JP4594259B2 - Noise filter - Google Patents

Noise filter Download PDF

Info

Publication number
JP4594259B2
JP4594259B2 JP2006065842A JP2006065842A JP4594259B2 JP 4594259 B2 JP4594259 B2 JP 4594259B2 JP 2006065842 A JP2006065842 A JP 2006065842A JP 2006065842 A JP2006065842 A JP 2006065842A JP 4594259 B2 JP4594259 B2 JP 4594259B2
Authority
JP
Japan
Prior art keywords
medium
signal transmission
grounding
coil
noise filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065842A
Other languages
Japanese (ja)
Other versions
JP2007243798A (en
Inventor
正人 石▼崎▲
和彦 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2006065842A priority Critical patent/JP4594259B2/en
Publication of JP2007243798A publication Critical patent/JP2007243798A/en
Application granted granted Critical
Publication of JP4594259B2 publication Critical patent/JP4594259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Description

本発明は、ノイズフィルタに係り、詳しくは、信号伝送用コイルおよび接地用コイルを有し、これらのコイルがお互いに絶縁されているが、電磁気的に結合(以下、単に「結合」とも呼ぶ)されており、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端である、いわゆる分布定数型ノイズフィルタに関する。   The present invention relates to a noise filter. More specifically, the present invention has a signal transmission coil and a grounding coil, and these coils are insulated from each other, but are electromagnetically coupled (hereinafter also simply referred to as “coupled”). The present invention relates to a so-called distributed constant noise filter in which both ends of a signal transmission coil are input / output ends and both ends of a grounding coil are a ground end and an open end.

近年、電子機器のデジタル信号回路におけるノイズ問題が増加しており、多くの回路にはノイズフィルタが用いられる。ノイズフィルタには、(1)その減衰特性が急峻であること、(2)減衰量が大きいこと、(3)広帯域にわたり減衰量が確保されていること等の性能が求められる。   In recent years, noise problems in digital signal circuits of electronic devices have increased, and noise filters are used in many circuits. A noise filter is required to have performances such as (1) a steep attenuation characteristic, (2) a large attenuation amount, and (3) an attenuation amount secured over a wide band.

従来、ノイズフィルタとしては、例えば、特許文献1〜4に示されるようなセラミックス等の誘電体上に信号コイルと接地コイルとを形成させ、これらのコイルが実質的に相対するように積層させてなるいわゆる分布定数型ノイズフィルタが知られている。   Conventionally, as a noise filter, for example, a signal coil and a ground coil are formed on a dielectric material such as ceramics as shown in Patent Documents 1 to 4, and these coils are laminated so as to be substantially opposed to each other. A so-called distributed constant type noise filter is known.

図1は、ノイズフィルタの外観を示す斜視図であり、図2は、ノイズフィルタにおけるコイルの接続状況を示す概略図である。   FIG. 1 is a perspective view showing an appearance of a noise filter, and FIG. 2 is a schematic view showing a connection state of coils in the noise filter.

図1に示すように、ノイズフィルタ1は、積層体2の外表面の両端面に入出力用外部電極3および4を有し、積層体の外表面の両主面には接地用外部電極5および6を有してなるものである。   As shown in FIG. 1, the noise filter 1 has input / output external electrodes 3 and 4 on both end faces of the outer surface of the multilayer body 2, and grounding external electrodes 5 on both main surfaces of the outer surface of the multilayer body. And 6.

図2に示すように、ノイズフィルタ1においては、絶縁基板層11〜17の一方の表面に形成された信号伝送用導体21〜26および接地用導体32〜37が、それぞれスルーホール41〜45および51〜55によって接続され、それぞれがコイルを構成する。即ち、図示しない入出力用外部電極に接続された信号伝送用導体21は、スルーホール41を介して信号伝送用導体22と接続され、信号伝送用導体22はスルーホール42を介して信号伝送用導体23と接続される。同様に、信号伝送用導体23、24および25は、それぞれスルーホール43、44および45を介して信号伝送用導体24、25および26と接続される。そして、信号伝送用導体26は、図示しない入出力外部電極に接続される。これらの構成により両端が入出力外部電極に接続された信号伝送用コイルが得られる。   As shown in FIG. 2, in the noise filter 1, signal transmission conductors 21 to 26 and grounding conductors 32 to 37 formed on one surface of the insulating substrate layers 11 to 17 include through holes 41 to 45 and 51 to 55 are connected to each other to constitute a coil. That is, the signal transmission conductor 21 connected to the input / output external electrode (not shown) is connected to the signal transmission conductor 22 through the through hole 41, and the signal transmission conductor 22 is connected to the signal transmission conductor through the through hole 42. Connected to the conductor 23. Similarly, the signal transmission conductors 23, 24, and 25 are connected to the signal transmission conductors 24, 25, and 26 through the through holes 43, 44, and 45, respectively. The signal transmission conductor 26 is connected to an input / output external electrode (not shown). With these configurations, a signal transmission coil having both ends connected to the input / output external electrodes can be obtained.

一方、接地用導体32は、開放端を有し、他方の端部でスルーホール51を介して接地用導体33と接続され、接地用導体33はスルーホール52を介して接地用導体34と接続される。同様に、接地用導体34、35および36は、それぞれスルーホール53、54および55を介して接地用導体35、36および37と接続される。そして、接地用導体37は、図示しない接地用外部電極に接続される。これらの構成により、一端を開放端とし、他端を接地端とした接地用コイルが得られる。   On the other hand, the grounding conductor 32 has an open end, and the other end is connected to the grounding conductor 33 via the through hole 51, and the grounding conductor 33 is connected to the grounding conductor 34 via the through hole 52. Is done. Similarly, the grounding conductors 34, 35 and 36 are connected to the grounding conductors 35, 36 and 37 through the through holes 53, 54 and 55, respectively. The grounding conductor 37 is connected to a grounding external electrode (not shown). With these configurations, a grounding coil having one end as an open end and the other end as a ground end can be obtained.

例えば、信号伝送用導体24は、隣接する層の接地用導体33および35と図中のx方向に形成された導体の部分で電磁気的に結合し、一層隔てた層の信号伝送用導体22および26と図のy方向に形成された導体部分で電磁気的に結合しており、同様に、接地用導体35は、隣接する層の信号伝送用導体24および26と図中のx方向に形成された導体の部分で電磁気的に結合し、一層隔てた層の接地用導体33と図中のy方向に形成された導体の部分で電磁気的に結合している。   For example, the signal transmission conductor 24 is electromagnetically coupled to the ground conductors 33 and 35 in the adjacent layers at the portion of the conductor formed in the x direction in the figure, and the signal transmission conductors 22 and 26 and the conductor portion formed in the y direction in the figure are electromagnetically coupled. Similarly, the grounding conductor 35 is formed in the x direction in the figure with the signal transmission conductors 24 and 26 of adjacent layers. It is electromagnetically coupled at the portion of the conductor, and is electromagnetically coupled at the portion of the grounding conductor 33 of the layer separated by one layer and the portion of the conductor formed in the y direction in the figure.

特開平11−41052号公報Japanese Patent Laid-Open No. 11-41052 特開平11−136065号公報JP-A-11-136065 特開平7−58570号公報Japanese Patent Laid-Open No. 7-58570 特開平4―37005号公報Japanese Patent Laid-Open No. 4-37005

図3は、分布定数型ノイズフィルタの基本動作を説明するための等価回路図である。   FIG. 3 is an equivalent circuit diagram for explaining the basic operation of the distributed constant noise filter.

図3(a)に示すように、分布定数型ノイズフィルタは、分布結合型カップラの変形と解することができる。すなわち、カップラにおいて、一方の電極の両端をそれぞれ外部入出力端子に接続して信号電送コイルとなし、他方の電極の一端を接地、一端を開放して接地用コイルとなしたものである。両コイルは、基本的に同一の電気長で構成され、コイル間の結合は、周波数に依存して増減する。その結合は、1/4波長またはその奇数倍がコイルの電気長に相当する周波数で最大となり、1/4波長の偶数倍がコイルの電気長に相当する周波数でゼロになる。結合が最大となる周波数では減衰量が極大(減衰極)となり、結合がゼロとなる周波数では減衰も極小となる。   As shown in FIG. 3A, the distributed constant type noise filter can be interpreted as a modification of the distributed coupling type coupler. That is, in the coupler, both ends of one electrode are connected to external input / output terminals to form a signal transmission coil, one end of the other electrode is grounded, and one end is opened to form a grounding coil. Both coils are basically configured with the same electrical length, and the coupling between the coils increases or decreases depending on the frequency. The coupling is maximized at a frequency at which the quarter wavelength or an odd multiple thereof corresponds to the electrical length of the coil, and becomes zero at an even multiple of the quarter wavelength at a frequency corresponding to the electrical length of the coil. At the frequency at which the coupling is maximum, the attenuation is maximized (attenuation pole), and at the frequency at which the coupling is zero, the attenuation is also minimized.

例えば、分布定数型ノイズフィルタを単純な直線電送線路で構成した場合には、減衰量の増減が周期的に繰り返される。しかし、前述のように、実際のコイルは積層セラミックス中に螺旋状に形成されるため、図3(b)に示すように、層間に容量(層間容量)が発生する。高次の減衰極は、この層間容量により低周波数側にシフトし、重なり合う。また、偶モードと奇モードとでは層間容量の影響が異なるため、減衰の極大極小点は明確ではなくなり、低域通過フィルタのような波形を示す。   For example, when the distributed constant type noise filter is configured by a simple straight transmission line, the increase / decrease of the attenuation amount is repeated periodically. However, as described above, since the actual coil is formed in a spiral shape in the laminated ceramic, as shown in FIG. 3B, a capacitance (interlayer capacitance) is generated between the layers. The higher-order attenuation pole is shifted to the lower frequency side by this interlayer capacitance and overlaps. In addition, since the influence of the interlayer capacitance is different between the even mode and the odd mode, the maximum and minimum points of attenuation are not clear and show a waveform like a low-pass filter.

前記(1)〜(3)のノイズフィルタに求められる性能を分布定数型ノイズフィルタで実現するためには、(a)線路のインピーダンスを外部回路のインピーダンス(通常は50Ωまたは75Ω)に整合させること、(b)反共振を抑制すること、(c)結合量を増加させることなどが有効であると考えられる。   In order to realize the performance required for the noise filter of (1) to (3) above with a distributed constant noise filter, (a) the impedance of the line is matched to the impedance of the external circuit (usually 50Ω or 75Ω). (B) Suppressing anti-resonance, (c) Increasing the coupling amount, etc. are considered effective.

しかし、これらのうち、(a)を実現させるためには、導体の材料、断面積の形状などを適切に選べばよいが、これらを決めると結合量も自ずと制限される。また、(b)を実現するには、飛び越し結合の利用、接地コイルへのステップインピーダンスの適用などが有効であるが、いずれもインピーダンスを変化させるので、効果を大きくとった場合、これを整合と両立させるのは困難である。   However, among these, in order to realize (a), the material of the conductor, the shape of the cross-sectional area, etc. may be appropriately selected. However, if these are determined, the amount of coupling is naturally limited. In order to realize (b), the use of interlaced coupling and the application of step impedance to the grounding coil are effective. However, since the impedance is changed in any case, if the effect is great, this is considered as matching. It is difficult to achieve both.

(c)を実現するには、理論上は、奇モードのインピーダンス(Zo)を低減するか、偶モードのインピーダンス(Ze)を増加させて、偶奇モードのインピーダンスの相対的な差を大きくとればよい。しかし、従来の分布定数型ノイズフィルタは、すべての絶縁基板層を同じ媒質(セラミックス)で構成しているので、奇モードのインピーダンスを低減することは、同時に偶モードのインピーダンスを低減することになる。このため、従来の分布定数型ノイズフィルタでは、結合を増加させるのは困難であり、しかも、奇モード、偶モード双方のインピーダンスが低下すると整合も阻害される。   In order to realize (c), theoretically, it is necessary to reduce the odd mode impedance (Zo) or increase the even mode impedance (Ze) to increase the relative difference of the even mode impedance. Good. However, since the conventional distributed constant noise filter has all the insulating substrate layers made of the same medium (ceramics), reducing the odd mode impedance simultaneously reduces the even mode impedance. . For this reason, it is difficult to increase the coupling in the conventional distributed constant noise filter, and matching is also inhibited when the impedances of both the odd mode and the even mode are lowered.

本発明者は、上記の観点から研究を重ねた結果、基材層の媒質を種々変えることにより、整合を阻害しない条件で、結合を増加させることを見出し、本発明を完成した。   As a result of repeated researches from the above viewpoint, the present inventor has found that by changing the medium of the base material layer in various ways, the binding can be increased under the condition that the matching is not inhibited, and the present invention has been completed.

本発明は、ノイズフィルタに要求される性能、すなわち、(1)その減衰特性が急峻であること、(2)減衰量が大きいことおよび(3)広帯域にわたり減衰量が確保されていることといういずれの性能においても優れたノイズフィルタを提供することを目的とする。   According to the present invention, performance required for a noise filter, that is, (1) the attenuation characteristic is steep, (2) the attenuation is large, and (3) the attenuation is ensured over a wide band. An object of the present invention is to provide a noise filter that is excellent in performance.

本発明は、下記の(1)および(2)に示すノイズフィルタを要旨とする。
(1)信号伝送用導体および/または接地用導体を配置した複数の絶縁基板層を積層してなり、信号伝送用導体および接地用導体がそれぞれスルーホールを介して信号伝送用コイルおよび接地用コイルを構成し、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端であるノイズフィルタであって、媒質1で構成される絶縁基板層および媒質2で構成される絶縁基板層(ただし、媒質1の誘電率>媒質2の誘電率で、かつ媒質1の透磁率<媒質2の透磁率である)を交互に積層したことを特徴とするノイズフィルタ。
The gist of the present invention is the noise filter shown in the following (1) and (2).
(1) A plurality of insulating substrate layers on which signal transmission conductors and / or grounding conductors are arranged are laminated, and the signal transmission conductors and the grounding conductors are respectively connected through the through holes. , And both ends of the signal transmission coil are input / output ends, and both ends of the grounding coil are noise filters that are a ground end and an open end, and are constituted by an insulating substrate layer composed of the medium 1 and the medium 2 An insulating substrate layer (where the dielectric constant of the medium 1> the dielectric constant of the medium 2 and the magnetic permeability of the medium 1 <the magnetic permeability of the medium 2) are alternately stacked.

(2)信号伝送用導体および/または接地用導体を配置した複数の絶縁基板層を積層してなり、信号伝送用導体および接地用導体がそれぞれスルーホールを介して信号伝送用コイルおよび接地用コイルを構成し、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端であるノイズフィルタであって、絶縁基板層が誘電体セラミックスとソフトフェライトとを交互に積層して構成したものが望ましい。
(2) A plurality of insulating substrate layers on which signal transmission conductors and / or grounding conductors are arranged are laminated, and the signal transmission conductors and the grounding conductors are respectively connected to the signal transmission coils and the grounding coils via through holes. The two ends of the signal transmission coil are input / output ends, and the both ends of the grounding coil are ground filters and open ends, and the insulating substrate layer alternates between dielectric ceramics and soft ferrite. A layered structure is desirable.

本発明によれば、整合を阻害しない条件で、結合を増加させることができるので、その減衰特性が急峻であり、減衰量が大きく、広帯域にわたり減衰量が確保されているノイズフィルタを提供することができる。   According to the present invention, it is possible to increase coupling under conditions that do not hinder matching, and thus provide a noise filter that has a steep attenuation characteristic, a large attenuation amount, and a sufficient attenuation amount over a wide band. Can do.

本発明に係るノイズフィルタは、前記の図2に示すノイズフィルタと同様、信号伝送用導体21〜26および/または接地用導体32〜37を配置した複数の絶縁基板層11〜17を積層してなり、信号伝送用導体21〜26および接地用導体32〜37がそれぞれスルーホール41〜45、51〜55を介して信号伝送用コイルおよび接地用コイルを構成し、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端であるノイズフィルタである。   As in the noise filter shown in FIG. 2, the noise filter according to the present invention is formed by laminating a plurality of insulating substrate layers 11 to 17 on which signal transmission conductors 21 to 26 and / or grounding conductors 32 to 37 are arranged. The signal transmission conductors 21 to 26 and the grounding conductors 32 to 37 constitute a signal transmission coil and a grounding coil through the through holes 41 to 45 and 51 to 55, respectively, and both ends of the signal transmission coil are inserted. The noise filter is an output end, and both ends of the grounding coil are a ground end and an open end.

そして、本発明に係るノイズフィルタの外観形状は、例えば、図1に示すものと同様である。もちろん、これらの外観形状および接続状況に限定されない。すなわち、層の数ならびに信号伝送用導体および接地用導体の配置は、求められる減衰極の位置および減衰量によって適宜調整されるものである。   And the external shape of the noise filter which concerns on this invention is the same as that shown in FIG. 1, for example. Of course, it is not limited to these external shapes and connection conditions. That is, the number of layers and the arrangement of the signal transmission conductor and the grounding conductor are appropriately adjusted according to the required position and attenuation amount of the attenuation pole.

ここで、本発明に係るノイズフィルタの最大の特徴は、誘電率および/または透磁率が異なる絶縁基板層を交互に積層したことにある。以下、この理由について図4を使って説明する。   Here, the greatest feature of the noise filter according to the present invention is that insulating substrate layers having different dielectric constants and / or magnetic permeability are alternately laminated. Hereinafter, this reason will be described with reference to FIG.

図4は、本発明の原理を簡単に説明する図であり、ノイズフィルタを構成する積層体の任意の一部分を抜き出して示した模式図である。図4に示すように、本発明のノイズフィルタの任意位置においては、入出力端に接続された信号伝送用導体7と、一方が接地され、他方が開放された接地用導体8とを有し、これらの導体が異なる誘電率を有する絶縁基板層(媒質)9、10に配設されている。   FIG. 4 is a diagram for simply explaining the principle of the present invention, and is a schematic diagram showing an arbitrary part of a laminate constituting a noise filter. As shown in FIG. 4, at an arbitrary position of the noise filter of the present invention, it has a signal transmission conductor 7 connected to the input / output terminal and a grounding conductor 8 which is grounded and the other is opened. These conductors are disposed on insulating substrate layers (medium) 9 and 10 having different dielectric constants.

そして、媒質10の特性インピーダンスが媒質9の特性インピーダンスよりも高いものとする。例えば、媒質10および媒質9をセラミックスで構成するが、一方はセラミックスシート、他方はセラミックスペーストで構成した物の組み合わせ、媒質10をソフトフェライトとし、媒質9をセラミックスなどの誘電体とする組み合わせなどが考えられるが、これらに限定されるわけではない。例えば、プラスティック系の基板材に誘電体セラミックスおよびソフトフェライトの微粉末を分散させたものでもよい。   It is assumed that the characteristic impedance of the medium 10 is higher than the characteristic impedance of the medium 9. For example, the medium 10 and the medium 9 are made of ceramics, but one is a combination of ceramic sheets, the other is a ceramic paste, the medium 10 is soft ferrite, and the medium 9 is a dielectric such as ceramic. It is conceivable, but not limited to these. For example, dielectric ceramics and soft ferrite fine powder may be dispersed in a plastic substrate material.

各モードの特性インピーダンスを考える場合には、材質のみならず形状の影響も考慮しなければならないが、実際には、小型化に対する強い要求により、電極線幅およびシート厚には非常に強い制約がある。このため、形状を任意に選択することは困難である。従って、以下、形状の要因は所与の条件として考え、媒質9および媒質10の誘電率および透磁率が各モードの特性インピーダンスに与える影響の概略について説明する。   When considering the characteristic impedance of each mode, it is necessary to consider not only the material but also the influence of the shape, but in reality there are very strong restrictions on the electrode line width and sheet thickness due to the strong demand for miniaturization. is there. For this reason, it is difficult to arbitrarily select the shape. Therefore, in the following, the shape factor is considered as a given condition, and an outline of the influence of the dielectric constant and permeability of the medium 9 and the medium 10 on the characteristic impedance of each mode will be described.

誘電率および透磁率は、それぞれ真空の値に等しい材質で構成された分布定数型カップラに対し、偶奇各モードの特性インピーダンスをそれぞれZo-vおよびZe-vとすれば、比誘電率がεr、比透磁率はμrなる材質で構成されたカップラの場合、偶奇各モードの特性インピーダンスは、元の値Zo-vおよびZe-vのそれぞれ(μr/εr)1/2倍となる。 Dielectric constant and permeability are distributed constant couplers made of a material equal to the vacuum value, and the relative dielectric constant is ε r , the relative dielectric constant is ε r , if the characteristic impedance of each even and odd mode is Z ov and Z ev In the case of a coupler made of a material having a magnetic permeability of μ r, the characteristic impedance of each of the even and odd modes is (μ r / ε r ) 1/2 each of the original values Z ov and Z ev .

ここで、媒質9および媒質10の比誘電率および比透磁率が異なる場合には、各モードに対して実際の電磁界分布の影響を加味した実効値(実効比誘電率および実効比透磁率)を用いなければならないが、この点さえ考慮すれば、媒質9および媒質10が同材質の場合と同様に考えることができる。   Here, when the relative permittivity and the relative permeability of the medium 9 and the medium 10 are different, the effective values (effective relative permittivity and effective relative permeability) in consideration of the effect of the actual electromagnetic field distribution for each mode. However, if this point is taken into consideration, the medium 9 and the medium 10 can be considered in the same way as in the case of the same material.

図5は、線路における偶奇各モードの導体電位を示す模式図である。この図は、分布定数型フィルタの基本原理である分布定数型カップラの信号伝搬方向に直交する断面図である。図5(a)に示すように、奇モードにおいては、信号伝送用導体7および接地用導体8の電位は正負逆となる。実際のフィルタは、積層セラミックス等によって形成され、扁平な電極が薄いセラミックス層を隔てて対向するので、電界の大部分は信号伝送用導体7および接地用導体8の間、即ち、媒質9中に集中する。よって、奇モードにおける実効誘電率は媒質9の支配的な影響を受ける。   FIG. 5 is a schematic diagram showing conductor potentials of even and odd modes in the line. This figure is a cross-sectional view orthogonal to the signal propagation direction of a distributed constant coupler, which is the basic principle of a distributed constant filter. As shown in FIG. 5A, in the odd mode, the potentials of the signal transmission conductor 7 and the grounding conductor 8 are positive and negative. An actual filter is formed of laminated ceramics or the like, and flat electrodes face each other across a thin ceramic layer, so that most of the electric field is between the signal transmission conductor 7 and the grounding conductor 8, that is, in the medium 9. concentrate. Therefore, the effective dielectric constant in the odd mode is influenced dominantly by the medium 9.

これに対し、図5(b)に示すように、偶モードにおいては、信号伝送用導体7および接地用導体8の電位は正負同じとなる。このため、実効誘電率は媒質9の影響を受けにくく、媒質10の影響を受けやすい。   On the other hand, as shown in FIG. 5B, in the even mode, the potentials of the signal transmission conductor 7 and the grounding conductor 8 are the same. For this reason, the effective dielectric constant is not easily influenced by the medium 9 and is easily influenced by the medium 10.

実効透磁率は、偶モードの場合、磁界が媒質9をほぼ垂直に貫くように発生する。しかし、実際には媒質9は非常に扁平で薄いため、媒質9の影響はわずかである。これに対して、奇モードの場合、磁界が媒質9および媒質10をほぼ等しい長さ通る。このため、奇モードの実効透磁率は、媒質9および媒質10の平均値に近い値をとるのに対し、偶モードの場合、媒質10の透磁率に近い値となる。   In the even mode, the effective magnetic permeability is generated so that the magnetic field penetrates the medium 9 almost vertically. However, since the medium 9 is actually very flat and thin, the influence of the medium 9 is slight. On the other hand, in the odd mode, the magnetic field passes through the medium 9 and the medium 10 for substantially the same length. For this reason, the effective magnetic permeability of the odd mode takes a value close to the average value of the medium 9 and the medium 10, whereas in the even mode, the effective magnetic permeability becomes a value close to the magnetic permeability of the medium 10.

ここで、媒質9および媒質10の透磁率が等しく、かつ媒質9のみ誘電率が高い場合には、奇モードのインピーダンスは実効誘電率の増加により低下するが、偶モードのインピーダンスはあまり影響を受けない。これによって、両モードのインピーダンスに大きな差を付けることが可能となり、大きな結合量を得ることが可能となる。   When the medium 9 and the medium 10 have the same magnetic permeability and only the medium 9 has a high dielectric constant, the odd-mode impedance decreases as the effective dielectric constant increases, but the even-mode impedance is significantly affected. Absent. This makes it possible to make a large difference between the impedances of both modes and to obtain a large amount of coupling.

また、媒質9および媒質10の誘電率が等しく、かつ、媒質10のみ透磁率の高い場合には、偶モードの実効透磁率は媒質10の影響を強く受け、高くなる。これによって、この場合も、両モードのインピーダンスに大きな差を付けることが可能となり、大きな結合量を得ることが可能となる。   Further, when the dielectric constants of the medium 9 and the medium 10 are equal and only the medium 10 has a high magnetic permeability, the effective magnetic permeability in the even mode is strongly influenced by the medium 10 and becomes high. Accordingly, in this case as well, it becomes possible to make a large difference between the impedances of both modes, and a large coupling amount can be obtained.

媒質9および媒質10の誘電率および透磁率がともに異なる場合には、誘電率に関しては媒質9>媒質10、透磁率に関しては媒質9<媒質10になるように選定することにより、前述の効果を2重に享受でき、より効果的である。   If the permittivity and permeability of medium 9 and medium 10 are both different, the above effect can be obtained by selecting so that the permittivity is medium 9> medium 10 and the permeability is medium 9 <medium 10. It can be enjoyed twice and is more effective.

但し、媒質9、10を任意に選択しただけではインピーダンスの整合が取れない。媒質9に誘電率の高い材料を用いて、奇モードの特性インピーダンスを高めた分、媒質10に透磁率の高いフェライトなどの材料を用いることにより、両モードの実効透磁率を高め、各モードの特性インピーダンスを上昇させることにより奇モードの特性インピーダンスの低下を補償するのが有効である。すなわち、材料、断面形状を適切に選定すれば、整合と大きな結合の両立が可能となる。この手法によれば、波長短縮率にもモード差を生じさせるため、反共振も抑制できる。   However, impedance matching cannot be achieved by simply selecting the media 9 and 10 arbitrarily. The medium 9 is made of a material having a high dielectric constant and the characteristic impedance of the odd mode is increased, and the medium 10 is made of a material such as ferrite having a high magnetic permeability, thereby increasing the effective magnetic permeability of both modes. It is effective to compensate for the decrease in the odd mode characteristic impedance by increasing the characteristic impedance. That is, if the material and the cross-sectional shape are appropriately selected, both matching and large coupling can be achieved. According to this method, a mode difference is caused in the wavelength shortening rate, so that anti-resonance can be suppressed.

各モードにおける波長短縮率(比誘電率×比透磁率)については、特に制限はないが、偶奇それぞれのモードの波長短縮率が異なるように設定するのがよい。そうすることで、両モードの共振周波数が異なり、結合量ゼロの領域(電極長が半波長の整数倍の領域)が顕在化することがないからである。   There is no particular limitation on the wavelength shortening rate (relative permittivity × relative magnetic permeability) in each mode, but it is preferable to set the wavelength shortening rate of each mode to be different. By doing so, the resonance frequencies of both modes are different, and a region where the coupling amount is zero (a region where the electrode length is an integral multiple of a half wavelength) does not appear.

本発明に係るノイズフィルタの製造方法については特に限定しないが、たとえば、薄膜法などのほかに、厚膜法など予めセラミックスを焼結した後、メタライズする、いわゆるポスト・ファイア法、セラミックスの焼結とメタライズとを同時に行う、いわゆるコ・ファイア法を採用することができる。   The method for producing the noise filter according to the present invention is not particularly limited. For example, in addition to the thin film method, a so-called post-fire method in which ceramics are sintered in advance, such as a thick film method, and then metallized, is sintered. And the so-called co-fire method can be employed.

コ・ファイア法による場合は、例えば、セラミックス粉末に焼結助剤、結合剤、可塑剤、分散剤および水、アルコール等の溶剤を添加してスラリー化し、このスラリーからドクターブレード法などによりグリーンシートを作製する。添加元素の種類、粒度、樹脂の混合比率を最適化することにより、セラミックスの誘電率および/または透磁率、焼結温度、焼成時の収縮率を所望の値に設定できる。   In the case of using the co-fire method, for example, a sintering aid, a binder, a plasticizer, a dispersant, and a solvent such as water and alcohol are added to a ceramic powder to form a slurry, and the green sheet is formed from this slurry by a doctor blade method or the like. Is made. By optimizing the kind of additive element, the particle size, and the mixing ratio of the resin, the dielectric constant and / or permeability of the ceramic, the sintering temperature, and the shrinkage ratio during firing can be set to desired values.

このグリーンシートにスルーホールを設け、その表面に金属粉末ペーストをスクリーン印刷などにより塗布して、所定の信号伝送用導体パターンおよび/または接地用導体パターンを形成させる。次いで、これらの誘電率および/または透磁率が異なるグリーンシートを積層し、脱脂、脱炭し、これを概ね900℃の大気中で同時焼成し、これに外部電極ペーストを塗布し、外部電極の焼き付けなどをおこなって製造される。   A through hole is provided in the green sheet, and a metal powder paste is applied on the surface thereof by screen printing or the like to form a predetermined signal transmission conductor pattern and / or grounding conductor pattern. Next, these green sheets having different dielectric constants and / or magnetic permeability are laminated, degreased and decarburized, and co-fired in an atmosphere of approximately 900 ° C., and an external electrode paste is applied to the green sheets. Manufactured by baking.

絶縁基板層としては、誘電率の異なる2種のセラミックスを用いることができるが、一方をセラミックス、他方をソフトフェライトとするのが望ましい。誘電率の差を大きくでき、整合を維持しつつ、結合を増加しやすいからである。   As the insulating substrate layer, two kinds of ceramics having different dielectric constants can be used, and it is desirable that one is ceramic and the other is soft ferrite. This is because the difference in dielectric constant can be increased, and the coupling is easily increased while maintaining matching.

絶縁基板層に用いるセラミックスとしては、例えば、チタン酸バリウム等を用いることができる。また、絶縁基板層に用いるソフトフェライトとしては、例えば、NiCuZnフェライトを用いることができる。   As the ceramic used for the insulating substrate layer, for example, barium titanate or the like can be used. Moreover, as a soft ferrite used for the insulating substrate layer, for example, NiCuZn ferrite can be used.

導体を構成する金属としては、例えばAgのほか、Agに10質量%程度のPdを添加した合金等を用いることができる。コストおよび損失を低減するにはAgを用いるのが望ましいが、セラミックスの焼成温度との関係で、適量のPdを添加して導体の融点を上げるのがよい。   As the metal constituting the conductor, for example, in addition to Ag, an alloy in which about 10% by mass of Pd is added to Ag can be used. In order to reduce cost and loss, it is desirable to use Ag. However, in view of the firing temperature of the ceramic, it is better to add an appropriate amount of Pd to raise the melting point of the conductor.

本発明の効果を検証すべく、一種の絶縁基板層(比誘電率75、比透磁率1の誘電体層のみ)からなる比較例のノイズフィルタと、比誘電率75、比透磁率1の誘電体および比誘電率10、比透磁率80のソフトフェライト(NiCuZnフェライト)を交互に形成してなる本発明例のノイズフィルタとを用意し、それぞれのノイズフィルタの減衰曲線を比較する実験を行った。   In order to verify the effect of the present invention, a noise filter of a comparative example composed of a kind of insulating substrate layer (only a dielectric layer having a relative permittivity of 75 and a relative permeability of 1), and a dielectric having a relative permittivity of 75 and a relative permeability of 1 And a noise filter according to an example of the present invention in which soft ferrites (NiCuZn ferrite) having a relative dielectric constant of 10 and a relative permeability of 80 are alternately formed were prepared, and experiments were performed to compare attenuation curves of the respective noise filters. .

誘電体層およびソフトフェライト層は、それぞれドクターブレード法によりグリーンシートを作製し、グリーンシートにスルーホールを設け、その表面に金属粉末ペーストをスクリーン印刷により塗布して、所定の信号伝送用導体パターンおよび/または接地用導体パターンを形成させた。   Each of the dielectric layer and the soft ferrite layer is prepared by a doctor blade method, a green sheet is formed, a through hole is provided in the green sheet, a metal powder paste is applied to the surface by screen printing, and a predetermined signal transmission conductor pattern and / Or a conductor pattern for grounding was formed.

次いで、比較例については誘電体のグリーンシートを積層し、本発明例については誘電体およびソフトフェライト層のグリーンシートを交互に積層した後、脱脂、脱炭した。その後、900℃の大気中で同時焼成し、外部電極ペーストを塗布し、外部電極の焼き付けをおこない、約1.2mm角、厚さ0.6mmのノイズフィルタを作製した。   Next, dielectric green sheets were laminated for the comparative example, and dielectric sheets and soft ferrite layer green sheets were alternately laminated for the inventive example, and then degreased and decarburized. Thereafter, it was fired simultaneously in the atmosphere at 900 ° C., an external electrode paste was applied, and the external electrode was baked to produce a noise filter of about 1.2 mm square and a thickness of 0.6 mm.

いずれの例も13層で構成し、第1層および第13層は厚さ約175μmの誘電体で構成した。そして、比較例では、第2層〜第12層を全て厚さ約25μmの誘電体層で構成し、本発明例では、第2層、第4層、第6層、第8層、第10層および第12層を厚さ25μmのソフトフェライトで構成し、第3層、第5層、第7層、第9層および第11層を厚さ25μmの誘電体で構成した。   Each example was composed of 13 layers, and the first layer and the 13th layer were composed of a dielectric having a thickness of about 175 μm. In the comparative example, the second layer to the twelfth layer are all composed of a dielectric layer having a thickness of about 25 μm. In the present invention example, the second layer, the fourth layer, the sixth layer, the eighth layer, the tenth layer The layers 12 and 12 were made of soft ferrite having a thickness of 25 μm, and the third, fifth, seventh, ninth and eleventh layers were made of a dielectric having a thickness of 25 μm.

図6には、絶縁基板層上に形成させる配線パターンを示すが、第3層〜第12層の上面には、図6に示す配線パターンを形成し、第1層、第2層、第12層および第13層はブランク層とした。図6において、斜線を付した導体は、接地用導体であり、付していない導体は信号伝送用導体である。また、図中の○は上層(一つ数字が小さい層)へ接続されるスルーホールであり、◎は下層(一つ数字が大きい層)へ接続されるスルーホールを意味する。   6 shows a wiring pattern formed on the insulating substrate layer. On the upper surface of the third to twelfth layers, the wiring pattern shown in FIG. 6 is formed, and the first layer, the second layer, the twelfth layer are formed. Layers and 13th layer were blank layers. In FIG. 6, the shaded conductors are grounding conductors, and the unassigned conductors are signal transmission conductors. In the figure, ○ indicates a through hole connected to the upper layer (layer with a small number), and ◎ indicates a through hole connected to the lower layer (a layer with a large number).

図6に示すように、信号伝送用導体は、第3層において図の上方で入出力用外部電極(図示しない)と接続され、他端はスルーホールを介して第4層〜第11層に形成された信号伝送用導体と接続され、さらに、第11層において図の下方で入出力用外部電極(図示しない)と接続される。一方、接地用導体は、第4層において図の左側で接地され、他端はスルーホールを介して第5層〜第9層に形成された接地用電極と接続され、さらに、第10層において、開放端とされる。   As shown in FIG. 6, the signal transmission conductor is connected to an input / output external electrode (not shown) in the upper part of the drawing in the third layer, and the other end is connected to the fourth to eleventh layers through a through hole. It is connected to the formed signal transmission conductor, and further connected to an input / output external electrode (not shown) in the lower part of the figure in the eleventh layer. On the other hand, the grounding conductor is grounded on the left side of the figure in the fourth layer, the other end is connected to the grounding electrodes formed in the fifth to ninth layers through through holes, and further in the tenth layer The open end.

図7には、本発明例(実線)および比較例(破線)における挿入損失と周波数との関係を示す。図7に示すように、比較例においては、緩やかに減衰し、最大の挿入損失が-27dB程度に留まり、しかも0.7MHz付近で、-15dBにまで戻る。これに対し、本発明例においては、0.2MHz付近から急峻な減衰曲線を示し、0.4MHz付近で-30dB、さらに、0.6MHz付近で-38dBと比較例より大きな全体的に減衰量が大きい。しかも、減衰帯域も比較例よりも格段に広い。   FIG. 7 shows the relationship between insertion loss and frequency in the present invention example (solid line) and the comparative example (broken line). As shown in FIG. 7, in the comparative example, it attenuates gently, the maximum insertion loss stays at about -27 dB, and returns to -15 dB at around 0.7 MHz. On the other hand, the example of the present invention shows a steep attenuation curve from around 0.2 MHz, -30 dB near 0.4 MHz, and -38 dB around 0.6 MHz, which is larger overall than the comparative example. Moreover, the attenuation band is much wider than that of the comparative example.

本発明によれば、整合を阻害しない条件で、結合を増加させることができるので、その減衰特性が急峻であり、減衰量が大きく、広帯域にわたり減衰量が確保されているノイズフィルタを提供することができる。   According to the present invention, it is possible to increase coupling under conditions that do not hinder matching, and thus provide a noise filter that has a steep attenuation characteristic, a large attenuation amount, and a sufficient attenuation amount over a wide band. Can do.

ノイズフィルタの外観を示す斜視図。The perspective view which shows the external appearance of a noise filter. ノイズフィルタにおけるコイルの接続状況を示す概略図。Schematic which shows the connection condition of the coil in a noise filter. 分布定数型ノイズフィルタの基本動作を説明するための等価回路図。The equivalent circuit diagram for demonstrating the basic operation | movement of a distributed constant type noise filter. 本発明の原理を簡単に説明する図であり、ノイズフィルタを構成する積層体の任意の一部分を抜き出して示した模式図。It is a figure explaining the principle of this invention briefly, and the schematic diagram which extracted and showed the arbitrary parts of the laminated body which comprises a noise filter. 線路における偶奇各モードを示す模式図。The schematic diagram which shows each odd-even mode in a track | line. 実験に用いたノイズフィルタにおける各積層体の構成を示す図。The figure which shows the structure of each laminated body in the noise filter used for experiment. 本発明例および比較例における挿入損失と周波数との関係を示す図。The figure which shows the relationship between the insertion loss and frequency in the example of this invention and a comparative example.

符号の説明Explanation of symbols

1.ノイズフィルタ
2.積層体
3、4.入出力用外部電極
5、6.接地用外部電極
11〜17.絶縁基板層
21〜26.信号伝送用導体
32〜37.接地用導体
41〜46.スルーホール
51〜56.スルーホール
7.信号伝送用導体
8.接地用導体
9、10.媒質
1. 1. Noise filter Laminated bodies 3, 4. Input / output external electrodes 5, 6. External electrode for grounding
11-17. Insulating substrate layer
21-26. Signal transmission conductor
32-37. Grounding conductor
41-46. Through hole
51-56. Through hole 7. 7. Signal transmission conductor Grounding conductor 9, 10. medium

Claims (2)

信号伝送用導体および/または接地用導体を配置した複数の絶縁基板層を積層してなり、信号伝送用導体および接地用導体がそれぞれスルーホールを介して信号伝送用コイルおよび接地用コイルを構成し、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端であるノイズフィルタであって、
媒質1で構成される絶縁基板層および媒質2で構成される絶縁基板層(ただし、媒質1の誘電率>媒質2の誘電率で、かつ媒質1の透磁率<媒質2の透磁率である)を交互に積層したことを特徴とするノイズフィルタ。
A plurality of insulating substrate layers on which signal transmission conductors and / or grounding conductors are arranged are laminated, and the signal transmission conductor and the grounding conductor constitute a signal transmission coil and a grounding coil through through holes, respectively. Both ends of the signal transmission coil are input / output ends, and both ends of the grounding coil are noise filters that are a ground end and an open end,
Insulating substrate layer composed of medium 1 and insulating substrate layer composed of medium 2 (where the dielectric constant of medium 1> the dielectric constant of medium 2 and the permeability of medium 1 <the permeability of medium 2) A noise filter characterized by alternately stacking layers.
信号伝送用導体および/または接地用導体を配置した複数の絶縁基板層を積層してなり、信号伝送用導体および接地用導体がそれぞれスルーホールを介して信号伝送用コイルおよび接地用コイルを構成し、信号伝送用コイルの両端は入出力端であり、接地用コイルの両端は接地端および開放端であるノイズフィルタであって、絶縁基板層が誘電体セラミックスとソフトフェライトとを交互に積層して構成したことを特徴とするノイズフィルタ。 A plurality of insulating substrate layers on which signal transmission conductors and / or grounding conductors are arranged are laminated, and the signal transmission conductor and the grounding conductor constitute a signal transmission coil and a grounding coil through through holes, respectively. Both ends of the signal transmission coil are input / output ends, and both ends of the grounding coil are noise filters having a ground end and an open end, and the insulating substrate layer is formed by alternately laminating dielectric ceramics and soft ferrite. noise filter shall be the feature that the configuration was.
JP2006065842A 2006-03-10 2006-03-10 Noise filter Active JP4594259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065842A JP4594259B2 (en) 2006-03-10 2006-03-10 Noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065842A JP4594259B2 (en) 2006-03-10 2006-03-10 Noise filter

Publications (2)

Publication Number Publication Date
JP2007243798A JP2007243798A (en) 2007-09-20
JP4594259B2 true JP4594259B2 (en) 2010-12-08

Family

ID=38588842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065842A Active JP4594259B2 (en) 2006-03-10 2006-03-10 Noise filter

Country Status (1)

Country Link
JP (1) JP4594259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6407400B1 (en) 2017-12-26 2018-10-17 Tdk株式会社 Multilayer coil parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117483A (en) * 1997-06-26 1999-01-22 Sumitomo Metal Ind Ltd Lamination 1c-type noise filter and its producing method
JPH1141052A (en) * 1997-07-16 1999-02-12 Sumitomo Kinzoku Erekutorodebaisu:Kk Noise filter
JPH11122024A (en) * 1997-10-13 1999-04-30 Tdk Corp Laminated chip antenna
JP2001060519A (en) * 1999-08-20 2001-03-06 Murata Mfg Co Ltd Laminated inductor
JP2005051322A (en) * 2003-07-29 2005-02-24 Kyocera Corp Filter element and electronic module
JP2005109195A (en) * 2003-09-30 2005-04-21 Murata Mfg Co Ltd Laminated coil component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117483A (en) * 1997-06-26 1999-01-22 Sumitomo Metal Ind Ltd Lamination 1c-type noise filter and its producing method
JPH1141052A (en) * 1997-07-16 1999-02-12 Sumitomo Kinzoku Erekutorodebaisu:Kk Noise filter
JPH11122024A (en) * 1997-10-13 1999-04-30 Tdk Corp Laminated chip antenna
JP2001060519A (en) * 1999-08-20 2001-03-06 Murata Mfg Co Ltd Laminated inductor
JP2005051322A (en) * 2003-07-29 2005-02-24 Kyocera Corp Filter element and electronic module
JP2005109195A (en) * 2003-09-30 2005-04-21 Murata Mfg Co Ltd Laminated coil component

Also Published As

Publication number Publication date
JP2007243798A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP4736526B2 (en) Common mode noise filter
KR100986217B1 (en) Multilayer coil component
US6294967B1 (en) Laminated type dielectric filter
EP0836277A2 (en) LC composite part
JP4752368B2 (en) Multilayer common mode choke coil
JPWO2006085625A1 (en) Electronic components
US6498553B1 (en) Laminated type inductor
US8384490B2 (en) Non-reciprocal circuit and non-reciprocal circuit device, and central conductor assembly used therein
US5949304A (en) Multilayer ceramic package with floating element to couple transmission lines
JP4594259B2 (en) Noise filter
JP2008079020A (en) Noise filter
JP4317179B2 (en) Multilayer filter
JP2006222607A (en) Filter element and electronic module
WO2009107532A1 (en) Composite resonator, bandpass filter, diplexer, and wireless communication module and wireless communication device using composite resonator, bandpass filter and diplexer
JP2007227611A (en) Common mode noise filter
JP4336319B2 (en) Multilayer stripline filter
JP2006246124A (en) Laminated noise filter
JP7200957B2 (en) common mode choke coil
JP2009033384A (en) Noise filter
JP4256317B2 (en) Multilayer bandstop filter
JP4873274B2 (en) Multilayer electronic components
JP4493225B2 (en) Multilayer dielectric filter
JP4317180B2 (en) Multilayer filter
JP2002076705A (en) Laminated dielectric filter
JPH06152300A (en) Laminated emi filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250