JP4594947B2 - Modified asphalt and asphalt pavement material using the same - Google Patents

Modified asphalt and asphalt pavement material using the same Download PDF

Info

Publication number
JP4594947B2
JP4594947B2 JP2007053155A JP2007053155A JP4594947B2 JP 4594947 B2 JP4594947 B2 JP 4594947B2 JP 2007053155 A JP2007053155 A JP 2007053155A JP 2007053155 A JP2007053155 A JP 2007053155A JP 4594947 B2 JP4594947 B2 JP 4594947B2
Authority
JP
Japan
Prior art keywords
asphalt
mass
parts
asphalt pavement
recycled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007053155A
Other languages
Japanese (ja)
Other versions
JP2008095062A (en
Inventor
文雄 畑
征夫 草野
Original Assignee
文雄 畑
征夫 草野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 文雄 畑, 征夫 草野 filed Critical 文雄 畑
Priority to JP2007053155A priority Critical patent/JP4594947B2/en
Publication of JP2008095062A publication Critical patent/JP2008095062A/en
Application granted granted Critical
Publication of JP4594947B2 publication Critical patent/JP4594947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、再生アスファルト用添加剤、それを添加した再生アスファルト舗装材、改質アスファルトおよびそれを用いたアスファルト舗装材に関する。   The present invention relates to an additive for recycled asphalt, a recycled asphalt pavement material to which the additive is added, a modified asphalt, and an asphalt pavement material using the same.

日本において道路のアスファルト舗装はすでに119万kmにも達しており、今後新しい道路の建設は極めて少なくなるものと考えられる。道路幅員10m、舗装厚6cm、含有アスファルト量6%、密度2.35g/cmと仮定すると、全国のアスファルト舗装道路には、アスファルトが約1億トンおよび骨材が約15億トン在庫されていることになる。その原料価格をアスファルト6万円/トンおよび骨材2千円/トンと仮定すると、合算で9兆円もの資源在庫を蓄えていることになる。
一方、これまで発展途上国とされていた多数の国々におけるインフラが急速に進んでいるために、有限な資源であるアスファルトの価格は高騰し、今後も価格が下がる見込みはないと思われる。また、日本国内の開発における多数のダム建設や骨材として用いる石砂の河川からの大量採取により、海岸線まで石砂が届かなくなって全国の砂浜が消失しつつあり、現在、国や県がその復元に大変苦慮している状況である。
以上のことから、日本ではアスファルト舗装材をリサイクルしようとする動きが活発になってきており、平成11年度を境にして再生アスファルト舗装材の使用量が新規アスファルト舗装材の使用量を上回っている(例えば、非特許文献1を参照)。そして、平成16年度には再生アスファルト舗装材が68.8%を占め、今後もこの傾向は益々強まるものと思われる。
Asphalt pavement of roads has already reached 1.19 million km in Japan, and it is thought that the construction of new roads will be very few in the future. Assuming a road width of 10m, pavement thickness of 6cm, content of asphalt 6%, density 2.35g / cm 3 , asphalt paved roads nationwide have about 100 million tons of asphalt and 1.5 billion tons of aggregates in stock. Will be. Assuming that the raw material price is 60,000 yen / ton of asphalt and 2,000 yen / ton of aggregate, the total stock of resources is 9 trillion yen.
On the other hand, due to the rapid progress of infrastructure in many countries that have been regarded as developing countries, the price of asphalt, a finite resource, has soared, and it is unlikely that the price will continue to decline. In addition, due to the construction of many dams in Japan's development and the mass collection of stone sand used as aggregates from rivers, stone sand has not reached the coastline, and sand beaches throughout the country are disappearing. The situation is very difficult to restore.
For these reasons, there is an active movement to recycle asphalt pavement materials in Japan, and the amount of recycled asphalt pavement materials exceeds that of new asphalt pavement materials since 1999. (For example, refer nonpatent literature 1). In FY2004, recycled asphalt pavement accounted for 68.8%, and this trend is expected to increase further in the future.

石油が有限の資源である以上、アスファルトの枯渇化および高騰は世界的に避けられず、アスファルトを含有するアスファルト舗装廃材の需要は増大している。アスファルト舗装廃材は、その発生現場によって材齢や構成材料が異なるため、一定量以上のアスファルト舗装廃材を確保して平準化を図る必要がある。しかし、現在は平準化を図れる程のアスファルト舗装廃材を確保することが困難になりつつある。このような状況にもかかわらず、アスファルト舗装廃材は、産業廃棄物として処理され、大半は路盤材に使用され、残りは新規アスファルト舗装材の製造時に混入して使用されている。これらの総量が再生アスファルト舗装材の使用量となっており、完全なリサイクルとは未だ言えない。付加価値の高いアスファルト舗装廃材を完全にリサイクルできないことは、技術的およびシステム的に問題があり、このことは国家的損失と言える。   As oil is a finite resource, asphalt depletion and soaring are inevitable worldwide, and the demand for asphalt pavement waste containing asphalt is increasing. Asphalt pavement waste materials have different ages and constituent materials depending on the generation site, so it is necessary to secure a certain amount of asphalt pavement waste materials to achieve leveling. However, at present, it is becoming difficult to secure asphalt pavement waste that can be leveled. Despite this situation, asphalt pavement waste is treated as industrial waste, most of it is used as roadbed material, and the rest is mixed and used when manufacturing new asphalt pavement. The total amount of these is the amount of recycled asphalt pavement used, and it cannot be said that it is completely recycled. The inability to completely recycle high-value-added asphalt pavement waste is a technical and systemic problem, which is a national loss.

また、ガラス廃材のリサイクルとして、粉砕されたガラス廃材を石砂の代わりに新規あるいは再生アスファルト舗装材に配合することが試みられているが、アスファルトの粘着力が弱いため舗装後3年以上経過するとガラス廃材粉砕物が舗装表面に飛び出すという問題が発生している。このようにガラス廃材のアスファルト舗装材におけるリサイクルも技術的に問題がある。   In addition, as recycling of glass waste materials, attempts have been made to mix crushed glass waste materials into new or reclaimed asphalt pavement materials instead of stone sand. There is a problem that the waste glass waste material jumps out to the pavement surface. In this way, recycling of glass waste materials in asphalt pavement materials is also technically problematic.

平成16年の時点でアスファルト舗装材製造工場は全国に1,438箇所(破砕専用工場10箇所および休止工場78箇所を含む)あり、それら中で再生アスファルト舗装材を専業とする工場は20〜30箇所と推定され、非常に少ない。上記で述べたように、殆どの製造工場では、再生アスファルト用添加剤を添加したアスファルト舗装廃材粉砕物を新規アスファルト舗装材の増量材として使用しており、100%のリサイクルとは言えない状況にある。また、アスファルト舗装廃材粉砕物においては、骨材が微細化しているため、密粒度アスファルト舗装材にしか使用することができない。ところが、最近は透水性の良好な開粒度アスファルト舗装材が主流となりつつあり、密粒度アスファルト舗装材の需要が減少していることも、アスファルト舗装廃材のリサイクルを妨げる要因となっている。   As of 2004, there were 1,438 asphalt pavement manufacturing factories nationwide (including 10 crushing factories and 78 suspended factories), of which 20-30 are specialized in reclaimed asphalt pavement materials. It is estimated that there are very few places. As mentioned above, most manufacturing factories use crushed asphalt pavement material with added recycled asphalt additive as an extender for new asphalt pavement, which cannot be said to be 100% recycled. is there. Moreover, since the aggregate is refined | miniaturized in the asphalt pavement waste material pulverized material, it can be used only for dense-graded asphalt pavement. However, recently, open-graded asphalt pavement materials having good water permeability are becoming mainstream, and the demand for dense-graded asphalt pavement materials is decreasing, which is another factor hindering recycling of asphalt pavement waste materials.

上記した再生アスファルト用添加剤は、経年劣化したアスファルト成分の物性を回復させるために使用されているにもかかわらず、組成、針入度等の物性が規定されているのみでアスファルト成分の物性回復については何ら規定がない(例えば、非特許文献2を参照)。そのため、再生アスファルト用添加剤メーカーのカタログには、組成、針入度等の物性が記載されているにとどまり、各アスファルト舗装材製造工場では再生アスファルト用添加剤を経験的に使用しているのが実情である。   Although the above-mentioned additive for recycled asphalt is used to restore the physical properties of asphalt components that have deteriorated over time, the physical properties of the asphalt components can be recovered only by specifying the physical properties such as composition and penetration. There is no provision for (for example, see Non-Patent Document 2). For this reason, the catalogs of manufacturers of recycled asphalt only describe the physical properties such as composition, penetration, etc., and each asphalt pavement manufacturing factory uses the recycled asphalt additive empirically. Is the actual situation.

従来市販されている再生アスファルト用添加剤は、塗料、ゴム配合剤、印刷インキ等で使用されている、石油系炭化水素を熱分解してオレフィンを製造する際に副生される熱分解副生油を転用したものである。このような再生アスファルト用添加剤は、常温でグリース状態であるため、常時70℃〜80℃程度に加熱する必要があり、取り扱いが不便であるうえに熱源コストが掛かるという問題がある。そのため、このような再生アスファルト用添加剤を使用することは、各アスファルト舗装材製造工場にとって大きな損失となっている。   Additives for recycled asphalt that are commercially available in the past are thermal decomposition by-products that are used as a by-product when pyrolyzing petroleum hydrocarbons to produce olefins, which are used in paints, rubber compounding agents, printing inks, etc. It is a diversion of oil. Since such an additive for reclaimed asphalt is in a grease state at normal temperature, it needs to be heated to about 70 ° C. to 80 ° C. at all times, and there is a problem that handling is inconvenient and heat source costs are required. Therefore, using such an additive for recycled asphalt is a great loss for each asphalt pavement manufacturing factory.

