JP4595097B2 - Cylindrical transformer device used in pulse generator - Google Patents

Cylindrical transformer device used in pulse generator Download PDF

Info

Publication number
JP4595097B2
JP4595097B2 JP2000130081A JP2000130081A JP4595097B2 JP 4595097 B2 JP4595097 B2 JP 4595097B2 JP 2000130081 A JP2000130081 A JP 2000130081A JP 2000130081 A JP2000130081 A JP 2000130081A JP 4595097 B2 JP4595097 B2 JP 4595097B2
Authority
JP
Japan
Prior art keywords
coil portion
primary
cylindrical
coil
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000130081A
Other languages
Japanese (ja)
Other versions
JP2001313217A (en
Inventor
正明 貫洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2000130081A priority Critical patent/JP4595097B2/en
Publication of JP2001313217A publication Critical patent/JP2001313217A/en
Application granted granted Critical
Publication of JP4595097B2 publication Critical patent/JP4595097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧且つ短幅のパルス電圧を、簡易な構成で,且つ確実に発生できる筒状トランス装置に関し、例えば、そのパルス幅がマイクロ秒オーダー以下の極めて短いパルス電圧を発生するのに良好に適用できるパルス生成装置に用いる筒状トランス装置に関する。
【0002】
【従来の技術】
近年、電力機器の開閉操作および民生機器に用いられているスイッチング素子(IGBT,GTO等)の動作によって生ずる過渡的過電圧パルスが、情報機器の誤動作や絶縁材料の劣化特性に大きな影響を及ぼすことが知られている。この過渡的過電圧パルスは、一般に減衰振動波としての特徴を有する。
【0003】
前記過渡的過電圧パルス波の発生が電子機器に与える影響を解析するためには、開閉装置,パワーエレクトロニクス等のスイッチング動作時に生じる過渡的過電圧が絶縁材料に与える影響を調査する必要がある。そのため、特にスイッチング素子の動作によって生じるパルス波に近似するような、立ち上がりが急峻で,高電圧,且つマイクロ秒オーダー以下の短幅パルス波を擬似的に発生させることが要求されている。
【0004】
ここで、特開平9−148895号公報は、光短パルス程度のパルス幅の短電気パルスを得ることができる短電気パルス発生装置を開示する。この短電気パルス発生装置は、光パルスを電気パルスに変換することで10ピコ秒オーダーの電気パルスを発生するが、その電圧は前記過渡的過電圧には到底及ばず、誘導妨害の解析には使用できない。また、電気パルス発生手段,半導体レーザー(例えばVCSEL等),光学素子等を備えることが必要であるため、部品点数が多く複雑な構成となり、装置自体のコストも高いと考えられる。
【0005】
【発明が解決しようとする課題】
したがって、従来のパルス発生装置等においては、半導体素子を利用したものは存在していたが、かかる半導体素子の耐圧能力等には限界があった。特に、スイッチング素子の動作等によって生じる過渡的過電圧パルス波に近似するような、高電圧且つ短幅のパルス波を、半導体素子を用いずに生成することができなかった。とりわけ、パルス波の幅を短くすると出力電圧を高くできないというトレードオフ的問題もあった。
【0006】
【課題を解決するための手段】
そこで、発明者は鋭意研究を重ねた結果、その発明を、入力電圧が印加される筒状に一度だけ巻いたアルミ箔,金属箔その他の導体箔からなる一次側単巻コイル部と、該一次側単巻コイル部の内側にて一定回数巻かれたエナメル線,銅線その他の導線からなる二次側コイル部とからなるパルス生成装置に用いる筒状トランス装置等とすることで、コスト高の原因となる半導体や光学素子及び高価な部品を用いることなく、一次コイルと,二次コイルと,これらを絶縁させるための絶縁層とからなる極めて簡易な構成で、高電圧且つ短幅のパルス電圧を、簡易な構成で,且つ確実に発生でき、特に、そのパルス幅がマイクロ秒オーダー以下の極めて短いパルス電圧を発生するのに良好に適用でき、上記課題を解決したものである。
【0007】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の一形態を説明する。図1は、本発明の筒状トランス装置Aの構成を示す概略図である。従来のパルス変成器は、一次側に単一巻線が使用されている。しかし、本発明の筒状トランス装置Aでは、一次側コイルとして円筒状に巻かれた単巻コイルを適用し、特に本明細書では一次側単巻コイル部1と称する〔図1(A)参照〕。
【0008】
前記一次側単巻コイル部1は、本実施形態においては、厚さ0.05mmの軟質アルミ箔を用いた。しかしながら、かかるアルミ箔には限定されず、例えば、金箔,銀箔,錫箔,銅箔,金属箔その他の導電性を有する導体箔であれば本発明に好適に適用できる。
【0009】
また、本発明の筒状トランス装置Aは、二次側のコイルとして、導線を筒状に巻いたコイルを適用し、特に本明細書では二次側コイル部3と称する〔図1(C)参照〕。本実施形態では、前記二次側コイル部3は円筒形状にて形成する。また、本明細書において、「筒状」とは、円筒,扁平円筒,多角柱等を含む概念とする。
【0010】
前記二次側コイル部3は、本実施形態においては、導線3aとしてのエナメル線(2PEW-0.20)を円筒形状の紙製の筒4に、二次側ソレノイドコイルとして一定数N回だけ巻きつけたものである。その導線3aは、エナメル線以外にも、銅線,鉄線,鋼線その他の導体からなる線材とすることができ、エナメル,ゴムその他の被覆の有無は問わない。
【0011】
前記筒4は、単に前記二次側コイル部3を筒状に巻くために便宜的に用いられるものであり、本発明の筒状トランス装置Aの実施に際しては特に必要のないもので、実施時には前記二次側コイル部3内部から抜き出すことがある。この筒4を用いなくとも、機械で前記二次側コイル部3を筒状に巻いてもよい。即ち、前記二次側コイル部3の内側(内部)は、中空とすることが望ましい。
【0012】
ここで、本明細書における「中空」とは、内部が空になっている状態をいう。但し、空気等で満たされることは差し支えない。また、前記二次側コイル部3内部に筒4を挿入したまま実施する場合は、その筒4を、例えば紙,ダンボール,プラスチック,塩化ビニール等の絶縁性材質にて形成することが好ましい。このようにすると、本発明の筒状トランス装置Aに電気的・電磁的影響を与えることがなく、更に、筒状トランス装置Aの強度を補強することもできるからである。
【0013】
次に、前記一次側単巻コイル部1と、前記二次側コイル部3との配置関係について説明する。図1(B)は、図1(A)に示した筒状トランス装置AのX−X矢視断面図である。最も内側の円筒形状の筒4の円周に則して、前記導線3を一定幅にて規則正しく巻きつけ、前記二次側コイル部3が形成される。該二次側コイル部3の端部3b,3bは、接続用端子として使用する。
【0014】
そして、前記二次側コイル部3の円周に則して、アルミ箔とした前記一次側単巻コイル部1を巻きつける。但し、本実施形態では、絶縁層2として、前記一次側単巻コイル部1の軸方向の幅と略等しい幅で、厚さ約0.05mmの紙を巻付挿入した。これにより、前記一次側単巻コイル部1と前記二次側コイル部3との不用意な短絡、熱の相互伝導等を確実に防止することができる。
【0015】
ここで、本実施形態では、前記筒4と前記一次側単巻コイル部1との電磁結合を密にするため、特にメンディングテープ(幅12mm)等の接着材を用いて前記一次側単巻コイル部1を表面から内方に向かって押圧固定することがある。このときの入力端1aの長さは、約20mmとした〔図2(A)参照〕。
【0016】
また、本実施形態においては、前記一次側単巻コイル部1の軸方向の幅を、前記二次側コイル部3の軸方向の幅よりも若干長くした構造とした〔図2(B)参照〕。具体的には、前記一次側単巻コイル部1の軸方向の長さを約3mm、前記二次側コイル部1の軸方向の長さよりも長くした。これにより、前記一次側単巻コイル部1と前記二次側コイル部3との端部で端効果を生じさせることがない。ここで、図2(B)では、便宜上、各要素が一定の間隔を有して巻きつけられているように示したが、実施の際には、それぞれの要素が相互に密着するように巻き付けてもよい。
【0017】
本実施形態では、前記二次側コイル部3の両端から引き出される端部3b,3bに、信号測定器としてディジタイジングシグナルアナライザ(DSA 2GS/S)を、高電圧プローブ(1000倍、100MΩ)を介して接続し、出力されるパルス電圧を測定する構成とした〔図2(A)参照〕。
【0018】
次に、図3は、本発明の第2の実施形態に係る構成の概略図である。即ち、第1の実施形態における筒状トランス装置Aを複数個、同一軸上に直列的に配列したものである。電気的には、1番目の筒状トランス装置A1の端部3bの一端を、隣接配置される2番目の筒状トランス装置A2の端部3bの一端と直列接続する。以下同様に、2番目の筒状トランス装置A2の端部3bの一端を、3番目の筒状トランス装置A3の端部3bの一端と接続し、……(n−1)番目の筒状トランス装置An-1の端部3bの一端と、n番目の筒状トランス装置Anの端部3bの一端とを接続する。本実施形態では、10個の筒状トランス装置A1,A2,…A10を同一軸上に直列接続した。
【0019】
各筒状トランス装置A1,A2…の間隔D(例えば、前記1次側単巻コイル部1,1の端と端の間隔)は、筒状トランス装置A1,A2,…のそれぞれが良好に電磁結合できるよう、数cm程度としたが、これに限定されない。
【0020】
入力電源Vは、単一(同一)の直流電源から並列的に各筒状トランス装置A1,A2,…に入力電圧が供給される構成としたが(図3参照)、各筒状トランス装置A1,A2…に個別的に供給されるよう、筒状トランス装置Aの台数だけ用意してもよい。
【0021】
スイッチSは、前記入力電源Vから入力される電圧を筒状トランス装置A(又は各筒状トランス装置A1,A2,…)に供給するための開閉装置であり、本実施形態では市販の埋込押ボタンを適用したが、これに限定されず、入力電圧値に耐えうるスイッチ類であればいかなるものでも適用できる。
【0022】
図10は、上述の第2の実施形態の変形例に係る接続構成図で、前記入力電源Vから供給される電圧を直列にて提供する実施形態である。このようにすることで、図3に開示した並列接続の構成に比べて更に大電流を入力させることができる。
【0023】
次に、図4は、本発明の第3の実施形態に係る構成の概略図である。第1の実施形態との相違点は、前記二次側コイル部3の端部3b,3bに電極部6を接続したことである。
【0024】
その電極部6は、2本のガス針5,5を、その先端が微小距離だけおいてプレパラート上で同一直線上に配列されるように顕微鏡等を用いて配置し、市販の瞬間接着剤で固定し、且つ、アクリル製容器等の密閉容器内に封じ込めたもので、その密閉容器内には純空気が一定量十分に流入される。出力電圧の測定は、その純空気を流しつづけた状態で行った。前記ガス針5,5の先端間距離dは、約10マイクロメートル乃至100マイクロメートルが好ましいが、これに限定されない。前記ガス針5,5の先端間では、絶縁破壊による放電が行われる。
【0025】
次に、図5は、本発明の第4の実施形態に係る構成の概略図である。本実施形態は、第2の実施形態との関係において、前記二次側コイル部3の端部3b,3bに前記電極部6を接続した点で異なる。
【0026】
図11は、上述の第4の実施形態の変形例に係る接続構成図で、前記入力電源Vから供給される電圧を直列にて提供する実施形態である。このようにすることで、図5に開示した並列接続の構成に比べて更に大電流を入力させることができる。
【0027】
【実施例】
次に、本発明の筒状トランス装置Aの第1の実施例として、出力されたパルス電圧を測定した結果について説明する。まず、前記二次側コイル部3について、コイル内径(直径)φを5種類(10mm,30mm,50mm,70mm,100mm)とし、巻数Nを6種類(50回,100回,150回,200回,250回,300回)とし、巻線はエナメル線(2PEW-0.20)を使用した。この条件による入出力特性を、図2(A)に示す第1実施形態の回路構成で測定した。
【0028】
また、入力電源Pとして市販の可変直流低電圧・定電流電源(0-110V,0-60A)を使用し、入力電圧Vin(20,40,60,80,100V)に対する出力電圧Voutの最大値を各10回測定した。スイッチSは、市販の埋込押しボタン(10A,300V,AC)で手動で操作した。
【0029】
図6は、前記二次側コイル部3のコイル内径φ毎の、巻数Nと出力電圧Voutとの特性グラフである。入力電圧Vinは直流100V一定である。この図から明らかなように、巻数Nが一定なら、内径φが増加するにつれて出力電圧Voutも増大する特性を有することが判る。また内径φが十分小さいと、出力電圧Voutが入力電圧Vinより低くなる特性を有する。
【0030】
次に、図7は、入力電圧Vinと出力電圧Voutとの関係を示す特性グラフである。この特性は、本発明の筒状トランス装置Aの二次側コイル部3の巻数Nを100回、コイル内径φを10,30,50,70,100mmとし、このような筒状トランス装置Aを図10に示す第2実施形態の変形例のように10個直列に接続したときの、直列接続による入力電圧Vin(20,40,60,80,100V)に対する出力電圧Voutの平均値を示す。この特性から、入力電圧Vinが増加すると共に出力電圧Voutも増大することがわかる。特に、コイル内径φが大きくなるにつれ、グラフの勾配は大きくなるので、電圧増幅率がコイル内径φに比例することがわかる。
【0031】
次に、図8は、図4に示した第3の実施形態に基づく前記電極部6における絶縁破壊特性グラフであり、絶縁破壊電圧Vb(ボルト)と電極間距離d(マイクロメートル)との関係を示す。前記二次側コイル部3の内径φを100mm、入力電圧Vinを交流100V一定とした。この図における値は絶縁破壊電圧の10回の平均値である。この特性から、電極間距離dが増大するに連れて、絶縁破壊電圧Vbも上昇していることがわかる。またインパルス比(インパルス電圧/交流電圧)は約1.99〜3.3となった。
【0032】
ここでの前記電極部6における電極5,5は、ガス針2号(針の直径0.76mm,長さ54.5mm)を使用し、プレパラート上に2本の針が直線状態になるように顕微鏡(構成目盛0-1000マイクロメートル)を用いて配置し、固定は市販の瞬間接着剤で行った。これを、アクリル製容器(155mm×105mm×50mm)に入れ、純空気を流量500cc/分で容器の体積以上に十分に流入してから流しつづけた状態で測定を行った。また、前記電極間距離(ギャップ長)dは10〜100マイクロメートルとした。これにより、出力電圧は、入力電圧が20〜100ボルトの範囲内において、約4ボルト〜2.8キロボルトとなり、半値幅約20ナノ秒〜25マイクロ秒のパルス波(急峻波)であることが判明した。
【0033】
図9は、図2に示した本発明の第1の実施形態において、前記二次側コイル部3の内径φを10ミリメートル,コイル巻数をN回,入力直流電圧Vinを20ボルトとしたときの、前記二次側コイル部3の単部3b,3bに現れる出力電圧を示す測定グラフである。これにより、パルス波の幅が約24.21ナノ秒という、極めて短い幅のパルス波出力を得ることができた。
【0034】
【発明の効果】
請求項1の発明では、スイッチング素子の動作等によって生じる過渡的過電圧パルス波に近似するような、高電圧且つ短幅のパルス波を、半導体素子を用いずに生成することができ、特に、パルス波の幅を短くしても出力電圧を高く維持することができ、前記課題を解決したものである。
【0035】
具体的には、筒状に一度だけ巻いたアルミ箔,金属箔その他の導体箔からなる一次側単巻コイル部1と、該一次側単巻コイル部1の内側にて筒状に一定回数巻かれたエナメル線,銅線その他の導線からなる二次側コイル部3とからなる、いわば2重構造の筒状コイルからなる極めて簡易な構成とするだけで、一次側のコイルから入力される電圧の数倍乃至数十倍のパルス電圧の出力を得ることができる。しかも、かかる出力パルス電圧の幅は、少なくともマイクロ秒オーダーであり、上記実施例からもわかるように、20ナノ秒前後という極めて短いものである。本発明は、このような短幅パルス電圧を、半導体素子,光学素子等の高額素子を一切用いることなく確実に発生させることができるという、極めて優れた効果を有する。
【0036】
更にその結果、過渡的過電圧パルス波の発生が電子機器に与える影響を解析するために、開閉装置,パワーエレクトロニクス等のスイッチング動作時に生じる過渡的過電圧が絶縁材料に与える影響を調査することも可能になるという極めて優れた利点も有する。また、前記一次側単巻コイル部1の軸方向の長さを、前記二次側コイル部1の軸方向の長さよりも長くしたことにより、前記一次側単巻コイル部1と前記二次側コイル部3との端部で端効果を生じさせることがない。
【0037】
さらに、本発明では、前記一次側単巻コイル部1と前記二次側コイル部3との間に、紙,プラスチック,塩化ビニールその他の絶縁材料からなる絶縁層2を巻付挿入した筒状パルス生成装置としたことにより、請求項1の発明による極めて優れた効果及び利点に加え、前記一次側単巻コイル部1と前記二次側コイル部3とを、絶縁層2によって良好に絶縁することができるので、エナメル等の皮膜の破れ等がコイルに存在しても、短絡することがないので、本発明のように高電圧を出力するような装置であっても、安全に使用することができるという極めて優れた利点がある。
【0038】
次に,請求項2の発明では、請求項1記載において、前記一次側単巻コイル部1の巻き始めと巻き終わり位置に、入力電圧を印加するための入力端1a,1aを設けた筒状パルス生成装置としたことにより、入力電圧を前記一次側単巻コイル部1に印加する場合に比べて、入力電圧を容易且つ確実に前記一次側単巻コイル部1に印加することができる。その結果、請求項1,2,3又は4の発明による極めて優れた効果及び利点に加え、ひいては本発明の筒状パルス生成装置を安全に使用できるという極めて優れた利点を有する。
【0039】
次に、請求項3の発明では、請求項1又は2記載において、前記二次側コイル部3の内側を中空とした筒状パルス生成装置としたことにより、本発明の筒状パルス装置を筒状(又は円筒状)に形成する際に用いる筒4を使用することなく、中空としたことで、その分の重量を減量することができるので、請求項1又は2の発明による極めて優れた効果及び利点に加え、本発明の筒状パルス生成装置をより軽量にすることができるという利点がある。
【図面の簡単な説明】
【図1】 (A)は本発明の第1実施形態の構成の一例を示す概略図
(B)は(A)のX−X矢視断面図
(C)は(A)から最表面の一次側単巻コイル部を除去したときの構成の一例を示す概略図
【図2】 (A)は本発明の第1実施形態における出力パルス電圧の測定方法の一例を示す概略図
(B)は、本発明の第1実施形態において、最表面部の一次側単巻コイル部とその内側にある二次側コイル部との端部の関係を示す概略図
【図3】 本発明の第2実施形態の構成の一例を示す概略図
【図4】 本発明の第3実施形態の構成の一例を示す概略図
【図5】 本発明の第4実施形態の構成の一例を示す概略図
【図6】 二次側コイル部のコイル内径毎の、巻数と出力電圧との特性グラフ
【図7】 入力電圧と出力電圧との関係を示す特性グラフ
【図8】 本発明の第3の実施形態に基づく前記電極部における絶縁破壊特性グラフ
【図9】 本発明の第1の実施形態における出力電圧を示す測定グラフ
【図10】 本発明の第2の実施形態の変形例に係る接続構成図
【図11】 本発明の第4の実施形態の変形例に係る接続構成図
【符号の説明】
1…一次側単巻コイル部、1a…入力端、2…絶縁層、3…二次側コイル部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical transformer device that can reliably generate a high voltage and a short pulse voltage with a simple configuration, for example, to generate an extremely short pulse voltage with a pulse width of the order of microseconds or less. The present invention relates to a cylindrical transformer device used in a pulse generator that can be applied satisfactorily.
[0002]
[Prior art]
In recent years, transient overvoltage pulses generated by switching operations of power devices and operations of switching elements (IGBT, GTO, etc.) used in consumer devices can greatly affect malfunctions of information devices and deterioration characteristics of insulating materials. Are known. This transient overvoltage pulse is generally characterized as a damped oscillatory wave.
[0003]
In order to analyze the influence of the generation of the transient overvoltage pulse wave on the electronic device, it is necessary to investigate the influence of the transient overvoltage generated during the switching operation of the switchgear, power electronics, etc. on the insulating material. Therefore, in particular, it is required to artificially generate a short pulse wave having a steep rise, a high voltage, and a microsecond order or less that approximates a pulse wave generated by the operation of the switching element.
[0004]
Here, Japanese Patent Laid-Open No. 9-148895 discloses a short electric pulse generator capable of obtaining a short electric pulse having a pulse width of about an optical short pulse. This short electric pulse generator generates an electric pulse of the order of 10 picoseconds by converting an optical pulse into an electric pulse, but the voltage does not reach the transient overvoltage and is used for analysis of inductive interference. Can not. Further, since it is necessary to provide an electric pulse generating means, a semiconductor laser (for example, VCSEL), an optical element, etc., the number of parts is complicated, and the cost of the apparatus itself is considered high.
[0005]
[Problems to be solved by the invention]
Therefore, some conventional pulse generators and the like using semiconductor elements exist, but there are limits to the withstand voltage capability of such semiconductor elements. In particular, a high-voltage and short-width pulse wave that approximates a transient overvoltage pulse wave generated by the operation of the switching element cannot be generated without using a semiconductor element. In particular, there is a trade-off problem that the output voltage cannot be increased if the width of the pulse wave is shortened.
[0006]
[Means for Solving the Problems]
Accordingly, as a result of extensive research, the inventor has devised a primary-side single-turn coil portion made of an aluminum foil, a metal foil, or other conductive foil wound only once in a cylindrical shape to which an input voltage is applied, and the primary coil. By using a cylindrical transformer device or the like used for a pulse generating device comprising a secondary coil portion made of enameled wire, copper wire or other conductive wire wound a certain number of times inside the single coil portion on the side, the cost is high. High voltage and short pulse voltage with extremely simple structure consisting of primary coil, secondary coil, and insulating layer to insulate them without using causative semiconductors, optical elements and expensive parts Can be reliably generated with a simple configuration, and can be applied particularly well to generate extremely short pulse voltages having a pulse width of the order of microseconds or less, thus solving the above-mentioned problems.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a cylindrical transformer device A of the present invention. Conventional pulse transformers use a single winding on the primary side. However, in the cylindrical transformer device A of the present invention, a single-wound coil wound in a cylindrical shape is applied as a primary-side coil, and in particular, this specification is referred to as a primary-side single-winding coil section 1 [see FIG. ].
[0008]
In the present embodiment, the primary side single-turn coil portion 1 is made of a soft aluminum foil having a thickness of 0.05 mm. However, the present invention is not limited to such an aluminum foil, and for example, a gold foil, a silver foil, a tin foil, a copper foil, a metal foil and other conductive foils having conductivity can be suitably applied to the present invention.
[0009]
Further, the cylindrical transformer device A of the present invention uses a coil in which a conducting wire is wound in a cylindrical shape as a secondary side coil, and is particularly referred to as a secondary side coil portion 3 in this specification [FIG. 1 (C). reference〕. In the present embodiment, the secondary coil portion 3 is formed in a cylindrical shape. In the present specification, the term “tubular” includes a cylinder, a flat cylinder, a polygonal column, and the like.
[0010]
In the present embodiment, the secondary coil portion 3 is formed by winding an enameled wire (2PEW-0.20) as a conducting wire 3a around a cylindrical paper tube 4 a certain number N times as a secondary solenoid coil. It is a thing. The conducting wire 3a can be a wire made of a copper wire, an iron wire, a steel wire or other conductors in addition to the enamel wire, and it does not matter whether there is an enamel, rubber or other coating.
[0011]
The cylinder 4 is used for convenience to simply wind the secondary side coil portion 3 in a cylindrical shape, and is not particularly necessary when implementing the cylindrical transformer device A of the present invention. The secondary coil portion 3 may be extracted from the inside. Even if this cylinder 4 is not used, the secondary coil part 3 may be wound into a cylinder by a machine. That is, it is desirable that the inner side (inside) of the secondary side coil portion 3 is hollow.
[0012]
Here, “hollow” in this specification means a state in which the inside is empty. However, it can be filled with air or the like. Moreover, when it implements with the cylinder 4 inserted in the said secondary side coil part 3, it is preferable to form the cylinder 4 with insulating materials, such as paper, a corrugated paper, a plastics, vinyl chloride, for example. This is because the cylindrical transformer device A of the present invention is not affected electrically and electromagnetically, and the strength of the cylindrical transformer device A can be reinforced.
[0013]
Next, the arrangement relationship between the primary-side single-turn coil unit 1 and the secondary-side coil unit 3 will be described. FIG. 1B is a cross-sectional view taken along the line XX of the cylindrical transformer device A shown in FIG. In accordance with the circumference of the innermost cylindrical tube 4, the conducting wire 3 is regularly wound with a constant width to form the secondary coil portion 3. The end portions 3b, 3b of the secondary coil portion 3 are used as connection terminals.
[0014]
Then, in accordance with the circumference of the secondary side coil portion 3, the primary side single-turn coil portion 1 made of aluminum foil is wound. However, in the present embodiment, as the insulating layer 2, a paper having a width substantially equal to the axial width of the primary side single-turn coil portion 1 and a thickness of about 0.05 mm is wound and inserted. As a result, an inadvertent short circuit between the primary side single-turn coil part 1 and the secondary side coil part 3, mutual heat conduction, and the like can be reliably prevented.
[0015]
Here, in the present embodiment, in order to close the electromagnetic coupling between the tube 4 and the primary side single turn coil portion 1, the primary side single turn is used particularly by using an adhesive such as a mending tape (width 12 mm). The coil part 1 may be pressed and fixed inward from the surface. The length of the input end 1a at this time was about 20 mm (see FIG. 2A).
[0016]
Further, in the present embodiment, the primary side single-turn coil portion 1 has a structure in which the axial width is slightly longer than the axial width of the secondary side coil portion 3 [see FIG. ]. Specifically, the length in the axial direction of the primary side single-turn coil portion 1 was set to about 3 mm, which was longer than the length in the axial direction of the secondary side coil portion 1. Thereby, an end effect is not produced in the edge part of the said primary side single winding coil part 1 and the said secondary side coil part 3. FIG. Here, in FIG. 2B, for the sake of convenience, each element is shown to be wound with a certain interval. However, in the implementation, each element is wound so as to be in close contact with each other. May be.
[0017]
In the present embodiment, a digitizing signal analyzer (DSA 2GS / S) as a signal measuring instrument and a high voltage probe (1000 times, 100 MΩ) are connected to the ends 3b and 3b drawn from both ends of the secondary coil unit 3, respectively. And the output pulse voltage is measured (see FIG. 2A).
[0018]
Next, FIG. 3 is a schematic diagram of a configuration according to the second embodiment of the present invention. That is, a plurality of cylindrical transformer devices A according to the first embodiment are arranged in series on the same axis. Electrically, the end of the first end portion 3b of the cylindrical transformer device A 1, to one end of a series connection of the second end 3b of the tubular transformer device A 2 arranged adjacent. Similarly, one end of the second end 3b of the tubular transformer device A 2, and connected to one end of the third end portion 3b of the cylindrical transformer device A 3, ...... (n-1 ) th cylinder One end of the end portion 3b of the cylindrical transformer device An-1 is connected to one end of the end portion 3b of the nth cylindrical transformer device An. In the present embodiment, ten cylindrical transformer devices A 1 , A 2 ,... A10 are connected in series on the same axis.
[0019]
The interval D between the cylindrical transformer devices A 1 , A 2 , etc. (for example, the interval between the ends of the primary-side single-turn coil portions 1, 1) is respectively the cylindrical transformer devices A 1 , A 2 ,. However, the present invention is not limited to this.
[0020]
Input supply V, a single (identical) parallel each tubular transformer device A 1, A 2 from a DC power source, but the input voltage is configured to be supplied ... (see FIG. 3), each tubular trans As many as the number of cylindrical transformer devices A may be prepared so as to be individually supplied to the devices A 1 , A 2 .
[0021]
The switch S is a switching device for supplying a voltage input from the input power source V to the cylindrical transformer device A (or each of the cylindrical transformer devices A 1 , A 2 ,...), And is commercially available in this embodiment. Although the embedded push button is applied, the present invention is not limited to this, and any switch that can withstand the input voltage value can be applied.
[0022]
FIG. 10 is a connection configuration diagram according to a modification of the second embodiment described above, and is an embodiment in which the voltage supplied from the input power supply V is provided in series. In this way, a larger current can be input compared to the parallel connection configuration disclosed in FIG.
[0023]
Next, FIG. 4 is a schematic diagram of a configuration according to the third embodiment of the present invention. The difference from the first embodiment is that the electrode portion 6 is connected to the end portions 3 b and 3 b of the secondary coil portion 3.
[0024]
The electrode unit 6 has two gas needles 5 and 5 arranged using a microscope or the like so that the tips thereof are arranged on the same straight line on the preparation at a minute distance, and a commercially available instantaneous adhesive is used. It is fixed and sealed in an airtight container such as an acrylic container, and a certain amount of pure air sufficiently flows into the airtight container. The output voltage was measured with the pure air kept flowing. The distance d between the tips of the gas needles 5 and 5 is preferably about 10 to 100 micrometers, but is not limited thereto. Between the tips of the gas needles 5 and 5, discharge due to dielectric breakdown is performed.
[0025]
Next, FIG. 5 is a schematic diagram of a configuration according to the fourth embodiment of the present invention. This embodiment is different from the second embodiment in that the electrode portion 6 is connected to the end portions 3b and 3b of the secondary coil portion 3 in relation to the second embodiment.
[0026]
FIG. 11 is a connection configuration diagram according to a modification of the above-described fourth embodiment, and is an embodiment in which the voltage supplied from the input power supply V is provided in series. In this way, a larger current can be input compared to the parallel connection configuration disclosed in FIG.
[0027]
【Example】
Next, the result of measuring the output pulse voltage will be described as a first embodiment of the cylindrical transformer device A of the present invention. First, with respect to the secondary side coil section 3, the coil inner diameter (diameter) φ is set to 5 types (10 mm, 30 mm, 50 mm, 70 mm, 100 mm), and the number of turns N is set to 6 types (50 times, 100 times, 150 times, 200 times). , 250 times, 300 times), and enameled wire (2PEW-0.20) was used for the winding. Input / output characteristics under these conditions were measured with the circuit configuration of the first embodiment shown in FIG.
[0028]
Also, a commercially available variable DC low voltage / constant current power supply (0-110V, 0-60A) is used as the input power supply P, and the maximum value of the output voltage Vout relative to the input voltage Vin (20, 40, 60, 80, 100V) Each measurement was performed 10 times. The switch S was manually operated with a commercially available embedded push button (10 A, 300 V, AC).
[0029]
FIG. 6 is a characteristic graph of the number of turns N and the output voltage Vout for each coil inner diameter φ of the secondary coil portion 3. The input voltage Vin is constant at 100V DC. As can be seen from this figure, if the number of turns N is constant, the output voltage Vout also increases as the inner diameter φ increases. Further, when the inner diameter φ is sufficiently small, the output voltage Vout has a characteristic that becomes lower than the input voltage Vin.
[0030]
Next, FIG. 7 is a characteristic graph showing the relationship between the input voltage Vin and the output voltage Vout. This characteristic is that the number of turns N of the secondary coil portion 3 of the cylindrical transformer device A of the present invention is 100 times and the coil inner diameter φ is 10, 30, 50, 70, 100 mm. 10 shows an average value of the output voltage Vout with respect to the input voltage Vin (20, 40, 60, 80, 100 V) by serial connection when ten are connected in series as in the modification of the second embodiment shown in FIG. From this characteristic, it can be seen that the output voltage Vout increases as the input voltage Vin increases. In particular, as the coil inner diameter φ increases, the gradient of the graph increases, and it can be seen that the voltage amplification factor is proportional to the coil inner diameter φ.
[0031]
Next, FIG. 8 is a dielectric breakdown characteristic graph in the electrode section 6 based on the third embodiment shown in FIG. 4, and the relationship between the dielectric breakdown voltage Vb (volt) and the inter-electrode distance d (micrometer). Indicates. The inner diameter φ of the secondary side coil portion 3 was 100 mm, and the input voltage Vin was constant 100 V AC. The value in this figure is an average value of the dielectric breakdown voltage 10 times. From this characteristic, it can be seen that the dielectric breakdown voltage Vb increases as the inter-electrode distance d increases. The impulse ratio (impulse voltage / AC voltage) was about 1.99 to 3.3.
[0032]
The electrodes 5 and 5 in the electrode section 6 here use a gas needle 2 (needle diameter 0.76 mm, length 54.5 mm), and a microscope (two needles in a straight line on the slide) ( The composition scale was 0 to 1000 micrometers), and fixation was performed with a commercially available instantaneous adhesive. This was put into an acrylic container (155 mm × 105 mm × 50 mm), and measurement was performed in a state in which pure air was sufficiently flowed in at a flow rate of 500 cc / min after flowing sufficiently to the volume of the container. The interelectrode distance (gap length) d was 10 to 100 micrometers. As a result, it was found that the output voltage is about 4 volts to 2.8 kilovolts in the input voltage range of 20 to 100 volts, and is a pulse wave (steep wave) with a half width of about 20 nanoseconds to 25 microseconds. .
[0033]
FIG. 9 shows the first embodiment of the present invention shown in FIG. 2 in which the secondary coil portion 3 has an inner diameter φ of 10 millimeters, coil turns N times, and an input DC voltage Vin of 20 volts. FIG. 5 is a measurement graph showing output voltages appearing in the single parts 3 b and 3 b of the secondary coil part 3. As a result, a pulse wave output with an extremely short width of about 24.21 nanoseconds was obtained.
[0034]
【The invention's effect】
According to the first aspect of the present invention, a high-voltage and short-width pulse wave that approximates a transient overvoltage pulse wave generated by the operation of the switching element can be generated without using a semiconductor element. Even if the wave width is shortened, the output voltage can be kept high, which solves the above problem.
[0035]
Specifically, the primary-side single-winding coil portion 1 made of aluminum foil, metal foil, or other conductive foil wound only once in a cylindrical shape, and wound in a cylindrical shape a certain number of times inside the primary-side single-winding coil portion 1 The voltage input from the primary coil can be obtained by simply forming a secondary coil portion 3 made of enameled wire, copper wire or other conductive wire, or a so-called double-layered cylindrical coil. It is possible to obtain an output of a pulse voltage several times to several tens of times as large as. Moreover, the width of the output pulse voltage is at least on the order of microseconds, and as can be seen from the above embodiments, it is extremely short, around 20 nanoseconds. The present invention has an extremely excellent effect that such a short pulse voltage can be reliably generated without using any expensive element such as a semiconductor element or an optical element.
[0036]
As a result, in order to analyze the effects of transient overvoltage pulse waves on electronic devices, it is also possible to investigate the effects of transient overvoltages generated on switching operations of switchgears, power electronics, etc. on insulating materials. It also has a very good advantage. Further, the primary-side single-turn coil portion 1 and the secondary-side coil portion 1 are made longer than the axial-direction length of the secondary-side coil portion 1 so that the primary-side single-turn coil portion 1 and the secondary-side coil portion 1 are There is no end effect at the end of the coil portion 3.
[0037]
Furthermore, in the present invention, a cylindrical pulse in which an insulating layer 2 made of an insulating material such as paper, plastic, vinyl chloride or the like is wound and inserted between the primary side single-turn coil part 1 and the secondary side coil part 3. By using the generator, in addition to the extremely excellent effects and advantages of the invention of claim 1, the primary-side single-turn coil portion 1 and the secondary-side coil portion 3 are well insulated by the insulating layer 2. Therefore, even if a film tear such as enamel is present in the coil, it will not be short-circuited, so even a device that outputs a high voltage as in the present invention can be used safely. There is a very good advantage of being able to.
[0038]
Next, in a second aspect of the present invention, in the first aspect, a cylindrical shape in which input ends 1a and 1a for applying an input voltage are provided at the winding start and winding end positions of the primary-side single-turn coil unit 1. By using the pulse generation device, it is possible to apply the input voltage to the primary-side single-turn coil unit 1 easily and reliably compared to the case where the input voltage is applied to the primary-side single-turn coil unit 1. As a result, in addition to the extremely excellent effects and advantages of the first, second, third, or fourth aspect of the present invention, the cylindrical pulse generating device of the present invention can be used safely.
[0039]
Next, in the invention of claim 3, in the invention of claim 1 or 2, the cylindrical pulse generator of the present invention is formed as a cylinder by using a cylindrical pulse generator in which the inner side of the secondary coil portion 3 is hollow. Since it is possible to reduce the weight of the cylinder 4 without using the cylinder 4 used for forming the shape (or cylindrical shape), the extremely excellent effect of the invention of claim 1 or 2 can be obtained. In addition to the advantages, the cylindrical pulse generator of the present invention can be reduced in weight.
[Brief description of the drawings]
FIG. 1A is a schematic diagram illustrating an example of the configuration of a first embodiment of the present invention. FIG. 1B is a cross-sectional view taken along the line XX of FIG. FIG. 2A is a schematic diagram showing an example of a method for measuring an output pulse voltage in the first embodiment of the present invention. FIG. FIG. 3 is a schematic view showing the relationship between the end portions of the primary-side single-turn coil portion on the outermost surface portion and the secondary-side coil portion inside the outermost surface portion in the first embodiment of the present invention. FIG. 4 is a schematic diagram showing an example of the configuration of the third embodiment of the present invention. FIG. 5 is a schematic diagram showing an example of the configuration of the fourth embodiment of the present invention. Characteristic graph of the number of turns and output voltage for each coil inner diameter of the secondary coil [Fig.7] Characteristic graph showing the relationship between input voltage and output voltage 【 FIG. 8 is a graph showing dielectric breakdown characteristics in the electrode section according to the third embodiment of the present invention. FIG. 9 is a measurement graph showing an output voltage according to the first embodiment of the present invention. FIG. 11 is a connection configuration diagram according to a modification of the embodiment. FIG. 11 is a connection configuration diagram according to a modification of the fourth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Primary side single winding coil part, 1a ... Input end, 2 ... Insulating layer, 3 ... Secondary side coil part.

Claims (3)

入力電圧が印加される筒状に巻いたアルミ箔,金属箔その他の導体箔からなる一次側単巻コイル部と、該一次側単巻コイル部の内側に筒状に一定回数巻かれたエナメル線,銅線その他の導線からなる二次側コイル部とからなり、前記一次側単巻コイル部と前記二次側コイル部との間に、紙,プラスチック,塩化ビニールその他の絶縁材料からなる絶縁層が巻付挿入され、前記一次側巻コイル部の軸方向の長さは、前記二次側コイル部の軸方向の長さより長く、且つ該二次コイル部を覆う構造を備えたことを特徴とするパルス生成装置に用いる筒状トランス装置。A primary-side single-winding coil portion made of a cylindrically wound aluminum foil, metal foil or other conductive foil to which an input voltage is applied, and an enameled wire wound in a cylindrical shape a predetermined number of times inside the primary-side single-winding coil portion An insulating layer made of paper, plastic, vinyl chloride or other insulating material between the primary coil part and the secondary coil part. And the axial length of the primary side coil portion is longer than the axial length of the secondary side coil portion and has a structure covering the secondary coil portion. A cylindrical transformer device used for a pulse generating device. 請求項1記載において、前記一次側単巻コイル部1の巻き始めと巻き終わり位置に、入力電圧を印加するための入力端を設けたことを特徴とするパルス生成装置に用いる筒状トランス装置。According to claim 1, wherein, in the position of the end of winding the winding start of the primary single-turn coil unit 1, the cylindrical transformer apparatus for use in pulse generator apparatus characterized by comprising an input terminal for applying an input voltage . 請求項1又は2記載において、前記二次側コイル部の内側を中空としたことを特徴とするパルス生成装置に用いる筒状トランス装置。The cylindrical transformer device used in the pulse generator according to claim 1 or 2, wherein an inner side of the secondary side coil portion is hollow.
JP2000130081A 2000-04-28 2000-04-28 Cylindrical transformer device used in pulse generator Expired - Fee Related JP4595097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130081A JP4595097B2 (en) 2000-04-28 2000-04-28 Cylindrical transformer device used in pulse generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130081A JP4595097B2 (en) 2000-04-28 2000-04-28 Cylindrical transformer device used in pulse generator

Publications (2)

Publication Number Publication Date
JP2001313217A JP2001313217A (en) 2001-11-09
JP4595097B2 true JP4595097B2 (en) 2010-12-08

Family

ID=18639244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130081A Expired - Fee Related JP4595097B2 (en) 2000-04-28 2000-04-28 Cylindrical transformer device used in pulse generator

Country Status (1)

Country Link
JP (1) JP4595097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888169B (en) * 2017-12-17 2023-10-24 华中科技大学 Pulse current booster, pulse current generating device and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582369A (en) * 1991-09-19 1993-04-02 Tdk Corp Transformer
JPH1167564A (en) * 1997-08-12 1999-03-09 Murata Mfg Co Ltd Current transformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656652B2 (en) * 1990-07-03 1997-09-24 日本電気株式会社 Trance
JPH0566925U (en) * 1992-02-19 1993-09-03 日新電機株式会社 High voltage pulse generator
JPH0566926U (en) * 1992-02-19 1993-09-03 日新電機株式会社 High voltage pulse generator
JPH10256055A (en) * 1997-03-07 1998-09-25 Horiba Ltd Low-voltage large-current transformer
JP3355553B2 (en) * 1999-12-21 2002-12-09 昭和電機株式会社 Insulation structure of high-voltage foil-wound transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582369A (en) * 1991-09-19 1993-04-02 Tdk Corp Transformer
JPH1167564A (en) * 1997-08-12 1999-03-09 Murata Mfg Co Ltd Current transformer

Also Published As

Publication number Publication date
JP2001313217A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
KR102499709B1 (en) Plasma sheath control for RF plasma reactors
Kind An introduction to high-voltage experimental technique: textbook for electrical engineers
Kind et al. High voltage test techniques
JPH05508298A (en) high voltage dc power supply
KR100825298B1 (en) Apparatus for measuring impact induced tensile-fracture
CN103308736A (en) Small-size integrated steep pulse generating device
Hoffmann A Tesla transformer high− voltage generator
US5008913A (en) Measuring and damping resistor arrangement for a high-voltage apparatus
Yan et al. Miniature solid-state switched spiral generator for the cost effective, programmable triggering of large scale pulsed power accelerators
Fang et al. Compact microsecond pulsed power generator driven by solar energy for dielectric barrier discharge applications
Barsoum et al. Design of high voltage low power supply device
Wang et al. A novel repetitive high-voltage resonant pulse generator for plasma-assisted milling
Jaritz et al. Isolation design of a 14.4 kV, 100kHz transformer with a high isolation voltage (115kV)
JP4595097B2 (en) Cylindrical transformer device used in pulse generator
US4451764A (en) Ignition system high voltage cable with minimized radio interference
JP2007042287A (en) Ion generator
Yu et al. A 100 kV, 50 Hz repetitive high-voltage pulse lifetime test platform
Deb et al. Generation of high voltage nanosecond pulses using Pulse Sharpening switch
US20160217901A1 (en) Transformer with highly resistive core
Boonseng et al. A low cost approach to design the Tesla transformer for testing of insulating materials
Giotis et al. Cockcroft–Walton Generator: An Effective Voltage Multiplier for Power Supplies of Square Pulses Driving DBD Plasmas
US2939086A (en) High voltage transformer
Zhang et al. Compact megavolt pulse transformer with inner magnetic core and conical secondary windings
Chaisiri et al. The investigation on electrical characteristic of saline solution
Boonseng et al. A low cost approach to design the Tesla transformer for testing of insulating materials and industrial applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees