JP4592453B2 - Train detector - Google Patents

Train detector Download PDF

Info

Publication number
JP4592453B2
JP4592453B2 JP2005069056A JP2005069056A JP4592453B2 JP 4592453 B2 JP4592453 B2 JP 4592453B2 JP 2005069056 A JP2005069056 A JP 2005069056A JP 2005069056 A JP2005069056 A JP 2005069056A JP 4592453 B2 JP4592453 B2 JP 4592453B2
Authority
JP
Japan
Prior art keywords
frequency
circuit
coil
train
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005069056A
Other languages
Japanese (ja)
Other versions
JP2006248421A (en
Inventor
正和 宮地
Original Assignee
大同信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社 filed Critical 大同信号株式会社
Priority to JP2005069056A priority Critical patent/JP4592453B2/en
Publication of JP2006248421A publication Critical patent/JP2006248421A/en
Application granted granted Critical
Publication of JP4592453B2 publication Critical patent/JP4592453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

この発明は、鉄道分野における列車検知装置に関し、詳しくは、ATS信号(自動列車停止装置の空間伝播信号)を利用した列車検知をフェールセーフに行う列車検知装置に関する。   The present invention relates to a train detection device in the railway field, and more particularly to a train detection device that performs train detection using an ATS signal (space propagation signal of an automatic train stop device) in a fail-safe manner.

例えば点制御軌道回路を使用して列車検知を行っている踏切では、無警報や無遮断といった不所望な事象が発生するのを確実に防止して安全性の向上を図るために、列車からのATS信号を利用して列車検知を行う列車検知装置を並設して列車検知をバックアップすることが行われている(例えば非特許文献1参照)。
そして、そのようなATS信号利用列車検知の方式として、開電路形(例えば特許文献1参照)と閉電路形(例えば特許文献2参照)が知られているので、それぞれについて本発明の説明に役立つ部分を抜粋して説明する。
For example, at a railroad crossing that uses a point-controlled track circuit to detect trains, in order to reliably prevent undesired events such as no alarms and no interruptions, and to improve safety, Train detection is backed up by arranging train detection devices that perform train detection using an ATS signal (see, for example, Non-Patent Document 1).
As such an ATS signal-based train detection method, an open circuit type (for example, see Patent Document 1) and a closed circuit type (for example, see Patent Document 2) are known, and each is useful for explaining the present invention. Excerpts will be explained.

図7は、開電路形の列車検知装置を示し、(a)が地上装置の全体ブロック図、(b)が受信検知状態およびリレー励磁状態の時間変化である。   FIG. 7 shows an open circuit type train detection device, where (a) is an overall block diagram of the ground device, and (b) is a time change of the reception detection state and the relay excitation state.

この列車検知装置は(図7(a)参照)、軌道を走行する列車の車上装置から常時発信されているATS信号Aを受信するために軌道内に地上子として設置された受信コイル10(L)と、その受信状態に応じて列車の有無を示す列車検知信号を出力する受信回路11〜16とを備えたものである。受信回路11〜16には、アッテネータ11(ATT)とバンドパスフィルタ12(BPF)とからなる周波数弁別回路と、整流部13とレベル検知部14(SCH)と復旧時間延長回路15とからなるリレー駆動回路と、列車検知信号を出力する検知リレー16とが設けられている。   This train detection device (see FIG. 7 (a)) is a receiving coil 10 installed as a ground element in the track in order to receive the ATS signal A constantly transmitted from the on-board device of the train traveling on the track. L) and receiving circuits 11 to 16 for outputting a train detection signal indicating the presence or absence of a train according to the reception state. The reception circuits 11 to 16 include a frequency discrimination circuit including an attenuator 11 (ATT) and a band pass filter 12 (BPF), a relay including a rectification unit 13, a level detection unit 14 (SCH), and a recovery time extension circuit 15. A drive circuit and a detection relay 16 that outputs a train detection signal are provided.

アッテネータ11は、受信コイル10の受信信号のレベルをバンドパスフィルタ12の入力に適したレベルに調整するためのものであり、信号レベルの増幅が必要なときにはアンプで置き換えられ、レベル調整が不要であれば省略される。バンドパスフィルタ12は、ATS信号Aの第一周波数f1成分を通過させるように通過周波数帯域幅が設定されている。そのため、これらの回路を具えた周波数弁別回路は、ATS信号Aの第一周波数f1成分と、その他の周波数成分との周波数弁別を行うものとなっている。   The attenuator 11 is for adjusting the level of the received signal of the receiving coil 10 to a level suitable for the input of the band pass filter 12, and is replaced by an amplifier when the signal level needs to be amplified, and level adjustment is not required. Omitted if present. The band-pass filter 12 has a pass frequency bandwidth set to pass the first frequency f1 component of the ATS signal A. For this reason, the frequency discriminating circuit including these circuits performs frequency discrimination between the first frequency f1 component of the ATS signal A and other frequency components.

整流部13は、例えばダイオードスタックを用いた全波整流回路や半波整流回路に包絡線波形抽出回路等を付加したものであり、レベル検知部14は、パルス波(矩形波・方形波)に波形整形するためのシュミット回路からなり、復旧時間延長回路15は、レベル検知部14の出力パルスを検知リレー16の電磁駆動可能なレベルに増幅すると共に、そのパルス幅を検知リレー16の確実な動作のために所定時間だけ引き延ばす波形整形処理を行うものである。これらの回路にてバンドパスフィルタ12の出力信号を処理するリレー駆動回路は、第一周波数f1成分の検出時には検知リレー16を励磁し非検出時には検知リレー16の励磁を中断するものとなっている。   The rectification unit 13 is obtained by adding an envelope waveform extraction circuit or the like to a full-wave rectification circuit or a half-wave rectification circuit using a diode stack, for example, and the level detection unit 14 is applied to a pulse wave (rectangular wave / square wave). The restoration time extension circuit 15 is composed of a Schmitt circuit for shaping the waveform, and the recovery time extension circuit 15 amplifies the output pulse of the level detection unit 14 to a level at which the detection relay 16 can be electromagnetically driven, and reliably operates the pulse width of the detection relay 16 For this reason, the waveform shaping process is performed for a predetermined time. In these circuits, the relay drive circuit that processes the output signal of the band-pass filter 12 excites the detection relay 16 when the first frequency f1 component is detected, and interrupts the excitation of the detection relay 16 when the first frequency f1 component is not detected. .

検知リレー16は、リレー駆動回路にて駆動される例えば直流5V駆動の電磁リレーであり、励磁状態(動作状態)では「列車有り」で非励磁状態(復旧状態)では「列車無し」の列車検知信号を出力するようになっている。   The detection relay 16 is, for example, a DC 5V drive electromagnetic relay driven by a relay drive circuit, and detects a train with “train present” in an excited state (operating state) and “no train” in a non-excited state (restored state). A signal is output.

このような開電路形の列車検知装置にあっては(図7(b)参照)、受信コイル10の設置された軌道を列車が走行して受信コイル10のところを通過すると、車上装置から発信された第一周波数f1のATS信号Aが受信コイル10にて受信され、これに応じて受信回路11〜15が検知リレー16を励磁駆動するので、検知リレー16が動作して列車検知信号を「列車有り」の状態にする。列車の通過後や列車の来ないときには、受信コイル10での受信が無くて受信回路11〜15が検知リレー16を励磁駆動しないので、検知リレー16が復旧して列車検知信号を「列車無し」の状態にする。   In such an open circuit type train detection device (see FIG. 7B), when the train travels on the track where the reception coil 10 is installed and passes through the reception coil 10, the on-vehicle device The transmitted ATS signal A of the first frequency f1 is received by the receiving coil 10, and the receiving circuits 11 to 15 excite the detection relay 16 in response to this, so that the detection relay 16 operates to generate a train detection signal. Set to “With train”. After the train passes or when the train does not come, there is no reception by the receiving coil 10 and the receiving circuits 11 to 15 do not drive the detection relay 16 so that the detection relay 16 is restored and the train detection signal is “no train”. To the state.

このように開電路形の場合、列車検知信号を出力する検知リレー16が、常態では復旧しており(非励磁状態)、列車からのATS信号Aを受信したときのみ動作する(励磁状態)。なお、ATS信号Aの受信検知状態Bはレベル検知部14のパルス出力で示され、そのパルス幅を定めるATS信号Aの受信時間Dは一般に短いため(図7(b)における時刻t1〜t2参照)、検知リレー16のリレー励磁状態Cにおけるパルス幅は復旧時間延長回路15によって延長時間Eだけ引き延ばされ(図7(b)における時刻t2〜t3参照)、これによって検知リレー16が確実に動作する。   As described above, in the case of the open circuit type, the detection relay 16 that outputs the train detection signal is normally restored (non-excited state), and operates only when the ATS signal A is received from the train (excited state). The reception detection state B of the ATS signal A is indicated by the pulse output of the level detection unit 14, and the reception time D of the ATS signal A that defines the pulse width is generally short (see times t1 to t2 in FIG. 7B). ), The pulse width of the detection relay 16 in the relay excitation state C is extended by the extension time E by the recovery time extension circuit 15 (see times t2 to t3 in FIG. 7B), which ensures that the detection relay 16 is Operate.

また、このような開電路形の列車検知装置では、受信コイル10の断線や受信回路11〜16の故障があれば、ATS信号Aの受信があっても、検知リレー16は励磁されないので復旧状態を継続し続け(図7(b)における時刻t4以降の破線部分を参照)、列車検知信号は「列車無し」のままである。   Also, in such an open circuit type train detection device, if there is a disconnection of the reception coil 10 or a failure of the reception circuits 11 to 16, even if the ATS signal A is received, the detection relay 16 is not excited so that it is in a restored state. (See the broken line portion after time t4 in FIG. 7B), the train detection signal remains “no train”.

図8は、閉電路形の列車検知装置を示し、(a)が地上装置の全体ブロック図、(b)が受信検知状態Bおよびリレー励磁状態Cの時間変化である。   8A and 8B show a closed circuit type train detection device, where FIG. 8A is an overall block diagram of the ground device, and FIG. 8B is a time variation of the reception detection state B and the relay excitation state C.

この閉電路形列車検知装置(図8(a)参照)が上述した開電路形列車検知装置と相違するのは、送信コイル20が軌道内の受信コイル10近傍に設置された点と、アンプ21(AMP)と発振回路22(OSC)とからなり第二周波数f2の発振信号を生成して送信コイル20に送出する送信回路が追加された点と、第二周波数f2成分を通過させるように通過周波数帯域幅の設定されているバンドパスフィルタ23(BPF)がバンドパスフィルタ12に代えて導入されている点と、励磁状態(動作状態)では「列車無し」で非励磁状態(復旧状態)では「列車有り」の列車検知信号を出力する検知リレー24が検知リレー16に代えて導入されている点である。   This closed-circuit type train detection device (see FIG. 8A) differs from the above-described open-circuit type train detection device in that the transmission coil 20 is installed near the reception coil 10 in the track and the amplifier 21. (AMP) and an oscillation circuit 22 (OSC) are added to a transmission circuit for generating an oscillation signal of the second frequency f2 and sending it to the transmission coil 20, and to pass the second frequency f2 component. The bandpass filter 23 (BPF) in which the frequency bandwidth is set is introduced instead of the bandpass filter 12, and in the excited state (operating state) “no train” and in the non-excited state (restored state) A detection relay 24 that outputs a train detection signal “train present” is introduced in place of the detection relay 16.

バンドパスフィルタ23が第二周波数f2は通過させるが第一周波数f1は遮断するものなので、これを含んだ周波数弁別回路は、ATS信号Aの第一周波数f1成分と、他の第二周波数f2成分との周波数弁別を行うものとなっている。
また、検知リレー24は、検知リレー16同様の電磁リレーであるが、励磁/非励磁と列車の有/無との対応付けが逆になっている。
Since the band pass filter 23 allows the second frequency f2 to pass but blocks the first frequency f1, the frequency discrimination circuit including the first frequency f1 includes the first frequency f1 component of the ATS signal A and the other second frequency f2 component. And frequency discrimination.
The detection relay 24 is an electromagnetic relay similar to the detection relay 16, but the association between excitation / non-excitation and presence / absence of a train is reversed.

そのため、閉電路形では、列車検知信号を出力する検知リレー24が、常態では動作しており(励磁状態)、列車からのATS信号Aを受信したときのみ復旧するので(非励磁状態)、リレー励磁状態Cの波形が受信時間Dばかりか延長時間Eも含めて開電路形のときと反転する(図7(b),図8(b)参照)。このように検知リレー24の励磁されていない復旧状態を「列車有り」と位置づけることで、機器故障時でも安全側の動作(フェールセーフ)が行われるのである。   Therefore, in the closed circuit type, the detection relay 24 that outputs the train detection signal is normally operating (excited state) and is restored only when the ATS signal A is received from the train (non-excited state). The waveform of the excitation state C is reversed from the case of the open circuit type including not only the reception time D but also the extension time E (see FIGS. 7B and 8B). By positioning the unexcited recovery state of the detection relay 24 as “train present” in this way, a safe operation (fail-safe) is performed even at the time of equipment failure.

詳述すると、閉電路形の場合、常時、第二周波数f2の発振信号が送信コイル20から受信コイル10へ空間伝播にて送信される(図8(a)参照)。そして、それが受信コイル10により一定レベル以上で受信されている間は、受信信号がバンドパスフィルタ23を通過し、これに応じて検知リレー24が励磁されて動作状態となり、列車検知信号が「列車無し」の状態となる。これに対し、列車が通過して、受信コイル10が列車からのATS信号Aを受信すると(図8(b)参照)、第一周波数f1のATS信号Aによって第二周波数f2の信号が抑圧されて、バンドパスフィルタ23を通過する受信信号が減り又は無くなり、これに応じて検知リレー24の励磁が中断され、検知リレー24が復旧して、列車検知信号が「列車有り」の状態となる。   More specifically, in the case of a closed circuit type, an oscillation signal having the second frequency f2 is always transmitted from the transmission coil 20 to the reception coil 10 by spatial propagation (see FIG. 8A). While it is received by the receiving coil 10 at a certain level or higher, the received signal passes through the band-pass filter 23, and the detection relay 24 is excited in response to this, and the train detection signal becomes “ It becomes a state of “no train”. On the other hand, when the train passes and the reception coil 10 receives the ATS signal A from the train (see FIG. 8B), the signal of the second frequency f2 is suppressed by the ATS signal A of the first frequency f1. As a result, the reception signal passing through the bandpass filter 23 is reduced or eliminated. In response to this, excitation of the detection relay 24 is interrupted, the detection relay 24 is restored, and the train detection signal becomes “train present”.

このように検知リレー24の動作状態・励磁状態を「列車無し」とし復旧状態・非励磁状態を「列車有り」と位置づけておけば、送受信コイルの断線や機器の故障時には検知リレー24の励磁が停止して検知リレー24が動作状態から復旧状態になるので(図8(b)における時刻t4以降の破線部分を参照)、列車検知信号は「列車有り」となる。そのため、閉電路形の列車検知装置にあっては、安全側の動作(フェールセーフ)を確保することができる。   As described above, if the operation state / excitation state of the detection relay 24 is set to “no train” and the restoration state / de-excitation state is set to “with train”, the detection relay 24 is excited when the transmission / reception coil is disconnected or a device malfunctions. Since it stops and the detection relay 24 changes from the operating state to the recovery state (see the broken line portion after time t4 in FIG. 8B), the train detection signal becomes “train present”. Therefore, in the closed circuit type train detection device, it is possible to ensure a safe operation (fail safe).

ところで、上述の図7,図8に示した受信コイル10や送信コイル20は、ATS−S形と呼ばれる0字状の単路形コイルであり、コイルが0字状に捲回されていて、その中を通る磁路が一つしかない。
これに対し、鉄道分野では、ATS−P形と呼ばれる8字状の複路形コイルも、実用に供されている。この複路形コイルでは、コイルが8字状に捲回されていて、小丸部分が二つ存在することに対応して、その中を通る磁路が二つ存在している。二つの小丸部分で捲回方向が逆になっているので、それらの磁束も向きが反対になっている。
軌道によっては、ATS−S形の車上装置を搭載した列車も、ATS−P形の車上装置を搭載した列車も、走行する場合がある。
By the way, the receiving coil 10 and the transmitting coil 20 shown in FIG. 7 and FIG. 8 described above are 0-shaped single-path coils called ATS-S type, and the coils are wound in a 0-shape. There is only one magnetic path through it.
On the other hand, in the railway field, an 8-shaped multi-path coil called ATS-P type is also put into practical use. In this multi-path coil, the coil is wound in an eight-character shape, and there are two magnetic paths passing through the coil corresponding to the presence of two small round portions. Since the winding direction is reversed between the two small circle portions, the directions of the magnetic fluxes are also opposite.
Depending on the track, both a train equipped with an ATS-S type onboard device and a train equipped with an ATS-P type onboard device may run.

実開昭62−148466号公報、実公平5−41975号公報Japanese Utility Model Publication No. 62-148466, Japanese Utility Model Publication No. 5-41975 特開平11−321651号公報JP-A-11-321651 日本鉄道電気技術協会編「鉄道技術者のための電気概論 信号シリーズ8 踏切保安装置」社団法人日本鉄道電気技術協会出版、平成7年4月、p.50−51Edited by Japan Railway Electrical Engineering Association "Introduction to Electricity for Railway Engineers Signal Series 8 Railroad Crossing Safety Device", published by Japan Railway Electrical Engineering Association, April 1995, p. 50-51

[更なる課題の背景]
図9は、単路形コイルに加えて複路形コイルも具えた開電路形装置の一案を示す全体ブロック図である。この列車検知装置は、ATS−S形車上装置搭載列車すなわち0字状の単路形コイルを具えた車上子63を搭載した列車ばかりか、ATS−P形車上装置搭載列車すなわち8字状の複路形コイルを具えた車上子65を搭載した列車も検知できるよう、ATS−S形に適合した0字状で単路形の受信コイル10と、ATS−P形に適合した8字状で複路形の受信コイル19とを軌道内に並設するとともに、車上子63から発信されたATS信号Aの第一周波数f1成分を通過させるバンドパスフィルタ(BPF)と、車上子65から発信されたATS信号Aの第三周波数f3成分を通過させるバンドパスフィルタ(BPF)も、受信回路に並設したものである。リレー駆動回路(SCH等)と検知リレー16は共用されるようになっている。
[Background of further issues]
FIG. 9 is an overall block diagram showing an idea of an open circuit type apparatus having a single-path type coil and a multi-path type coil. This train detection device is not only a train equipped with an ATS-S type on-vehicle device, that is, a train equipped with a vehicle upper 63 having a single-shaped coil of 0-shape, but also a train equipped with an ATS-P type on-vehicle device, that is, eight characters. In order to detect trains equipped with a vehicle upper 65 having a multi-path coil, a 0-shaped, single-path receiving coil 10 suitable for the ATS-S type and 8 suitable for the ATS-P type A band-pass filter (BPF) for passing the first frequency f1 component of the ATS signal A transmitted from the vehicle upper 63 and the vehicle-side receiving coil 19 in parallel with the character-shaped and multi-path receiving coil 19 A band-pass filter (BPF) that passes the third frequency f3 component of the ATS signal A transmitted from the child 65 is also provided in parallel with the receiving circuit. The relay drive circuit (SCH and the like) and the detection relay 16 are shared.

図10〜図12に全体ブロック図を示した列車検知装置は、何れも、閉電路形の地上装置として考えられるものである。やはり、ATS−S形車上装置搭載列車すなわち0字状の単路形コイルを具えた車上子63を搭載した列車ばかりか、ATS−P形車上装置搭載列車すなわち8字状の複路形コイルを具えた車上子65を搭載した列車も検知できるよう、開電路形同様、ATS−S形に適合した0字状で単路形の受信コイル10に加えて、ATS−P形に適合した8字状で複路形の受信コイル19を具えているが、閉電路形なので、それらの受信コイルと磁路を重ねる状態で即ち交流を通電したとき磁気的に結合する状態で軌道内に設置される送信コイルと、この送信コイルに発振信号を送出する送信回路も、設けられている。送信コイルと送信回路と受信回路の構成が図10〜図12で異なる。   Each of the train detection devices whose block diagrams are shown in FIGS. 10 to 12 can be considered as a closed circuit type ground device. After all, not only the ATS-S type on-board equipment-equipped train, that is, the train equipped with the vehicle upper 63 provided with the zero-shaped single-path coil, but the ATS-P type on-vehicle equipment-equipped train, that is, the eight-shaped multi-path. As with the open circuit type, in addition to the 0-shaped, single-path type receiving coil 10 adapted to the ATS-S type, the ATS-P type can be used. Although it is provided with a matching eight-character and multi-path receiving coil 19, it is a closed circuit type, so that it is in a state where it is magnetically coupled when the receiving coil and the magnetic path are overlapped, that is, when AC is energized. And a transmission circuit for sending an oscillation signal to the transmission coil. The configurations of the transmission coil, the transmission circuit, and the reception circuit are different in FIGS.

図10の列車検知装置では、受信コイル10には磁路を重ねる状態で送信コイル20が添設され、受信コイル19にはやはり磁路を重ねる状態で送信コイル29が添設されている。また、受信回路側には、コイル10,20に関して、第二周波数f2の発振信号を生成して送信コイル20に送出する送信回路(AMP,OSC)と、第一周波数f1と第二周波数f2との周波数弁別を行う周波数弁別回路(BPF等)と、検知リレーR1と、第二周波数f2成分の検出時には検知リレーR1を励磁し非検出時には検知リレーR1の励磁を中断するリレー駆動回路(SCH等)とが設けられている。コイル19,29に関しては、第四周波数f4の発振信号を生成して送信コイル29に送出する送信回路(AMP,OSC)と、第三周波数f3と第四周波数f4との周波数弁別を行う周波数弁別回路(BPF等)と、検知リレーR2と、第四周波数f4成分の検出時には検知リレーR2を励磁し非検出時には検知リレーR2の励磁を中断するリレー駆動回路(SCH等)とが設けられている。検知リレーR1,R2の何れかが非励磁状態「列車有り」になると検知リレー24を非励磁状態「列車有り」にするリレー回路も設けられている。   In the train detection apparatus of FIG. 10, a transmission coil 20 is attached to the reception coil 10 in a state where magnetic paths are overlapped, and a transmission coil 29 is also attached to the reception coil 19 in a state where magnetic paths are overlapped. On the receiving circuit side, with respect to the coils 10 and 20, a transmission circuit (AMP, OSC) that generates an oscillation signal of the second frequency f2 and sends it to the transmission coil 20, a first frequency f1, a second frequency f2, A frequency discriminating circuit (BPF, etc.) that performs frequency discrimination of the above, a detection relay R1, and a relay drive circuit (SCH etc.) that excites the detection relay R1 when detecting the second frequency f2 component and interrupts the excitation of the detection relay R1 when not detecting ) And are provided. As for the coils 19 and 29, a transmission circuit (AMP, OSC) that generates an oscillation signal of the fourth frequency f4 and sends it to the transmission coil 29, and a frequency discrimination that performs frequency discrimination between the third frequency f3 and the fourth frequency f4. A circuit (such as BPF), a detection relay R2, and a relay drive circuit (such as SCH) that excites the detection relay R2 when detecting the fourth frequency f4 component and interrupts excitation of the detection relay R2 when not detected. . There is also provided a relay circuit for setting the detection relay 24 in the non-excited state “with train” when any of the detection relays R1, R2 is in the non-excited state “with train”.

図11の列車検知装置では、受信コイル10及び受信コイル19に磁路を重ねる状態で送信コイル29が添設され、送信コイル20は省かれている。これに伴い、受信回路側も、第二周波数f2の発振信号を生成して送信コイル29に送出する送信回路(AMP,OSC)と、第一周波数f1及び第三周波数f3と第二周波数f2との周波数弁別を行う周波数弁別回路(BPF等)と、検知リレー24と、第二周波数f2成分の検出時には検知リレー24を励磁し非検出時には検知リレー24の励磁を中断するリレー駆動回路(SCH等)とからなる一組だけになっている。受信コイル10,19は並列接続にて纏められている。   In the train detection apparatus of FIG. 11, a transmission coil 29 is attached in a state where magnetic paths are superimposed on the reception coil 10 and the reception coil 19, and the transmission coil 20 is omitted. Along with this, the receiving circuit also generates an oscillation signal of the second frequency f2 and sends it to the transmission coil 29, the first frequency f1, the third frequency f3, and the second frequency f2. A frequency discriminating circuit (BPF, etc.) that performs frequency discrimination of the above, a detection relay 24, and a relay drive circuit (SCH, etc.) that excites the detection relay 24 when detecting the second frequency f2 component and interrupts the excitation of the detection relay 24 when not detecting ) And only one set. The receiving coils 10 and 19 are collected in parallel connection.

図12の列車検知装置では、受信コイル10には磁路を重ねる状態で送信コイル20が添設され、受信コイル19にはやはり磁路を重ねる状態で送信コイル29が添設されている。また、受信回路側には、コイル19,29に関して、第二周波数f2の発振信号を生成して送信コイル29及び送信コイル20に送出する送信回路(AMP,OSC)と、第三周波数f3と第二周波数f2との周波数弁別を行う周波数弁別回路(BPF等)と、検知リレーR2と、第二周波数f2成分の検出時には検知リレーR2を励磁し非検出時には検知リレーR2の励磁を中断するリレー駆動回路(SCH等)とが設けられている。コイル10,20に関しては、送信回路が省かれて、第一周波数f1と第二周波数f2との周波数弁別を行う周波数弁別回路(BPF等)と、検知リレーR1と、第二周波数f2成分の検出時には検知リレーR1を励磁し非検出時には検知リレーR1の励磁を中断するリレー駆動回路(SCH等)とが設けられている。検知リレーR1,R2の何れかが非励磁状態「列車有り」になると検知リレー24を非励磁状態「列車有り」にするリレー回路も設けられている。   In the train detection apparatus of FIG. 12, a transmission coil 20 is attached to the reception coil 10 in a state where magnetic paths are overlapped, and a transmission coil 29 is attached to the reception coil 19 in a state where magnetic paths are also overlapped. On the receiving circuit side, with respect to the coils 19 and 29, a transmission circuit (AMP, OSC) that generates an oscillation signal of the second frequency f2 and sends it to the transmission coil 29 and the transmission coil 20, a third frequency f3, and a third frequency f3. Frequency discrimination circuit (BPF, etc.) that performs frequency discrimination from the two frequencies f2, a detection relay R2, and a relay drive that excites the detection relay R2 when detecting the second frequency f2 component and interrupts the excitation of the detection relay R2 when not detected Circuits (SCH and the like). For the coils 10 and 20, the transmission circuit is omitted, and a frequency discrimination circuit (such as BPF) that performs frequency discrimination between the first frequency f1 and the second frequency f2, a detection relay R1, and detection of the second frequency f2 component A relay drive circuit (such as SCH) is provided that sometimes excites the detection relay R1 and interrupts excitation of the detection relay R1 when not detected. There is also provided a relay circuit for setting the detection relay 24 in the non-excited state “with train” when any of the detection relays R1, R2 is in the non-excited state “with train”.

[基本的な課題]
このように幾つかの装置が存在し種々の改造案も考えられるが、それぞれに一長一短がある。すなわち、0字状の単路形コイルを利用したATS−S形か、8字状の複路形コイルを利用したATS−P形か、何れか一つの形に適合している従来の列車検知装置のうち、図7の開電路形装置には、ATS信号Aを受信して検知リレー16を動作させている間は消費電力が大きいが、それ以外では消費電力が少ない、という長所がある。部品点数が少ないため、小型化が容易である、という長所もある。ただし、機器が故障した場合、具体的には受信コイル10や受信回路11〜15が故障したときには、ATS信号Aが車上装置から受信コイル10に送られて来ても、検知リレー16が動作しないため、列車を検知できない、という欠点がある。
[Basic issues]
In this way, there are several devices and various modifications are possible, but each has advantages and disadvantages. In other words, the conventional train detection that conforms to any one of the ATS-S type using a zero-shaped single-path coil and the ATS-P type using an eight-shaped multi-path coil. Among the devices, the open circuit type device of FIG. 7 has an advantage that the power consumption is large while the ATS signal A is received and the detection relay 16 is operated, but the power consumption is small otherwise. Since the number of parts is small, there is also an advantage that miniaturization is easy. However, when the device fails, specifically, when the receiving coil 10 or the receiving circuits 11 to 15 fail, the detection relay 16 operates even if the ATS signal A is sent from the on-board device to the receiving coil 10. Does not detect trains.

これに対し、従来の列車検知装置のうち図8の閉電路形の場合、機器が故障したときには、列車検知信号が「列車有り」となるので、安全側の動作(フェールセーフ)が確保されている。ただし、送信回路から常に一定の信号を無線送信していることや、受信回路でも受信した発振信号を処理していること等に起因して、消費電力が大きい。また、送信回路に発振回路が設けられるとともに、受信回路にも、発振信号の取扱に発振回路相当規模の回路が要るといったことから、部品点数も多いため、小型化が難しい。
そこで、両者の利点を兼備した列車検知装置を実現すべく、即ち閉電路形のフェールセーフ性の確保を前提として、それに開電路形における電力の小ささ及び部品点数の少なさを加味することが、望まれる。そして、そのためには、電力消費量や部品点数の多くなりがちな発振回路が送信回路と受信回路とで共用されるように回路を改造することが基本的な技術課題となる。
On the other hand, in the case of the closed circuit type in FIG. 8 among the conventional train detection devices, when the equipment breaks down, the train detection signal becomes “train present”, so that a safe operation (fail safe) is ensured. Yes. However, the power consumption is large due to the fact that a constant signal is always wirelessly transmitted from the transmission circuit and the received oscillation signal is processed by the reception circuit. In addition, an oscillation circuit is provided in the transmission circuit, and the reception circuit also requires a circuit of a scale equivalent to the oscillation circuit to handle the oscillation signal.
Therefore, in order to realize a train detection device that combines the advantages of both, that is, on the premise of ensuring fail-safeness of the closed circuit type, it is possible to consider the small power and the small number of parts in the open circuit type. ,desired. For this purpose, it is a basic technical problem to modify the circuit so that the oscillation circuit, which tends to increase the power consumption and the number of parts, is shared by the transmission circuit and the reception circuit.

[更なる課題]
また、ATS−S形とATS−P形の双方に適合させるべく、軌道に0字状の単路形コイルと8字状の複路形コイルを並設して何れも受信コイルとして利用する言わば受信コイル並設形の列車検知装置のうち、図9の開電路形装置には、上述した図7の開電路形装置と同様、コイル10,19や回路BPF等が故障したときには、ATS信号A(f1)が車上子63から受信コイル10に送られて来ても、ATS信号A(f3)が車上子65から受信コイル19に送られて来ても、検知リレー16が動作しないため、列車を検知できない、という欠点がある。そのため、図9の開電路形装置は、フェールセーフ性の確保を前提にするという基本課題に反する。
[Further issues]
In order to adapt to both ATS-S type and ATS-P type, a zero-shaped single-path coil and an eight-shaped multi-path coil are arranged in parallel on the track, and both are used as receiving coils. Among the train detection devices of the receiving coil side-by-side type, the open circuit type device of FIG. 9 is similar to the open circuit type device of FIG. Even if (f1) is sent from the vehicle top 63 to the receiving coil 10 or the ATS signal A (f3) is sent from the vehicle top 65 to the receiving coil 19, the detection relay 16 does not operate. There is a drawback that the train cannot be detected. Therefore, the open circuit type apparatus of FIG. 9 is contrary to the basic problem of premising ensuring fail-safe property.

受信コイル並設形の列車検知装置のうち図10の閉電路形装置は、両ATS信号A(f1,f3)の受信検出に加えてコイルや回路の故障検知もできるが、コイルも回路も二組が必要なうえ、検知リレーR1,R2の出力を検知リレー24で統合するリレー回路まで必要なため、部品点数も電力消費量も多い。
受信コイル並設形の列車検知装置のうち図11の閉電路形装置では、コイルや送受信回路の構成が比較的簡素になるが、0字状の単路形コイル10の故障を検知することができないため、フェールセーフ性の確保を前提にするという基本課題に反する。
The closed circuit type apparatus shown in FIG. 10 among the reception coil side-by-side train detection apparatuses can detect the failure of the coil and circuit in addition to the reception detection of both ATS signals A (f1, f3). In addition to the need for a set and a relay circuit that integrates the outputs of the detection relays R1 and R2 with the detection relay 24, the number of components and power consumption are large.
In the closed-circuit type apparatus shown in FIG. 11 among the train detectors arranged in parallel with the receiving coil, the configuration of the coil and the transmission / reception circuit is relatively simple, but the failure of the zero-shaped single-path coil 10 can be detected. This is contrary to the basic problem of ensuring fail-safeness.

受信コイル並設形の列車検知装置のうち図12の閉電路形装置は、両ATS信号A(f1,f3)の受信検出に加えてコイルや回路の故障検知もでき、送信回路が一組に統合されているが、依然として、コイルと受信回路は二組が必要なうえ、検知リレーR1,R2の出力を検知リレー24で統合するリレー回路まで必要なため、部品点数も電力消費量も多い。
そこで、上述の基本的な技術課題を解決するとともに、ATS−S形とATS−P形の双方に適合させるためのコイルや回路についても共用化率を高めることにより、部品点数や電力消費量の削減を更に進めることが、更なる技術課題となる。
The closed circuit type apparatus shown in FIG. 12 among the train detectors arranged in parallel with the receiving coil can detect the failure of the coil and the circuit in addition to the reception detection of both ATS signals A (f1, f3), and the transmission circuit is a set. Although they are integrated, two sets of coils and receiving circuits are still required, and a relay circuit that integrates the outputs of the detection relays R1 and R2 with the detection relay 24 is also required, so that the number of parts and power consumption are large.
Therefore, in addition to solving the basic technical problems described above, the number of components and power consumption can be reduced by increasing the sharing rate for coils and circuits adapted to both the ATS-S type and the ATS-P type. Further reduction is a further technical issue.

本発明の列車検知装置は(解決手段1)、このような課題を解決するために創案されたものであり、列車に搭載されて列車走行中は常に第一周波数のATS信号を発信する車上装置と組み合わせて用いられる地上装置になっているか(出願当初請求項1)、そのような地上装置と車上装置とを組にしたシステム物になっているが(出願当初請求項2)、いずれも、上述した閉電路形の列車検知装置がベースであり、受信コイルの受信状態に応じてLC発振回路の発振状態が変化するように改造されている。   The train detection device of the present invention (Solution 1) was devised to solve such a problem, and is mounted on a train and always transmits an ATS signal of the first frequency while the train is running. It is a ground device used in combination with a device (first claim in the application), or a system product in which such a ground device and an on-board device are combined (first claim in the application). Also, the above-described closed circuit type train detection device is the base, and is modified so that the oscillation state of the LC oscillation circuit changes according to the reception state of the reception coil.

具体的には、軌道内に設置されて上記ATS信号を受信する受信コイルと、周波数弁別回路とリレー駆動回路と検知リレーとを有し前記受信コイルの受信状態に応じて列車の有無を示す列車検知信号を出力する受信回路と、前記受信コイルと磁路の一部を重ねる状態で(即ち交流を通電したとき磁気的に不完全結合する状態で)前記軌道内に設置される送信コイルとを備え、前記周波数弁別回路が前記第一周波数成分と他の第二周波数成分との周波数弁別を行うものであり、前記リレー駆動回路が前記第二周波数成分の検出時には前記検知リレーを励磁し非検出時には前記検知リレーの励磁を中断するものである列車検知装置において、前記受信コイルを含めたインダクタンスとの共振周波数を前記第二周波数にされたLC発振回路が前記受信コイルと前記周波数弁別回路とに介挿して設けられ、前記LC発振回路の発振信号が前記周波数弁別回路に加えて前記送信コイルにも送出されるようになっていることを特徴とする。   Specifically, a train that is installed in a track and receives the ATS signal, a frequency discriminating circuit, a relay drive circuit, and a detection relay, and indicates the presence or absence of a train according to the reception state of the reception coil A receiving circuit for outputting a detection signal, and a transmitting coil installed in the track in a state in which a part of a magnetic path is overlapped with the receiving coil (that is, in a state of being incompletely coupled magnetically when an alternating current is applied) The frequency discriminating circuit discriminates the frequency between the first frequency component and the other second frequency component, and the relay drive circuit excites the detection relay when the second frequency component is detected to detect the second frequency component. In a train detection device that sometimes interrupts excitation of the detection relay, an LC oscillation circuit having a resonance frequency with the inductance including the reception coil as the second frequency is the reception circuit. Provided by inserting into the coil and the frequency discriminator circuit, characterized in that the oscillation signal of the LC oscillator circuit is adapted to be delivered to the transmission coil in addition to the frequency discriminating circuit.

また、本発明の列車検知装置は(解決手段2)、上記解決手段1の列車検知装置であって、前記受信コイルが0字状の単路形コイルと8字状の複路形コイルとの組み合わせコイルであり、前記単路形コイル及び前記複路形コイルは何れか一方でも前記組み合わせコイル即ち前記受信コイルから除外されると前記LC発振回路の共振周波数を前記第二周波数から逸らすこととなる形で(より具体的にはLC発振回路の共振周波数を後続の周波数弁別回路の通過周波数帯域から外すこととなる態様で)前記受信コイルに組み込まれていることを特徴とする。
なお、そのような形・態様の典型例は、後述する実施例3,4のように両コイルを並列接続することや、図示しない直列接続であるが、その他の接続や結合手法たとえばトランス結合などであっても、当該コイルの有無に応じてLC発振回路の共振周波数を第二周波数から弁別可能な他の周波数へ変化させうるものであれば、上記の形での組み込みに該当する。
Moreover, the train detection apparatus of the present invention is (the solution means 2), the train detection apparatus of the solution means 1, wherein the receiving coil is composed of a 0-shaped single-path coil and an 8-character multi-path coil. The coil is a combination coil, and when either the single-path coil or the multi-path coil is excluded from the combination coil, that is, the reception coil, the resonance frequency of the LC oscillation circuit is deviated from the second frequency. It is characterized in that it is incorporated in the receiving coil in a form (more specifically, in a mode in which the resonance frequency of the LC oscillation circuit is excluded from the passing frequency band of the subsequent frequency discrimination circuit).
A typical example of such a shape / mode is that both coils are connected in parallel as in Examples 3 and 4 to be described later, or a series connection (not shown). However, if the resonance frequency of the LC oscillation circuit can be changed from the second frequency to another frequency that can be discriminated in accordance with the presence or absence of the coil, it corresponds to the incorporation in the above form.

このような本発明の列車検知装置にあっては(解決手段1)、コイルや,送受信回路,リレー駆動方式等に閉電路形を踏襲しているので、コイルや回路に機器故障が発生すると、検知リレーの励磁が止まって、列車検知信号が安全側の「列車有り」となるため、安全動作(フェールセーフ)が確保されている。
一方、故障等が無く機器の動作が正常であれば、常態では即ち列車の来ていないときには、LC発振回路が第二周波数で発振し、これに周波数弁別回路およびリレー駆動回路が応動して、検知リレーが励磁され、列車検知信号は「列車無し」となる。
In such a train detection device of the present invention (Solution 1), the coil, the transmission / reception circuit, the relay drive system, etc. follow the closed circuit type, so when a device failure occurs in the coil or circuit, Since the excitation of the detection relay stops and the train detection signal becomes “train present” on the safe side, safe operation (fail safe) is ensured.
On the other hand, if there is no failure etc. and the operation of the equipment is normal, the LC oscillation circuit oscillates at the second frequency in the normal state, that is, when the train does not come, the frequency discrimination circuit and the relay drive circuit respond to this, The detection relay is excited and the train detection signal becomes “no train”.

これに対し、列車の通過等により列車の車上装置から発信されたATS信号が受信コイルに届き、それを受信コイルが受信すると、受信コイルに流れる電流の周波数がATS信号の第一周波数になり、これに引き込まれてLC発振回路の発振周波数も第一周波数となる。そして、それに周波数弁別回路およびリレー駆動回路が応動して、検知リレーの励磁が中断され、列車検知信号は「列車有り」となる。
このようにLC発振回路の引き込み現象を利用してATS信号の受信状態で発振周波数が変化するようにしたことにより、列車検知が的確になされる。
On the other hand, when the ATS signal transmitted from the train on-board device reaches the receiving coil due to the passage of the train and the like and the receiving coil receives it, the frequency of the current flowing in the receiving coil becomes the first frequency of the ATS signal. As a result, the oscillation frequency of the LC oscillation circuit also becomes the first frequency. Then, the frequency discriminating circuit and the relay drive circuit respond to it, the excitation of the detection relay is interrupted, and the train detection signal becomes “train present”.
As described above, the train frequency can be accurately detected by changing the oscillation frequency in the reception state of the ATS signal by using the pull-in phenomenon of the LC oscillation circuit.

しかも、受信コイルに送信コイルを添設する閉電路形でありながら、送信コイルに送出される第二周波数の発振信号の発生が、受信回路に導入されたLC発振回路によって行われる。そのため、発振回路と相当回路部分が一体化されて送信回路と受信回路とで共用されるので、部品点数も消費電力も少なくて済むこととなる。また、ATS信号が有って、それを受信コイルが受信して、LC発振回路の発振周波数が第一周波数になったときには、送信コイルから受信コイルへの送信信号も第一周波数になり、一方、ATS信号が無くなってLC発振回路の発振周波数が第二周波数になったときには、送信コイルから受信コイルへの送信信号も第二周波数になるので、遷移後の動作状態が安定する、という利点もある。
したがって、この発明によれば、小型化に適し電力消費量の多くないフェールセーフな列車検知装置を実現することができる。
In addition, the oscillation circuit having the second frequency transmitted to the transmission coil is generated by the LC oscillation circuit introduced into the reception circuit, although the circuit is a closed circuit in which the transmission coil is added to the reception coil. Therefore, since the oscillation circuit and the corresponding circuit portion are integrated and shared by the transmission circuit and the reception circuit, the number of parts and power consumption can be reduced. In addition, when there is an ATS signal and the reception coil receives it and the oscillation frequency of the LC oscillation circuit becomes the first frequency, the transmission signal from the transmission coil to the reception coil also becomes the first frequency. When the ATS signal disappears and the oscillation frequency of the LC oscillation circuit becomes the second frequency, the transmission signal from the transmission coil to the reception coil also becomes the second frequency, so that the operation state after transition is also stable. is there.
Therefore, according to the present invention, it is possible to realize a fail-safe train detection device that is suitable for downsizing and does not consume much power.

また、本発明の列車検知装置にあっては(解決手段2)、0字状の単路形コイルと8字状の複路形コイルとの双方が設けられ、何れも受信コイルとして機能するので、ATS−S形でもATS−P形でも両信号を受信して列車を検知することができる。
しかも、両コイルの組み合わせコイルが受信コイルになるようにしたことにより、受信回路や,リレー駆動回路,検知リレー等の回路が、ATS−S形とATS−P形とで共用されるので、何れか一方の形に適合したものと同等の簡素なもので足りることとなる。
Moreover, in the train detection apparatus of the present invention (Solution means 2), both a zero-shaped single-path coil and an eight-shaped multi-path coil are provided and both function as receiving coils. Both the ATS-S type and the ATS-P type can receive both signals and detect a train.
In addition, since the combination coil of both coils is the reception coil, the reception circuit, the relay drive circuit, the detection relay, and other circuits are shared between the ATS-S type and the ATS-P type. A simple one equivalent to one of them will suffice.

さらに、単路形コイルと複路形コイルとの組み合わせに際して、何れのコイルが除外されてもLC発振回路の共振周波数が第二周波数から逸れるようにもしたことにより、一部のコイルにだけ故障が発生した場合でも、検知リレーの励磁が止まって、列車検知信号が安全側の「列車有り」となるので、安全動作(フェールセーフ)が確保されている。
したがって、この発明によれば、ATS−S形とATS−P形の双方に適合しながらも小型化に適し電力消費量の多くないフェールセーフな列車検知装置を実現することができる。
Furthermore, when combining single-path and multi-path coils, the resonance frequency of the LC oscillation circuit deviates from the second frequency regardless of which coil is excluded. Even if this occurs, excitation of the detection relay stops and the train detection signal becomes “train present” on the safe side, so a safe operation (fail safe) is ensured.
Therefore, according to the present invention, it is possible to realize a fail-safe train detection device that is compatible with both the ATS-S type and the ATS-P type and that is suitable for downsizing and does not consume much power.

このような本発明の列車検知装置を実施するための好適な形態を幾つか説明する。
本発明の列車検知装置は(実施形態1)、上記解決手段の列車検知装置であって、前記第二周波数成分が前記第一周波数より低くなるよう前記LC発振回路の共振周波数が設定されており、さらに、前記第二周波数成分を通過させるバンドパスフィルタが前記周波数弁別回路に含まれてその周波数弁別機能を担っている、というものである。
Several suitable forms for implementing such a train detection apparatus of this invention are demonstrated.
The train detection device of the present invention (Embodiment 1) is the train detection device of the above-mentioned solving means, wherein the resonance frequency of the LC oscillation circuit is set so that the second frequency component is lower than the first frequency. Furthermore, a band-pass filter that passes the second frequency component is included in the frequency discriminating circuit and has a frequency discriminating function.

このような実施形態1の列車検知装置にあっては、共振周波数および周波数弁別の選定により、列車到来時の検知ばかりか列車未到来時の誤検知防止までも的確に行われる。すなわち、LC発振回路の引き込み現象・変周現象には共振周波より高い周波数の信号には引き込まれ易いが低い周波数の信号には引き込まれ難いという性質がみられるところ、LC発振回路の共振周波数である第二周波数をATS信号の第一周波数より低くしたことにより、列車からのATS信号には敏感に応動するが、低周波中心の電車電流にはほとんど感応しない。しかも、第二周波数より更に低くて不要な周波数成分はバンドパスフィルタでカットされるようにしたことと相俟って、電車電流の不所望な影響は確実に避けられる。   In such a train detection apparatus of the first embodiment, not only detection when the train arrives but also prevention of erroneous detection when the train does not arrive is accurately performed by selecting the resonance frequency and frequency discrimination. In other words, the LC oscillation circuit has the property of being easily drawn into a signal having a frequency higher than the resonance frequency but difficult to draw into a signal having a lower frequency than the resonance frequency of the LC oscillation circuit. By making a certain second frequency lower than the first frequency of the ATS signal, it responds sensitively to the ATS signal from the train, but hardly responds to the train current at the center of the low frequency. In addition, undesired effects of the train current can be reliably avoided in combination with the fact that unnecessary frequency components that are lower than the second frequency are cut by the band-pass filter.

また、本発明の列車検知装置は(実施形態2)、上記実施形態1の列車検知装置であって、前記バンドパスフィルタの通過周波数帯域幅が、列車接近による前記受信コイルのインダクタンスの変化に対応した前記LC発振回路の共振周波数変動の幅よりも、広くなっている、というものである。
この実施形態2の列車検知装置にあっては、バンドパスフィルタの通過周波数帯域幅をLC発振回路の共振周波数変動幅より広くしたことにより、列車がATS信号を発信しなければ、列車が接近して受信コイルの実効インダクタンスが変化し、これに伴ってLC発振回路の発振周波数が第二周波数から多少偏倚しても、それはバンドパスフィルタで第一周波数から弁別される範囲にとどまるので、列車検知信号が「列車有り」になることがない。これにより、ATS信号を利用した列車検知を望まない例えば試験車などに対しても所望の動作が行われることとなる。
Further, the train detection device of the present invention (Embodiment 2) is the train detection device of Embodiment 1 described above, and the pass frequency bandwidth of the band-pass filter corresponds to the change in inductance of the reception coil due to train approach. The width of the resonance frequency fluctuation of the LC oscillation circuit is wider.
In the train detection device according to the second embodiment, since the pass frequency bandwidth of the bandpass filter is wider than the resonance frequency fluctuation range of the LC oscillation circuit, the train approaches when the ATS signal is not transmitted. As a result, the effective inductance of the receiving coil changes, and even if the oscillation frequency of the LC oscillation circuit deviates somewhat from the second frequency, it remains within the range discriminated from the first frequency by the bandpass filter. The signal does not become “train present”. As a result, a desired operation is performed even for a test vehicle or the like that does not require train detection using the ATS signal.

さらに、本発明の列車検知装置は(実施形態3)、上記解決手段3の列車検知装置であって、前記単路形コイルと前記複路形コイルとが磁路を重ねる状態で配置されており、しかも、前記複路形コイルの複数磁路の一方と前記単路形コイルの単一磁路との重複度合いと前記複路形コイルの複数磁路の他方と前記単路形コイルの単一磁路との重複度合いとが同程度になっており、さらに、送信コイルが前記単路形コイルとは磁路の一部を重ねるが前記複路形コイルとは磁路を重ねない状態で配置されていることを特徴とする。   Furthermore, the train detection device of the present invention (Embodiment 3) is the train detection device of the solving means 3, wherein the single-path coil and the multi-path coil are arranged in a state of overlapping magnetic paths. In addition, the degree of overlap between one of the multiple magnetic paths of the multi-path coil and the single magnetic path of the single-path coil, the other of the multiple magnetic paths of the multi-path coil, and the single of the single path coil The overlapping degree with the magnetic path is the same level, and the transmitting coil is arranged in a state where the magnetic path is overlapped with the single path type coil but the magnetic path is not overlapped with the double path type coil. It is characterized by being.

このような条件を満たすコイル配置としては、後述する実施例3のように平面配置において8字状の複路形コイルを総て0字状の単路形コイルの中に収めるのが典型的であるが、平面配置において8字状の複路形コイルが0字状の単路形コイルに収まりきらない場合や意識して収めない場合でも8字状における二つの小丸部分に係る内外比率・分割比が同じなら良い。しかも、単路形コイルと複路形コイルの何れが除外されてもLC発振回路の共振周波数が第二周波数から逸れるという組合せ形・態様も踏襲しているので、フェールセーフ性が損なわれることもない。   As a coil arrangement satisfying such conditions, it is typical to place all eight-shaped multi-path coils in a zero-shaped single path coil in a planar arrangement as in Example 3 described later. However, even if the 8-shaped multi-path coil does not fit in the 0-shaped single-path coil or cannot be consciously accommodated in the planar arrangement, the inside / outside ratio / division of the two small circles in the 8-shape It is good if the ratio is the same. In addition, the combination of the resonance frequency of the LC oscillation circuit deviates from the second frequency regardless of whether the single-path coil or the multi-path coil is excluded, the fail-safe property may be impaired. Absent.

この場合、8字状の複路形コイルの一方の小丸部分を通り抜けるとともに0字状の単路形コイルをも通り抜ける磁束線数と、8字状の複路形コイルの他方の小丸部分を通り抜けるとともに0字状の単路形コイルをも通り抜ける磁束線数とが、ほぼ同じになる。そして、両磁路の磁束による作用が逆向きに作用するので、両コイルの磁気結合が打ち消される。そのため、0字状の単路形コイルと8字状の複路形コイルとを軌道に設置する際、相互の影響を気にすることなく、両コイルを近づけて配置することができる。両コイルを隣接させたり重層させて、一体的な地上子に纏めることも可能である。   In this case, the number of magnetic flux lines passing through one small round part of the 8-shaped multi-path coil and also passing through the 0-shaped single path coil and the other small round part of the 8-shaped multi-path coil are passed. At the same time, the number of magnetic flux lines passing through the zero-shaped single-path coil is substantially the same. And since the effect | action by the magnetic flux of both magnetic paths acts in the reverse direction, the magnetic coupling of both coils is negated. Therefore, when the 0-shaped single-path coil and the 8-shaped multi-path coil are installed on the track, the two coils can be arranged close to each other without worrying about the mutual influence. It is also possible to combine both coils adjacent to each other or layer them together into an integral ground element.

このような本発明の列車検知装置について、これを実施するための具体的な形態を、以下の実施例1〜4により説明する。
図1〜3に示した実施例1は、上述した解決手段1(出願当初の請求項1,2)及び上記実施形態1,2を具現化したものであり、図4に示した実施例2は、その変形例であり、図5に示した実施例3は、上述した解決手段2(出願当初の請求項3)及び上記実施形態3を具現化したものであり、図6に示した実施例4は、その変形例である。
なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
About the train detection apparatus of such this invention, the specific form for implementing this is demonstrated by the following Examples 1-4.
The embodiment 1 shown in FIGS. 1 to 3 embodies the above-described solution 1 (claims 1 and 2 at the beginning of the application) and the embodiments 1 and 2, and the embodiment 2 shown in FIG. Is a modified example, and Example 3 shown in FIG. 5 embodies the above-described solution 2 (claim 3 at the beginning of the application) and Embodiment 3 described above, and is shown in FIG. Example 4 is a modification thereof.
In the drawings, the same reference numerals are given to the same components as those in the prior art, and therefore, repeated explanations are omitted. Hereinafter, the differences from the prior art will be mainly described.

本発明の列車検知装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は、(a)が地上装置の全体ブロック図、(b)がLC発振回路40周辺のブロック図、(c)及び(d)が受信コイル10及びLC発振回路40の特性を示すブロック図、(e)が受信コイル10及びLC発振回路40の特性を示すグラフである。   A specific configuration of the train detection apparatus according to the first embodiment of the present invention will be described with reference to the drawings. 1A is an overall block diagram of the ground device, FIG. 1B is a block diagram around the LC oscillation circuit 40, and FIGS. 1C and 1D are block diagrams showing characteristics of the receiving coil 10 and the LC oscillation circuit 40. (E) is a graph which shows the characteristic of the receiving coil 10 and the LC oscillation circuit 40. FIG.

この列車検知装置(図1(a)参照)が既述した図8の閉電路形列車検知装置と相違するのは、発振回路22が省かれて無くなっている点と、LC発振回路40(OSC)が導入された点と、バンドパスフィルタ23に代えて通過周波数帯域幅の異なるバンドパスフィルタ33(BPF)が採用されている点である。また、既述した図7の開電路形列車検知装置と対比すると、送信コイル20及びLC発振回路40が追加された点と、第一周波数f1通過用のバンドパスフィルタ12に代えて第二周波数f2通過用のバンドパスフィルタ33が採用されている点と、励磁状態(動作状態)では「列車無し」で非励磁状態(復旧状態)では「列車有り」の列車検知信号を出力する検知リレー24が検知リレー16に代えて導入されている点が、相違する。なお、アッテネータ11が無くなっている点と、アンプ21がLC発振回路40とバンドパスフィルタ33との間に移っている点は、それらが信号レベルの要求に応じて適宜設けられるものなので、本質的な相違ではない。   This train detection device (see FIG. 1A) differs from the previously described closed circuit type train detection device of FIG. 8 in that the oscillation circuit 22 is omitted and the LC oscillation circuit 40 (OSC ) And a bandpass filter 33 (BPF) having a different pass frequency bandwidth instead of the bandpass filter 23 is employed. Further, in comparison with the open circuit type train detection device of FIG. 7 described above, the transmission coil 20 and the LC oscillation circuit 40 are added, and the second frequency is substituted for the bandpass filter 12 for passing the first frequency f1. A detection relay 24 that outputs a train detection signal of “no train” in the excited state (operating state) and “train present” in the non-excited state (restored state) in that the band-pass filter 33 for passing f2 is employed. Is different from the detection relay 16 in that it is introduced. The point that the attenuator 11 is eliminated and the point that the amplifier 21 is moved between the LC oscillation circuit 40 and the band-pass filter 33 are essentially provided because they are appropriately provided according to the signal level requirement. Not a difference.

LC発振回路40は(図1(a)参照)、周波数弁別回路33や,リレー駆動回路13+14+15,検知リレー24と共に受信回路30に組み込まれて、バンドパスフィルタ33の前に即ち受信信号上流側に置かれる。具体的には、アンプ21を後続させて、それと一緒に、シールドケーブル31とバンドパスフィルタ33の入力端との間に介挿接続される。シールドケーブル31は受信回路30と受信コイル10とを受信信号伝搬可能に接続するので、受信コイル10やシールドケーブル31を介して不所望なサージノイズ等が受信回路30に入るのを防止・緩和するために、図示は割愛したが、適宜な避雷器・保安器などもLC発振回路40と共に又はその上流に設けられている。送信コイル20と受信回路30とを送信信号伝搬可能に接続するシールドケーブル32側も同様である。   The LC oscillation circuit 40 (see FIG. 1A) is incorporated in the reception circuit 30 together with the frequency discrimination circuit 33, the relay drive circuit 13 + 14 + 15, and the detection relay 24, and before the band-pass filter 33, that is, upstream of the reception signal. Placed. Specifically, the amplifier 21 is followed, and together with this, the shield cable 31 and the input end of the bandpass filter 33 are inserted and connected. Since the shielded cable 31 connects the receiving circuit 30 and the receiving coil 10 so as to be able to propagate the reception signal, unwanted surge noise and the like are prevented from entering the receiving circuit 30 via the receiving coil 10 and the shielded cable 31. Therefore, although illustration is omitted, an appropriate lightning arrester / protector is also provided with or upstream of the LC oscillation circuit 40. The same applies to the shielded cable 32 side that connects the transmission coil 20 and the reception circuit 30 so that the transmission signal can be propagated.

また、一般にLC発振回路は同調回路と電流帰還回路とからなるが(例えば高木昇他編集「電子工学ポケットブック第3版」株式会社オーム社発行p7−50など参照)、このLC発振回路40は(図1(b)参照)、同調回路におけるインダクタンス部材を兼ねる絶縁トランスT1を介して受信コイル10とトランス結合されている。絶縁トランスT1の一次側には受信コイル10に加えてコンデンサC1も接続されており、コンデンサC1の容量を可変することにより、受信コイル10を含めたインダクタンスに係る共振周波数を第二周波数f2に一致させる微調整が行えるようになっている。なお、同調用コンデンサは絶縁トランスT1の二次側に設けても良く、複数個でも良い。   In general, an LC oscillation circuit is composed of a tuning circuit and a current feedback circuit (see, for example, Noboru Takagi et al., “Electronics Pocketbook 3rd Edition” published by Ohm Co., Ltd. p7-50). (See FIG. 1B.) The transformer is coupled to the receiving coil 10 via an insulating transformer T1 that also serves as an inductance member in the tuning circuit. A capacitor C1 is also connected to the primary side of the isolation transformer T1 in addition to the receiving coil 10. By changing the capacitance of the capacitor C1, the resonance frequency related to the inductance including the receiving coil 10 matches the second frequency f2. You can make fine adjustments. The tuning capacitor may be provided on the secondary side of the insulating transformer T1, or a plurality of tuning capacitors may be provided.

このようなLC発振回路40は、受信コイル10が何も受信しなければ第二周波数f2中心の発振信号を出力するが(図1(c)及び図1(e)の太実線グラフ参照)、受信コイル10がATS信号Aを受信すると第一周波数f1中心の発振信号を出力する(図1(d)及び図1(e)の長破線グラフ参照)ものとなっている。なお、受信コイル10に受信の無い状態であっても、受信コイル10に列車等が接近すると、それによって受信コイル10の実効インダクタンスが多少増加するため、LC発振回路40の発振周波数が第二周波数f2より少し高めの第五周波数f5になる(図1(e)の短破線グラフ参照)。   Such an LC oscillation circuit 40 outputs an oscillation signal centered at the second frequency f2 when the receiving coil 10 does not receive anything (see thick solid line graphs in FIGS. 1C and 1E), When the receiving coil 10 receives the ATS signal A, an oscillation signal centered at the first frequency f1 is output (see the long broken line graphs in FIGS. 1D and 1E). Even when the reception coil 10 is not receiving, when a train or the like approaches the reception coil 10, the effective inductance of the reception coil 10 increases slightly, so that the oscillation frequency of the LC oscillation circuit 40 is the second frequency. The fifth frequency f5 is slightly higher than f2 (see the short broken line graph in FIG. 1E).

そこで(図1(e)参照)、第二周波数f2も第五周波数f5も第一周波数f1より弁別可能なだけ低くなるよう、受信コイル10のインダクタンス及びコンデンサC1の容量が決定されている。また、バンドパスフィルタ33の通過周波数帯域幅fb等が第二周波数f2と第五周波数f5を通過させ第一周波数f1は通過させないように設定される。すなわち、バンドパスフィルタ33の上限周波数が第一周波数f1と第五周波数f5との間に設定され、下限周波数が第二周波数f2より低いところに設定される。温度変動での周波数ドリフトも考慮すると、上限は第二周波数f2の20%増、下限は第二周波数f2の10%減、などが目安となる。   Therefore (see FIG. 1 (e)), the inductance of the receiving coil 10 and the capacitance of the capacitor C1 are determined so that the second frequency f2 and the fifth frequency f5 are lower than the first frequency f1 as much as possible. Further, the pass frequency bandwidth fb and the like of the band pass filter 33 is set so as to pass the second frequency f2 and the fifth frequency f5 but not the first frequency f1. That is, the upper limit frequency of the bandpass filter 33 is set between the first frequency f1 and the fifth frequency f5, and the lower limit frequency is set lower than the second frequency f2. Considering the frequency drift due to temperature fluctuation, the upper limit is 20% increase of the second frequency f2, the lower limit is 10% decrease of the second frequency f2, and the like.

例えば、共振周波数変動幅(f5−f2)は1kHz程度なので、ATS信号の第一周波数f1が103kHzや105kHzであれば、LC発振回路40の共振周波数である第二周波数f2は96kHzに設定され、バンドパスフィルタ33の通過周波数帯域は下限が94kHzで上限が98kHzに設定される。第一周波数f1が74kHzなら、第二周波数f2は70kHzにされ、フィルタ通過周波数帯域は下限が68kHzで上限が72kHzにされる、といった具合である。   For example, since the resonance frequency fluctuation range (f5-f2) is about 1 kHz, if the first frequency f1 of the ATS signal is 103 kHz or 105 kHz, the second frequency f2 that is the resonance frequency of the LC oscillation circuit 40 is set to 96 kHz. The pass frequency band of the band pass filter 33 is set such that the lower limit is 94 kHz and the upper limit is 98 kHz. If the first frequency f1 is 74 kHz, the second frequency f2 is 70 kHz, the lower limit of the filter pass frequency band is 68 kHz, and the upper limit is 72 kHz.

この実施例1の列車検知装置について、その使用態様を、図面を引用して説明する。図2は、踏切への設置例を示し、(a)が鉄道の踏切周辺の記号図、(b)が上り線のうち始動点51及びその周辺部の詳細図、(c)が受信コイル10,20設置箇所の一部縦断面の模式図である。   About the train detection apparatus of this Example 1, the use aspect is demonstrated referring drawings. 2A and 2B show examples of installation at a railroad crossing, where FIG. 2A is a symbol diagram around a railroad crossing, FIG. 2B is a detailed view of a starting point 51 and its peripheral portion of an up line, and FIG. , 20 is a schematic diagram of a partial longitudinal section of the installation location.

ここでは(図2(a)参照)、並走する上り線のレール54(軌道)と下り線のレール55(軌道)とに亘って踏切52が設けられているところに、上述した図1の列車検知装置を踏切バックアップ装置として設置する場合を述べる。上り側では踏切52手前の始動点51から踏切52後方の終動点53までに列車60が入っている間は踏切を閉め、下り側では踏切52手前の始動点56から踏切52後方の終動点57までに列車60が入っている間は踏切を閉めるために、軌道回路を利用した列車検知装置に加えて、ATS信号を利用したバックアップ用の列車検知装置が設置される。   Here (see FIG. 2A), the railroad crossing 52 is provided across the parallel rail 54 (track) and the rail 55 (track) of the down line, and the above-described FIG. The case where the train detection device is installed as a railroad crossing backup device will be described. On the ascending side, the railroad crossing is closed while the train 60 enters from the starting point 51 before the level crossing 52 to the end point 53 behind the level crossing 52. In order to close the railroad crossing while the train 60 enters the point 57, in addition to the train detection device using the track circuit, a backup train detection device using the ATS signal is installed.

軌道回路を利用した列車検知装置は(図2(b)参照)、例えば上り線のレール54において始動点51に対応した検知対象区間またはその部分区間の一端部に始動点51用の軌道回路用送信器71(T)が接続され他端部に始動点51用の軌道回路用受信器72(R)が接続されており、その状態で軌道回路用送信器71からレール54へ送出された信号が、列車60の車輪61及び車軸62でのレール54の短絡によって、軌道回路用受信器72で受信できなくなったとき、列車の進入があったことを検知するようになっている。下り線のレール55の始動点56についても同様である。   The train detection device using the track circuit (see FIG. 2B) is, for example, for the track circuit for the start point 51 at one end of the detection target section corresponding to the start point 51 in the up-line rail 54 or its partial section. The transmitter 71 (T) is connected, and the other end is connected to the track circuit receiver 72 (R) for the starting point 51. In this state, the signal sent from the track circuit transmitter 71 to the rail 54 However, when the track circuit receiver 72 cannot receive the signal due to a short circuit of the rails 54 on the wheels 61 and the axles 62 of the train 60, it is detected that the train has entered. The same applies to the starting point 56 of the down line rail 55.

ATS信号を利用した本発明の列車検知装置は(図2(b),(c)参照)、受信コイル10と送信コイル20が共に二本のレール54の中間位置で枕木58等に固定され、受信回路30は軌道外の接続箱等に格納され、両者はシールドケーブル31,32で接続される。列車60の中にはATS装置(自動列車停止装置)のATS送受信器64が搭載され、列車60の下面には送信アンテナである車上子63が装着されていて、列車60の走行中は常に車上子63から軌道に向けて第一周波数f1のATS信号Aが発信されるようになっている。   In the train detection device of the present invention using the ATS signal (see FIGS. 2B and 2C), the receiving coil 10 and the transmitting coil 20 are both fixed to a sleeper 58 or the like at an intermediate position between the two rails 54, The receiving circuit 30 is stored in a connection box or the like outside the track, and both are connected by shielded cables 31 and 32. An ATS transmitter / receiver 64 of an ATS device (automatic train stop device) is mounted in the train 60, and a vehicle upper 63 serving as a transmission antenna is mounted on the lower surface of the train 60. An ATS signal A having a first frequency f1 is transmitted from the vehicle upper 63 toward the track.

地上子である受信コイル10と送信コイル20は(図2(b),(c)参照)、現場で重ねて設置しても良いが、磁路を完全に共有する密結合でなく磁路の一部だけを共有する粗い結合にするとともに、その結合の程度を所定レベルに維持した状態で、容易かつ的確に現場設置が行えるよう、予め適宜な枠体や締結具等で一体化しておくのが望ましい。そのような具体例として図示したものの場合、正面視では完全に重なっているが(図2(c)参照)、平面視では数分の一だけが重なる状態で配置されている(図2(b)参照)。   The ground coil receiving coil 10 and transmitting coil 20 (see FIGS. 2 (b) and 2 (c)) may be installed in the field, but the magnetic path is not a tight coupling that completely shares the magnetic path. A rough joint that shares only a part of it, and it is integrated with an appropriate frame or fastener in advance so that it can be installed on site easily and accurately with the degree of the coupling maintained at a predetermined level. Is desirable. In the case of what is illustrated as such a specific example, it is completely overlapped when viewed from the front (see FIG. 2C), but is arranged so that only a fraction of it overlaps when viewed from above (FIG. 2B). )reference).

このように設置された実施例1の列車検知装置について、その動作を、図面を引用して説明する。図3は、(a)が受信コイル10の受信状態およびLC発振回路40の発振周波数の時間変化、(b)がATS信号A受信時の受信検知状態Bおよびリレー励磁状態Cの時間変化、(c)が受信回路故障時等の受信検知状態Bおよびリレー励磁状態Cの時間変化である。   About the train detection apparatus of Example 1 installed in this way, the operation | movement is demonstrated referring drawings. 3A is a time change of the reception state of the receiving coil 10 and the oscillation frequency of the LC oscillation circuit 40, FIG. 3B is a time change of the reception detection state B and the relay excitation state C when the ATS signal A is received, c) is a time change of the reception detection state B and the relay excitation state C when the reception circuit is faulty.

このような閉電路形の列車検知装置にあっては(図3(a)参照)、列車60が踏切52から遠くを走行している間は、ATS信号Aが受信コイル10に届かないので、LC発振回路40は第二周波数f2で発振し、これが通過周波数帯域幅fbに入っていることから、検知リレー24が励磁されるので、列車検知信号は「列車無し」になる。しかも、その第二周波数f2の発振信号が送信コイル20を介して受信コイル10に帰還されるので、LC発振回路40の発振状態が安定している。
そして、列車60が踏切52に近づき車体が受信コイル10の上方に来ると(図3(a)の時間ta部分を参照)、LC発振回路40の発振周波数が第五周波数f5に変化するが、第五周波数f5も通過周波数帯域幅fbに入っていることから、検知リレー24の励磁が継続されるので、列車検知信号は「列車無し」のままである。
In such a closed circuit type train detection device (see FIG. 3A), the ATS signal A does not reach the receiving coil 10 while the train 60 travels far from the railroad crossing 52. Since the LC oscillation circuit 40 oscillates at the second frequency f2 and falls within the pass frequency bandwidth fb, the detection relay 24 is excited, so the train detection signal becomes “no train”. Moreover, since the oscillation signal of the second frequency f2 is fed back to the reception coil 10 via the transmission coil 20, the oscillation state of the LC oscillation circuit 40 is stable.
Then, when the train 60 approaches the railroad crossing 52 and the vehicle body comes above the receiving coil 10 (see time ta in FIG. 3A), the oscillation frequency of the LC oscillation circuit 40 changes to the fifth frequency f5. Since the fifth frequency f5 is also in the passing frequency bandwidth fb, the excitation of the detection relay 24 is continued, so that the train detection signal remains “no train”.

列車60が更に走行して車体だけでなく車上子63が受信コイル10の上方に来ると(図3(a)の時間tb部分を参照)、ATS送受信器64から車上子63を介して発信された第一周波数f1のATS信号Aが受信コイル10にて受信され、これに引き込まれてLC発振回路40の発振周波数が第一周波数f1に変化する。この第一周波数f1は通過周波数帯域幅fbから外れているため、検知リレー24の励磁が中断されるので、列車検知信号は「列車有り」になる。このとき、送信コイル20を介して受信コイル10に帰還される発振信号は、第二周波数f2でなく、第一周波数f1になるので、ATS信号Aに多少の乱れがあっても、LC発振回路40の発振状態は第一周波数f1で安定する。   When the train 60 further travels and not only the vehicle body but also the vehicle upper part 63 comes above the receiving coil 10 (see the time tb portion in FIG. 3A), the ATS transceiver 64 passes through the vehicle upper part 63. The transmitted ATS signal A of the first frequency f1 is received by the receiving coil 10, and is pulled into this, so that the oscillation frequency of the LC oscillation circuit 40 changes to the first frequency f1. Since the first frequency f1 is out of the pass frequency bandwidth fb, the excitation of the detection relay 24 is interrupted, so the train detection signal becomes “train present”. At this time, the oscillation signal fed back to the reception coil 10 via the transmission coil 20 is not the second frequency f2, but the first frequency f1, so that even if the ATS signal A is somewhat disturbed, the LC oscillation circuit The oscillation state of 40 is stabilized at the first frequency f1.

その後、車上子63が受信コイル10から遠ざかると(図3(a)の時間tc部分を参照)、ATS信号Aがコイル10で受信されなくなるので、LC発振回路40の発振周波数が第五周波数f5に戻る。さらに、列車60の車体も受信コイル10から遠ざかると、LC発振回路40の発振周波数が第二周波数f2に戻る。もっとも、この列車検知装置の場合も従来装置同様(図3(b)参照)、受信検知状態Bに係るパルス幅を定める受信時間Dが短いため(図3(b)における時刻t1〜t2参照)、検知リレー24のリレー励磁状態Cに係るパルス幅は復旧時間延長回路15によって延長時間Eだけ引き延ばされるので(図3(b)における時刻t2〜t3参照)、検知リレー24が確実に動作する。   Thereafter, when the vehicle upper 63 moves away from the receiving coil 10 (see the time tc portion in FIG. 3A), the ATS signal A is not received by the coil 10, so that the oscillation frequency of the LC oscillation circuit 40 is the fifth frequency. Return to f5. Furthermore, when the vehicle body of the train 60 is also moved away from the receiving coil 10, the oscillation frequency of the LC oscillation circuit 40 returns to the second frequency f2. However, in the case of this train detection device as well as the conventional device (see FIG. 3B), the reception time D that defines the pulse width according to the reception detection state B is short (see times t1 to t2 in FIG. 3B). Since the pulse width related to the relay excitation state C of the detection relay 24 is extended by the recovery time extension circuit 15 by the extension time E (see times t2 to t3 in FIG. 3B), the detection relay 24 operates reliably. .

また(図3(c)参照)、受信コイル10の断線や受信回路30の故障が発生するとそれが回復するまでは(図3(c)における時刻t4〜t5参照)、受信検知状態Bの如何に拘わらず、リレー励磁状態Cは非励磁状態(復旧状態)となる。上述の如くLC発振回路40が常態では第二周波数f2で発振しこれに応動して検知リレー24が励磁されるようになっているため、安全側の動作(フェールセーフ)が行われる。   Further, (see FIG. 3C), when the disconnection of the receiving coil 10 or the failure of the receiving circuit 30 occurs, until the situation is recovered (see times t4 to t5 in FIG. Regardless, the relay excitation state C is in a non-excitation state (restored state). As described above, since the LC oscillation circuit 40 normally oscillates at the second frequency f2 and the detection relay 24 is excited in response to the oscillation, a safe operation (fail safe) is performed.

さらに、従来の図7の開電路形列車検知装置と比べれば送信コイル20やLC発振回路40が増えているが、従来の図8の閉電路形列車検知装置と比べれば、LC発振回路40の規模は発振回路22と大差なく、このLC発振回路40が受信コイル10と周波数弁別回路33との間に移されている。そこの回路部分は、図8ではアッテネータ11であり受信信号を適宜レベルに変換するようになっていたが、そのようなレベル変換には一般にLC発振回路に近い規模の回路が用いられる。そのため、そこへのLC発振回路40導入によって、発振回路と相当規模回路とが一体化されるとともに、その発振回路が送信回路と受信回路とで共用されることとなる。したがって、本発明の図1の列車検知装置は、従来の図8の閉電路形列車検知装置より小型になり消費電力も少なくなる。   Furthermore, the transmission coil 20 and the LC oscillation circuit 40 are increased as compared with the conventional open circuit type train detection device of FIG. 7, but the LC oscillation circuit 40 of the conventional closed circuit type train detection device of FIG. The scale is not much different from that of the oscillation circuit 22, and the LC oscillation circuit 40 is moved between the reception coil 10 and the frequency discrimination circuit 33. The circuit portion there is an attenuator 11 in FIG. 8 and converts the received signal to a level as appropriate. In general, a circuit having a scale close to that of an LC oscillation circuit is used for such level conversion. Therefore, by introducing the LC oscillation circuit 40 there, the oscillation circuit and the equivalent scale circuit are integrated, and the oscillation circuit is shared by the transmission circuit and the reception circuit. Therefore, the train detection device of FIG. 1 of the present invention is smaller than the conventional closed circuit type train detection device of FIG. 8 and consumes less power.

本発明の列車検知装置の実施例2について、その具体的な構成を、図面を引用して説明する。図4は、(a)が列車検知装置の構成を示す全体ブロック図、(b)及び(c)が列車検知装置の動作状態を示し、(b)がLC発振回路40の発振周波数の時間変化、(c)がATS信号Aの受信検知状態Bおよびリレー励磁状態C,Fの時間変化である。   A specific configuration of the train detection apparatus according to the second embodiment of the present invention will be described with reference to the drawings. 4A is an overall block diagram showing the configuration of the train detection device, FIGS. 4B and 4C show the operating state of the train detection device, and FIG. 4B is the time variation of the oscillation frequency of the LC oscillation circuit 40. , (C) is a time change of the reception detection state B of the ATS signal A and the relay excitation states C and F. FIG.

この列車検知装置が上述した実施例1のものと相違するのは、閉電路形の列車検知信号に加えて開電路形の列車検知信号も出力するように拡張された点である。
具体的には(図4(a)参照)、既述した図7の受信回路のうちバンドパスフィルタ12(BPF,周波数弁別回路)以降の部分(リレー駆動回路13+14+15及び検知リレー16)が追加され、LC発振回路40の発振信号がバンドパスフィルタ12にも送出されるようになっている。なお、アッテネータ11がLC発振回路40(OSC)の前段・上流側に設けられ、アンプ21がLC発振回路40とバンドパスフィルタ33との間から抜けてLC発振回路40と送信コイル20との間に移設されているが、これらの点は上述したように本質的な相違ではない。
This train detection device is different from that of the first embodiment described above in that the train detection device is extended to output an open circuit type train detection signal in addition to a closed circuit type train detection signal.
Specifically (see FIG. 4 (a)), a portion (relay driving circuit 13 + 14 + 15 and detection relay 16) subsequent to the bandpass filter 12 (BPF, frequency discrimination circuit) in the receiving circuit of FIG. 7 described above is added. The oscillation signal of the LC oscillation circuit 40 is also sent to the band pass filter 12. The attenuator 11 is provided upstream and upstream of the LC oscillation circuit 40 (OSC), and the amplifier 21 is disconnected from between the LC oscillation circuit 40 and the band pass filter 33 and between the LC oscillation circuit 40 and the transmission coil 20. However, these points are not essential differences as described above.

この場合、LC発振回路40や検知リレー24等の既存部分の動作等は実施例1と同じであるが(図4(b)及び図4(c)の波形B,C参照)、追加部分12〜16によって開電路形の列車検知信号も出力される(図4(c)の波形F参照)。
すなわち、受信コイル10及び送信コイル20の設置された軌道を列車が走行して受信コイル10のところを通過すると、車上装置から発信された第一周波数f1のATS信号Aが受信コイル10にて受信され、上述した引き込み現象・変周現象によってLC発振回路40の発振周波数が第一周波数f1に変化し、さらに、その第一周波数f1の信号を通過周波数帯域幅fdの周波数弁別回路12が通過させ(図4(b)参照)、これに応じてリレー駆動回路13〜15が検知リレー16を励磁駆動するので(図4(c)における時刻t1〜t3の波形Fを参照)、検知リレー16が動作して列車検知信号を「列車有り」の状態にする。
In this case, the operations of the existing parts such as the LC oscillation circuit 40 and the detection relay 24 are the same as those in the first embodiment (see waveforms B and C in FIGS. 4B and 4C), but the additional part 12 ˜16 also outputs an open circuit type train detection signal (see waveform F in FIG. 4C).
That is, when the train travels on the track where the receiving coil 10 and the transmitting coil 20 are installed and passes through the receiving coil 10, the ATS signal A having the first frequency f1 transmitted from the on-board device is received by the receiving coil 10. The oscillation frequency of the LC oscillation circuit 40 is changed to the first frequency f1 by the above-described pulling phenomenon / frequency division phenomenon, and the signal of the first frequency f1 is further passed through the frequency discrimination circuit 12 having the pass frequency bandwidth fd. Accordingly, the relay drive circuits 13 to 15 drive the detection relay 16 in response to this (see the waveform F at times t1 to t3 in FIG. 4C), so that the detection relay 16 Operates to set the train detection signal to “with train”.

これに対し、列車の通過後や列車の来ないときには、受信コイル10での受信が無くて、LC発振回路40の発振周波数が第二周波数f2に戻っていることから、追加部分回路12〜15が検知リレー16を励磁駆動しないので(図4(c)における時刻t1以前と時刻t3以降の波形Fを参照)、検知リレー16が復旧して列車検知信号を「列車無し」の状態にする。
このように、この実施例2の列車検知装置は、受信回路のうちの後半部分を追加したことにより、列車検知信号として閉電路形と開電路形との二種類を同時に出力することができるようになり、それでいて回路規模の増加は少ないものとなっている。
On the other hand, after the train passes or when the train does not come, there is no reception by the receiving coil 10, and the oscillation frequency of the LC oscillation circuit 40 returns to the second frequency f2, so that the additional partial circuits 12 to 15 However, since the detection relay 16 is not excited and driven (see the waveform F before time t1 and after time t3 in FIG. 4C), the detection relay 16 is restored and the train detection signal is set to “no train”.
As described above, the train detection device according to the second embodiment can output two types of the closed circuit type and the open circuit type simultaneously as a train detection signal by adding the latter half of the receiving circuit. However, the increase in circuit scale is small.

本発明の列車検知装置の実施例3について、その具体的な構成を、図面を引用して説明する。図5は、(a)〜(c)が列車検知装置の構成を示し、(a)が全体ブロック図、(b)が受信コイルにおける単路形コイル10と複路形コイル19との接続例、(c)がコイル10,19,20の平面配置図である。また、(d)及び(e)が列車検知装置の動作状態を示し、(d)がLC発振回路40の発振周波数の時間変化、(e)がATS信号Aの受信検知状態Bおよびリレー励磁状態Cの時間変化である。   About Example 3 of the train detection apparatus of this invention, the specific structure is demonstrated referring drawings. 5A to 5C show the configuration of the train detection device, FIG. 5A is an overall block diagram, and FIG. 5B is a connection example between the single-path coil 10 and the multi-path coil 19 in the receiving coil. (C) is a plane arrangement view of coils 10, 19, and 20. FIG. Also, (d) and (e) show the operation state of the train detection device, (d) shows the time variation of the oscillation frequency of the LC oscillation circuit 40, and (e) shows the reception detection state B of the ATS signal A and the relay excitation state. It is a time change of C.

この図5の列車検知装置が上述した図1のもの(実施例1)と相違するのは、受信コイル10に受信コイル19が並設されて受信コイルが組み合わせコイルになっている点である。
既述したように、受信コイル10は、ATS−S形に適合した0字状の単路形コイルであり、受信コイル19は、ATS−P形に適合した8字状の複路形コイルである。このようにコイル10,19を並設した場合、双方が適切に接続されているときだけLC発振回路40の共振周波数が第二周波数f2になるように、共振コンデンサ・同調用コンデンサ(例えば上述したコンデンサC1)の容量が設定・調整される。このようなコイル10,19は、何れか一方または双方が回路から除外されたり故障等にて除外同様の状態になるとLC発振回路40の共振周波数を第二周波数f2から例えば低周波側へ逸らすこととなる形で組み込まれたものとなっている。
The train detection device of FIG. 5 is different from that of FIG. 1 described above (Example 1) in that the reception coil 19 is arranged in parallel with the reception coil 10 and the reception coil is a combined coil.
As described above, the receiving coil 10 is a zero-shaped single-path coil adapted to the ATS-S type, and the receiving coil 19 is an eight-shaped multi-path coil adapted to the ATS-P type. is there. When the coils 10 and 19 are arranged side by side in this way, a resonance capacitor / tuning capacitor (for example, the above-described one) is set so that the resonance frequency of the LC oscillation circuit 40 becomes the second frequency f2 only when both are properly connected. The capacity of the capacitor C1) is set and adjusted. When one or both of the coils 10 and 19 are excluded from the circuit or are in a similar state due to a failure or the like, the resonance frequency of the LC oscillation circuit 40 is shifted from the second frequency f2 to, for example, the low frequency side. It is incorporated in the form that becomes.

具体的には(図5(b)参照)、受信コイル10と受信コイル19は並列接続されている。また、コイル配置については(図5(c)参照)、平面配置で見て、受信コイル10と送信コイル20との重複部分を避けながら受信コイル19が受信コイル10の中に収まっている。これにより、単路形コイル10と複路形コイル19とが磁路を重ねる状態で配置されており、しかも、複路形コイル19の複数磁路の上側磁路と単路形コイル10の単一磁路との重複度合いと、複路形コイル19の複数磁路の下側磁路と単路形コイル10の単一磁路との重複度合いとが、同程度になっている。さらに、送信コイル20が単路形コイル10とは磁路の一部を重ねるが複路形コイル19とは磁路を重ねない状態で配置されている、という配置状態になっている。   Specifically, the receiving coil 10 and the receiving coil 19 are connected in parallel (see FIG. 5B). As for the coil arrangement (see FIG. 5C), the reception coil 19 is accommodated in the reception coil 10 while avoiding the overlapping portion of the reception coil 10 and the transmission coil 20 in a planar arrangement. Thus, the single-path coil 10 and the multi-path coil 19 are arranged in a state where the magnetic paths overlap each other, and the upper magnetic path of the multiple magnetic paths of the multi-path coil 19 and the single-path coil 10 are single. The degree of overlap with one magnetic path and the degree of overlap between the lower magnetic path of the plurality of magnetic paths of the multipath coil 19 and the single magnetic path of the single path coil 10 are approximately the same. Further, the transmitting coil 20 is in an arrangement state in which a part of the magnetic path is overlapped with the single-path coil 10 but is not overlapped with the multi-path coil 19.

この場合、8字状の複路形コイル19の上側捲回部分を通り抜けるとともに0字状の単路形コイル10をも通り抜ける磁束線数と、8字状の複路形コイル19の下側捲回部分を通り抜けるとともに0字状の単路形コイル10をも通り抜ける磁束線数とが、ほとんど同じになる。そして、両磁路の磁束による作用が逆向きに作用するので、両コイル10,19の磁気結合が全体では打ち消される。そのため、受信コイル10と受信コイル19は、軌道設置時に組み合わせる場合も、予め一体的に組み上げておく場合も同じく、相互の磁気的影響を気にすることなく、電気的絶縁が破られなければ、上下に重ねた状態で、あるいは小いさな受信コイル19を大きな受信コイル10の中空に嵌め込んだ状態で、設置される。   In this case, the number of magnetic flux lines passing through the upper winding portion of the 8-shaped multi-path coil 19 and also passing through the 0-shaped single-path coil 10 and the lower side coil of the 8-shaped multi-path coil 19 The number of magnetic flux lines passing through the turning portion and passing through the zero-shaped single-path coil 10 is almost the same. And since the effect | action by the magnetic flux of both magnetic paths acts reversely, the magnetic coupling of both the coils 10 and 19 is negated as a whole. For this reason, the receiving coil 10 and the receiving coil 19 can be combined at the time of track installation or in the case of being assembled together in advance, as long as the electrical insulation is not broken without worrying about the mutual magnetic effect. It is installed in a state where it is stacked vertically or in a state where a small receiving coil 19 is fitted in the hollow of the large receiving coil 10.

そうすると、受信コイル10も受信コイル19もそれぞれが受信コイルとして機能する。具体的には(図5(d),(e)参照)、受信コイル10,19及び送信コイル20の設置された軌道を列車が走行して通過するときに、車上装置からATS−S形に適合した第一周波数f1のATS信号Aが発信されているとそれが受信コイル10にて受信され、車上装置からATS−P形に適合した第三周波数f3のATS信号Aが発信されているとそれが受信コイル19にて受信されて、いずれの場合も、LC発振回路40の発振周波数が第二周波数f2から逸れるので、繰り返しとなる詳細な説明は割愛するが、列車の検知が的確に行われる。   Then, each of the receiving coil 10 and the receiving coil 19 functions as a receiving coil. Specifically (see FIGS. 5D and 5E), when the train travels and passes through the track on which the receiving coils 10 and 19 and the transmitting coil 20 are installed, the ATS-S type from the onboard device. When the ATS signal A having the first frequency f1 suitable for the ATS is transmitted by the receiving coil 10, the ATS signal A having the third frequency f3 suitable for the ATS-P type is transmitted from the on-board device. If it is received by the receiving coil 19, the oscillation frequency of the LC oscillation circuit 40 deviates from the second frequency f2 in any case. To be done.

また、受信コイル10に故障が生じた場合には、その分だけ同調関連のインダクタンス値が変化して、LC発振回路40の共振周波数が第二周波数f2から例えば低周波側へ移り(図5(d)における時刻t4以降の点線部分を参照)、受信コイル19に故障が生じた場合にも、その分だけ同調関連のインダクタンス値が変化して、やはりLC発振回路40の共振周波数が第二周波数f2から例えば低周波側へ移り(図5(d)における時刻t4以降の破線部分を参照)、いずれの場合も、LC発振回路40の発振周波数が第二周波数f2から逸れてバンドパスフィルタ33の通過周波数帯域幅fbから出るため、繰り返しとなる詳細な説明は割愛するが、受信コイルの故障が受信コイル10であっても受信コイル19であっても的確に検知されるので、安全動作(フェールセーフ)が確保されている。   Further, when a failure occurs in the receiving coil 10, the tuning-related inductance value changes accordingly, and the resonance frequency of the LC oscillation circuit 40 shifts from the second frequency f2 to, for example, the low frequency side (FIG. 5 ( (Refer to the dotted line portion after time t4 in d)) Even when a failure occurs in the receiving coil 19, the inductance value related to tuning changes accordingly, and the resonance frequency of the LC oscillation circuit 40 is also the second frequency. For example, the oscillation frequency of the LC oscillation circuit 40 deviates from the second frequency f2 and shifts to the low frequency side from f2 (see the broken line portion after time t4 in FIG. 5D). Since it comes out of the pass frequency bandwidth fb, a detailed description which will be repeated is omitted, but it is possible to accurately detect whether a failure of the reception coil is the reception coil 10 or the reception coil 19. Since the safe operating (fail-safe) is ensured.

しかも、既述した幾つかの閉電路形のものと比べて、回路規模も電力消費量も増えていない。同一機能を発揮する図10や図12の列車検知装置と比べれば、コイル数も回路規模も電力消費量も削減されている。故障検出機能の一部が欠けている図11の列車検知装置と比べても、回路規模や電力消費量が多少は削減されている。   In addition, the circuit scale and power consumption are not increased as compared with the several closed circuit types described above. Compared with the train detection apparatus of FIG. 10 or FIG. 12 that exhibits the same function, the number of coils, circuit scale, and power consumption are reduced. Compared to the train detection apparatus of FIG. 11 that lacks part of the failure detection function, the circuit scale and power consumption are somewhat reduced.

本発明の列車検知装置の実施例4について、その具体的な構成を、図面を引用して説明する。図6は、(a)が列車検知装置の構成を示す全体ブロック図、(b)及び(c)が列車検知装置の動作状態を示し、(b)がLC発振回路40の発振周波数の時間変化、(c)がATS信号Aの受信検知状態Bおよびリレー励磁状態C,Fの時間変化である。   A specific configuration of the train detection apparatus according to the fourth embodiment of the present invention will be described with reference to the drawings. 6A is an overall block diagram showing the configuration of the train detection device, FIGS. 6B and 6C show the operating state of the train detection device, and FIG. 6B is the time variation of the oscillation frequency of the LC oscillation circuit 40. , (C) is a time change of the reception detection state B of the ATS signal A and the relay excitation states C and F. FIG.

この列車検知装置が上述した実施例3のものと相違するのは、閉電路形の列車検知信号に加えて開電路形の列車検知信号も出力するように拡張された点である。
具体的には(図6(a)参照)、既述した図7の受信回路のうちバンドパスフィルタ12(BPF,周波数弁別回路)以降の部分(リレー駆動回路13+14+15及び検知リレー16)が追加され、LC発振回路40の発振信号がバンドパスフィルタ12にも送出されるようになっている。
This train detection device is different from that of the third embodiment described above in that it is extended to output an open circuit type train detection signal in addition to a closed circuit type train detection signal.
Specifically (see FIG. 6 (a)), a portion (relay driving circuit 13 + 14 + 15 and detection relay 16) after the bandpass filter 12 (BPF, frequency discrimination circuit) in the receiving circuit of FIG. 7 described above is added. The oscillation signal of the LC oscillation circuit 40 is also sent to the band pass filter 12.

これは、実施例1と実施例2との相違と同じであり、実施例2で詳述しているので、繰り返しとなる更なる説明は割愛する。
そして、この場合も、上述した実施例3の動作によって閉電路形の列車検知信号が出力されることに加えて(図6(b)及び図6(c)の波形B,C参照)、追加部分12〜16の動作によって開電路形の列車検知信号も出力される(図6(c)の波形F参照)。
開電路形の受信回路のうちの後半部分を追加したことにより、列車検知信号として閉電路形と開電路形との二種類を同時に出力することができるにようになり、それでいて回路規模の増加は少ないものとなっている、という利点も実施例2のときと同じである。
This is the same as the difference between the first embodiment and the second embodiment, and has been described in detail in the second embodiment. Therefore, the repeated further explanation is omitted.
Also in this case, in addition to the output of the closed-circuit type train detection signal by the operation of the above-described third embodiment (see waveforms B and C in FIGS. 6B and 6C), an addition is made. An open circuit type train detection signal is also output by the operations of the portions 12 to 16 (see the waveform F in FIG. 6C).
By adding the latter half of the open circuit type receiver circuit, it is possible to output two types of closed circuit type and open circuit type at the same time as train detection signals. The advantage that the number is small is the same as that of the second embodiment.

本発明の実施例1について、列車検知装置の構成を示し、(a)が地上装置の全体ブロック図、(b)がLC発振回路周辺のブロック図、(c)及び(d)が受信コイル及びLC発振回路の特性を示すブロック図、(e)が受信コイル及びLC発振回路の特性を示すグラフである。About Example 1 of this invention, the structure of a train detection apparatus is shown, (a) is the whole block diagram of a ground device, (b) is a block diagram around LC oscillation circuit, (c) And (d) is a receiving coil, The block diagram which shows the characteristic of LC oscillation circuit, (e) is a graph which shows the characteristic of a receiving coil and LC oscillation circuit. 列車検知装置の使用状況を示し、(a)が鉄道の踏切周辺の記号図、(b)が上り線のうち始動点とその周辺部の詳細図、(b)が上り部分の詳細図、(c)が受信コイル設置箇所の一部縦断面の模式図である。(A) is a symbol diagram around the railway crossing, (b) is a detailed view of the starting point and its surroundings on the up line, (b) is a detailed view of the up part, c) is a schematic diagram of a partial longitudinal section of a receiving coil installation location. 列車検知装置の動作状態を示し、(a)が受信コイルの受信状態およびLC発振回路の発振周波数の時間変化、(b)がATS信号受信時の受信検知状態およびリレー励磁状態の時間変化、(c)が受信回路故障時の受信検知状態およびリレー励磁状態の時間変化である。The operational state of the train detector is shown, (a) is the time variation of the reception state of the receiving coil and the oscillation frequency of the LC oscillation circuit, (b) is the time variation of the reception detection state and the relay excitation state when receiving the ATS signal, ( c) is a time change of the reception detection state and the relay excitation state when the reception circuit is faulty. 本発明の実施例2について、(a)が列車検知装置の構成を示す全体ブロック図、(b)及び(c)が列車検知装置の動作状態を示し、(b)がLC発振回路の発振周波数の時間変化、(c)がATS信号受信検知状態およびリレー励磁状態の時間変化である。Regarding Example 2 of the present invention, (a) is an overall block diagram showing the configuration of the train detection device, (b) and (c) show the operating state of the train detection device, and (b) is the oscillation frequency of the LC oscillation circuit. (C) is the time change of the ATS signal reception detection state and the relay excitation state. 本発明の実施例3について、(a)〜(c)が列車検知装置の構成を示し、(a)が全体ブロック図、(b)が受信コイルにおける単路形コイルと複路形コイルとの接続例、(c)がコイルの平面配置図、(d)及び(e)が列車検知装置の動作状態を示し、(d)がLC発振回路の発振周波数の時間変化、(e)がATS信号受信検知状態およびリレー励磁状態の時間変化である。About Example 3 of this invention, (a)-(c) shows the structure of a train detection apparatus, (a) is a whole block diagram, (b) is a single-path type coil in a receiving coil, and a double-path type coil. Example of connection, (c) is a plan layout of coils, (d) and (e) show the operating state of the train detection device, (d) is the time variation of the oscillation frequency of the LC oscillation circuit, and (e) is the ATS signal. It is a time change of a reception detection state and a relay excitation state. 本発明の実施例4について、(a)が列車検知装置の構成を示す全体ブロック図、(b)及び(c)が列車検知装置の動作状態を示し、(b)がLC発振回路の発振周波数の時間変化、(c)がATS信号受信検知状態およびリレー励磁状態の時間変化である。Regarding Example 4 of the present invention, (a) is an overall block diagram showing the configuration of the train detection device, (b) and (c) show the operating state of the train detection device, and (b) is the oscillation frequency of the LC oscillation circuit. (C) is the time change of the ATS signal reception detection state and the relay excitation state. 開電路形の従来装置を示し、(a)が地上装置の全体ブロック図、(b)が受信検知状態およびリレー励磁状態の時間変化である。An open circuit type conventional device is shown, (a) is an overall block diagram of the ground device, and (b) is a time change of a reception detection state and a relay excitation state. 閉電路形の従来装置を示し、(a)が地上装置の全体ブロック図、(b)が受信検知状態およびリレー励磁状態の時間変化である。A closed circuit type conventional device is shown, in which (a) is an overall block diagram of the ground device, and (b) is a time change of a reception detection state and a relay excitation state. 単路形コイルに加えて複路形コイルも具えた開電路形装置の一案を示す全体ブロック図である。It is a whole block diagram which shows one proposal of the open circuit type apparatus which also provided the double path type coil in addition to the single path type coil. 単路形コイルに加えて複路形コイルも具えた閉電路形装置の一案を示す全体ブロック図である。It is a whole block diagram which shows one proposal of the closed circuit type apparatus which also provided the double path type coil in addition to the single path type coil. その変形案である。This is a variation. 更なる変形案である。This is a further modification.

符号の説明Explanation of symbols

10…受信コイル(0字状の単路形コイル,L,地上子)、
11…アッテネータ(ATT,レベル調整)、
12…バンドパスフィルタ(BPF,周波数弁別回路,受信回路)、
13…整流部(ダイオードスタック,検波器,リレー駆動回路,受信回路)、
14…レベル検知部(SCH,波形整形回路,リレー駆動回路,受信回路)、
15…復旧時間延長回路(波形整形回路,リレー駆動回路,受信回路)、
16…検知リレー(開電路形,受信回路)、
19…受信コイル(8字状の複路形コイル,地上子)、
20…送信コイル(0字状の単路形コイル,地上子)、
21…アンプ(AMP)、22…発振回路(OSC)、
23…バンドパスフィルタ(BPF,周波数弁別回路,受信回路)、
24…検知リレー(閉電路形,受信回路)、
29…送信コイル(8字状の複路形コイル,地上子)、
30…受信回路、31,32…シールドケーブル、
33…バンドパスフィルタ(BPF,周波数弁別回路,受信回路)、
40…LC発振回路(OSC,受信回路)、
51…始動点(上り側)、52…踏切、53…終動点(上り側)、
54…レール(上り線,軌道)、55…レール(下り線,軌道)、
56…始動点(下り側)、57…終動点(下り側)、58…枕木、
60…列車、61…車輪、62…車軸、
63…車上子(0字状の単路形コイル,車上装置)、
64…ATS送受信器(車上装置)、
65…車上子(8字状の複路形コイル,車上装置)、
71…軌道回路用送信器(T)、72…軌道回路用受信器(R)
10 ... Receiving coil (0-shaped single-path coil, L, ground element),
11 ... Attenuator (ATT, level adjustment),
12: Band pass filter (BPF, frequency discriminating circuit, receiving circuit),
13 ... rectifier (diode stack, detector, relay drive circuit, receiver circuit),
14 ... Level detector (SCH, waveform shaping circuit, relay drive circuit, receiver circuit),
15 ... Recovery time extension circuit (waveform shaping circuit, relay drive circuit, receiver circuit),
16: Detection relay (open circuit type, receiving circuit),
19 ... Receiving coil (8-shaped multi-path coil, ground element),
20 ... Transmitting coil (0-shaped single-path coil, ground element),
21 ... Amplifier (AMP), 22 ... Oscillator circuit (OSC),
23: Band pass filter (BPF, frequency discriminating circuit, receiving circuit),
24 ... Detection relay (closed circuit type, receiving circuit),
29 ... Transmitting coil (8-shaped multi-path coil, ground element),
30 ... receiving circuit 31, 32 ... shielded cable,
33 ... band pass filter (BPF, frequency discriminating circuit, receiving circuit),
40 ... LC oscillation circuit (OSC, reception circuit),
51 ... Starting point (upward side), 52 ... Railroad crossing, 53 ... Ending point (upward side),
54 ... rail (up line, track), 55 ... rail (down line, track),
56 ... Starting point (downward side), 57 ... End point (downward side), 58 ... Sleepers,
60 ... train, 61 ... wheel, 62 ... axle,
63 ... car upper (0-shaped single-path coil, on-vehicle device),
64 ... ATS transceiver (on-board device),
65 ... car upper piece (8-shaped multi-path coil, on-board device),
71: Track circuit transmitter (T), 72: Track circuit receiver (R)

Claims (3)

軌道内に設置されてその軌道を走行する列車に搭載された車上装置から発信された第一周波数のATS信号を受信する受信コイルと、周波数弁別回路とリレー駆動回路と検知リレーとを有し前記受信コイルの受信状態に応じて列車の有無を示す列車検知信号を出力する受信回路と、前記受信コイルと磁路の一部を重ねる状態で前記軌道内に設置される送信コイルとを備え、前記周波数弁別回路が前記第一周波数成分と他の第二周波数成分との周波数弁別を行うものであり、前記リレー駆動回路が前記第二周波数成分の検出時には前記検知リレーを励磁し非検出時には前記検知リレーの励磁を中断するものである列車検知装置において、前記受信コイルを含めたインダクタンスに係る共振周波数を前記第二周波数にされたLC発振回路が前記受信コイルと前記周波数弁別回路とに介挿して設けられ、前記LC発振回路の発振信号が前記周波数弁別回路に加えて前記送信コイルにも送出されるようになっていることを特徴とする列車検知装置。   A receiving coil that receives an ATS signal of a first frequency transmitted from an on-board device installed in a train that is installed in the track and that runs on the track, a frequency discrimination circuit, a relay drive circuit, and a detection relay; A reception circuit that outputs a train detection signal indicating the presence or absence of a train according to the reception state of the reception coil, and a transmission coil that is installed in the track in a state where a part of the magnetic path is overlapped with the reception coil, The frequency discriminating circuit performs frequency discrimination between the first frequency component and another second frequency component, and the relay driving circuit excites the detection relay when detecting the second frequency component, and when not detecting the frequency In the train detection device for interrupting excitation of the detection relay, an LC oscillation circuit having a resonance frequency related to inductance including the reception coil as the second frequency is received by the LC oscillation circuit. A train detection device provided by being interposed between a coil and the frequency discrimination circuit, wherein an oscillation signal of the LC oscillation circuit is sent to the transmission coil in addition to the frequency discrimination circuit . 列車に搭載されて列車走行中は常に第一周波数のATS信号を発信する車上装置と、軌道内に設置されて前記ATS信号を受信する受信コイルと、周波数弁別回路とリレー駆動回路と検知リレーとを有し前記受信コイルの受信状態に応じて列車の有無を示す列車検知信号を出力する受信回路と、前記受信コイルと磁路の一部を重ねる状態で前記軌道内に設置される送信コイルとを備え、前記周波数弁別回路が前記第一周波数成分と他の第二周波数成分との周波数弁別を行うものであり、前記リレー駆動回路が前記第二周波数成分の検出時には前記検知リレーを励磁し非検出時には前記検知リレーの励磁を中断するものである列車検知装置において、前記受信コイルを含めたインダクタンスに係る共振周波数を前記第二周波数にされたLC発振回路が前記受信コイルと前記周波数弁別回路とに介挿して設けられ、前記LC発振回路の発振信号が前記周波数弁別回路に加えて前記送信コイルにも送出されるようになっていることを特徴とする列車検知装置。   An on-board device that transmits an ATS signal having a first frequency while the train is running, and a receiving coil that is installed in a track and receives the ATS signal, a frequency discrimination circuit, a relay drive circuit, and a detection relay A reception circuit that outputs a train detection signal indicating the presence or absence of a train according to the reception state of the reception coil, and a transmission coil installed in the track in a state where a part of the magnetic path is overlapped with the reception coil And the frequency discrimination circuit performs frequency discrimination between the first frequency component and the other second frequency component, and the relay driving circuit excites the detection relay when detecting the second frequency component. In the train detection device that interrupts excitation of the detection relay at the time of non-detection, the LC oscillation in which the resonance frequency related to the inductance including the reception coil is set to the second frequency A path is provided between the receiving coil and the frequency discriminating circuit, and an oscillation signal of the LC oscillation circuit is sent to the transmitting coil in addition to the frequency discriminating circuit. Train detector. 前記受信コイルが0字状の単路形コイルと8字状の複路形コイルとの組み合わせコイルであり、何れのコイルも除外されると前記LC発振回路の共振周波数を前記第二周波数から逸らすこととなる形で組み込まれていることを特徴とする請求項1又は請求項2に記載された列車検知装置。   The receiving coil is a combination coil of a zero-shaped single-path coil and an eight-shaped multi-path coil, and when any coil is excluded, the resonance frequency of the LC oscillation circuit is deviated from the second frequency. The train detection device according to claim 1 or 2, wherein the train detection device is incorporated in a different form.
JP2005069056A 2005-03-11 2005-03-11 Train detector Active JP4592453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069056A JP4592453B2 (en) 2005-03-11 2005-03-11 Train detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069056A JP4592453B2 (en) 2005-03-11 2005-03-11 Train detector

Publications (2)

Publication Number Publication Date
JP2006248421A JP2006248421A (en) 2006-09-21
JP4592453B2 true JP4592453B2 (en) 2010-12-01

Family

ID=37089357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069056A Active JP4592453B2 (en) 2005-03-11 2005-03-11 Train detector

Country Status (1)

Country Link
JP (1) JP4592453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173214A (en) * 2008-01-25 2009-08-06 Daido Signal Co Ltd Ats signal receiving device
JP5284139B2 (en) * 2009-02-25 2013-09-11 東日本旅客鉄道株式会社 Failure detection device for train detection device
KR101912863B1 (en) 2017-09-19 2018-10-30 (주)오버컴테크 Train antenna reception apparatus with train reception antenna having loop antenna for detecting center of ground equipment and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002201A (en) * 2001-06-26 2003-01-08 East Japan Railway Co Control method for pickup on ground for automatic train stopping device
JP2005238883A (en) * 2004-02-24 2005-09-08 Daido Signal Co Ltd Train detecting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515179B2 (en) * 1994-08-04 2004-04-05 東日本旅客鉄道株式会社 Train control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002201A (en) * 2001-06-26 2003-01-08 East Japan Railway Co Control method for pickup on ground for automatic train stopping device
JP2005238883A (en) * 2004-02-24 2005-09-08 Daido Signal Co Ltd Train detecting device

Also Published As

Publication number Publication date
JP2006248421A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US8505855B2 (en) Train detector and train security device for dual gauge track circuit
US20090170433A1 (en) Inductive communications system
CN103278552A (en) Device for detecting conductivity interference resistance of rail circuit
JP4592453B2 (en) Train detector
ITTO20120695A1 (en) TRACK CIRCUIT FOR SENDING REPORTING INFORMATION ALONG A RAILWAY LINE TO A VEHICLE THAT TRANSIT ALONGSELF THE SAME RAILWAY LINE
JP4863358B2 (en) Train detection device and train detection system
JP2005238883A (en) Train detecting device
RU2328400C1 (en) Track circuit
US20110160942A1 (en) Signal system on railway vehicle, railway transportation system and railway vehicle
JP5545787B1 (en) Ground child
JP4828302B2 (en) Wheel detector
JPH092270A (en) Insulated track circuit
JP4555668B2 (en) Track circuit system
JP2009173214A (en) Ats signal receiving device
JP3850140B2 (en) Vehicle detection device
JP2009083782A (en) Frequency multiple resonance device, on-vehicle information transmission device, and on-ground information transmission device
JP2945361B2 (en) Non-insulated track circuit
JP5094774B2 (en) Train control ground device and train control system
JP2000289616A (en) System and method for detecting position of moving body
KR20070079759A (en) Data communication system using rail load
JPH0546542Y2 (en)
JP5521084B2 (en) On-vehicle signal system, vehicle traffic system, vehicle
JPS6021640A (en) Information transmitter
JPS6026749B2 (en) Signal power transmission and reception method for non-insulated track circuits
JPH0325187Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250