さらに、従来、アスファルトとポリスチレンとを混合した改質アスファルトが市販されているものの、これを用いて得られるアスファルト舗装材は安定度等の力学的性状が十分とは言えない。これは、従来の改質アスファルトは、粘度の非常に高い加熱溶融アスファルト中に、粒状のポリスチレンを添加し、長時間混合することにより製造されているため、ポリスチレンの分散が不均一であるばかりか、長時間の加熱によりアスファルトの劣化が起きているためであると考えられる。   Furthermore, conventionally, modified asphalt in which asphalt and polystyrene are mixed is commercially available, but it cannot be said that the asphalt pavement material obtained using this has sufficient mechanical properties such as stability. This is because conventional modified asphalt is manufactured by adding granular polystyrene to hot melted asphalt with very high viscosity and mixing for a long time, so that the dispersion of polystyrene is not uniform. This is probably because the asphalt is deteriorated by heating for a long time.

「アスファルト合材統計年報 平成16年度版」、社団法人日本アスファルト合材協会編、平成17年8月、p.3〜p.41“Asphalt Composites Annual Report 2004”, edited by Japan Asphalt Composites Association, August 2005, p. 3-p. 41 「舗装再生便覧」、社団法人日本道路協会編、平成16年2月、p.12、p.207"Pavement Reproduction Manual", edited by Japan Road Association, February 2004, p. 12, p. 207

したがって、本発明は、上記のような課題を解決するためになされたものであり、従来の再生アスファルト用添加剤と同等に劣化アスファルト成分の物性を回復させ、かつ常温で流動性の高い低コストの再生アスファルト用添加剤を提供することを目的とする。
また、本発明は、上記のような課題を解決するためになされたものであり、安定度等の力学的性状の優れるアスファルト舗装材を与えることのできる改質アスファルトを提供することも目的とする。
Therefore, the present invention has been made to solve the above-described problems, and can restore the physical properties of the deteriorated asphalt component in the same manner as the conventional regenerated asphalt additive, and has low fluidity and high fluidity at room temperature. An object of the present invention is to provide an additive for recycled asphalt.
Another object of the present invention is to provide a modified asphalt capable of providing an asphalt pavement material having excellent mechanical properties such as stability. .

そこで、本発明者らは、上記のような従来の問題点を解決すべく鋭意研究、開発を遂行した結果、石油系炭化水素を熱分解してオレフィンを製造する際に副生される熱分解副生油と、特定の沸点を有する芳香族炭化水素溶剤でゲル状または餅状ポリスチレンを溶解させて得られる液状ポリスチレンとを特定の割合で混合して得られる再生アスファルト用添加剤が上記課題を解決し得ることを見出し、本発明を完成させるに至った。
即ち、本発明に係る再生アスファルト用添加剤は、石油系炭化水素を熱分解してオレフィンを製造する際に副生される熱分解副生油40質量%〜95質量%と、ゲル状または餅状ポリスチレンを100℃〜220℃の沸点を有する芳香族炭化水素溶剤で溶解させて得られる液状ポリスチレン5質量%〜60質量%とを混合して得られるものである。
この再生アスファルト用添加剤に対して、20質量%〜100質量%の廃潤滑油を更に混合することが好ましい。
本発明に係る再生アスファルト舗装材は、上記再生アスファルト用添加剤をアスファルト舗装廃材または新規骨材とアスファルト舗装廃材との混合物に添加したものである。
また、本発明に係る改質アスファルトは、ストレートアスファルト0.1質量%〜98質量%と、ゲル状または餅状ポリスチレンを100℃〜220℃の沸点を有する芳香族炭化水素溶剤で溶解させて得られる液状ポリスチレン2質量%〜99.1質量%とを混合して得られるものである。
本発明に係るアスファルト舗装材は、上記改質アスファルト1質量%〜25質量%と、新規骨材、アスファルト舗装廃材またはこれらの混合物75質量%〜99質量%とを120℃〜165℃の温度条件下で混合して得られるものである。
上記再生アスファルト用添加剤および上記改質アスファルトにおける液状ポリスチレンは、廃電線被覆材の粉砕物を含むことが好ましい。
また、本発明に係る再生アスファルト舗装材は、上記再生アスファルト用添加剤と、上記改質アスファルトとをアスファルト舗装廃材に添加したものである。
Therefore, the present inventors have conducted extensive research and development to solve the conventional problems as described above, and as a result, pyrolysis generated as a by-product when pyrolyzing petroleum hydrocarbons to produce olefins. An additive for reclaimed asphalt obtained by mixing a by-product oil and liquid polystyrene obtained by dissolving gel-like or cage-like polystyrene with an aromatic hydrocarbon solvent having a specific boiling point has the above problems. It has been found that the problem can be solved, and the present invention has been completed.
That is, the reclaimed asphalt additive according to the present invention comprises 40% by mass to 95% by mass of pyrolysis by-product oil by-produced when pyrolyzing petroleum hydrocarbons to produce olefin, It is obtained by mixing 5% by mass to 60% by mass of liquid polystyrene obtained by dissolving glassy polystyrene with an aromatic hydrocarbon solvent having a boiling point of 100 ° C. to 220 ° C.
It is preferable to further mix 20% by mass to 100% by mass of waste lubricating oil with respect to the recycled asphalt additive.
The recycled asphalt pavement according to the present invention is obtained by adding the above-described additive for asphalt to an asphalt pavement waste material or a mixture of new aggregate and asphalt pavement waste material.
The modified asphalt according to the present invention is obtained by dissolving 0.1% to 98% by weight of straight asphalt and gel-like or caged polystyrene with an aromatic hydrocarbon solvent having a boiling point of 100 ° C. to 220 ° C. It is obtained by mixing 2 mass% to 99.1 mass% of liquid polystyrene.
The asphalt pavement according to the present invention comprises the above modified asphalt 1% by mass to 25% by mass and the new aggregate, asphalt pavement waste material, or 75% by mass to 99% by mass of a mixture thereof at a temperature condition of 120 ° C. to 165 ° C. It is obtained by mixing below.
The liquid polystyrene in the regenerated asphalt additive and the modified asphalt preferably includes a pulverized product of the waste wire covering material.
Moreover, the recycled asphalt pavement according to the present invention is obtained by adding the above-mentioned additive for recycled asphalt and the above-mentioned modified asphalt to the asphalt pavement waste material.

本発明によれば、従来の再生アスファルト用添加剤と同等以上に劣化アスファルト成分の物性を回復させ、かつ常温で流動性の高い低コストの再生アスファルト用添加剤を提供することができる。
更に、本発明によれば、安定度等の力学的性状の優れるアスファルト舗装材を与えることのできる改質アスファルトを提供することができる。
According to the present invention, it is possible to provide a low-cost additive for reclaimed asphalt that recovers the physical properties of the deteriorated asphalt component to the same level or more as the conventional additive for reclaimed asphalt and has high fluidity at room temperature.
Furthermore, according to the present invention, it is possible to provide a modified asphalt capable of providing an asphalt pavement material having excellent mechanical properties such as stability.

以下、本発明を詳細に説明する。
まず、本発明の再生アスファルト用添加剤について説明する。
本発明の再生アスファルト用添加剤は、石油系炭化水素を熱分解してオレフィンを製造する際に副生される熱分解副生油と、100℃〜220℃の沸点を有する芳香族炭化水素溶剤でゲル状または餅状ポリスチレンを溶解させて得られる液状ポリスチレンとを特定の割合で混合して得られるものである。本発明の再生アスファルト用添加剤において、熱分解副生油は40質量%〜95質量%、好ましくは40質量%〜60質量%、液状ポリスチレンは5質量%〜60質量%、好ましくは40質量%〜60質量%の割合で混合される。熱分解副生油が40質量%未満であると劣化アスファルト成分の物性を十分に回復させることができず、95質量%を超えると粘度が高くなり常温での流動性が著しく低下する。
Hereinafter, the present invention will be described in detail.
First, the recycled asphalt additive of the present invention will be described.
The additive for regenerated asphalt of the present invention is a pyrolysis by-product oil by-produced when pyrolyzing petroleum hydrocarbons to produce olefins, and an aromatic hydrocarbon solvent having a boiling point of 100 ° C to 220 ° C. And a liquid polystyrene obtained by dissolving gel-like or cage-like polystyrene at a specific ratio. In the additive for regenerated asphalt of the present invention, pyrolysis by-product oil is 40% by mass to 95% by mass, preferably 40% by mass to 60% by mass, and liquid polystyrene is 5% by mass to 60% by mass, preferably 40% by mass. It is mixed at a ratio of ˜60% by mass. If the pyrolysis by-product oil is less than 40% by mass, the physical properties of the deteriorated asphalt component cannot be sufficiently recovered, and if it exceeds 95% by mass, the viscosity becomes high and the fluidity at normal temperature is remarkably lowered.

本発明における熱分解副生油は、原油、LPG、ナフサ、灯油、軽油、重油等の石油系炭化水素を公知の熱分解法により熱分解してエチレン、プロピレン等のオレフィンを製造する際に副生する留分である。この熱分解副生油は、ベンゼン、トルエン、キシレン等の芳香族炭化水素に富んだものであり、具体的な組成は石油系炭化水素の性状、熱分解条件等によって異なるため一義的に決定することはできない。熱分解副生油は、一般に、芳香族炭化水素30質量%〜80質量%、ナフテン系炭化水素10質量%〜20質量%、パラフィン系炭化水素10質量%〜60質量%を含むものである。   The pyrolysis by-product oil in the present invention is a by-product when petroleum hydrocarbons such as crude oil, LPG, naphtha, kerosene, light oil and heavy oil are pyrolyzed by a known pyrolysis method to produce olefins such as ethylene and propylene. This is a raw fraction. This pyrolysis by-product oil is rich in aromatic hydrocarbons such as benzene, toluene, xylene, etc. The specific composition is uniquely determined because it varies depending on the properties of the petroleum hydrocarbon, pyrolysis conditions, etc. It is not possible. The pyrolysis by-product oil generally contains 30% by mass to 80% by mass of aromatic hydrocarbons, 10% by mass to 20% by mass of naphthenic hydrocarbons, and 10% by mass to 60% by mass of paraffinic hydrocarbons.

本発明におけるゲル状または餅状ポリスチレンとは、ポリスチレン、好ましくは発泡ポリスチレンに対して、ポリスチレンを溶解することのできる適当な有機溶剤(例えば、シンナー、トルエン、ベンゼン、アセトン、灯油またはこれらの混合物)を5質量%〜40質量%の割合で添加して溶解させ、飽和状態にしたものである。上記のようなゲル状または餅状ポリスチレンは、分子ずれを起こしている状態なので、後述する芳香族炭化水素溶剤との相溶性が高いものとなっている。   The gel-like or cage-like polystyrene in the present invention is an appropriate organic solvent capable of dissolving polystyrene (for example, thinner, toluene, benzene, acetone, kerosene, or a mixture thereof) with respect to polystyrene, preferably expanded polystyrene. Is added at a ratio of 5% by mass to 40% by mass, dissolved, and saturated. Since the gel-like or cage-like polystyrene as described above is in a state of causing a molecular shift, it has high compatibility with an aromatic hydrocarbon solvent described later.

本発明における芳香族炭化水素溶剤は、100℃〜220℃、好ましくは170℃〜210℃の沸点を有する芳香族炭化水素である。このような芳香族炭化水素溶剤の具体例としては、テトラリン(沸点207℃)、ジイソプロピルベンゼン(沸点203℃)、デカリン(沸点185℃〜196℃)、イソプロピルトルエン(沸点175℃)、ジエチルベンゼン(沸点181℃〜184℃)、デカン(沸点174℃)等が挙げられる。これら芳香族炭化水素溶剤の使用量は、ゲル状または餅状ポリスチレンを溶解させて液状にするのに必要な量であり、ゲル状または餅状ポリスチレンに対して10質量%〜90質量%の範囲で適宜決定すればよい。
このような組成を有する本発明の再生アスファルト用添加剤は、劣化アスファルト成分の物性を回復させる能力が優れており、更には常温における流動性が高いので加熱を要することなく常温で使用することができるという利点を有している。
The aromatic hydrocarbon solvent in the present invention is an aromatic hydrocarbon having a boiling point of 100 ° C to 220 ° C, preferably 170 ° C to 210 ° C. Specific examples of such aromatic hydrocarbon solvents include tetralin (boiling point 207 ° C.), diisopropylbenzene (boiling point 203 ° C.), decalin (boiling point 185 ° C. to 196 ° C.), isopropyl toluene (boiling point 175 ° C.), diethylbenzene (boiling point). 181 ° C. to 184 ° C.), decane (boiling point 174 ° C.) and the like. The amount of the aromatic hydrocarbon solvent used is an amount necessary for dissolving the gel-like or cocoon-shaped polystyrene to form a liquid, and is in a range of 10% by mass to 90% by mass with respect to the gel-like or cocoon-like polystyrene. It may be determined as appropriate.
The additive for reclaimed asphalt of the present invention having such a composition is excellent in the ability to recover the physical properties of the deteriorated asphalt component, and further has high fluidity at room temperature, so that it can be used at room temperature without requiring heating. It has the advantage of being able to.

また、本発明の再生アスファルト用添加剤には、この添加剤全体に対して、20質量%〜100質量%の廃潤滑油を更に混合することが好ましい。このように廃潤滑油を特定の割合で混合することで、再生アスファルト用添加剤としての性能を維持しつつ低コスト化を図ることができる。廃潤滑油としては、使用済みのエンジンオイルが挙げられるが、使用済みの切削油は水分が多く含まれるため好ましくない。なお、コストは多少上昇するが、未使用の潤滑油を適宜混合してもよい。   The recycled asphalt additive of the present invention is preferably further mixed with 20% by mass to 100% by mass of waste lubricating oil based on the whole additive. Thus, by mixing the waste lubricating oil at a specific ratio, it is possible to reduce the cost while maintaining the performance as an additive for recycled asphalt. The waste lubricating oil includes used engine oil, but used cutting oil is not preferable because it contains a lot of moisture. In addition, although cost rises somewhat, you may mix an unused lubricating oil suitably.

また、液状ポリスチレンに廃電線被覆材の粉砕物を配合することで、廃電線被覆材を再利用しつつ低コスト化を図ることができる。廃電線被覆材は、一般に、塩化ビニル、ウレタンゴム、アクリルゴム、ニトリルゴム、スチレンブタジエンゴム、イソプレンゴム、クロロプレンゴム、ブタジエンゴム、ブチルゴム、エチレン−プロピレンゴム、シリコーンゴム、ポリエチレンゴム、エチレン酢酸ビニルゴムまたはこれらの混合物から構成される。廃電線被覆材の粉砕物は、使用済みの電線を切断、粉砕した後、比重選別により導体と被覆材とを分離することにより得られる。廃電線被覆材の粉砕物は、0.5mm〜1mm程度の大きさのものが好ましい。なお、廃電線被覆材の粉砕物には、紙のような繊維が含まれていてもよい。廃電線被覆材の粉砕物の使用量は、液状ポリスチレンに対して95質量%以下であればよい。   Moreover, by blending the pulverized product of the waste wire coating material with liquid polystyrene, the cost can be reduced while reusing the waste wire coating material. Waste wire covering materials are generally vinyl chloride, urethane rubber, acrylic rubber, nitrile rubber, styrene butadiene rubber, isoprene rubber, chloroprene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber, silicone rubber, polyethylene rubber, ethylene vinyl acetate rubber or Consists of these mixtures. The pulverized product of the waste wire covering material is obtained by cutting and pulverizing a used electric wire and then separating the conductor and the covering material by specific gravity sorting. The pulverized product of the waste wire covering material is preferably about 0.5 mm to 1 mm. In addition, the pulverized product of the waste electric wire coating material may contain fibers such as paper. The usage amount of the pulverized product of the waste wire coating material may be 95% by mass or less with respect to the liquid polystyrene.

本発明の再生アスファルト舗装材は、上述した再生アスファルト用添加剤をアスファルト舗装廃材または新規骨材とアスファルト舗装廃材との混合物に添加したものである。また、最終的に再生アスファルト舗装材に含まれる全アスファルトの量が3.5質量%〜7.0質量%の範囲にあるように新規ストレートアスファルトを適宜添加するとよい。ここで、アスファルト舗装廃材としては、各種工事(例えば、道路舗装工事、地下配管工事等)の際に発生するアスファルト舗装廃材を粉砕したもの(再生骨材)を挙げることができる。再生し易さを考慮すると、アスファルト舗装廃材の針入度が20以上のものが好ましい。なお、針入度は、JIS K2207(1996年)に準じ、25℃にて求めた値である。
アスファルト舗装廃材または新規骨材とアスファルト舗装廃材との混合物に対する再生アスファルト用添加剤の添加量は、アスファルト舗装廃材の物性(針入度、安定度等)を所望の値まで回復させるのに必要な量であり、アスファルト舗装廃材に対して5質量%〜20質量%の範囲で適宜決定すればよい。
The recycled asphalt pavement material of the present invention is obtained by adding the above-described recycled asphalt additive to a mixture of asphalt pavement waste material or a new aggregate and asphalt pavement waste material. Moreover, it is good to add a novel straight asphalt suitably so that the quantity of the total asphalt finally contained in a recycled asphalt pavement material may exist in the range of 3.5 mass%-7.0 mass%. Here, examples of the asphalt pavement waste include pulverized asphalt pavement waste (recycled aggregate) generated during various works (for example, road pavement work, underground piping work, etc.). In consideration of ease of regeneration, it is preferable that the asphalt pavement waste has a penetration of 20 or more. The penetration is a value determined at 25 ° C. according to JIS K2207 (1996).
The amount of recycled asphalt additive added to asphalt pavement waste or a mixture of new aggregate and asphalt pavement waste is necessary to restore the physical properties (penetration, stability, etc.) of the asphalt pavement waste to the desired values. The amount may be determined as appropriate in the range of 5% by mass to 20% by mass with respect to asphalt pavement waste.

また、本発明の再生アスファルト舗装材には、必要に応じて、シリカ、タルク、水酸化カルシウム、炭酸カルシウム、各種鉱物、ガラス廃材等の充填材をさらに配合してもよい。本発明の再生アスファルト用添加剤にはポリスチレンが配合されているため、骨材、ガラス廃材等の充填材との結合力が増大されており、骨材、ガラス廃材(例えば5mm程度までの大きさのもの)等の舗装表面への飛び出しを抑制することが可能となる。   Moreover, you may further mix | blend fillers, such as a silica, a talc, a calcium hydroxide, a calcium carbonate, various minerals, and a glass waste material, in the reproduction | regeneration asphalt pavement material of this invention as needed. Since the additive for recycled asphalt of the present invention is blended with polystyrene, the binding force with fillers such as aggregates and glass wastes is increased, and aggregates and glass wastes (for example, sizes up to about 5 mm). And the like) can be prevented from jumping to the pavement surface.

背景技術の項で説明したとおり、アスファルト舗装廃材はクラッシャーで粉砕されて骨材が微細化しているため、これまでは密粒度アスファルト舗装材にしか使用することができなかった。しかし、本発明の再生アスファルト用添加剤を添加することにより、微細化された再生骨材を粗大化することができるので、得られる再生アスファルト舗装材は開粒度アスファルト舗装材として使用することができる。最近は透水性の良好な開粒度アスファルト舗装材が主流となりつつあるため、本発明の再生アスファルト舗装材はアスファルト舗装廃材のリサイクルに大きく貢献できるものと考えられる。
また、廃電線被覆材の粉砕物を含む液状ポリスチレンが配合された再生アスファルト用添加剤をアスファルト舗装廃材に添加した場合、得られる再生アスファルト舗装材はクッション性の高いものとなり、駐車場や歩道に好適に使用することができる。
As explained in the background art section, asphalt pavement waste has been crushed by a crusher and the aggregate has been refined, so far it could only be used for dense grained asphalt pavement. However, by adding the recycled asphalt additive of the present invention, it is possible to coarsen the regenerated fine aggregate, so that the resulting recycled asphalt pavement can be used as an open-graded asphalt pavement. . Recently, since the open-graded asphalt pavement material having good water permeability is becoming mainstream, it is considered that the recycled asphalt pavement material of the present invention can greatly contribute to the recycling of asphalt pavement waste material.
In addition, when recycled asphalt additive containing liquid polystyrene containing pulverized waste wire covering material is added to asphalt pavement waste, the resulting reclaimed asphalt pavement is highly cushioning and can be used in parking lots and sidewalks. It can be preferably used.

次に、本発明の改質アスファルトについて説明する。
本発明の改質アスファルトは、ストレートアスファルトと、ゲル状または餅状ポリスチレンを100℃〜220℃の沸点を有する芳香族炭化水素溶剤で溶解させて得られる液状ポリスチレンとを特定の割合で混合して得られるものである。本発明の改質アスファルトにおいて、ストレートアスファルトは0.1質量%〜98質量%、好ましくは40質量%〜60質量%、液状ポリスチレンは2質量%〜99.9質量%、好ましくは40質量%〜60質量%の割合で混合される。ストレートアスファルトが0.1質量%未満であるか、あるいは98質量%を超えると均一に混合することができない。
本発明におけるストレートアスファルトとしては、針入度20〜100のものを好適に用いることができる。
本発明における液状ポリスチレンは、上述した再生アスファルト添加剤で用いるものと同じものを用いることができる。また、この液状ポリスチレンには、上述した廃電線被覆材の粉砕物を配合してもよい。
本発明の改質アスファルトは、加熱溶融(通常、70℃〜80℃程度に加熱)させたストレートアスファルトに液状ポリスチレンを徐々に添加し、混合することにより得ることができる。このようにして得られる改質アスファルトは、常温で固形の状態であるが、上述した再生アスファルト添加剤で用いるものと同じ廃潤滑油もしくは未使用の潤滑油を適宜添加してスラリーの状態にしてもよい。改質アスファルトをスラリー状とすることで、後述する新規骨材との混合を容易にすることができる。
このような組成を有する本発明の改質アスファルトは、安定度等の力学的性状の優れるアスファルト舗装材を与えることができる。
Next, the modified asphalt of the present invention will be described.
The modified asphalt of the present invention is obtained by mixing straight asphalt and liquid polystyrene obtained by dissolving gel-like or cocoon-like polystyrene with an aromatic hydrocarbon solvent having a boiling point of 100 ° C. to 220 ° C. at a specific ratio. It is obtained. In the modified asphalt of the present invention, straight asphalt is 0.1% by mass to 98% by mass, preferably 40% by mass to 60% by mass, and liquid polystyrene is 2% by mass to 99.9% by mass, preferably 40% by mass to 60% by mass is mixed. If the straight asphalt is less than 0.1% by mass or exceeds 98% by mass, uniform mixing cannot be performed.
As the straight asphalt in the present invention, those having a penetration of 20 to 100 can be suitably used.
The liquid polystyrene in the present invention may be the same as that used in the above-mentioned recycled asphalt additive. Moreover, you may mix | blend the pulverized material of the waste wire coating material mentioned above with this liquid polystyrene.
The modified asphalt of the present invention can be obtained by gradually adding and mixing liquid polystyrene to straight asphalt that has been heated and melted (usually heated to about 70 ° C. to 80 ° C.). The modified asphalt thus obtained is in a solid state at normal temperature, but the same waste lubricating oil as that used in the above-mentioned recycled asphalt additive or an unused lubricating oil is appropriately added to form a slurry. Also good. By making the modified asphalt into a slurry state, mixing with the new aggregate described later can be facilitated.
The modified asphalt of the present invention having such a composition can provide an asphalt pavement material having excellent mechanical properties such as stability.

本発明のアスファルト舗装材は、上述した改質アスファルト1質量%〜25質量%と、新規骨材、アスファルト舗装廃材またはこれらの混合物75質量%〜99質量%とを120℃〜165℃の温度条件下で溶融混合して得られるものである。従来のアスファルト舗装材製造では、ストレートアスファルト、骨材および各種添加剤を均一に混合するために170℃〜180℃の温度条件下で行わざるを得ず、その結果、ストレートアスファルト中に含まれるレジンが酸化あるいは重合されてアスファルテンに変化するという劣化が進行しているものと考えられる。これに対し、本発明のアスファルト舗装材は、120℃〜165℃という温度条件下で溶融混合して得られるので、製造過程におけるアスファルトの劣化を抑制することができるうえに、熱源コストを低減すると同時に工場から排出されるCO量を従来の約35%も低減することができる。
新規骨材としては、5号、6号、7号等の単粒度砕石、粗砂、細砂、スクリーニングス等の天然骨材、人工骨材等の従来公知ものを挙げることができる。
本発明におけるアスファルト舗装廃材は、上述した再生アスファルト添加剤で用いるものと同じものを用いることができる。
The asphalt pavement material of the present invention comprises the above-described modified asphalt 1% by mass to 25% by mass and new aggregate, asphalt pavement waste material, or 75% by mass to 99% by mass of a mixture thereof at a temperature condition of 120 ° C. to 165 ° C. It is obtained by melt-mixing below. In conventional asphalt pavement manufacturing, in order to mix straight asphalt, aggregate and various additives uniformly, it must be performed at a temperature of 170 ° C. to 180 ° C. As a result, the resin contained in the straight asphalt It is considered that the deterioration of the asphaltene is progressed by oxidation or polymerization. On the other hand, since the asphalt pavement material of the present invention is obtained by melt mixing under a temperature condition of 120 ° C. to 165 ° C., it is possible to suppress deterioration of asphalt in the manufacturing process and to reduce the heat source cost. At the same time, the amount of CO 2 emitted from the factory can be reduced by about 35% of the conventional amount.
Examples of the new aggregate include conventionally known materials such as single-grain crushed stones such as No. 5, No. 6, No. 7, etc., natural aggregates such as coarse sand, fine sand, screenings, and artificial aggregates.
The asphalt pavement waste material in the present invention may be the same as that used in the above-mentioned recycled asphalt additive.

また、本発明のアスファルト舗装材には、上記成分以外に、シリカ、タルク、水酸化カルシウム、炭酸カルシウム、各種鉱物、ガラス廃材等の充填材をさらに配合してもよい。充填材の好ましい配合割合は、アスファルト舗装材全体に対して、35質量%〜55質量%である。本発明の改質アスファルトにはポリスチレンが配合されているため、骨材、ガラス廃材等の充填材との結合力が増大されており、骨材、ガラス廃材等の舗装表面への飛び出しを抑制することが可能となる。   Moreover, you may further mix | blend fillers, such as a silica, a talc, a calcium hydroxide, a calcium carbonate, various minerals, and a glass waste material, in addition to the said component in the asphalt pavement material of this invention. A preferable blending ratio of the filler is 35% by mass to 55% by mass with respect to the entire asphalt pavement material. Since the modified asphalt of the present invention is blended with polystyrene, the binding force with fillers such as aggregates and glass wastes is increased, and the jumping of aggregates and glass wastes to the pavement surface is suppressed. It becomes possible.

本発明の再生アスファルト舗装材は、上述した再生アスファルト用添加剤と、上述した改質アスファルトとをアスファルト舗装廃材に添加したものである。   The recycled asphalt pavement material according to the present invention is obtained by adding the above-described recycled asphalt additive and the above-described modified asphalt to the asphalt pavement waste material.

以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、針入度は、JIS K2207(1996年)に準じ、25℃にて求めた値である。   Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these. The penetration is a value determined at 25 ° C. according to JIS K2207 (1996).

[実施例1]
熱分解副生油(昭和シェル石油株式会社製フレッシュゾール)50質量部と、液状ポリスチレン50質量部とを混合し、再生アスファルト用添加剤を調製した。この再生アスファルト用添加剤の40℃における動粘度(JIS K2283に準じた)は250mm/sであった。なお、液状ポリスチレンは以下のように調製した。発泡ポリスチレン97質量部に、シンナーと白灯油との容量比が3:7である混合有機溶剤50質量部を添加して発泡ポリスチレンを溶解させ、混合した後、白灯油で洗ってシンナーを除去して餅状ポリスチレンを得た。次いで、得られた餅状ポリスチレン80質量部にテトラリン20質量部を添加して溶解させ、液状ポリスチレンを得た。
約180℃に加熱したアスファルト舗装廃材(針入度22)85質量部に、上記で得られた再生アスファルト用添加剤15質量部を添加、混合し、再生アスファルト舗装材を得た。得られた再生アスファルト舗装材の針入度は48であった。
[Example 1]
50 parts by mass of pyrolysis by-product oil (Freshsol made by Showa Shell Sekiyu KK) and 50 parts by mass of liquid polystyrene were mixed to prepare an additive for recycled asphalt. The regenerated asphalt additive had a kinematic viscosity (according to JIS K2283) at 40 ° C. of 250 mm 2 / s. Liquid polystyrene was prepared as follows. To 97 parts by mass of expanded polystyrene, 50 parts by mass of a mixed organic solvent having a volume ratio of thinner to white kerosene of 3: 7 is added to dissolve the expanded polystyrene, and after mixing, the thinner is removed by washing with white kerosene. As a result, cage polystyrene was obtained. Next, 20 parts by mass of tetralin was added to and dissolved in 80 parts by mass of the obtained bowl-shaped polystyrene to obtain liquid polystyrene.
15 parts by weight of the reclaimed asphalt additive obtained above was added to and mixed with 85 parts by weight of asphalt pavement waste (penetration 22) heated to about 180 ° C. to obtain a reclaimed asphalt pavement. The obtained recycled asphalt pavement had a penetration of 48.

[実施例2]
アスファルト舗装廃材(針入度22)を78質量、再生アスファルト用添加剤を22質量部に変更した以外は実施例1と同様にして再生アスファルト舗装材を得た。得られた再生アスファルト舗装材と、市販の新規アスファルト舗装材との針入度、密度、安定度およびフロー値を測定した結果を表1に示した。なお、密度、安定度およびフロー値はマーシャル試験法により求めた値である。
[Example 2]
A recycled asphalt pavement was obtained in the same manner as in Example 1 except that the asphalt pavement waste (penetration 22) was changed to 78 mass and the recycled asphalt additive was changed to 22 mass parts. Table 1 shows the results of measuring the penetration, density, stability, and flow value of the obtained recycled asphalt pavement and a commercially available new asphalt pavement. The density, stability, and flow value are values obtained by the Marshall test method.

Figure 0004594947
Figure 0004594947

表1の結果から分かるように、本発明の再生アスファルト用添加剤は劣化アスファルト成分の物性を十分に回復させることが可能である。さらに、本発明の再生アスファルト用添加剤は、40℃における動粘度が250mm/s程度と流動性が高いので、使用時に加熱する必要がなく取り扱いが容易である。 As can be seen from the results in Table 1, the regenerated asphalt additive of the present invention can sufficiently restore the physical properties of the deteriorated asphalt component. Furthermore, the additive for reclaimed asphalt of the present invention has a high kinematic viscosity at 40 ° C. of about 250 mm 2 / s, so that it is not necessary to be heated during use and is easy to handle.

[実施例3]
熱分解副生油(昭和シェル石油株式会社製フレッシュゾール)46.5質量部と、液状ポリスチレン3.5質量部とを混合した後、使用済みエンジンオイル50質量部を更に添加、混合し、再生アスファルト用添加剤を調製した。この再生アスファルト用添加剤の40℃における動粘度は180mm/sであった。また、再生アスファルト用添加剤の引火点(JIS K2265に準じた)は236℃であり、流動点(JIS K2269に準じた)は−5℃であり、再生アスファルト用添加剤としての規定を満たしていた。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
約180℃に加熱したアスファルト舗装廃材(針入度22)88質量部に、上記で得られた再生アスファルト用添加剤12質量部を添加、混合し、再生アスファルト舗装材を得た。得られた再生アスファルト舗装材の針入度、密度、安定度およびフロー値を測定した結果を表2に示した。
[Example 3]
After mixing 46.5 parts by mass of pyrolysis by-product oil (Freshsol made by Showa Shell Sekiyu KK) and 3.5 parts by mass of liquid polystyrene, 50 parts by mass of used engine oil is further added, mixed and regenerated. An asphalt additive was prepared. The regenerated asphalt additive had a kinematic viscosity at 40 ° C. of 180 mm 2 / s. In addition, the flash point (according to JIS K2265) of the additive for reclaimed asphalt is 236 ° C., and the pour point (according to JIS K 2269) is −5 ° C., which satisfies the requirements as an additive for reclaimed asphalt. It was. The liquid polystyrene is the same as that used in Example 1.
12 parts by weight of the recycled asphalt additive obtained above was added to and mixed with 88 parts by weight of waste asphalt pavement (penetration 22) heated to about 180 ° C. to obtain a recycled asphalt pavement. Table 2 shows the results of measuring the penetration, density, stability and flow value of the obtained recycled asphalt pavement.

[比較例1]
約180℃に加熱したアスファルト舗装廃材(針入度22)88質量部に、約80℃に加熱して液状にした熱分解副生油(昭和シェル石油株式会社製フレッシュゾール)12質量部を添加、混合し、再生アスファルト舗装材を得た。得られた再生アスファルト舗装材の針入度、密度、安定度およびフロー値を測定した結果を表2に示した。
[Comparative Example 1]
Add 12 parts by mass of pyrolysis by-product oil (Freshsol made by Showa Shell Sekiyu KK) heated to about 80 ° C to 88 parts by mass of asphalt pavement waste (penetration 22) heated to about 180 ° C , Mixed to obtain recycled asphalt pavement material. Table 2 shows the results of measuring the penetration, density, stability and flow value of the obtained recycled asphalt pavement.

[比較例2]
約180℃に加熱したアスファルト舗装廃材(針入度22)88質量部に、約80℃に加熱して液状にした熱分解副生油(ジャパンエナジー製リペープルP)12質量部を添加、混合し、再生アスファルト舗装材を得た。得られた再生アスファルト舗装材の針入度、密度、安定度およびフロー値を測定した結果を表2に示した。
[Comparative Example 2]
Add and mix 12 parts by mass of pyrolysis by-product oil (Japan Energy Ripple P) heated to about 80 ° C into 88 parts by mass of asphalt pavement waste (penetration 22) heated to about 180 ° C. Recycled asphalt pavement material was obtained. Table 2 shows the results of measuring the penetration, density, stability and flow value of the obtained recycled asphalt pavement.

Figure 0004594947
Figure 0004594947

表2の結果から分かるように、本発明の再生アスファルト用添加剤は、従来の再生アスファルト用添加剤(昭和シェル石油株式会社製フレッシュゾールおよびジャパンエナジー製リペープルP)と同程度に劣化アスファルト成分の物性を回復させることが可能である。さらに、従来の再生アスファルト用添加剤では、使用時に70℃〜80℃に加熱して液状にする必要があったが、本発明の再生アスファルト用添加剤は、40℃における動粘度が180mm/s程度と流動性が高いので、使用時に加熱する必要がなく取り扱いが容易である。また、本発明の再生アスファルト用添加剤では、添加剤の50質量%に廃潤滑油を使用しているので低コスト化が可能となる。 As can be seen from the results in Table 2, the reclaimed asphalt additive of the present invention has a deteriorated asphalt component to the same extent as the conventional reclaimed asphalt additive (Freshsol manufactured by Showa Shell Sekiyu K.K. and Ripple P manufactured by Japan Energy). It is possible to restore physical properties. Furthermore, in the conventional regenerated asphalt additive, it was necessary to heat to 70 ° C. to 80 ° C. to make it liquid during use, but the regenerated asphalt additive of the present invention has a kinematic viscosity at 40 ° C. of 180 mm 2 / Since the fluidity is as high as about s, it is not necessary to heat at the time of use and handling is easy. In addition, in the recycled asphalt additive of the present invention, waste lubricant oil is used for 50% by mass of the additive, so that the cost can be reduced.

[実施例4]
ストレートアスファルト(針入度60〜80)60質量部と液状ポリスチレン40質量部とを約70℃で混合した後、放冷し、固形状の改質アスファルトを得た。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
上記で得られた改質アスファルト8質量部と、再生骨材(再生密粒度アスコン13F)92質量部とを約120℃で溶融混合し、アスファルト舗装材を得た。得られたアスファルト舗装材の密度は2.145g/cmであった。
[Example 4]
60 parts by weight of straight asphalt (penetration 60-80) and 40 parts by weight of liquid polystyrene were mixed at about 70 ° C. and then allowed to cool to obtain solid modified asphalt. The liquid polystyrene is the same as that used in Example 1.
8 parts by mass of the modified asphalt obtained above and 92 parts by mass of recycled aggregate (recycled dense particle size ascon 13F) were melted and mixed at about 120 ° C. to obtain an asphalt pavement material. The density of the obtained asphalt pavement was 2.145 g / cm 2 .

[実施例5]
改質アスファルトを9質量部、骨材を91質量部に変更した以外は実施例4と同様にしてアスファルト舗装材を得た。得られたアスファルト舗装材の密度は2.251g/cmであった。
[Example 5]
An asphalt pavement was obtained in the same manner as in Example 4 except that the modified asphalt was changed to 9 parts by mass and the aggregate was changed to 91 parts by mass. The density of the obtained asphalt pavement was 2.251 g / cm 2 .

[実施例6]
改質アスファルトを10質量部、骨材を90質量部に変更した以外は実施例4と同様にしてアスファルト舗装材を得た。得られたアスファルト舗装材の密度は2.252g/cmであった。
[Example 6]
An asphalt pavement was obtained in the same manner as in Example 4 except that the modified asphalt was changed to 10 parts by mass and the aggregate was changed to 90 parts by mass. The density of the obtained asphalt pavement was 2.252 g / cm 2 .

[実施例7]
ストレートアスファルト(針入度60〜80)45質量部と液状ポリスチレン55質量部とを約70℃で混合した後、放冷し、固形状の改質アスファルトを得た。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
上記で得られた改質アスファルト6質量部と、再生骨材(再生密粒度アスコン13F)94質量部とを約120℃で溶融混合し、アスファルト舗装材を得た。得られたアスファルト舗装材の密度は2.166g/cmであった。
[Example 7]
45 parts by mass of straight asphalt (penetration 60 to 80) and 55 parts by mass of liquid polystyrene were mixed at about 70 ° C. and then allowed to cool to obtain solid modified asphalt. The liquid polystyrene is the same as that used in Example 1.
6 parts by mass of the modified asphalt obtained above and 94 parts by mass of recycled aggregate (regenerated dense particle size ascon 13F) were melted and mixed at about 120 ° C. to obtain an asphalt pavement material. The density of the obtained asphalt pavement was 2.166 g / cm 2 .

[実施例8]
改質アスファルトを12質量部、骨材を88質量部に変更した以外は実施例7と同様にしてアスファルト舗装材を得た。得られたアスファルト舗装材の密度は2.204g/cmであった。
[Example 8]
An asphalt pavement was obtained in the same manner as in Example 7 except that the modified asphalt was changed to 12 parts by mass and the aggregate was changed to 88 parts by mass. The density of the obtained asphalt pavement was 2.204 g / cm 2 .

実施例4〜8で得られたアスファルト舗装材の安定度を測定したところ、全てのアスファルト舗装材が30kNを超える値を示し、市販の新規アスファルト舗装材(安定度19.03kN)と比較して著しく向上していることが分かった。また、マーシャル試験法で用いる測定試料を60℃±1℃の水槽中に投入したところ、2〜3分後に測定試料から気泡が発生していることが確認された。このことは、実施例4〜8で得られたアスファルト舗装材中にはかなりの空隙が存在することを示しており、開粒度アスファルト舗装材として使用可能なことを示唆している。   When the stability of the asphalt pavement obtained in Examples 4 to 8 was measured, all the asphalt pavement showed values exceeding 30 kN, compared with a commercially available new asphalt pavement (stability 19.03 kN). It was found that there was a marked improvement. Moreover, when the measurement sample used in the Marshall test method was put into a water bath at 60 ° C. ± 1 ° C., it was confirmed that bubbles were generated from the measurement sample after 2 to 3 minutes. This indicates that there are considerable voids in the asphalt pavement obtained in Examples 4 to 8, suggesting that it can be used as an open-graded asphalt pavement.

[実施例9]
ストレートアスファルト(針入度60〜80)97.5質量部と液状ポリスチレン2.5質量部とを約70℃で混合した後、放冷し、固形状の改質アスファルトを得た。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
上記で得られた改質アスファルト6.5質量部と、新規骨材(密粒度アスコン13F)93.5質量部とを155℃〜161℃で溶融混合し、アスファルト舗装材を得た。
[Example 9]
97.5 parts by mass of straight asphalt (penetration 60 to 80) and 2.5 parts by mass of liquid polystyrene were mixed at about 70 ° C. and then allowed to cool to obtain solid modified asphalt. The liquid polystyrene is the same as that used in Example 1.
6.5 parts by mass of the modified asphalt obtained above and 93.5 parts by mass of a new aggregate (dense particle size ascon 13F) were melt-mixed at 155 ° C. to 161 ° C. to obtain an asphalt pavement material.

[実施例10]
ストレートアスファルトを95質量部、液状ポリスチレンを5質量部に変更した以外は実施例9と同様にしてアスファルト舗装材を得た。
[Example 10]
An asphalt pavement material was obtained in the same manner as in Example 9 except that 95 parts by mass of straight asphalt and 5 parts by mass of liquid polystyrene were changed.

[実施例11]
ストレートアスファルトを90質量部、液状ポリスチレンを10質量部に変更した以外は実施例9と同様にしてアスファルト舗装材を得た。
[Example 11]
An asphalt pavement was obtained in the same manner as in Example 9 except that the straight asphalt was changed to 90 parts by mass and the liquid polystyrene was changed to 10 parts by mass.

[比較例3]
ストレートアスファルト(針入度60〜80)6.5質量部と、新規骨材(密粒度アスコン13F)93.5質量部とを155℃〜161℃で溶融混合し、アスファルト舗装材を得た。
[Comparative Example 3]
6.5 parts by mass of straight asphalt (penetration 60 to 80) and 93.5 parts by mass of new aggregate (dense particle size ascon 13F) were melt-mixed at 155 ° C. to 161 ° C. to obtain an asphalt pavement material.

実施例9〜11および比較例3で得られたアスファルト舗装材の密度、安定度およびフロー値をマーシャル試験法により測定した結果を表3に示した。   Table 3 shows the results of measuring the density, stability and flow value of the asphalt pavement obtained in Examples 9 to 11 and Comparative Example 3 by the Marshall test method.

Figure 0004594947
Figure 0004594947

表3の結果から分かるように、実施例9〜11のアスファルト舗装材は、比較例3と比較してフロー値は低下するものの、安定度が向上した。このことから、本発明の改質アスファルトは、アスファルト舗装材の破壊抵抗性および変形抵抗性を高める働きをすることが分かる。また、実施例11で得られたアスファルト舗装材のマーシャル試験供試体を壊砕し、自動アスファルト回収装置(エア・ブラウン株式会社製アブゾール溶剤)により抽出試験を行った。抽出後の骨材の顕微鏡写真を図1および2に示した。図1および2から、スチロールが繊維状に骨材に接着し一体化していることが分かる。この現象が、破壊抵抗性および変形抵抗性を高める要因となっているのではないかと考えられる。   As can be seen from the results in Table 3, although the flow values of the asphalt pavement materials of Examples 9 to 11 were lower than those of Comparative Example 3, the stability was improved. From this, it can be seen that the modified asphalt of the present invention works to increase the fracture resistance and deformation resistance of the asphalt pavement material. Further, the marshall test specimen of the asphalt pavement obtained in Example 11 was crushed and subjected to an extraction test using an automatic asphalt recovery device (Absol Solvent manufactured by Air Brown Co., Ltd.). The micrographs of the aggregate after extraction are shown in FIGS. It can be seen from FIGS. 1 and 2 that the polystyrene is bonded to the aggregate in a fibrous form. This phenomenon is thought to be a factor that increases the fracture resistance and deformation resistance.

[実施例12]
新規骨材30質量%および再生骨材(再生密粒度アスコン13F)70質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.34質量部と新規アスファルト1.81質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量6質量%)を得た。
[Example 12]
100 parts by mass of a mixture of 30% by mass of new aggregate and 70% by mass of regenerated aggregate (regenerated dense particle size ascon 13F) is heated to 155 ° C. to 161 ° C., and the same additive for regenerated asphalt used in Example 1 is added thereto. 0.34 parts by mass of an agent and 1.81 parts by mass of new asphalt were added and mixed to obtain a reclaimed asphalt pavement material (amount of total asphalt of 6% by mass).

[実施例13]
新規アスファルトを2.38質量部に変更した以外は実施例12と同様にしてアスファルト舗装材(全アスファルトの量6.5質量%)を得た。
[Example 13]
An asphalt pavement (amount of total asphalt of 6.5% by mass) was obtained in the same manner as in Example 12 except that the new asphalt was changed to 2.38 parts by mass.

[実施例14]
新規アスファルトを2.96質量部に変更した以外は実施例12と同様にしてアスファルト舗装材(全アスファルトの量7.0質量%)を得た。
[Example 14]
Asphalt pavement material (amount of total asphalt of 7.0% by mass) was obtained in the same manner as in Example 12 except that the new asphalt was changed to 2.96 parts by mass.

実施例12〜14で得られた再生アスファルト舗装材の密度、安定度およびフロー値をマーシャル試験法により測定した結果を表4に示した。   Table 4 shows the results of measuring the density, stability and flow value of the recycled asphalt pavement obtained in Examples 12 to 14 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例15]
新規骨材30質量%および再生骨材(再生密粒度アスコン13F)70質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.34質量部と新規アスファルト2.15質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量6.3質量%)を得た。
[Example 15]
100 parts by mass of a mixture of 30% by mass of new aggregate and 70% by mass of regenerated aggregate (regenerated dense particle size ascon 13F) is heated to 155 ° C. to 161 ° C., and the same additive for regenerated asphalt used in Example 1 is added thereto. 0.34 parts by mass of the agent and 2.15 parts by mass of new asphalt were added and mixed to obtain a reclaimed asphalt pavement material (amount of total asphalt 6.3% by mass).

[実施例16]
新規骨材30質量%および再生骨材(再生密粒度アスコン13F)70質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.34質量部と、実施例7で用いたものと同じ改質アスファルト0.17質量部と、新規アスファルト1.99質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量6.3質量%)を得た。
[Example 16]
100 parts by mass of a mixture of 30% by mass of new aggregate and 70% by mass of regenerated aggregate (regenerated dense particle size ascon 13F) is heated to 155 ° C. to 161 ° C., and the same additive for regenerated asphalt used in Example 1 is added thereto. 0.34 parts by weight of the agent, 0.17 parts by weight of the same modified asphalt used in Example 7, and 1.99 parts by weight of new asphalt were added and mixed, and recycled asphalt pavement material (amount of total asphalt) 6.3% by mass) was obtained.

[実施例17]
改質アスファルトを0.34質量部、新規アスファルトを1.82質量部に変更した以外は実施例16と同様にして再生アスファルト舗装材(全アスファルトの量6.3質量%)を得た。
[Example 17]
Recycled asphalt pavement material (6.3% by mass of total asphalt) was obtained in the same manner as in Example 16 except that the modified asphalt was changed to 0.34 parts by mass and the new asphalt was changed to 1.82 parts by mass.

[実施例18]
改質アスファルトを0.67質量部、新規アスファルトを1.48質量部に変更した以外は実施例16と同様にして再生アスファルト舗装材(全アスファルトの量6.3質量%)を得た。
[Example 18]
Recycled asphalt pavement (amount of total asphalt 6.3% by mass) was obtained in the same manner as in Example 16 except that the modified asphalt was changed to 0.67 parts by mass and the new asphalt was changed to 1.48 parts by mass.

実施例15〜18で得られた再生アスファルト舗装材の密度、安定度およびフロー値をマーシャル試験法により測定した結果を表5に示した。   Table 5 shows the results of measuring the density, stability and flow value of the recycled asphalt pavement materials obtained in Examples 15 to 18 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例19]
新規骨材50質量%および再生骨材(再生透水性密粒度アスコン13)50質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.21質量部と新規アスファルト0.78質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量3.5質量%)を得た。
[Example 19]
100 parts by mass of a mixture of 50% by mass of new aggregate and 50% by mass of regenerated aggregate (regenerated water-permeable dense particle size ascon 13) was heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 Additive 0.21 parts by mass and 0.78 parts by mass of new asphalt were added and mixed to obtain recycled asphalt pavement (amount of total asphalt of 3.5% by mass).

[実施例20]
新規アスファルトを1.32質量部に変更した以外は実施例19と同様にして再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 20]
A recycled asphalt pavement material (amount of 4% by mass of total asphalt) was obtained in the same manner as in Example 19 except that the new asphalt was changed to 1.32 parts by mass.

[実施例21]
新規アスファルトを1.87質量部に変更した以外は実施例19と同様にして再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 21]
Recycled asphalt pavement material (4.5% by mass of the total asphalt) was obtained in the same manner as in Example 19 except that the new asphalt was changed to 1.87 parts by mass.

[実施例22]
新規アスファルトを2.42質量部に変更した以外は実施例19と同様にして再生アスファルト舗装材(全アスファルトの量5質量%)を得た。
[Example 22]
A recycled asphalt paving material (amount of 5% by mass of the total asphalt) was obtained in the same manner as in Example 19 except that the new asphalt was changed to 2.42 parts by mass.

[実施例23]
新規アスファルトを2.98質量部に変更した以外は実施例19と同様にして再生アスファルト舗装材(全アスファルトの量5.5質量%)を得た。
[Example 23]
A recycled asphalt pavement material (amount of total asphalt of 5.5% by mass) was obtained in the same manner as in Example 19 except that the new asphalt was changed to 2.98 parts by mass.

実施例19〜23で得られた再生アスファルト舗装材の密度、空隙率、安定度およびフロー値をマーシャル試験法により測定した結果を表6に示した。   Table 6 shows the results of measuring the density, porosity, stability, and flow value of the recycled asphalt pavement obtained in Examples 19 to 23 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例24]
新規骨材50質量%および再生骨材(再生透水性密粒度アスコン13)50質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.21質量部と新規アスファルト1.87質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 24]
100 parts by mass of a mixture of 50% by mass of new aggregate and 50% by mass of regenerated aggregate (regenerated water-permeable dense particle size ascon 13) was heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 Additives 0.21 parts by weight and 1.87 parts by weight of new asphalt were added and mixed to obtain a reclaimed asphalt pavement material (total amount of asphalt 4.5% by weight).

[実施例25]
新規骨材50質量%および再生骨材(再生透水性密粒度アスコン13)50質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.21質量部と、実施例7で用いたものと同じ改質アスファルト0.24質量部と、新規アスファルト1.63質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 25]
100 parts by mass of a mixture of 50% by mass of new aggregate and 50% by mass of regenerated aggregate (regenerated water-permeable dense particle size ascon 13) was heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 Additive 0.21 parts by weight, 0.24 parts by weight of the same modified asphalt used in Example 7, and 1.63 parts by weight of new asphalt were added and mixed to produce recycled asphalt pavement (all asphalt Of 4.5% by mass).

[実施例26]
改質アスファルトを0.47質量部、新規アスファルトを1.40質量部に変更した以外は実施例25と同様にして再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 26]
Recycled asphalt pavement (amount of 4.5% by mass of total asphalt) was obtained in the same manner as in Example 25 except that the modified asphalt was changed to 0.47 parts by mass and the new asphalt was changed to 1.40 parts by mass.

[実施例27]
改質アスファルトを0.94質量部、新規アスファルトを0.93質量部に変更した以外は実施例25と同様にして再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 27]
Recycled asphalt pavement material (4.5% by mass of the total asphalt) was obtained in the same manner as in Example 25 except that the modified asphalt was changed to 0.94 parts by mass and the new asphalt was changed to 0.93 parts by mass.

実施例24〜27で得られた再生アスファルト舗装材の密度、空隙率、安定度およびフロー値をマーシャル試験法により測定した結果を表7に示した。   Table 7 shows the results of measuring the density, porosity, stability, and flow value of the reclaimed asphalt pavement obtained in Examples 24-27 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例28]
新規骨材80質量%および再生骨材(再生透水性密粒度アスコン13)20質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.08質量部と新規アスファルト3.03質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 28]
100 parts by mass of a mixture of 80% by mass of new aggregate and 20% by mass of recycled aggregate (regenerated water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 Additive 0.08 parts by mass and 3.03 parts by mass of new asphalt were added and mixed to obtain recycled asphalt pavement (amount of total asphalt of 4% by mass).

[実施例29]
新規骨材75質量%、ガラス廃材5質量%および再生骨材(再生透水性密粒度アスコン13)20質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.08質量部と、実施例7で用いたものと同じ改質アスファルト0.24質量部と、新規アスファルト2.61質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 29]
100 parts by weight of a mixture of 75% by weight of new aggregate, 5% by weight of glass waste and 20% by weight of recycled aggregate (recycled water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C. and used in Example 1 0.08 parts by mass of the same reclaimed asphalt additive, 0.24 parts by mass of the same modified asphalt used in Example 7, and 2.61 parts by mass of new asphalt were added, mixed, and regenerated. Asphalt pavement material (4% by mass of total asphalt) was obtained.

[実施例30]
新規骨材70質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と新規アスファルト2.46質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 30]
100 parts by weight of a mixture of 70% by weight of new aggregate and 30% by weight of recycled aggregate (regenerated water-permeable dense particle size ascon 13) was heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 0.13 parts by mass of additive and 2.46 parts by mass of new asphalt were added and mixed to obtain recycled asphalt pavement material (4% by mass of total asphalt).

[実施例31]
新規骨材65質量%、ガラス廃材5質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と、実施例7で用いたものと同じ改質アスファルト0.42質量部と、新規アスファルト2.04質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 31]
100 parts by weight of a mixture of 65% by weight of new aggregate, 5% by weight of glass waste and 30% by weight of recycled aggregate (recycled water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C. and used in Example 1 0.13 parts by mass of the same reclaimed asphalt additive, 0.42 parts by mass of the same modified asphalt used in Example 7, and 2.04 parts by mass of new asphalt were added, mixed, and regenerated. Asphalt pavement material (4% by mass of total asphalt) was obtained.

[実施例32]
新規骨材70質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と新規アスファルト3.01質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 32]
100 parts by weight of a mixture of 70% by weight of new aggregate and 30% by weight of recycled aggregate (regenerated water-permeable dense particle size ascon 13) was heated to 155 ° C. to 161 ° C., and the same regenerated asphalt used in Example 1 0.13 parts by mass of additive and 3.01 parts by mass of new asphalt were added and mixed to obtain a reclaimed asphalt pavement material (4.5% by mass of total asphalt).

[実施例33]
新規骨材65質量%、ガラス廃材5質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と、実施例7で用いたものと同じ改質アスファルト0.10質量部と、新規アスファルト2.46質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4.5質量%)を得た。
[Example 33]
100 parts by weight of a mixture of 65% by weight of new aggregate, 5% by weight of glass waste and 30% by weight of recycled aggregate (recycled water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C. and used in Example 1 Add and mix 0.13 parts by weight of the same asphalt additive, 0.10 parts by weight of the same modified asphalt used in Example 7, and 2.46 parts by weight of new asphalt. Asphalt pavement material (amount of total asphalt of 4.5% by mass) was obtained.

[実施例34]
新規骨材65質量%、ガラス廃材5質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と、実施例7で用いたものと同じ改質アスファルト0.47質量部と、新規アスファルト2.54質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 34]
100 parts by weight of a mixture of 65% by weight of new aggregate, 5% by weight of glass waste and 30% by weight of recycled aggregate (recycled water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C. and used in Example 1 0.13 parts by weight of the same recycled asphalt additive, 0.47 parts by weight of the same modified asphalt used in Example 7, and 2.54 parts by weight of new asphalt were added, mixed, and regenerated. Asphalt pavement material (4% by mass of total asphalt) was obtained.

[実施例35]
新規骨材65質量%、ガラス廃材5質量%および再生骨材(再生透水性密粒度アスコン13)30質量%の混合物100質量部を155℃〜161℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.13質量部と、実施例7で用いたものと同じ改質アスファルト2.08質量部と、新規アスファルト2.46質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量4質量%)を得た。
[Example 35]
100 parts by weight of a mixture of 65% by weight of new aggregate, 5% by weight of glass waste and 30% by weight of recycled aggregate (recycled water-permeable dense particle size ascon 13) is heated to 155 ° C. to 161 ° C. and used in Example 1 0.13 parts by weight of the same reclaimed asphalt additive, 2.08 parts by weight of the same modified asphalt as used in Example 7, and 2.46 parts by weight of new asphalt were added, mixed, and regenerated. Asphalt pavement material (4% by mass of total asphalt) was obtained.

実施例28〜35で得られた再生アスファルト舗装材の密度、空隙率、安定度およびフロー値をマーシャル試験法により測定した結果を表8に示した。   Table 8 shows the results of measuring the density, porosity, stability, and flow value of the recycled asphalt pavement obtained in Examples 28 to 35 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例36]
再生骨材(再生密粒度アスコン13、アスファルト含有量5.8質量%)100質量部を140℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.41質量部を添加、混合し、再生アスファルト舗装材(全アスファルトの量5.8質量%)を得た。
[Example 36]
100 parts by weight of recycled aggregate (recycled dense particle size ascon 13, content of asphalt 5.8% by mass) is heated to 140 ° C., and 0.41 part by weight of the same additive for reclaimed asphalt used in Example 1 Were added and mixed to obtain recycled asphalt pavement material (total amount of asphalt 5.8% by mass).

[実施例37]
ストレートアスファルト(針入度60〜80)0.1質量部と液状ポリスチレン99.9質量部とを約70℃で混合した後、放冷し、固形状の改質アスファルトを得た。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
再生骨材(再生密粒度アスコン13、アスファルト含有量5.8質量%)100質量部を140℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.41質量部と、上記で調製した改質アスファルト0.58質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 37]
After mixing 0.1 parts by weight of straight asphalt (penetration 60-80) and 99.9 parts by weight of liquid polystyrene at about 70 ° C., the mixture was allowed to cool to obtain solid modified asphalt. The liquid polystyrene is the same as that used in Example 1.
100 parts by weight of recycled aggregate (recycled dense particle size ascon 13, content of asphalt 5.8% by mass) is heated to 140 ° C., and 0.41 part by weight of the same additive for reclaimed asphalt used in Example 1 Then, 0.58 parts by mass of the modified asphalt prepared above was added and mixed to obtain a reclaimed asphalt pavement material (amount of total asphalt of about 5.8% by mass).

[実施例38]
改質アスファルトを1.16質量部に変更する以外は実施例37と同様にして再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 38]
A recycled asphalt pavement material (total asphalt amount of about 5.8% by mass) was obtained in the same manner as in Example 37 except that the modified asphalt was changed to 1.16 parts by mass.

[実施例39]
改質アスファルトを1.74質量部に変更する以外は実施例37と同様にして再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 39]
A recycled asphalt pavement material (total asphalt amount of about 5.8% by mass) was obtained in the same manner as in Example 37 except that the modified asphalt was changed to 1.74 parts by mass.

[実施例40]
改質アスファルトを2.32質量部に変更する以外は実施例37と同様にして再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 40]
A recycled asphalt pavement material (total asphalt amount of about 5.8% by mass) was obtained in the same manner as in Example 37 except that the modified asphalt was changed to 2.32 parts by mass.

[実施例41]
改質アスファルトを2.9質量部に変更する以外は実施例37と同様にして再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 41]
A recycled asphalt pavement material (total asphalt amount of about 5.8% by mass) was obtained in the same manner as in Example 37 except that the modified asphalt was changed to 2.9 parts by mass.

実施例36〜41で得られた再生アスファルト舗装材の密度、安定度およびフロー値をマーシャル試験法により測定した結果を表9に示した。   Table 9 shows the results of measuring the density, stability and flow value of the recycled asphalt pavement obtained in Examples 36 to 41 by the Marshall test method.

Figure 0004594947
Figure 0004594947

[実施例42]
ストレートアスファルト(針入度60〜80)0.1質量部と液状ポリスチレン99.9質量部とを約70℃で混合した後、放冷し、固形状の改質アスファルトを得た。なお、液状ポリスチレンは実施例1で用いたものと同じものである。
再生骨材(再生密粒度アスコン13、アスファルト含有量5.8質量%)100質量部を160℃に加熱し、これに実施例1で用いたものと同じ再生アスファルト用添加剤0.23質量部と、上記で調製した改質アスファルト1.16質量部とを添加、混合し、再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 42]
After mixing 0.1 parts by weight of straight asphalt (penetration 60-80) and 99.9 parts by weight of liquid polystyrene at about 70 ° C., the mixture was allowed to cool to obtain solid modified asphalt. The liquid polystyrene is the same as that used in Example 1.
100 parts by weight of recycled aggregate (recycled dense particle size ascon 13, asphalt content 5.8% by weight) is heated to 160 ° C., and the same additive for reclaimed asphalt used in Example 1 is 0.23 parts by weight. And 1.16 parts by mass of the modified asphalt prepared above were added and mixed to obtain a reclaimed asphalt pavement material (amount of total asphalt of about 5.8% by mass).

[実施例43]
再生アスファルト用添加剤を添加しない以外は実施例42と同様にして再生アスファルト舗装材(全アスファルトの量約5.8質量%)を得た。
[Example 43]
A recycled asphalt paving material (amount of total asphalt of about 5.8% by mass) was obtained in the same manner as in Example 42 except that the additive for recycled asphalt was not added.

実施例42および43で得られた再生アスファルト舗装材を145℃で締め固めて供試体を作製し、ホイールトラッキング試験(上載荷重70kg、60℃接地圧6.4kgf/cm、試験温度70℃、走行回数2520回、走行方法チェーン式)を行ったところ、実施例42および43で得られた再生アスファルト舗装材の動的安定度(DS)はそれぞれ10,818回/mmおよび15,750回/mmであった。これに対し、一般に市販されている密粒度アスファルト混合物(改質II型)から供試体を作製し、同条件でホイールトラッキング試験を行ったところ、動的安定度(DS)は880回/mmであった(なお、試験温度60℃では4366回/mmであった)。そのため、今後、地球温暖化が進み、路面温度が60℃を超えるようになると、現在市販されている密粒度アスファルト混合物ではすぐに轍を生じる虞があるが、本発明の再生アスファルト舗装材は耐熱性が極めて高いので、そのような虞はないと考えられる。 The recycled asphalt pavement material obtained in Examples 42 and 43 was compacted at 145 ° C. to prepare a specimen, and a wheel tracking test (upload 70 kg, 60 ° C. ground pressure 6.4 kgf / cm 2 , test temperature 70 ° C., As a result, the dynamic stability (DS) of the regenerated asphalt pavement obtained in Examples 42 and 43 was 10,818 times / mm and 15,750 times / mm. In contrast, when a specimen was prepared from a commercially available dense particle size asphalt mixture (modified type II) and a wheel tracking test was performed under the same conditions, the dynamic stability (DS) was 880 times / mm. (It was 4366 times / mm at a test temperature of 60 ° C.). Therefore, if global warming advances in the future and the road surface temperature exceeds 60 ° C., there is a risk that wrinkles may occur immediately in the currently marketed fine-grained asphalt mixture, but the recycled asphalt pavement material of the present invention is heat resistant. It is considered that there is no such concern because of its extremely high nature.

実施例11で得られたアスファルト舗装材を抽出した後の骨材の顕微鏡写真である。It is a microscope picture of the aggregate after extracting the asphalt pavement material obtained in Example 11. 実施例11で得られたアスファルト舗装材を抽出した後の骨材の顕微鏡写真である。It is a microscope picture of the aggregate after extracting the asphalt pavement material obtained in Example 11.

Claims (3)

ストレートアスファルト0.1質量%〜98質量%と、ポリスチレンを溶解することのできる有機溶剤でポリスチレンを溶解させ飽和状態にしたゲル状または餅状ポリスチレンを100℃〜220℃の沸点を有する芳香族炭化水素溶剤で溶解させて得られる液状ポリスチレン2質量%〜99.9質量%とを混合して得られることを特徴とする改質アスファルト。Aromatic carbonization having a boiling point of 100 ° C. to 220 ° C. of 0.1 to 98% by mass of straight asphalt and gel or cage polystyrene obtained by dissolving polystyrene in an organic solvent capable of dissolving polystyrene A modified asphalt obtained by mixing 2% by mass to 99.9% by mass of liquid polystyrene obtained by dissolving in a hydrogen solvent. 前記液状ポリスチレンが、廃電線被覆材の粉砕物を含むことを特徴とする請求項1に記載の改質アスファルト。The modified asphalt according to claim 1, wherein the liquid polystyrene contains a pulverized product of waste electric wire coating material. 請求項1または2に記載の改質アスファルト1質量%〜25質量%と、新規骨材、アスファルト舗装廃材またはこれらの混合物75質量%〜99質量%とを120℃〜165℃の温度条件下で混合して得られることを特徴とするアスファルト舗装材。The modified asphalt 1 mass% to 25 mass% according to claim 1 or 2 and the new aggregate, asphalt pavement waste material, or 75 mass% to 99 mass% of a mixture thereof under a temperature condition of 120 ° C to 165 ° C. Asphalt pavement material obtained by mixing.
JP2007053155A 2006-09-15 2007-03-02 Modified asphalt and asphalt pavement material using the same Expired - Fee Related JP4594947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053155A JP4594947B2 (en) 2006-09-15 2007-03-02 Modified asphalt and asphalt pavement material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251103 2006-09-15
JP2007053155A JP4594947B2 (en) 2006-09-15 2007-03-02 Modified asphalt and asphalt pavement material using the same

Publications (2)

Publication Number Publication Date
JP2008095062A JP2008095062A (en) 2008-04-24
JP4594947B2 true JP4594947B2 (en) 2010-12-08

Family

ID=39378250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053155A Expired - Fee Related JP4594947B2 (en) 2006-09-15 2007-03-02 Modified asphalt and asphalt pavement material using the same

Country Status (1)

Country Link
JP (1) JP4594947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089544B1 (en) * 2011-04-04 2011-12-05 (주)한동알앤씨 Warm-mix asphalt mixture with low carbon emission
JP6209080B2 (en) * 2013-12-24 2017-10-04 勲 田崎 Heating and mixing apparatus and heating and mixing method for mobile field kneaded small-scale asphalt heating mixture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060286A (en) * 1996-08-26 1998-03-03 Cosmo Sogo Kenkyusho:Kk Modified asphalt composition for paving
WO2005123834A1 (en) * 2004-06-18 2005-12-29 Kraton Jsr Elastomers K.K. Block copolymer composition for asphalt modification, process for producing the same, and asphalt composition
JP2006143954A (en) * 2004-11-24 2006-06-08 Hiroshima Industrial Promotion Organization Modified asphalt, manufacturing method of modified asphalt and asphalt mixture
JP2007016535A (en) * 2005-07-11 2007-01-25 Yamaken Plant Kk Composition for pavement material, modified asphalt, asphalt mixture for pavement and pavement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060286A (en) * 1996-08-26 1998-03-03 Cosmo Sogo Kenkyusho:Kk Modified asphalt composition for paving
WO2005123834A1 (en) * 2004-06-18 2005-12-29 Kraton Jsr Elastomers K.K. Block copolymer composition for asphalt modification, process for producing the same, and asphalt composition
JP2006143954A (en) * 2004-11-24 2006-06-08 Hiroshima Industrial Promotion Organization Modified asphalt, manufacturing method of modified asphalt and asphalt mixture
JP2007016535A (en) * 2005-07-11 2007-01-25 Yamaken Plant Kk Composition for pavement material, modified asphalt, asphalt mixture for pavement and pavement

Also Published As

Publication number Publication date
JP2008095062A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
JP5523565B2 (en) Asphalt regeneration additive, reclaimed asphalt pavement to which it is added, modified asphalt and asphalt pavement to which it is added
Gawande et al. An overview on waste plastic utilization in asphalting of roads
RU2730942C2 (en) Modified non-volatile binder for cold asphalt and an asphalt mixture regenerated using said binder
Abukhettala Use of recycled materials in road construction
US9315733B2 (en) Asphalt production from solvent deasphalting bottoms
US4008095A (en) Paving compositions and method for producing the same
EP1951818A1 (en) Bitumen composition
BRPI0618146A2 (en) asphalt binder, asphalt mixture, and porous floor
KR100960665B1 (en) Cold recyling asphalt concrete mixture using industrial byproduct as filling material and method manufacturing thereof
KR20110124749A (en) Method for rejuvenating a bitumen containing composition
KR100898393B1 (en) Regeneration ascon and manufacturing method thereof
JP4594947B2 (en) Modified asphalt and asphalt pavement material using the same
Vila-Cortavitarte et al. The use of recycled plastic as partial replacement of bitumen in asphalt concrete
JP5175591B2 (en) Paving asphalt composition, paving asphalt mixture and asphalt paving method
US20140331897A1 (en) Wet Process for Recycling Asphalt Shingle in Asphalt Binder
Akter et al. Effectiveness Evaluation of Shredded Waste Expanded Polystyrene on the Properties of Binder and Asphalt Concrete
JP2005256450A (en) Environment-friendly binder base material for light-colored pavement, and binder for light-colored pavement using it
Jafari et al. A novel method for recovery of acidic sludge of used-motor oil reprocessing industries to bitumen using bentonite and SBS
JP2007138380A (en) Binder for elastic pavement and elastic paving material using it
Ajagbe et al. Effect of Waste Polymer Modified Bitumen with Milled Corn Cob as a Partial Replacement for Filler in Asphaltic Concrete
KR100640029B1 (en) Recycled superior hot mix asphalt for paving road
Patil et al. Ecofriendly flexible pavement incorporating waste product from metal casting industries and PET bottles
Dubey et al. Utilization of low density plastic waste in construction of flexible pavement with a partial replacement of bitumen
US20220315765A1 (en) Asphalt modification with recycled plastic and crumb rubber for paving, roofing, waterproofing and damp proofing
Calzada-Pérez et al. Marta Vila-Cortavitarte1, Pedro Lastra-Gonzalez1

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees