container, respectively With a powder discharge valve Cage, the heat treatment temperature is at 20 ° C. or higher 250 ° C. or less, device increments intrinsic viscosity of the polyester resin powder by heat treatment, characterized in that at 0.20 dl / g or more.
JP2004048942A 2003-02-28 2004-02-25 Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder Expired - Lifetime JP4595347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048942A JP4595347B2 (en) 2003-02-28 2004-02-25 Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003052723 2003-02-28
JP2004048942A JP4595347B2 (en) 2003-02-28 2004-02-25 Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder

Publications (2)

Publication Number Publication Date
JP2004277723A JP2004277723A (en) 2004-10-07
JP4595347B2 true JP4595347B2 (en) 2010-12-08

Family

ID=33301858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048942A Expired - Lifetime JP4595347B2 (en) 2003-02-28 2004-02-25 Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder

Country Status (1)

Country Link
JP (1) JP4595347B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168938B2 (en) * 2007-02-23 2013-03-27 東レ株式会社 Polyester production method and polyester
JP5386846B2 (en) * 2008-03-28 2014-01-15 東レ株式会社 Polyester manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179810A (en) * 1999-12-27 2001-07-03 Mitsui Chemicals Inc Preform for multi-layer hollow molding, multi-layer hollow molding, and method for producing the molding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111215A (en) * 1979-02-20 1980-08-27 Toyobo Co Ltd Continuous current treatment for polyester chip
JPS588729A (en) * 1981-07-10 1983-01-18 Hitachi Ltd Continuous production of polyalkylene terephthalate having high degree of polymerization
JPS5845228A (en) * 1981-09-11 1983-03-16 Toray Ind Inc Preparation of polyester chip
US4374975A (en) * 1982-02-02 1983-02-22 The Goodyear Tire & Rubber Company Process for the production of high molecular weight polyester
DE3213025C2 (en) * 1982-04-02 1997-06-12 Fischer Karl Ind Gmbh Process for post-condensation of polycondensates
IT1271293B (en) * 1994-12-16 1997-05-27 M & G Ricerche Spa POLYESTER SOLID STATE POLYCONDENSATION PROCEDURE
JP3165950B2 (en) * 1995-11-14 2001-05-14 出光石油化学株式会社 Method for producing polycarbonate
JPH09176324A (en) * 1995-12-25 1997-07-08 Toray Ind Inc Production of thermoplastic resin pellet by continuous solid-phase polymerization and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179810A (en) * 1999-12-27 2001-07-03 Mitsui Chemicals Inc Preform for multi-layer hollow molding, multi-layer hollow molding, and method for producing the molding

Also Published As

Publication number Publication date
JP2004277723A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
AU2021269337B2 (en) Enhanced barrier performance via blends of poly(ethylene furandicarboxylate) and poly(ethylene terephthalate)
US7329723B2 (en) Thermal crystallization of polyester pellets in liquid
US8063176B2 (en) Method and device for the crystallization of polyester material
AU2006284091B2 (en) Method and device for reducing acetaldehyde content in polyester granulate
US7189441B2 (en) Low intrinsic viscosity and low acetaldehyde content polyester, hollow preforms and containers obtained from said polymer
CN102516508A (en) Method of multistage solid-phase polycondensation of polyester particle
CA2650610A1 (en) Methods for making polyester resins in falling film melt polycondensation reactors
AU2005219529A1 (en) Method for producing highly condensed solid-phase polyesters
JP4595347B2 (en) Method for producing polyester resin powder, method for producing polyester preform, and apparatus for heat treatment of polyester resin powder
JP2021107545A (en) Polyglycolic acid for container and film having reduced gas permeability
WO2004076526A1 (en) Process for production of polyester resin powder, process for production of polyester preforms and thermal treatment equipment for polyester resin powder
US7098300B1 (en) Apparatus and process for continuous solid-state poly-condensation in a fluidized reactor with multiple stages
JP4624590B2 (en) Method for producing metal compound-containing polyester resin composition, preform for hollow molded article, and method for producing hollow molded article
JP3566110B2 (en) Method for producing modified polyethylene terephthalate resin
JP2000226445A (en) Polyester resin
Wadekar et al. Recent developments in solid state polymerization of poly (ethylene terephthalate)
JP2005350507A (en) Polyester prepolymer, method for producing the same, and polyester resin
JP2005154671A (en) Method for producing polyethylene terephthalate
JP2000038498A (en) Thermoplastic polyester resin composition
JPH04139221A (en) Polyethylene terephthalate molded article
JPH10182811A (en) Method for drying polyester resin
JP2006124529A (en) Polyethylene terephthalate and hollow molded product formed out of the same
JP2002322260A (en) Method for producing polyester
JP2005154655A (en) Polyester and blow molded article made therefrom
JP2002020473A (en) Process for producing polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4595347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term