JP4590336B2 - Fuel gas purification equipment - Google Patents

Fuel gas purification equipment Download PDF

Info

Publication number
JP4590336B2
JP4590336B2 JP2005288730A JP2005288730A JP4590336B2 JP 4590336 B2 JP4590336 B2 JP 4590336B2 JP 2005288730 A JP2005288730 A JP 2005288730A JP 2005288730 A JP2005288730 A JP 2005288730A JP 4590336 B2 JP4590336 B2 JP 4590336B2
Authority
JP
Japan
Prior art keywords
absorbent
raw material
material gas
impurity
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005288730A
Other languages
Japanese (ja)
Other versions
JP2007099827A (en
Inventor
誠 小林
茂男 伊藤
哲正 山口
信 布川
広幸 秋保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005288730A priority Critical patent/JP4590336B2/en
Publication of JP2007099827A publication Critical patent/JP2007099827A/en
Application granted granted Critical
Publication of JP4590336B2 publication Critical patent/JP4590336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原料ガスから不純物を除去して燃料ガスとする燃料ガス精製設備に関する。   The present invention relates to a fuel gas purification facility that removes impurities from a raw material gas to obtain a fuel gas.

近年、資源の有効利用や廃棄物の減量化が求められており、バイオマスの部分燃焼ガスや廃棄物の部分燃焼ガスを燃料ガスとすることが考えられている。多様な燃料ガスには環境に影響を与える不純物が含まれているため、多成分の不純物を除去して品質を高めた燃料ガスを精製する技術が従来から提案されている(例えば、特許文献1、2参照)。   In recent years, there has been a demand for effective use of resources and reduction of waste, and it is considered to use biomass partial combustion gas and waste partial combustion gas as fuel gas. Since various fuel gases contain impurities that affect the environment, a technology for refining fuel gas with improved quality by removing multi-component impurities has been conventionally proposed (for example, Patent Document 1). 2).

例えば、特許文献1では、湿式のガス精製を用いて、還元性ガス中の不純物を除去する有機性廃棄物の資源化方法及び資源化装置が提案されている。即ち、特許文献1で開示された技術は、アルカリ洗浄液を用いたスクラバによる水溶性の酸性ガス及びダストの除去、CO転化装置(触媒反応器)によるCOのHへの変換、湿式脱硫装置によるHSやCOの除去、という工程を備えている。この技術では、廃棄物のガス化装置から、Hを含むアンモニア合成プロセス向けとしてアンモニア合成に適した組成の燃料ガスが得られる。 For example, Patent Document 1 proposes a method and apparatus for recycling organic waste that removes impurities in the reducing gas using wet gas purification. That is, the technique disclosed in Patent Document 1 is based on the removal of water-soluble acidic gas and dust by a scrubber using an alkaline cleaning liquid, the conversion of CO into H 2 by a CO conversion device (catalytic reactor), and the wet desulfurization device. A process of removing H 2 S and CO 2 is provided. In this technique, a fuel gas having a composition suitable for ammonia synthesis is obtained from a waste gasifier for an ammonia synthesis process containing H 2 .

また、特許文献2では、還元性ガス中の不純物を除去するガス精製方法及びガス精製設備が提案されている。即ち、特許文献2で開示された技術は、石炭ガス化ガスに含まれる塩化水素並びにアンモニアを、低温度における塩化アンモニウム精製反応によって固体として除去する技術である。この技術は、石炭ガス化ガスを燃料ガスとして適用できるようにしたものである。   Patent Document 2 proposes a gas purification method and gas purification equipment for removing impurities in the reducing gas. That is, the technique disclosed in Patent Document 2 is a technique for removing hydrogen chloride and ammonia contained in the coal gasification gas as solids by an ammonium chloride purification reaction at a low temperature. This technology makes it possible to apply coal gasification gas as fuel gas.

一方、大気に放出される排気ガスから環境に影響を与える多成分の不純物を除去する排ガス処理装置としては、例えば、ばいじん除去と不純物除去とを同時に行うことが明記された技術が(特許文献3、特許文献4、特許文献5)知られている。排ガス処理の分野は、特定の成分が環境に排出されないことが第1目的であるため、処理後のガスの品質である燃料ガス精製に関しては技術的な思想が相違する。   On the other hand, as an exhaust gas treatment apparatus that removes multi-component impurities that affect the environment from exhaust gas that is released into the atmosphere, for example, a technique that explicitly describes dust removal and impurity removal (Patent Document 3). Patent Document 4 and Patent Document 5) are known. In the field of exhaust gas treatment, since the first purpose is that specific components are not discharged into the environment, technical ideas differ with respect to fuel gas purification, which is the quality of the gas after treatment.

特開平10−236801号公報Japanese Patent Laid-Open No. 10-236801 特開平11−57402号公報JP-A-11-57402 特開2002−113311号公報JP 2002-13311 A 特開2002−210328号公報JP 2002-210328 A 特開2001−137663号公報JP 2001-137663 A

燃料ガスを精製する分野においては、環境に影響を与える不純物を除去した燃料ガスを得ることができるが、不純物除去剤の使用量や廃棄量を低減することや、可燃性の不純物を再利用すること、不純物除去剤に用いる資源を反復使用すること等、少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得ることに関しては、何ら考慮されていない。   In the field of refining fuel gas, it is possible to obtain a fuel gas from which impurities affecting the environment have been removed. However, it is possible to reduce the use and disposal amount of the impurity remover and to recycle combustible impurities. No consideration is given to obtaining a fuel gas from which impurities are removed to the maximum by using a small amount of impurity removing agent, such as repeatedly using resources used for the impurity removing agent.

本発明は上記状況に鑑みてなされたもので、少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得ることができる燃料ガス精製設備を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a fuel gas refining facility capable of obtaining a fuel gas from which impurities are removed to the maximum by using a small amount of impurity removing agent.

上記目的を達成するための請求項1に係る本発明の燃料ガス精製設備は、燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段とを備えたことを特徴とする。 In order to achieve the above object, the fuel gas purification facility of the present invention according to claim 1 absorbs the raw material gas obtained by the raw material gas supply means and the raw material gas supply means for obtaining the raw material gas by partially burning the fuel. The first impurity fixing means for fixing the pyrolyzable impurities of the raw material gas by blowing the adsorbent, and the thermal decomposable impurities fixed to the adsorbent by the first impurity fixing means are physically absorbed together with the adsorbent. The first physical removal means to be removed by simple filtration and the thermally decomposable impurities that have been absorbed and adsorbed by the absorbent / adsorbent and recovered by the first physical removal means are put together with the absorbent / adsorbent into the raw material gas supply means. Re-input means, second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means, and second impurity fixing means With absorbent A second physical removal means for removing the fixed hydrogen halide together with the absorbent by physical filtration; and a reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility. was it it said.

請求項1に係る本発明では、第1物理的除去手段で回収された熱分解性不純物を原料ガス供給手段に再投入して可燃性の不純物を再利用し、第2物理的除去手段で回収された吸収剤を再処理設備に搬送して不純物除去剤に用いる資源を反復使用できるようにし、不純物除去剤の使用量や廃棄量を低減して少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得る。 In the present invention according to claim 1, the thermally decomposable impurities recovered by the first physical removal means are reintroduced into the raw material gas supply means to recycle the combustible impurities, and recovered by the second physical removal means. The absorbed absorbent is transported to a reprocessing facility so that the resources used for the impurity remover can be used repeatedly, and the amount of impurities removed and the amount of waste are reduced. Obtain the removed fuel gas.

そして、請求項2に係る本発明の燃料ガス精製設備は、請求項1に記載の燃料ガス精製設備において、第2不純物固定手段で吹き込まれる吸収剤は、再処理手段で再処理された吸収剤であることを特徴とする。 The fuel gas purification facility of the present invention according to claim 2 is the fuel gas purification facility according to claim 1, wherein the absorbent that is blown by the second impurity fixing means is reprocessed by the reprocessing means. it characterized in that it is.

請求項2に係る本発明では、第2物理的除去手段で回収された不純物除去剤に用いる吸収剤を設備内で反復使用することができる。 In this invention which concerns on Claim 2, the absorber used for the impurity removal agent collect | recovered by the 2nd physical removal means can be repeatedly used in an installation.

また、請求項3に係る本発明の燃料ガス精製設備は、請求項1または2に記載の燃料ガス精製設備において、第2不純物固定手段に送られる原料ガスハロゲン濃度を検出する導出手段と、導出手段で検出されたハロゲン濃度の状況に応じて吸収剤の吹き込み量を調整する調整手段とを備えたことを特徴とする。 Further, the fuel gas purification facility of the present invention according to claim 3 is the fuel gas purification facility according to claim 1 or 2, wherein the fuel gas purification facility of the present invention is a derivation means for detecting the halogen concentration in the raw material gas sent to the second impurity fixing means. you characterized with an adjusting means for adjusting the blowing amount of the absorbent in accordance with the status of the detected halogen concentration in deriving means.

請求項3に係る本発明では、第2不純物固定手段に送られる原料ガスハロゲン濃度に応じて吸収剤の吹き込み量を適切に調整することができる。 With the present invention according to claim 3, it is possible to appropriately adjust the blowing amount of the absorbent in accordance with the halogen concentration in the raw material gas fed to the second impurity fixing means.

また、請求項4に係る本発明の燃料ガス精製設備は、請求項1〜3のいずれか一項に記載の燃料ガス精製設備において、第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段を備えたことを特徴とする。 Moreover, the fuel gas purification equipment of this invention which concerns on Claim 4 is a fuel gas purification equipment as described in any one of Claims 1-3 . The raw material from which the hydrogen halide was removed by the 2nd physical removal means gas is fed, you comprising the suction removal means having a solid adsorbent for adsorbing heavy metals in the feed gas.

請求項4に係る本発明では、原料ガス中の重金属を除去することができる。 In the present invention according to claim 4, heavy metals in the raw material gas can be removed.

また、請求項5に係る本発明の燃料ガス精製設備は、請求項1〜3のいずれか一項に記載の燃料ガス精製設備において、原料ガス供給手段に不純物除去剤を吹き込むことにより硫黄化合物をスラグと共に排出する炉内脱硫手段を備えたことを特徴とする。 Moreover, the fuel gas purification equipment of this invention which concerns on Claim 5 is a fuel gas purification equipment as described in any one of Claims 1-3. WHEREIN: A sulfur compound is injected by blowing an impurity removal agent in a raw material gas supply means. it comprising the furnace desulfurization means for discharging with the slag.

請求項5に係る本発明では、硫黄化合物をスラグと共に原料ガス供給手段から排出することができる。 In this invention which concerns on Claim 5, a sulfur compound can be discharged | emitted from a raw material gas supply means with slag.

また、請求項6に係る本発明の燃料ガス精製設備は、請求項1〜3のいずれか一項に記載の燃料ガス精製設備において、有機硫黄化合物を除去する硫黄転換手段を備えたことを特徴とする。 Moreover, the fuel gas purification equipment of this invention which concerns on Claim 6 was equipped with the sulfur conversion means which removes an organic sulfur compound in the fuel gas purification equipment as described in any one of Claims 1-3. It shall be the.

請求項6に係る本発明では、有機硫黄化合物を除去することができる。 In this invention which concerns on Claim 6, an organic sulfur compound can be removed.

また、請求項7に係る本発明の燃料ガス精製設備は、請求項1〜3のいずれか一項に記載の燃料ガス精製設備において、第2物理的除去手段でハロゲン化水素が除去された原料ガス中から、更にハロゲン化水素を精密除去する精密除去手段を備えたことを特徴とする。 The fuel gas purification facility of the present invention according to claim 7 is the fuel gas purification facility according to any one of claims 1 to 3 , wherein the hydrogen halide is removed by the second physical removal means. from the gas, you comprising the precision removal means for more precisely remove the hydrogen halide.

請求項7に係る本発明では、ハロゲン化水素を精密除去することができる。 In the present invention according to claim 7, hydrogen halide can be precisely removed.

上記目的を達成するための請求項8に係る本発明の燃料ガス精製設備は、燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、原料ガス供給手段に不純物除去剤を吹き込むことにより硫黄化合物をスラグと共に排出する炉内脱硫手段と、原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、再処理手段で再処理された吸収剤を第2不純物固定手段に吹き込むための系と、第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段とを備えたことを特徴とする。 In order to achieve the above object, the fuel gas purification facility of the present invention according to claim 8 comprises a raw material gas supply means for obtaining a raw material gas by partially burning fuel, and an impurity remover blown into the raw material gas supply means. In-furnace desulfurization means for discharging sulfur compounds together with slag, first impurity fixing means for fixing thermally decomposable impurities in the raw material gas by blowing absorption / adsorbent into the raw material gas obtained by the raw material gas supply means, A first physical removal means for removing thermally decomposable impurities fixed to the absorbent / adsorbent by one impurity fixing means by physical filtration together with the absorbent / adsorbent; and first absorbed and adsorbed by the absorbent / adsorbent Re-introducing means for introducing the thermally decomposable impurities recovered by the physical removing means into the raw material gas supply means together with the absorbent / adsorbent; and the absorbent for the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means Second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing, and second physical removal for removing hydrogen halide fixed to the absorbent by the second impurity fixing means together with the absorbent by physical filtration Means, a reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility, a system for blowing the absorbent reprocessed by the reprocessing means into the second impurity fixing means, raw material gas hydrogen halide is removed by the second physical removal means is sent, it characterized in that a suction removal means having a solid adsorbent for adsorbing heavy metals in the feed gas.

請求項8に係る本発明では、第1物理的除去手段で回収された熱分解性不純物を原料ガス供給手段に再投入して可燃性の不純物を再利用し、第2物理的除去手段で回収された吸収剤を再処理設備に搬送して不純物除去剤に用いる資源を設備内で反復使用できるようにし、原料ガス中の重金属を吸着除去手段で除去し、硫黄化合物を炉内脱硫手段でスラグと共に原料ガス供給手段から排出して、不純物除去剤の使用量や廃棄量を低減して少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得る。 In the present invention according to claim 8, the thermally decomposable impurities recovered by the first physical removal means are reintroduced into the raw material gas supply means to recycle the combustible impurities, and recovered by the second physical removal means. The absorbed absorbent is transported to the reprocessing facility so that the resources used for the impurity removal agent can be used repeatedly in the facility, heavy metals in the raw material gas are removed by adsorption removal means, and sulfur compounds are slag by furnace desulfurization means. At the same time, the fuel gas is discharged from the raw material gas supply means, and the amount of the impurity remover used and discarded is reduced to obtain a fuel gas from which impurities are removed to the maximum by using a small amount of impurity remover.

上記目的を達成するための請求項9に係る本発明の燃料ガス精製設備は、燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、再処理手段で再処理された吸収剤を第2不純物固定手段に吹き込むための系と、第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段と、吸着除去手段で重金属が除去された原料ガスが送られ、原料ガス中の有機硫黄化合物を除去する硫黄転換手段とを備えたことを特徴とする。 In order to achieve the above object, the fuel gas refining facility of the present invention according to claim 9 absorbs the raw material gas obtained by the raw material gas supply means obtained by the raw material gas supply means and the raw material gas supply means by partially burning the fuel. The first impurity fixing means for fixing the pyrolyzable impurities of the raw material gas by blowing the adsorbent, and the thermal decomposable impurities fixed to the adsorbent by the first impurity fixing means are physically absorbed together with the adsorbent. The first physical removal means to be removed by simple filtration and the thermally decomposable impurities absorbed and adsorbed by the absorption / adsorbent and recovered by the first physical removal means are put together with the absorption / adsorbent into the raw material gas supply means. Re-input means, second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means, and second impurity fixing means With absorbent A second physical removal means for removing the fixed hydrogen halide together with the absorbent by physical filtration; a reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility; A system for blowing the absorbent reprocessed by the processing means into the second impurity fixing means and a raw material gas from which hydrogen halide has been removed by the second physical removing means are sent to adsorb heavy metals in the raw material gas. a suction removal means having a solid adsorbent, material gas heavy metals have been removed is sent by the suction removal means, you comprising the sulfur conversion means for removing organic sulfur compounds in the feed gas.

請求項9に係る本発明では、第1物理的除去手段で回収された熱分解性不純物を原料ガス供給手段に再投入して可燃性の不純物を再利用し、第2物理的除去手段で回収された吸収剤を再処理設備に搬送して不純物除去剤に用いる資源を設備内で反復使用できるようにし、原料ガス中の重金属を除去し、有機硫黄化合物を除去して、不純物除去剤の使用量や廃棄量を低減して少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得る。 In the present invention according to claim 9, the thermally decomposable impurities recovered by the first physical removal means are reintroduced into the source gas supply means to recycle the combustible impurities and recovered by the second physical removal means. The used absorbent is transported to the reprocessing facility so that the resources used for the impurity remover can be used repeatedly in the facility, heavy metals in the raw material gas are removed, organic sulfur compounds are removed, and the use of the impurity remover The fuel gas from which impurities are removed to the maximum is obtained by reducing the amount and waste amount and using a small amount of impurity remover.

上記目的を達成するための請求項10に係る本発明の燃料ガス精製設備は、燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段と、吸着除去手段で重金属が除去された原料ガスが送られ、更にハロゲン化水素を精密除去する精密除去手段と、精密除去手段でハロゲン化水素が精密除去された原料ガスが送られ、原料ガス中の有機硫黄化合物を除去する硫黄転換手段と
を備えたことを特徴とする。
In order to achieve the above object, the fuel gas purification facility of the present invention according to claim 10 absorbs the raw material gas obtained by the raw material gas supply means and the raw material gas supply means for obtaining the raw material gas by partially burning the fuel. The first impurity fixing means for fixing the pyrolyzable impurities of the raw material gas by blowing the adsorbent, and the thermal decomposable impurities fixed to the adsorbent by the first impurity fixing means are physically absorbed together with the adsorbent. The first physical removal means to be removed by simple filtration and the thermally decomposable impurities absorbed and adsorbed by the absorption / adsorbent and recovered by the first physical removal means are put together with the absorption / adsorbent into the raw material gas supply means. Re-input means, second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means, and second impurity fixing means Absorbed by A second physical removal means for removing the hydrogen halide fixed to the absorbent together with an absorbent by physical filtration; a reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility; The raw material gas from which hydrogen halide has been removed by the second physical removal means is sent, and the adsorption gas removing means having a solid adsorbent that adsorbs the heavy metal in the raw material gas, and the raw material gas from which the heavy metal has been removed by the adsorption removal means A precise removal means for precisely removing hydrogen halide, and a sulfur conversion means for removing the raw material gas from which the hydrogen halide has been precisely removed by the precise removal means and removing organic sulfur compounds in the raw material gas. was it it said.

請求項10に係る本発明では、第1物理的除去手段で回収された熱分解性不純物を原料ガス供給手段に再投入して可燃性の不純物を再利用し、第2物理的除去手段で回収された吸収剤を再処理設備に搬送して不純物除去剤に用いる資源を設備内で反復使用できるようにし、原料ガス中の重金属を除去し、ハロゲン化水素を精密除去し、有機硫黄化合物を除去して、不純物除去剤の使用量や廃棄量を低減して少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得る。 In the present invention according to claim 10, the thermally decomposable impurities recovered by the first physical removal means are reintroduced into the raw material gas supply means to recycle the combustible impurities, and recovered by the second physical removal means. The absorbed absorbent is transported to the reprocessing facility so that the resources used for the impurity removal agent can be used repeatedly in the facility, heavy metals in the raw material gas are removed, hydrogen halide is precisely removed, and organic sulfur compounds are removed. Thus, a fuel gas from which impurities are removed to the maximum is obtained by using a small amount of the impurity removing agent by reducing the amount of the impurity removing agent used or discarded.

そして、請求項11に係る本発明の燃料ガス精製設備は、請求項1〜10のいずれか一項に記載の燃料ガス精製設備において、原料ガス供給手段は、バイオマス・廃棄物を部分燃焼して原料ガスを得るバイオマス/廃棄物ガス化炉であることを特徴とする。 The fuel gas purification facility of the present invention according to claim 11 is the fuel gas purification facility according to any one of claims 1 to 10, wherein the raw material gas supply means partially burns biomass / waste. it is the biomass / waste gasifier to obtain a raw material gas you characterized.

請求項11に係る本発明では、バイオマス・廃棄物を部分燃焼して得られた原料ガスから燃料ガスを精製することができる。 In this invention which concerns on Claim 11, fuel gas can be refine | purified from the raw material gas obtained by carrying out partial combustion of biomass and a waste material.

また、請求項12に係る本発明の燃料ガス精製設備は、請求項1〜11のいずれか一項に記載の燃料ガス精製設備において、第1不純物固定手段で吸収・吸着剤に吸収・吸着される熱分解性不純物は、炭化水素類、炭素系不純物、有機塩素化合物、塩基性ガスの少なくともいずれかであることを特徴とする。 The fuel gas purification facility of the present invention according to claim 12 is the fuel gas purification facility according to any one of claims 1 to 11, wherein the fuel gas purification facility is absorbed and adsorbed by the first impurity fixing means on the absorbent / adsorbent. that thermally decomposable impurities, hydrocarbons, you wherein the carbon impurities, organic chlorine compounds, is at least one of the basic gas.

請求項12に係る本発明では、炭化水素類、炭素系不純物、有機塩素化合物、塩基性ガスの少なくともいずれかを原料ガス供給手段に再投入して可燃性の不純物を再利用することができる。 In the present invention according to claim 12, at least one of hydrocarbons, carbon-based impurities, organochlorine compounds, and basic gases can be re-introduced into the raw material gas supply means, and the combustible impurities can be reused.

本発明の燃料ガス精製設備は、少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得ることができる燃料ガス精製設備とすることが可能となる。   The fuel gas purification facility of the present invention can be a fuel gas purification facility capable of obtaining a fuel gas from which impurities are removed to the maximum by using a small amount of impurity removing agent.

図1には各リサイクル技術に適した除去対象不純物と不純物除去剤の組み合わせの関係の表、図2乃至図4には本発明の実施形態例に係る燃料ガス精製設備の概略系統を示してある。   FIG. 1 is a table showing the relationship between the removal target impurities and the impurity removal agent suitable for each recycling technology, and FIGS. 2 to 4 show a schematic system of a fuel gas purification facility according to an embodiment of the present invention. .

本発明の燃料ガス精製設備の特徴は、リサイクル型のガス精製設備である。即ち、不純物を除去するだけではなく、不純物除去剤の使用量や廃棄量を低減(reduce)すること、可燃性不純物を燃料として再利用(reuse)すること、不純物除去剤に用いる資源を反復使用(recycle)することを含むリサイクル技術を適用したガス精製設備である。   A feature of the fuel gas purification facility of the present invention is a recycle type gas purification facility. That is, not only removing impurities, but also reducing the amount of waste and removal of impurities remover, reusing flammable impurities as fuel, and repeatedly using resources for impurity remover This is a gas refining facility to which recycling technology including recycling is applied.

上記リサイクル型のガス精製設備を実現するために,除去対象の不純物を除去する手段を以下の観点から区分することによって、リサイクル技術に適した除去プロセスを構築している。   In order to realize the above-mentioned recycling-type gas purification equipment, a removal process suitable for recycling technology is constructed by classifying means for removing impurities to be removed from the following viewpoints.

非分離除去:同時に除去される他の不純物と混合しても、再利用・反復使用・廃棄処理できる物で、単独での回収の必要がない不純物の除去手段。   Non-separation removal: A means of removing impurities that can be reused, reused, or disposed of even when mixed with other impurities that are removed at the same time and does not need to be recovered alone.

分離除去:再利用・反復使用・廃棄処理のため,他の不純物と区分して単独で回収しなければならない不純物を含む場合の除去手段。   Separation / removal: A means for removing impurities that must be recovered separately from other impurities for reuse, repeated use, and disposal.

除去した不純物あるいは不純物除去剤のリサイクル技術
燃料熱分解サイクル(燃料成分の再利用:reuse):不純物に含まれる未燃成分や可燃性の使用済み不純物除去剤を原料ガス供給装置に再投入して,燃料の利用率を向上させている。
Recycling technology for removed impurities or impurity removers Fuel pyrolysis cycle (reuse of fuel components: reuse): Re-injecting unburned components contained in impurities and flammable spent impurity removers into the raw material gas supply device , The fuel utilization rate is improved.

熱分解性不純物サイクル(不純物除去剤の廃棄量低減:reduce):捕集した不純物を含む不純物除去剤を原料ガス供給装置に再供給して、不純物除去剤や不純物そのものを熱分解(無害化)することによって使用済み不純物除去剤の廃棄量の低減や不純物処理費用の削減を図っている。   Thermally decomposable impurity cycle (reduction of the amount of impurities removed: reduction): Impurity remover containing the collected impurities is re-supplied to the raw material gas supply device, and the impurity remover and impurities themselves are thermally decomposed (detoxified) By doing so, the amount of used impurity remover discarded is reduced and the cost of impurity treatment is reduced.

不純物除去剤リサイクル(不純物除去剤の反復使用:recycle):使用済みの不純物除去剤を回収して,再生することにより,吸収剤の原料をリサイクルして,吸収剤コストの低減並びに資源の有効利用を図っている。   Impurity remover recycling (repeated use of impurity remover: recycle): By collecting and recycling used impurity remover, the raw material of the absorbent is recycled to reduce the cost of the absorbent and effectively use resources. I am trying.

不純物除去剤有効利用(不純物除去剤の使用量低減:reduce):不純物の種類や負荷に応じて,適切な不純物除去剤を適量供給することによって,不純物除去剤の有効利用と使用量の低減を図ると共に,使用済み不純物除去剤などの廃棄物の発生量を抑え環境負荷の低減を図っている。   Effective use of impurity remover (reduction of use amount of impurity remover: reduce): By supplying an appropriate amount of appropriate impurity remover according to the type and load of impurities, effective use of impurity remover and reduction of use amount At the same time, the amount of waste such as used impurities remover is reduced to reduce the environmental burden.

図1に基づいて除去対象不純物と不純物除去剤の組み合わせについて説明する。   The combination of the impurity to be removed and the impurity remover will be described with reference to FIG.

不純物除去剤のリサイクル技術を適用するための除去対象不純物と不純物除去剤の具体的な組み合わせの例を図1に示してある。図1には各リサイクル技術に適した除去対象不純物と不純物除去剤の組み合わせの関係の表を示してある。   An example of a specific combination of an impurity to be removed and an impurity removing agent for applying the recycling technique of the impurity removing agent is shown in FIG. FIG. 1 shows a table showing a relationship between combinations of impurities to be removed and impurity removal agents suitable for each recycling technique.

(1)燃料熱分解サイクルは、燃料成分の再利用を企図したもので、不純物と不純物除去材を分離しない非分離除去とされる。除去対象は炭化水素類(Tar)、炭素系固体不純物(Char)であり、不純物除去剤(吸収剤、吸着剤)は不燃性吸収剤(無機多孔体)や可燃性吸着剤(活性炭粉末)が使用される。   (1) The fuel pyrolysis cycle is intended for reuse of fuel components, and is non-separation removal that does not separate impurities and impurity removal materials. Removal targets are hydrocarbons (Tar) and carbon-based solid impurities (Char). Impurity removal agents (absorbents and adsorbents) are nonflammable absorbents (inorganic porous materials) and combustible adsorbents (activated carbon powder). used.

(2)熱分解性不純物サイクルは、不純物除去剤の廃棄量低減を企図したもので、不純物と不純物除去材を分離しない非分離除去とされる。除去対象は有機塩素化合物(DXN)、塩基性ガス(NH)であり、不純物除去剤(吸収剤、吸着剤)は不燃性吸着剤(無機多孔体)や不燃性吸着剤が使用される。 (2) The thermal decomposable impurity cycle is intended to reduce the waste amount of the impurity remover, and is non-separation removal that does not separate the impurity and the impurity removal material. The removal target is an organic chlorine compound (DXN) and a basic gas (NH 3 ), and an incombustible adsorbent (inorganic porous material) or an incombustible adsorbent is used as the impurity remover (absorbent or adsorbent).

(3)不純物除去剤リサイクルは、不純物除去剤(吸収剤)の反復使用を企図したもので、不純物と不純物除去剤を分離する分離除去とされ、分離された不純物除去剤をリサイクルする。除去対象はハロゲン化水素(HCl、HF)であり、吸収剤(Na系)が吹き込まれる。   (3) Impurity remover recycling is intended for repeated use of an impurity remover (absorbent). The impurity remover is separated and removed to separate the impurity and the impurity remover, and the separated impurity remover is recycled. The removal target is hydrogen halide (HCl, HF), and an absorbent (Na-based) is blown.

(4)不純物除去剤有効利用は、不純物除去剤(吸収剤)の使用量の低減を企図したもので、不純物と不純物除去剤を分離する分離除去とされ、分離された不純物除去剤をリサイクルする。除去対象はハロゲン化水素(HCl、HF)であり、吸収剤(Na系またはCa系)が吹き込まれる。   (4) Effective use of the impurity remover is intended to reduce the amount of the impurity remover (absorbent) used. The impurity remover is separated and removed to separate the impurity remover, and the separated impurity remover is recycled. . The removal target is hydrogen halide (HCl, HF), and an absorbent (Na-based or Ca-based) is blown.

(5)不純物除去剤有効利用は、不純物除去剤(吸収剤)のコスト低減を企図したもので、不純物と不純物除去剤を分離する分離除去とされ、分離された不純物除去剤をリサイクルする。除去対象はハロゲン化水素(HCl、HF)であり、吸収剤(Na系とCa系)及び成形吸収剤(Na系)が併用されて吹き込まれる。   (5) The effective use of the impurity remover is intended to reduce the cost of the impurity remover (absorbent). The impurity remover is separated and removed to separate the impurity and the impurity remover, and the separated impurity remover is recycled. The removal target is hydrogen halide (HCl, HF), and an absorbent (Na-based and Ca-based) and a molded absorbent (Na-based) are used in combination.

(6)重金属類の分離除去は、不純物除去剤の廃棄費用低減を企図したものであり、固定床型の手段が適用される。除去対象は重金属(Hg)であり、除去剤として固体吸着剤(添着活性炭)が使用される。   (6) The separation and removal of heavy metals is intended to reduce the disposal cost of the impurity remover, and fixed bed type means are applied. The object to be removed is heavy metal (Hg), and a solid adsorbent (impregnated activated carbon) is used as a remover.

本発明のガス精製設備の第1実施形態例を説明する。   A first embodiment of the gas purification facility of the present invention will be described.

図2には本発明の第1実施形態例に係るガス精製設備の概略系統を示してある。第1実施形態例は、原料ガス供給手段としてのバイオマス/廃棄物ガス化炉1から得られる燃料ガスをガスエンジン2に供給するためのガス精製設備の例である。   FIG. 2 shows a schematic system of a gas purification facility according to the first embodiment of the present invention. The first embodiment is an example of a gas purification facility for supplying fuel gas obtained from a biomass / waste gasification furnace 1 as a raw material gas supply means to a gas engine 2.

本実施形態例の特徴は、ばいじん除去装置を核にした多種の不純物を同時に除去する技術と、リサイクル技術を組み合わせて、リサイクル型のガス精製設備を構築している点にある。   A feature of the present embodiment is that a recycling type gas purification facility is constructed by combining a technology for simultaneously removing various impurities with a dust removing device as a core and a recycling technology.

この特徴は,ばいじん除去装置として一般に使用されている濾過装置(バグフィルターやセラミックフィルター)に各種不純物除去剤を吹き込んで多種の可燃性あるいは熱分解性の不純物を分離せずに除去し、バイオマス/廃棄物ガス化炉1に再投入することや、後流に別体の除去装置を設けて不純物除去剤のリサイクルを図ることで達成される。   This feature is achieved by removing various flammable or pyrolyzable impurities without separating them by blowing various impurity removers into filtration devices (bag filters and ceramic filters) that are generally used as dust removal devices. This can be achieved by re-introducing the waste gasifier 1 or by providing a separate removal device in the downstream to recycle the impurity remover.

また、本実施形態例は、原料ガスを製造する多様な原料に由来する多成分の不純物を一括して除去できることにも特徴がある。即ち、以下に列記する不純物を一括して除去することが出来ることも特徴となっている。
(a)ハロゲン化物、硫黄化合物等の酸性ガス
(b)アンモニア等の塩基性ガス
(c)ダスト、吹き込み吸収剤等の固体状不純物
(d)水銀等の重金属単体や重金属を含むガス状化合物等の重金属類
(e)ダイオキシン類等の有機塩素化合物
(f)アルカリ金属やアルカリ土類金属等の揮発性の軽金属類
(g)タール、芳香族炭化水素等の不飽和炭化水素
The present embodiment is also characterized in that multi-component impurities derived from various raw materials for producing the raw material gas can be removed at once. In other words, the impurities listed below can be removed at once.
(a) Acid gases such as halides and sulfur compounds
(b) Basic gas such as ammonia
(c) Solid impurities such as dust and blown absorbent
(d) Heavy metals such as heavy metals such as mercury and gaseous compounds containing heavy metals
(e) Organochlorine compounds such as dioxins
(f) Volatile light metals such as alkali metals and alkaline earth metals
(g) Unsaturated hydrocarbons such as tar and aromatic hydrocarbons

この特徴は,濾過装置に吹き込む不純物除去剤の種類や量を調整する方法と、濾過装置の後流に組み合わせる各種不純物除去装置との組み合わせで実現される。   This feature is realized by a combination of a method for adjusting the type and amount of the impurity removing agent blown into the filtration device and various impurity removal devices combined in the downstream of the filtration device.

以下、図2に基づいて第1実施形態例を具体的に説明する。尚、図2には前述した図1におけるリサイクル技術における括弧の番号を対応させて付してある。   The first embodiment will be specifically described below with reference to FIG. In FIG. 2, parenthesized numbers in the recycling technique in FIG. 1 described above are associated with each other.

図に示すように、バイオマス・廃棄物を燃料として燃料を部分燃焼することで原料ガスを得る原料ガス供給手段としてのバイオマス/廃棄物ガス化炉1が備えられている。バイオマス/廃棄物ガス化炉1で得られる原料ガスとしては、例えば、HCl+HFが500ppmv、HS+COSが500ppmv、ダスト(Ash)+炭素系不純物(Char)が1g/mN、炭化水素類(Tar)が100mg/mN、有機塩素化合物(DXN)が10ngTEQ/mN、重金属(Hg)が100μg/mN、塩基性ガス(NH)が1000ppmv含まれている。 As shown in the figure, a biomass / waste gasifier 1 is provided as a raw material gas supply means for obtaining raw material gas by partially burning fuel using biomass and waste as fuel. As the raw material gas obtained in the biomass / waste gasifier 1, for example, HCl + HF is 500 ppmv, H 2 S + COS is 500 ppmv, dust (Ash) + carbon impurities (Char) is 1 g / m 3 N, hydrocarbons ( Tar) is 100 mg / m 3 N, organochlorine compound (DXN) is 10 ng TEQ / m 3 N, heavy metal (Hg) is 100 μg / m 3 N, and basic gas (NH 3 ) is 1000 ppmv.

バイオマス/廃棄物ガス化炉1には炉内脱硫手段3が備えられ、不純物除去剤が吹き込まれることにより硫黄化合物(HS,COS)がスラグと共に排出される。バイオマス/廃棄物ガス化炉1で得られた原料ガスは第1不純物固定手段4に送られ、第1不純物固定手段4には活性炭粉末、無機多孔体(吸着剤、吸収剤)が吹き込まれる。第1不純物固定手段4では熱分解性不純物であるAsh、Char、Tar、DXN、NHが固定される。 The biomass / waste gasification furnace 1 is provided with an in-furnace desulfurization means 3, and sulfur compounds (H 2 S, COS) are discharged together with slag by blowing an impurity removing agent. The raw material gas obtained in the biomass / waste gasifier 1 is sent to the first impurity fixing means 4, and activated carbon powder and inorganic porous material (adsorbent, absorbent) are blown into the first impurity fixing means 4. In the first impurity fixing means 4, Ash, Char, Tar, DXN, and NH 3 that are thermally decomposable impurities are fixed.

第1不純物固定手段4の後流には第1物理的除去手段5が備えられ、第1不純物固定手段4で吸収・吸着剤に固定されたAsh、Char、Tar、DXN、NHが第1物理的除去手段5で吸収・吸着剤と共に物理的な濾過によって除去される。第1物理的除去手段5で吸収・吸着剤と共に回収されたAsh、Char、Tar、DXN、NHは、再投入手段としての循環経路6により吸収・吸着剤と共にバイオマス/廃棄物ガス化炉1に循環され(再投入手段)、燃料成分が再度部分燃焼されると共に不純物除去剤の廃棄量が減らされる。 A first physical removal means 5 is provided downstream of the first impurity fixing means 4, and Ash, Char, Tar, DXN, NH 3 fixed to the absorbent / adsorbent by the first impurity fixing means 4 are the first. It is removed by physical filtration together with the absorbent / adsorbent by the physical removing means 5. The Ash, Char, Tar, DXN, and NH 3 recovered together with the absorbent / adsorbent by the first physical removing means 5 are combined with the absorbent / adsorbent in the biomass / waste gasifier 1 through the circulation path 6 as the re-input means. The fuel component is partially burned again, and the waste amount of the impurity remover is reduced.

熱分解性不純物(Ash、Char、Tar、DXN、NH)が第1物理的除去手段5で除去された原料ガスは第2不純物固定手段7に送られる。第2不純物固定手段7には吸収剤であるNa系の吹き込み吸収剤、Ca系の吹き込み吸収剤、またはNa系とCa系の吹き込み吸収剤の混合物が吹き込まれ、ハロゲン化水素(HCl、HF)が吸収される。第2不純物固定手段7でHCl、HFが吸収された吸収剤は第2物理的除去手段8に送られ、HCl、HFが吸収された吸収剤が物理的な濾過によって除去される。 The source gas from which the thermally decomposable impurities (Ash, Char, Tar, DXN, NH 3 ) have been removed by the first physical removing means 5 is sent to the second impurity fixing means 7. The second impurity fixing means 7 is injected with Na-based blowing absorbent, which is an absorbent, Ca-based blowing absorbent, or a mixture of Na-based and Ca-based blowing absorbent, and hydrogen halide (HCl, HF). Is absorbed. The absorbent in which HCl and HF have been absorbed by the second impurity fixing means 7 is sent to the second physical removal means 8, and the absorbent in which HCl and HF have been absorbed is removed by physical filtration.

第2物理的除去手段8で回収された吸収剤は再処理手段11により図示しない再処理設備に搬送され、再処理された吸収剤は再投入系12により第2不純物固定手段7を介して第2物理的除去手段8に吹き込まれる。つまり、不純物除去剤の反復使用が可能になり、不純物除去剤の使用量を低減することが可能になり、不純物除去剤のコスト低減が可能になる。   The absorbent recovered by the second physical removal means 8 is transported to a reprocessing facility (not shown) by the reprocessing means 11, and the reprocessed absorbent is passed through the second impurity fixing means 7 by the recharging system 12. 2 Blow into the physical removal means 8. That is, the impurity remover can be used repeatedly, the amount of the impurity remover used can be reduced, and the cost of the impurity remover can be reduced.

尚、第2物理的除去手段8に送られる原料ガス中のハロゲン濃度を検出し(導出し)、検出結果に基づいて吸収剤の吹き込み量を調整することも可能である。これにより、更に吸収剤を的確に使用することができ、使用量低減、コスト低減を図ることが可能になる。原料ガス中のハロゲン濃度があらかじめ判っている場合には、一定量の吸収剤を吹き込むことが出来る。いずれの場合にも、濾過材に堆積する吹き込み吸収剤を払い落とすための逆洗を行うために、第1物理的除去手段5の出入口の圧力差を検出して最適な時期を決定する。   It is also possible to detect (derived) the halogen concentration in the raw material gas sent to the second physical removal means 8 and adjust the amount of the absorbent blown based on the detection result. As a result, the absorbent can be used more accurately, and the amount of use and cost can be reduced. When the halogen concentration in the source gas is known in advance, a certain amount of absorbent can be blown. In any case, in order to perform backwashing for removing the blown absorbent deposited on the filter medium, the optimum timing is determined by detecting the pressure difference at the inlet / outlet of the first physical removal means 5.

第2物理的除去手段8でHCl、HFが除去された原料ガスは吸着除去手段13に送られ、固体吸着剤である添着活性炭に重金属(Hg)が吸着されて除去される。吸着除去手段13でHgが除去された原料ガスは燃料ガスとされてガスエンジン2に供給される。   The raw material gas from which HCl and HF have been removed by the second physical removal means 8 is sent to the adsorption removal means 13 where heavy metal (Hg) is adsorbed and removed by the impregnated activated carbon that is a solid adsorbent. The raw material gas from which Hg has been removed by the adsorption removing means 13 is made into a fuel gas and supplied to the gas engine 2.

従って、Tarタール(Tar:炭化水素類)やチャー(Char:炭素系不純物)のような可燃性不純物と、ダイオキシン類(DXN:有機塩素化合物)やアンモニア(NH:塩基性ガス)のような熱分解性不純物は、第1不純物固定手段4において不純物除去剤(活性炭等)によって固定され、第1物理的除去手段5(バグフィルター)で除去された後にバイオマス/廃棄物ガス化炉1に戻される。これにより、タールやチャーの様な可燃性不純物を燃料として用いることができるため、燃料熱分解サイクルによる燃料成分の再利用が達成される。 Therefore, combustible impurities such as Tar tar (Tar: hydrocarbons) and char (Char: carbon impurities), and dioxins (DXN: organochlorine compounds) and ammonia (NH 3 : basic gas) The thermally decomposable impurities are fixed in the first impurity fixing means 4 by an impurity removing agent (activated carbon or the like), removed by the first physical removing means 5 (bag filter), and then returned to the biomass / waste gasifier 1. It is. As a result, combustible impurities such as tar and char can be used as the fuel, so that the reuse of fuel components by the fuel pyrolysis cycle is achieved.

また、ダイオキシン類の様な熱分解性不純物を、不純物除去剤によって固定化した後にバイオマス/廃棄物ガス化炉1で熱分解処理できる。あわせて除去剤として用いた活性炭はバイオマス/廃棄物ガス化炉1の燃料として使用できる。除去した灰分もバイオマス/廃棄物ガス化炉1にリサイクルすることで、灰をスラグとして排出できるので、排出される灰分を減容できる。   Further, a pyrolyzable impurity such as dioxins can be pyrolyzed in the biomass / waste gasifier 1 after being immobilized with an impurity remover. In addition, the activated carbon used as a removing agent can be used as a fuel for the biomass / waste gasifier 1. By recycling the removed ash to the biomass / waste gasifier 1, the ash can be discharged as slag, so that the volume of discharged ash can be reduced.

上述した燃料ガス精製設備では、次に示す利点がある。即ち、通常の活性炭によるダイオキシン類の除去では、ダイオキシン類を含む多量の活性炭が廃棄物となるため,その処理コストが膨大となり、活性炭は何ら有効利用の路が無いまま処理されるため、環境対策が新たな廃棄物を生成してしまう難点があった。上述した燃料ガス精製設備を用いることで、ダイオキシン類を含む廃棄物の低減(reduce)と不純物除去剤の燃料利用(reuse)が同時に達成される。   The fuel gas purification facility described above has the following advantages. In other words, in the removal of dioxins with ordinary activated carbon, since a large amount of activated carbon containing dioxins becomes waste, the treatment cost becomes enormous, and the activated carbon is treated without any effective use. However, there was a difficulty in generating new waste. By using the above-described fuel gas purification equipment, reduction of waste containing dioxins and reuse of impurities remover can be achieved at the same time.

また、上述した燃料ガス精製設備では、濾過装置として、第1物理的除去手段5と第2物理的除去手段8との2系統に分かれており、第1物理的除去手段5の系統では上述の熱分解性不純物サイクルを達成する可燃性不純物や熱分解性不純物の除去が行われる。第1物理的除去手段5を通過した原料ガスには、バイオマス/廃棄物ガス化炉1に投入する燃料から生成する硫黄化合物並びにハロゲン化物、ダイオキシン類の熱分解性不純物サイクルによって生成するハロゲン化物が含まれる。   In the fuel gas purification facility described above, the filtration device is divided into two systems of the first physical removal means 5 and the second physical removal means 8, and the system of the first physical removal means 5 is the above-described system. Removal of flammable impurities and thermally decomposable impurities to achieve a thermally decomposable impurity cycle is performed. The raw material gas that has passed through the first physical removal means 5 includes sulfur compounds generated from the fuel introduced into the biomass / waste gasification furnace 1, halides, and halides generated by the pyrolyzable impurity cycle of dioxins. included.

また、硫黄化合物の除去に関しては,バイオマス/廃棄物ガス化炉1内にカルシウム系の不純物除去剤を吹き込み固定化することによって、バイオマス/廃棄物ガス化炉1からスラグと共に排出する方式でガスエンジン2に問題を生じないレベルまで除去する。   Also, regarding the removal of sulfur compounds, a gas engine is discharged from the biomass / waste gasifier 1 together with slag by blowing and fixing a calcium-based impurity remover into the biomass / waste gasifier 1. 2 to a level that does not cause a problem.

それらのハロゲン化物(酸性ガス)は、不純物除去剤を吹き込んで固定化した後に、第2物理的除去手段8の第2の系統で分離して原料ガスから取り除く。ハロゲン化水素を固定化した不純物除去剤は、回収して工場にて処理して不純物除去剤として再生して反復利用する。これにより、不純物除去剤の一部が再利用されるため、吸収剤リサイクルによる不純物除去剤の反復利用が達成される。   These halides (acid gases) are fixed by blowing an impurity removing agent, and then separated by the second system of the second physical removal means 8 and removed from the source gas. The impurity removing agent in which hydrogen halide is immobilized is recovered, treated at a factory, regenerated as an impurity removing agent, and repeatedly used. As a result, a part of the impurity removing agent is reused, so that repeated use of the impurity removing agent by recycling the absorbent is achieved.

上述した燃料ガス精製設備では、更に、以下に示す利点がある。即ち、従来技術のカルシウム系不純物除去剤(消石灰)の吹き込みによるハロゲン化物の除去法では、ハロゲン化水素を50ppm程度までしか低減できず、5ppm以下の低濃度を要求するMCFC等の用途には適用できなかった。ハロゲン化物を5ppmまで除去するためにはナトリウム系の高価な吸収剤を固定床に充填した別体の除去装置で低減する必要があった。これに対して,本実施形態例の設備では、ナトリウム系の吸収剤を吹き込む方式でありながら、5ppm程度の濃度までハロゲン化物を低減可能であると共に、高価な吸収剤の一部をリサイクルして反復利用できるメリットがある。固定床方式の吸収剤でもバッチ式に交換すれば吸収剤の一部を反復利用することはできるが、固定床出口側の吸収剤は未使用のままリサイクルされるので吸収剤の無駄が多い。本実施形態例の設備であれば、常に使用済みの吸収剤をリサイクルできるので、吸収剤の有効利用が可能である。   The fuel gas purification facility described above has the following advantages. In other words, the halide removal method by blowing the calcium-based impurity remover (slaked lime) of the prior art can reduce hydrogen halide only to about 50 ppm, and is applicable to applications such as MCFC requiring a low concentration of 5 ppm or less. could not. In order to remove the halide to 5 ppm, it was necessary to reduce it with a separate removal device in which a fixed sodium bed was filled with an expensive sodium-based absorbent. On the other hand, in the facility of the present embodiment, the halide can be reduced to a concentration of about 5 ppm while a sodium-based absorbent is blown, and a part of the expensive absorbent is recycled. There is a merit that can be used repeatedly. Even if the fixed bed type absorbent is replaced with a batch type, a part of the absorbent can be reused, but the absorbent on the fixed bed outlet side is recycled without being used, so there is a lot of waste of the absorbent. If it is the installation of this embodiment, since the used absorbent can always be recycled, the absorbent can be effectively used.

また、本実施形態例の設備では、水銀は他の不純物と分離して除去している。これにより、捕集した水銀を含む不純物除去剤の量を可能な限り削減し、その処理コストの低減を図ることができる。   Further, in the facility of this embodiment, mercury is separated and removed from other impurities. Thereby, the quantity of the impurity removal agent containing the collected mercury can be reduced as much as possible, and the processing cost can be reduced.

次に、図3に基づいて第2実施形態例を具体的に説明する。尚、図2に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   Next, the second embodiment will be specifically described with reference to FIG. In addition, the same code | symbol is attached | subjected to the member same as the member shown in FIG. 2, and the overlapping description is abbreviate | omitted.

図3に示した燃料ガス精製設備は、MCFC向けのリサイクル型の燃料ガス精製設備であり、バイオマス/廃棄物ガス化炉1から得られる燃料ガスをMCFC21に供給するための燃料ガス精製設備の例である。   The fuel gas purification facility shown in FIG. 3 is a recycle type fuel gas purification facility for MCFC, and an example of a fuel gas purification facility for supplying the fuel gas obtained from the biomass / waste gasification furnace 1 to the MCFC 21. It is.

図に示すように、硫黄化合物の確実な除去を行うため、吸着除去手段13の後流には、不純物除去剤の吹き込み方式ではなく、固定床方式の脱硫装置(変換脱硫装置)が設置されている。つまり、硫化カルボニル(COS)などの有機硫黄化合物を除去するため、上流に触媒を設置してCOSをHSに転換する硫黄転換手段31を備え、転換されたHSを脱硫する脱硫手段32を備えている。脱硫手段32で有機硫黄化合物も含めた硫黄化合物全般が除去された原料ガスは燃料ガスとしてMCFC21に供給される。 As shown in the figure, in order to reliably remove sulfur compounds, a fixed bed type desulfurization apparatus (conversion desulfurization apparatus) is installed in the downstream of the adsorption removing means 13 instead of the impurity removing agent blowing method. Yes. In other words, in order to remove organic sulfur compounds such as carbonyl sulfide (COS), a desulfurization means is provided which includes a sulfur conversion means 31 for converting a COS to H 2 S by installing a catalyst upstream, and desulfurizing the converted H 2 S. 32. The raw material gas from which all sulfur compounds including organic sulfur compounds are removed by the desulfurization means 32 is supplied to the MCFC 21 as fuel gas.

第2実施形態例の燃料ガス精製設備では、以下の利点がある。即ち、一般的なカルシウム系不純物除去剤(消石灰)の吹き込みによる除去法では,ハロゲン化水素を50ppm程度までしか低減できず、5ppm以下の低濃度を要求するMCFC等の用途には適用できなかった。ハロゲン化物を5ppmまで除去するためには、ナトリウム系の高価な吸収剤を固定床に充填した別体の除去装置で低減する必要があった。これに対して、本実施形態例の設備では、ナトリウム系の吸収剤を吹き込む方式でありながら、5ppm程度の濃度までハロゲン化物を低減可能であると共に,高価な吸収剤の一部をリサイクルして反復利用できるメリットがある。固定床方式の吸収剤でもバッチ式に交換すれば吸収剤の一部を反復利用することはできるが、固定床出口側の吸収剤は未使用のままリサイクルされるので吸収剤の無駄が多い。本実施形態例の設備であれば、常に使用済みの吸収剤をリサイクルできるので、吸収剤の有効利用が可能である。   The fuel gas purification facility of the second embodiment has the following advantages. That is, the removal method by blowing a general calcium-based impurity removing agent (slaked lime) can reduce hydrogen halide only to about 50 ppm, and cannot be applied to applications such as MCFC requiring a low concentration of 5 ppm or less. . In order to remove the halide to 5 ppm, it was necessary to reduce it with a separate removing device in which a fixed sodium bed was filled with an expensive sodium-based absorbent. On the other hand, in the equipment of this embodiment, while a sodium-based absorbent is blown, halide can be reduced to a concentration of about 5 ppm and a part of the expensive absorbent is recycled. There is a merit that can be used repeatedly. Even if the fixed bed type absorbent is replaced with a batch type, a part of the absorbent can be reused, but the absorbent on the fixed bed outlet side is recycled without being used, so there is a lot of waste of the absorbent. If it is the installation of this embodiment, since the used absorbent can always be recycled, the absorbent can be effectively used.

次に、図4に基づいて第3実施形態例を具体的に説明する。尚、図2、図3に示した部材と同一部材には同一符号を付して重複する説明は省略してある。   Next, the third embodiment will be specifically described with reference to FIG. The same members as those shown in FIGS. 2 and 3 are denoted by the same reference numerals, and redundant description is omitted.

図4に示した燃料ガス精製設備は、MCFC向けのリサイクル型の燃料ガス精製設備の別の例であり、図3に示した設備と同様に、バイオマス/廃棄物ガス化炉1から得られる燃料ガスをMCFC21に供給するための燃料ガス精製設備の例であり、吹き込み不純物除去剤と固定床不純物除去剤の併用による不純物除去剤のコスト低減ならびに使用量低減を企図したものである。   The fuel gas purification facility shown in FIG. 4 is another example of a recyclable fuel gas purification facility for MCFC, and the fuel obtained from the biomass / waste gasifier 1 is the same as the facility shown in FIG. This is an example of a fuel gas refining facility for supplying gas to the MCFC 21, and is intended to reduce the cost and amount of the impurity remover by using a blown impurity remover and a fixed bed impurity remover in combination.

図に示すように、吸着除去手段13と硫黄転換手段31の間には、吸着除去手段13で水銀が除去された原料ガスが送られる固定床方式の精密除去手段41が設けられている。精密除去手段41では、水銀が除去された原料ガス中のハロゲン化物が更に除去される。   As shown in the figure, between the adsorption removal means 13 and the sulfur conversion means 31, there is provided a fixed bed type precision removal means 41 to which the raw material gas from which mercury has been removed by the adsorption removal means 13 is sent. In the precision removing means 41, the halide in the raw material gas from which mercury has been removed is further removed.

図においてハロゲン化物の除去装置は、図3と同様の不純物除去剤吹き込み方式の第2不純物固定手段7と、固定床方式の精密除去手段41を併用してハロゲン化物を除去する設備としている。部分燃焼ガス(粗ガス)に含まれるハロゲン化物の濃度に応じて吹き込み方式の第2不純物固定手段7で投入する不純物除去剤の量を制御する。また,第2不純物固定手段7による吹き込み不純物除去剤にはカルシウム系とナトリウム系を併用することによって、ハロゲン化物濃度が5ppm程度とされる。後流の固定床方式の精密除去手段41の不純物除去剤では出口のハロゲン化物濃度を1ppm以下に低減することができる。   In the figure, the halide removing apparatus is a facility for removing halides by using a second impurity fixing means 7 of the impurity removing agent blowing method similar to that of FIG. The amount of the impurity removing agent to be introduced is controlled by the blowing-type second impurity fixing means 7 in accordance with the concentration of the halide contained in the partial combustion gas (crude gas). Further, by using a calcium-based and a sodium-based in combination as the blowing impurity removing agent by the second impurity fixing means 7, the halide concentration is set to about 5 ppm. The impurity removal agent of the downstream fixed bed type precision removal means 41 can reduce the halide concentration at the outlet to 1 ppm or less.

固定床方式の精密除去手段41を併用した場合、主として安価なカルシウム系不純物除去剤を使用し、高価なナトリウム系の固定床用不純物除去剤へのハロゲン化物の負荷を低減すると共に、1ppmという極めて低いハロゲン化物濃度を達成できることである。これにより不純物除去剤のコストを低減しながら、MCFC21はもとより、更に高度な精製レベルを要求する燃料合成などの用途にも対応できる。   When the fixed bed type precision removing means 41 is used in combination, an inexpensive calcium-based impurity removing agent is mainly used to reduce the load of halide on the expensive sodium-based fixed bed impurity removing agent, and the extremely high 1 ppm. A low halide concentration can be achieved. As a result, the cost of the impurity removing agent can be reduced, and it can be used not only for MCFC21 but also for applications such as fuel synthesis requiring a higher level of purification.

第3実施形態例の燃料ガス精製設備は、以下に示す利点がある。即ち、カルシウム系不純物除去剤(消石灰)の吹き込み方式と、ナトリウム系の固定床用不純物除去剤を単に併用するだけでは、吹き込み方式の吸収剤に比べて500〜1000倍も高価なナトリウム系の固定床用不純物除去剤を多量に使用するため、吸収剤コストが膨大になる欠点があった。本実施形態例では,固定床用不純物除去剤の使用量を約10分の1に低減できることから、吸収剤コストを9割近く低減できると共に、使用済み不純物除去剤の廃棄量も2割程度削減することができる。   The fuel gas purification facility of the third embodiment has the following advantages. That is, by simply using a calcium-based impurity removing agent (slaked lime) blowing method and a sodium-based fixed bed impurity removing agent in combination, a sodium-based fixing that is 500 to 1000 times more expensive than a blowing-type absorbent. Since a large amount of the floor impurity remover is used, there is a disadvantage that the absorbent cost is enormous. In this embodiment, the amount of fixed bed impurity remover used can be reduced to about 1/10, so that the absorbent cost can be reduced by nearly 90% and the amount of used impurity remover discarded can be reduced by about 20%. can do.

上述した燃料ガス精製設備は、少ない不純物除去剤の利用で最大限に不純物を除去した燃料ガスを得ることができる燃料ガス精製設備とすることが可能となる。   The fuel gas purification facility described above can be a fuel gas purification facility that can obtain a fuel gas from which impurities have been removed to the maximum by using a small amount of impurity removing agent.

本発明は、原料ガスから不純物を除去して燃料ガスとする燃料ガス精製設備の産業分野で利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of fuel gas purification equipment that removes impurities from a raw material gas to obtain a fuel gas.

各リサイクル技術に適した除去対象不純物と不純物除去剤の組み合わせの関係を表す表図である。It is a table | surface showing the relationship of the combination of the removal object impurity suitable for each recycling technique, and an impurity removal agent. 本発明の第1実施形態例に係るガス精製設備の概略系統図である。1 is a schematic system diagram of a gas purification facility according to a first embodiment of the present invention. 本発明の第2実施形態例に係るガス精製設備の概略系統図である。It is a schematic system diagram of the gas purification equipment which concerns on the 2nd Example of this invention. 本発明の第3実施形態例に係るガス精製設備の概略系統図である。It is a schematic system diagram of the gas purification equipment which concerns on the example of 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 バイオマス/廃棄物ガス化炉
2 ガスエンジン
3 炉内脱硫手段
4 第1不純物固定手段
5 第1物理的除去手段
6 循環経路
7 第2不純物固定手段
8 第2物理的除去手段
11 再処理手段
12 再投入系
13 吸着除去手段
21 MCFC
31 硫黄転換手段
32 脱硫手段
41 精密除去手段
DESCRIPTION OF SYMBOLS 1 Biomass / waste gasifier 2 Gas engine 3 In-furnace desulfurization means 4 1st impurity fixation means 5 1st physical removal means 6 Circulation path 7 2nd impurity fixation means 8 2nd physical removal means 11 Reprocessing means 12 Re-injection system 13 Adsorption removal means 21 MCFC
31 Sulfur conversion means 32 Desulfurization means 41 Precision removal means

Claims (12)

燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、
原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、
第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、
吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、
熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、
第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、
第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と
を備えたことを特徴とする燃料ガス精製設備。
Raw material gas supply means for obtaining raw material gas by partially burning fuel;
First impurity fixing means for fixing thermally decomposable impurities of the source gas by blowing an absorbent / adsorbent into the source gas obtained by the source gas supply means;
First physical removal means for removing thermally decomposable impurities fixed to the absorbent / adsorbent by the first impurity fixing means by physical filtration together with the absorbent / adsorbent;
A recharging means for charging the thermally decomposable impurities absorbed and adsorbed by the absorbent / adsorbent and recovered by the first physical removal means to the raw material gas supply means together with the absorbing / adsorbing agent;
Second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means;
Second physical removal means for removing hydrogen halide fixed to the absorbent by the second impurity fixing means together with the absorbent by physical filtration;
And a reprocessing means for transporting the absorbent recovered by the second physical removal means to the reprocessing equipment.
第2不純物固定手段で吹き込まれる吸収剤は、再処理手段で再処理された吸収剤であることを特徴とする請求項1に記載の燃料ガス精製設備。 The fuel gas refining equipment according to claim 1, wherein the absorbent blown by the second impurity fixing means is an absorbent reprocessed by the reprocessing means. 第2不純物固定手段に送られる原料ガスハロゲン濃度を検出する導出手段と、
導出手段で検出されたハロゲン濃度の状況に応じて吸収剤の吹き込み量を調整する調整手段と
を備えたことを特徴とする請求項1または2に記載の燃料ガス精製設備。
Deriving means for detecting the halogen concentration in the source gas sent to the second impurity fixing means;
The fuel gas refining equipment according to claim 1 or 2, further comprising: an adjusting unit that adjusts the amount of the absorbent blown in accordance with the state of the halogen concentration detected by the deriving unit.
第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段を備えた
ことを特徴とする請求項1〜3のいずれか一項に記載の燃料ガス精製設備。
Raw material gas hydrogen halide is removed by the second physical removal means is fed, according to claim 1, characterized in that with a suction removal means having a solid adsorbent for adsorbing heavy metals in the raw material gas The fuel gas refinery | purification equipment as described in any one .
原料ガス供給手段に不純物除去剤を吹き込むことにより硫黄化合物をスラグと共に排出する炉内脱硫手段を備えた
ことを特徴とする請求項1〜3のいずれか一項に記載の燃料ガス精製設備。
The fuel gas purification equipment according to any one of claims 1 to 3, further comprising an in-furnace desulfurization unit that discharges a sulfur compound together with the slag by blowing an impurity removing agent into the raw material gas supply unit.
有機硫黄化合物を除去する硫黄転換手段を備えた
ことを特徴とする請求項1〜3のいずれか一項に記載の燃料ガス精製設備。
The fuel gas purification facility according to any one of claims 1 to 3, further comprising a sulfur conversion means for removing the organic sulfur compound.
第2物理的除去手段でハロゲン化水素が除去された原料ガス中から、更にハロゲン化水素を精密除去する精密除去手段を備えた
ことを特徴とする請求項1〜3のいずれか一項に記載の燃料ガス精製設備。
The apparatus according to any one of claims 1 to 3 , further comprising precision removing means for precisely removing hydrogen halide from the source gas from which hydrogen halide has been removed by the second physical removing means. fuel gas purification equipment.
燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、
原料ガス供給手段に不純物除去剤を吹き込むことにより硫黄化合物をスラグと共に排出する炉内脱硫手段と、
原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、
第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、
吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、
熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、
第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、
第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、
再処理手段で再処理された吸収剤を第2不純物固定手段に吹き込むための系と、
第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段と
を備えたことを特徴とする燃料ガス精製設備。
Raw material gas supply means for obtaining raw material gas by partially burning fuel;
In-furnace desulfurization means for discharging a sulfur compound together with slag by blowing an impurity removing agent into the raw material gas supply means;
First impurity fixing means for fixing thermally decomposable impurities of the source gas by blowing an absorbent / adsorbent into the source gas obtained by the source gas supply means;
First physical removal means for removing thermally decomposable impurities fixed to the absorbent / adsorbent by the first impurity fixing means by physical filtration together with the absorbent / adsorbent;
A recharging means for charging the thermally decomposable impurities absorbed and adsorbed by the absorbent / adsorbent and recovered by the first physical removal means to the raw material gas supply means together with the absorbing / adsorbing agent;
Second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means;
Second physical removal means for removing hydrogen halide fixed to the absorbent by the second impurity fixing means together with the absorbent by physical filtration;
Reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility;
A system for blowing the absorbent reprocessed by the reprocessing means into the second impurity fixing means;
A fuel gas refining facility, comprising: a solid adsorbent that has a solid adsorbent that adsorbs a heavy metal in the raw material gas to which the raw material gas from which hydrogen halide has been removed by the second physical removal unit is sent.
燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、
原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、
第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、
吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、
熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、
第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、
第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、
再処理手段で再処理された吸収剤を第2不純物固定手段に吹き込むための系と、
第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段と、
吸着除去手段で重金属が除去された原料ガスが送られ、原料ガス中の有機硫黄化合物を除去する硫黄転換手段と
を備えたことを特徴とする燃料ガス精製設備。
Raw material gas supply means for obtaining raw material gas by partially burning fuel;
First impurity fixing means for fixing thermally decomposable impurities of the source gas by blowing an absorbent / adsorbent into the source gas obtained by the source gas supply means;
First physical removal means for removing thermally decomposable impurities fixed to the absorbent / adsorbent by the first impurity fixing means by physical filtration together with the absorbent / adsorbent;
A recharging means for charging the thermally decomposable impurities absorbed and adsorbed by the absorbent / adsorbent and recovered by the first physical removal means to the raw material gas supply means together with the absorbing / adsorbing agent;
Second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means;
Second physical removal means for removing hydrogen halide fixed to the absorbent by the second impurity fixing means together with the absorbent by physical filtration;
Reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility;
A system for blowing the absorbent reprocessed by the reprocessing means into the second impurity fixing means;
A source gas from which hydrogen halide has been removed by the second physical removal unit is sent, and an adsorption removal unit having a solid adsorbent that adsorbs heavy metals in the source gas;
A fuel gas refining facility, comprising: a sulfur conversion means for sending a raw material gas from which heavy metals have been removed by the adsorption removing means and removing organic sulfur compounds in the raw material gas.
燃料を部分燃焼することで原料ガスを得る原料ガス供給手段と、
原料ガス供給手段で得られた原料ガスに吸収・吸着剤を吹き込むことで原料ガスの熱分解性不純物を固定する第1不純物固定手段と、
第1不純物固定手段で吸収・吸着剤に固定された熱分解性不純物を吸収・吸着剤と共に物理的な濾過によって除去する第1物理的除去手段と、
吸収・吸着剤に吸収・吸着されて第1物理的除去手段で回収された熱分解性不純物を吸収・吸着剤と共に原料ガス供給手段に投入する再投入手段と、
熱分解性不純物が第1物理的除去手段で除去された原料ガスに吸収剤を吹き込むことで原料ガスのハロゲン化水素を固定する第2不純物固定手段と、
第2不純物固定手段で吸収剤に固定されたハロゲン化水素を吸収剤と共に物理的な濾過によって除去する第2物理的除去手段と、
第2物理的除去手段で回収された吸収剤を再処理設備に搬送する再処理手段と、
第2物理的除去手段でハロゲン化水素が除去された原料ガスが送られ、原料ガス中の重金属を吸着する固体吸着剤を有する吸着除去手段と、
吸着除去手段で重金属が除去された原料ガスが送られ、更にハロゲン化水素を精密除去する精密除去手段と、
精密除去手段でハロゲン化水素が精密除去された原料ガスが送られ、原料ガス中の有機硫黄化合物を除去する硫黄転換手段と
を備えたことを特徴とする燃料ガス精製設備。
Raw material gas supply means for obtaining raw material gas by partially burning fuel;
First impurity fixing means for fixing thermally decomposable impurities of the source gas by blowing an absorbent / adsorbent into the source gas obtained by the source gas supply means;
First physical removal means for removing thermally decomposable impurities fixed to the absorbent / adsorbent by the first impurity fixing means by physical filtration together with the absorbent / adsorbent;
A recharging means for charging the thermally decomposable impurities absorbed and adsorbed by the absorbent / adsorbent and recovered by the first physical removal means to the raw material gas supply means together with the absorbing / adsorbing agent;
Second impurity fixing means for fixing hydrogen halide of the raw material gas by blowing an absorbent into the raw material gas from which the thermally decomposable impurities have been removed by the first physical removing means;
Second physical removal means for removing hydrogen halide fixed to the absorbent by the second impurity fixing means together with the absorbent by physical filtration;
Reprocessing means for transporting the absorbent recovered by the second physical removal means to a reprocessing facility;
A source gas from which hydrogen halide has been removed by the second physical removal unit is sent, and an adsorption removal unit having a solid adsorbent that adsorbs heavy metals in the source gas;
A raw material gas from which heavy metals have been removed by the adsorption removing means is sent, and a precision removing means for precisely removing hydrogen halide,
A fuel gas refining facility comprising a sulfur conversion means for removing a raw material gas from which hydrogen halide has been precisely removed by a precision removing means and removing organic sulfur compounds in the raw material gas.
原料ガス供給手段は、バイオマス・廃棄物を部分燃焼して原料ガスを得るバイオマス/廃棄物ガス化炉であることを特徴とする請求項1〜10のいずれか一項に記載の燃料ガス精製設備。 The fuel gas purification facility according to any one of claims 1 to 10, wherein the raw material gas supply means is a biomass / waste gasification furnace that partially burns biomass and waste to obtain raw material gas. . 第1不純物固定手段で吸収・吸着剤に吸収・吸着される熱分解性不純物は、炭化水素類、炭素系不純物、有機塩素化合物、塩基性ガスの少なくともいずれかであることを特徴とする請求項1〜11のいずれか一項に記載の燃料ガス精製設備。 Thermally decomposable impurities absorbed and adsorbed to the absorption and the adsorbent in the first impurity fastening means, hydrocarbons, claims, characterized in that at least either of carbon impurities, organic chlorine compounds, basic gases The fuel gas purification equipment as described in any one of 1-11 .
JP2005288730A 2005-09-30 2005-09-30 Fuel gas purification equipment Expired - Fee Related JP4590336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288730A JP4590336B2 (en) 2005-09-30 2005-09-30 Fuel gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288730A JP4590336B2 (en) 2005-09-30 2005-09-30 Fuel gas purification equipment

Publications (2)

Publication Number Publication Date
JP2007099827A JP2007099827A (en) 2007-04-19
JP4590336B2 true JP4590336B2 (en) 2010-12-01

Family

ID=38027091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288730A Expired - Fee Related JP4590336B2 (en) 2005-09-30 2005-09-30 Fuel gas purification equipment

Country Status (1)

Country Link
JP (1) JP4590336B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601659B2 (en) * 2009-03-17 2014-10-08 一般財団法人電力中央研究所 Dry gas refining equipment and coal gasification combined power generation equipment
JP2012219225A (en) * 2011-04-12 2012-11-12 Central Research Institute Of Electric Power Industry Dry gas purification facility and coal gasification-combined power generation facility
JP5935119B2 (en) * 2012-05-31 2016-06-15 一般財団法人電力中央研究所 Condensate detection device
EP4051759A4 (en) * 2019-10-31 2023-12-27 Eastman Chemical Company Pyrolysis method and system for recycled waste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287887A (en) * 1997-04-15 1998-10-27 Hitachi Ltd Cleaning system of coal produced gas
JPH1130410A (en) * 1997-07-09 1999-02-02 Kawasaki Heavy Ind Ltd Disposing method for waste utilizing waste plastic gasification/ash melting
JP2001254084A (en) * 2000-03-09 2001-09-18 Toshiba Corp Waste disposal system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287887A (en) * 1997-04-15 1998-10-27 Hitachi Ltd Cleaning system of coal produced gas
JPH1130410A (en) * 1997-07-09 1999-02-02 Kawasaki Heavy Ind Ltd Disposing method for waste utilizing waste plastic gasification/ash melting
JP2001254084A (en) * 2000-03-09 2001-09-18 Toshiba Corp Waste disposal system

Also Published As

Publication number Publication date
JP2007099827A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US6103205A (en) Simultaneous mercury, SO2, and NOx control by adsorption on activated carbon
US5405812A (en) Method and arrangement for purifying a carbon-containing adsorption medium
CA2657177A1 (en) Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same
HU213649B (en) Process for the purification of the contaminated exhaust gases from incineration plants
CN107961770B (en) Regeneration system and regeneration method of adsorbent in coke oven flue gas purification
US20080282889A1 (en) Oil shale based method and apparatus for emission reduction in gas streams
JP4590336B2 (en) Fuel gas purification equipment
JP2014171986A (en) Method for recovering mercury in exhaust gas
JP2006193563A (en) Fuel gas-purifying apparatus
JP4723922B2 (en) Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus
HU210398B (en) Method for purifying polluted gases, in particular those from waste-incineration plants
JP5403574B2 (en) Gasification system using activated carbon extracted from a tar absorption tower.
JP2940659B2 (en) Method and apparatus for treating incinerator exhaust gas
US7052661B1 (en) Method for abatement of mercury emissions from combustion gases
JP4531156B2 (en) Dry exhaust gas treatment method
JP2008237959A (en) Method and apparatus for treating combustion exhaust gas
JP4916397B2 (en) Cement kiln extraction gas processing system and processing method
JPH11104456A (en) Operation of waste gas treatment apparatus in waste incinerator
JP5301113B2 (en) Reusing copper-based absorbent
JPH09248425A (en) Dioxine removing material, dioxine removing method, exhaust gas treatment equipment and dioxine removing material-regenerating method
JP3078514B2 (en) Dioxin reduction method
JPH08332343A (en) Rdf-incinerating, exhaust gas treatment apparatus
JP2003305336A (en) Adsorbent packed-bed device
JP4158208B2 (en) Method and apparatus for improving combustion and toxic gas emissions in fluidized bed combustion furnaces with natural minerals
JP2005177731A (en) Method of treating dioxins in waste gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Ref document number: 4590336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees