JP4587527B2 - Blade surface design method, blade surface design program recording medium, and blade surface design apparatus - Google Patents
Blade surface design method, blade surface design program recording medium, and blade surface design apparatus Download PDFInfo
- Publication number
- JP4587527B2 JP4587527B2 JP2000168328A JP2000168328A JP4587527B2 JP 4587527 B2 JP4587527 B2 JP 4587527B2 JP 2000168328 A JP2000168328 A JP 2000168328A JP 2000168328 A JP2000168328 A JP 2000168328A JP 4587527 B2 JP4587527 B2 JP 4587527B2
- Authority
- JP
- Japan
- Prior art keywords
- line
- curve
- processing procedure
- curves
- curved surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、家庭用空調機器や換気扇などに用いられる軸流形あるいは斜流形の羽根車を設計するための羽根曲面設計方法、羽根曲面設計プログラム記録媒体、および羽根曲面設計装置に関するものである。
【0002】
【従来の技術】
家庭用空調機器をはじめ、生活のいたるところで送風機が利用されている中で、比較的低騒音で大風量が得られ、かつ、製造コストが安いということから軸流形や斜流形の羽根車がよく使われている。この種の羽根車の設計は、飛行機のプロペラと同様に、カーペット線図に基づいた設計手法や流体力学的なシミュレーションあるいは膨大な実験量に基づく経験的設計によって行なっている。そして、そのような設計、修正設計を繰り返すことで得られる高性能な羽根車を使用動作点毎に数種類用意し、以後は、その羽根形状を基本形としてほぼ相似的に拡大縮小することによって、必要な寸法、動作点の羽根車を設計している。羽根曲面の設計には、特許公報第2827613号に記載されているような、羽根曲面を決定するパラメータを任意に与えることで広範囲な羽根形状を設計できるようにした装置も用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記したような従来の設計方法では、羽根車の使用条件に合わせた最適設計が出来ないという問題があった。すなわち、軸流形や斜流形の羽根車はシロッコファンやターボファンと異なって周囲を覆うケーシングを持たないため、取り付け条件や取り付け部周辺の障害物による影響を受けやすい。その結果、ある機器では非常に高性能であった羽根車が、別の機器ではあまり性能が良くないという事態がしばしば生じる。特に、騒音特性の変化が大きく、そのため、低騒音を保ちつつ高性能を実現できるように、機器に合わせた最適設計が不可欠である。
【0004】
羽根車の最適設計を行なうためには、羽根の三次元形状を決定する非常に多種類のパラメータが必要である。一般的なものとして、羽根枚数、羽根の入口角、出口角の分布、メリディアン形状などがあり、さらに羽根曲面の三次元性を考慮すれば、パラメータの種類は膨大なものとなる。最近では、騒音性能の向上を図る目的で、航空機の翼のように、断面形状が流線型の翼型翼や前縁に突出部を持つ特異な平面形状の羽根が採用されるようになってきたため、パラメータは多種を要するのみならず複雑になってきており、従来の設計装置では適切なパラメータ検討を行なえなくなってきた。
【0005】
たとえば、前縁に突出部を持たせることによる平面形状の変化は、羽根の翼弦長の変化として設計初期に考慮する必要があり、この翼弦長の変化は、これを基準として考えられている翼型の最大厚みにも影響する。つまり、パラメータが独立で機能せずに互いに影響しあっている場合が多くあり、それらの関係をすべて考慮した上での羽根曲面設計という非常に複雑な作業が要求される。そのうえ、これらのパラメータの多くが離散的なレベル付けが出来ないものであり、不定形に変化するもの(メリディアン形状、羽根の反り形状など)や分布形状(羽根角度、翼型など)として扱う必要がある。そのため、最適値を見つけるための幅広い組合せについて検討することは容易ではない。
【0006】
また、上述の各種設計方法にはそれぞれ次のような課題があり、様々なパラメータの組合せで設計を行なうことは設計手法の面からも困難であった。すなわち、カーペット線図に基づく方法は、性能が分かっている既存の翼型を使用するものであり、新規に翼型を設計したり、新しい羽根の反り形状を決定することはできない。実験データに基づく経験的設計方法は、当然ながら実験データの無い新しい羽根車を設計することはできないものであり、設計パラメータを自由に変更して様々な羽根車を検討するためには自由度が低すぎる。シミュレーションに基づく方法は、設計された羽根車の性能や内部流れを予測するものであって、元になる羽根車の形状設計は別の方法で行なわなければならず、シミュレーションのためのモデル作成にも多大な時間を要し、性能予測精度もまだ不十分であるため、現在のところ実験に対する補助的手段のレベルである。
【0007】
したがって、様々なパラメータを組合せて個々の機器に応じた最適な羽根曲面を持った羽根車を短時間にて設計できる設計方法や設計装置の開発が課題となっている。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の羽根曲面設計方法は、四辺形上の相対向する線分Lおよび線分Tと線分L・線分T間を結ぶ線分b1、b2、・・・、bnとを任意の直線X周りに回転させて回転曲面s1、s2、・・・、snおよびLs、Tsを構成し、前記回転曲面s1、s2、・・・、sn上で回転曲面LsとTsを結ぶ反り線曲線c1、c2、・・・、cnを構成し、この反り線曲線c1、c2、・・・、cnを前記回転曲面Ls上の任意の曲線分leに端点が一致するように直線X周りに回転させる手順を行ない、その後に、前記曲線分leに周方向の突出部lexを設ける際に、前記反り線曲線cmを所定の方向に延長し突出部端点lmxを定めたり、反り線曲線c1、c2、・・・、cnを中心線として翼型形状を構成する翼型曲線cs1、cs2、・・・、csnと翼型曲線cp1、cp2、・・・、cpnを求め、最後に、前記反り線曲線c1、c2、・・・、cn、あるいは、前記翼型曲線cs1、cs2、・・・、csn、cp1、cp2、・・・、cpnを滑らかに結んで曲面を定義するようにした。このようにすることにより、羽根全体の曲面形状を決定するパラメータを変えることなく、羽根前縁の突出部形状を検討すること、翼型という不定形なパラメータを扱い易くすることが可能になる。
【0009】
【発明の実施の形態】
本発明の請求項1記載の羽根曲面設計方法は、演算手段が、前記演算手段に接続された入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、前記演算手段が、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、前記演算手段が、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、前記演算手段が、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定める処理手順4と、前記演算手段が、前記処理手順3で回転し前記処理手順4で定められた突出部端点lmxを有する前記反り線曲線c1、c2、・・・、cnを滑らかに結んで曲面を定義する処理手順5とを有する構成とした。
【0010】
上記構成は、羽根前縁の突出部を羽根曲面全体の設計と分けることを意味し、従来の羽根曲面設計方法と整合性を保ち、羽根曲面の設計を容易にするだけでなく、空力性能に影響の大きい羽根全体の曲面を大きく変えることなく、騒音性能に影響の大きい突出部の最適形状の検討を羽根曲面と別に検討することを可能にする。
【0013】
請求項2記載の羽根曲面設計方法は、演算手段が、前記演算手段に接続された入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、前記演算手段が、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、前記演算手段が、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、前記演算手段が、前記回転曲面s1、s2、・・・、sn上において、前記処理手順3で回転した反り線曲線c1、c2、・・・、cnを中心線として翼型形状を構成する翼型曲線cs1、cs2、・・・、csnと翼型曲線cp1、cp2、・・・、cpnを求める処理手順6と、前記演算手段が、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定めるとともに、前記翼型曲線csmおよびcpmを、少なくとも、その端点lmLから前記突出部端点lmxと端点lmLの距離Ymを超える部分の形状を変更することなく、前記反り線曲線cmに合わせて突出部端点lmxまで延長させる処理手順8と、前記演算手段が、前記処理手順8で定められた突出部端点lmxを有する翼型曲線cs1、cs2、・・・、csn、および翼型曲線cp1、cp2、・・・、cpnを滑らかに結んで曲面を定義する処理手順7とを有する構成としたものである。
【0014】
上記構成は、羽根の反り線と翼型を形成する厚み分布とを分けて扱うことを意味し、翼型という不定形なパラメータを扱い易くするとともに、従来の反り線主体の設計方法の経験を生かすことが可能になる。さらに、上記構成は、前縁の突出部付近だけの翼厚み分布を変更することを意味し、翼型の羽根の場合にも、羽根全体の曲面形状と突出部の形状を分けて検討することが可能になる。
【0015】
請求項3記載の羽根曲面設計プログラム記録媒体は、請求項1もしくは2のいずれかに記載された羽根曲面設計方法の処理手順を演算手段に実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。これにより、プログラムの持ち運びや移動が可能になり、複数の場所や離れた場所での活用が可能になる。
【0016】
請求項4記載の羽根曲面設計装置は、処理手段と、前記処理手段に接続される入力手段および表示手段とを備える羽根曲面設計装置であって、前記処理手段は、演算手段と記憶手段を有し、前記記憶手段は、前記入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定める処理手順4と、前記処理手順3で回転し前記処理手順4で定められた突出部端点lmxを有する前記反り線曲線c1、c2、・・・、cnを滑らかに結んで曲面を定義する処理手順5を前記演算手段に実行させるためのプログラムを記憶し、前記演算手段は、前記記憶手段が記憶している前記プログラムに従い、前記処理手順1、前記処理手順2、前記処理手順3、前記処理手順4および前記処理手順5を実行し、前記処理手段は、前記処理手順5で定義された曲面を前記表示手段に表示させることを特徴とする。
請求項5記載の羽根曲面設計装置は、処理手段と、前記処理手段に接続される入力手段および表示手段とを備える羽根曲面設計装置であって、前記処理手段は、演算手段と記憶手段を有し、前記記憶手段は、前記入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、前記回転曲面s1、s2、・・・、sn上において、前記処理手順3で回転した反り線曲線c1、c2、・・・、cnを中心線として翼型形状を構成する翼型曲線cs1、cs2、・・・、csnと翼型曲線cp1、cp2、・・・、cpnを求める処理手順6と、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定めるとともに、前記翼型曲線csmおよびcpmを、少なくとも、その端点lmLから前記突出部端点lmxと端点lmLの距離Ymを超える部分の形状を変更することなく、前記反り線曲線cmに合わせて突出部端点lmxまで延長させる処理手順8と、前記処理手順8で定められた突出部端点lmxを有する翼型曲線cs1、cs2、・・・、csn、および翼型曲線cp1、cp2、・・・、cpnを滑らかに結んで曲面を定義する処理手順7を前記演算手段に実行させるためのプログラムを記憶し、前記演算手段は、前記記憶手段が記憶している前記プログラムに従い、前記処理手順1、前記処理手順2、前記処理手順3、前記処理手順6、前記処理手順8および前記処理手順7を実行し、前記処理手段は、前記処理手順7で定義された曲面を前記表示手段に表示させることを特徴とする。
本発明によれば、各処理手順を間違いなく、より早く行なうことが可能になるだけでなく、コンピュータシミュレーションやCADなどとの連携を強化することが可能になり、業務効率を高めることができる。
【0017】
以下、本発明の実施の形態を図面を参照しながら具体的に説明する。
まず、羽根曲面設計装置の構成を図1を用いて説明する。図中、1は処理手段であり、いわゆるパーソナル・コンピュータやワークステーションが用いられ、演算手段2としてのCPUと演算手段2で計算処理を行うためのプログラムやデータを保存するための記憶手段3とを備えている。記憶手段3は、ターボ機械の羽根曲面形状を設計するための後述する少なくとも1つの羽根曲面設計方法による処理手順をプログラム化して記録した記録媒体を有している。記録媒体は具体的には、フロッピーディスク、コンパクトディスク、光磁気ディスク、磁気テープ、あるいはフラッシュメモリなどである。
【0018】
4は処理手段1に接続された入力手段であり、羽根曲面を計算するための基礎データを入力したり、各種処理の実行命令を入力したりするために用いられ、一般的にはキーボードやマウスである。5は処理手段1に接続された表示手段であり、入力あるいは出力された数値、並びに計算結果の形状を図形として表示する機能を持っており、一般的にはCRTや液晶のディスプレイである。6は処理手段1に接続された出力手段であり、最終的な羽根車の輪郭形状や数表を出力するためのプロッタやハードコピー機、あるいは、それらをデジタルデータとして取り出すための取り外し可能な記憶装置、つまり、フロッピーディスクドライブやCD−R装置などである。
【0019】
次に、上記羽根曲面設計装置による羽根曲面設計方法を実施例により説明する。
(実施例1)
図2は本発明の実施例1における羽根曲面設計方法の処理手順を示す。全体の処理は処理手順1から処理手順5で行なうので、順次説明する。
【0020】
ステップ#1において、回転曲面を構成する処理手順1を行なう。図3〜図4に示すように、平面上の任意の4点A、B、CおよびDと直線Xを座標値を用いて入力設定し(ステップ#11)、次いで、一組の対辺、ここでは線分Lと線分Tを指定する(ステップ#12)。その後は自動的に計算によって、線分L、及び線分T上にそれぞれ分割点l1、l2、…、lnおよびt1、t2、…、tm、…、tnを設定し(ステップ#13)、両線分上で相対する分割点を結んだ線分b1、b2、…、bm、…、bnを求め(ステップ#14)、それらの線分と上記の線分L、線分Tとを直線Xのまわりに回転して得られる回転曲面s1、s2、…、sm、…、snを構成し(ステップ#15)、それに伴って回転曲面Ls、Tsを構成する(ステップ#16)。図5に、作成された回転曲面s1、s2、…、sm、…、snのうちのsmと、線分L、Tより得られる回転曲面Ls、Tsを示す。
【0021】
ステップ#2において、三次曲線で反り線曲線を構成する処理手順2を行なう。図6に示すように、回転曲面smについて、回転曲面Ls側の端点lmLと回転曲面Ts側の端点tmTに対して、直線X周りの回転における周方向となす角αmを指定し(ステップ#21)、βmを指定する(ステップ#22)。それにより、その指定値になるように自動的に計算によって、端点lmL、tmT間で複数の三次曲線を連結し反り線曲線cmを構成する(ステップ#23)。
【0022】
この手順において、回転曲面Ls側の端点lmLと回転曲面Ts側の端点tmTは羽根の平面形状に関係するパラメータであり、ここの処理手順で必要なのは2点間の距離である。これは、任意に与えることも可能であるが、一般的には、処理手順1で入力した値と処理手順2で与える角αmとβmを元に、もっとも基本的な円弧翼を仮定することで自動的に決まる。設計の自由度を上げるために2点間の距離を入力することも可能である。
【0023】
また、端点lmLとtmT間を結ぶ曲線は、三次元空間の中で定義することもできるが、扱う次元を下げて設計諸元の定義を簡素化するとともに、従来の設計手法のノウハウを活かすために、回転曲面smの展開面上で定義する方法をとっている。この処理は、図7に示すように、回転曲面s1、s2、…snのすべてについて行ない、反り線曲線c1、c2、…、cnを定める。このとき、α1、α2、…、αnおよびβ1、β2、…、βnは、s1からs2までの各回転曲面に対してすべて入力してもよいが、ここでは、代表値として5、6点の値を与えることで、その値をもとにして自動的に補間されるようになっている。
【0024】
ステップ#3において、回転曲面を回転させる処理手順3を行なう。図8は、回転曲面s1、s2、…snを直線Xに沿う方向に回転曲面Ls側から見た要部拡大平面図であり、図9は処理ステップを示すフローチャートである。図示したように、回転曲面Ls上に、s1とsnを結ぶ方向の(直線Xを中心として略半径方向の)任意の曲線分leを設定し(ステップ#31)、それにより自動的に計算によって、反り線曲線c1、c2、…、cnと回転曲面Lsとの交点l1L、l2L、…、lnLが曲線分le上に乗るように、回転曲面s1、s2、…、snを(すなわち反り線曲線c1、c2、…、cnを)直線X周りに回転させる(ステップ#32)。ここで、曲線分leは羽根の前縁の形状を決定するものであり、したがってこの処理手順3では、前縁を基準として羽根の反り線曲線を並べていることになる。
【0025】
次に、ステップ#3Aにおいて、回転曲面Ls上の任意の曲線分leに突出部を設けるか否かを選択する。
突出部を設ける場合は、ステップ#4において、突出部を形成する処理手順4を行なう。図10の平面図に示すように羽根の前縁の一部に突出部lexを形成する場合、図11に示すように、回転曲面smの展開面上で、反り線曲線cmを回転曲面Lsとの交点lmLにおいて角度αmの方向に延長し、平面図において突出部lexと重なる点lmxを端点とする処理を自動的に行なう。この反り線曲線cmの端点lmxの位置は角度αmに相応するものとなる。同様の処理を、突出部lexが存在する範囲の反り線曲線c1、c2、…、cnに対して行ない、それぞれの端点を決定する。
【0026】
次に、ステップ#5において、羽根曲面を構成する処理手順5を行なう。上記したようにして決定された回転曲面s1、s2、…、sn上の反り線曲線c1、c2、…、cnは、指定されたα1、α2、…、αnおよびβ1、β2、…、βn、さらに、回転曲面Ls上に設定された曲線分leの突出部lexによって決定されたものとなっているので、これらの反り線曲線c1、c2、…、cnを積み重ねる処理が自動的に行なわれ、羽根曲面l1L−t1T−tnT−lnTが一意的に決定される。
【0027】
以上のようにして、突出部lexの形状を後から追加で形成する手順を取ることにより、突出部lex以外の羽根曲面は固定されることになり、突出部lexを設けたことによる羽根曲面の変化は生じない。したがって、騒音特性に配慮する等の理由で突出部の形状を種々検討する場合も、突出部のみの影響を検討すればよい。このことは、既存の羽根曲面をもとにして突出部を設けた新しい羽根形状を設計する場合にも有効である。
(実施例2)
図12は本発明の実施例2の羽根曲面設計方法の処理手順を示す。全体の処理は処理手順1から処理手順7で行なうので、順次説明する。
【0028】
上記実施例1と同様にして、ステップ#1(処理手順1)において、回転曲面s1、s2、…、sm、…、sn、Ls、Tsを構成し、ステップ#2(処理手順2)において、反り線曲線c1、c2、…、cnを構成し、ステップ#3(処理手順3)において、反り線曲線c1、c2、…、cnと回転曲面Lsとの交点l1L、l2L、…、lnLが曲線分le上に乗るように、回転曲面s1、s2、…、snを直線X周りに回転させる。
【0029】
次に、ステップ#6において、翼型曲線を求める処理手順6を行なう。すなわち、図13に示すように、回転曲面smの展開面上において、反り線曲線cmの両側に翼型曲線csmとcpmを求める。これらの翼型曲線csm,cpmは両端点lmLとtmTを反り線曲線cmと共有し、両端点間の形状が、羽根の断面形状、つまり翼型形状を与えるものである。翼型曲線csm,cpmの決め方は種々あるが、ここでは、反り線曲線cmの両側に同じ厚み分布を指定することで自動的に決定する。この方法はパラメータとしての自由度が低くなり扱いが便利であり、一見、翼型形状の非対称性などの自由度が少なくなるように思われるが、反り線曲線cmの決定方法に自由度を持たせることにより対応可能である。同様の処理を、反り線曲線c1、c2、…、cnに対して行ない、それぞれの翼型曲線cs1、cs2、…、csnおよびcp1、cp2、…、cpnを決定する。
【0030】
最後に、ステップ#7において、羽根曲面を構成する処理手順7を行なう。すなわち、翼型曲線cs1、cs2、…、csnおよびcp1、cp2、…、cpnを結ぶ処理を自動的に行ない、厚みのある翼型断面を持った表裏の羽根曲面を構成する。
【0031】
以上のようにして、反り線曲線c1、c2、…、cnを基準線としてその両側に厚み分布を設け翼型を構成することにより、厚みの無い薄型翼の設計手法や設計パラメータを活かしながら、いわゆるカーペット線図で与えられる翼型性能とは関係なく、新たな翼型を設計検討することが容易にできる。また、反り線曲線c1、c2、…、cnを複数の三次曲線で構成しているので、反り線形状の自由度が高く、翼型の厚み分布を裏表対象なものに限定しても、設計できる翼型そのものの形状の自由度は高く保つことができる。
(実施例3)
図14は本発明の実施例3の羽根曲面設計方法の処理手順を示す。全体の処理は処理手順1から処理手順8で行なうので、順次説明する。
【0032】
上記実施例2と同様にして、ステップ#1(処理手順1)において、回転曲面s1、s2、…、sm、…、sn、Ls、Tsを構成し、ステップ#2(処理手順2)において、反り線曲線c1、c2、…、cnを構成し、ステップ#3(処理手順3)において、反り線曲線c1、c2、…、cnと回転曲面Lsとの交点l1L、l2L、…、lnLが曲線分le上に乗るように、回転曲面s1、s2、…、snを直線X周りに回転させ、ステップ#6(処理手順6)において、翼型曲線cs1、cs2、…、csnおよびcp1、cp2、…、cpnを求める。
【0033】
次に、ステップ#8において、厚みを持った突出部を形成する処理手順8を行なう。図15に示すように、回転曲面smの展開面上において、反り線曲線cmの端点lmLを角度αmの方向に延長し、突出部lexの端点に相当する点lmxを求め、それに伴い、翼型曲線csmとcpmの端点も元の点lmLから新しい点lmxに移し、それによる延長部分、つまり点lmxと元の翼型曲線csm、cpmとがなめらかにつながるように、点lmL付近の翼型曲線の形を変更する処理を自動的に行なう。この時には、反り線曲線cmの延長長さYmと同じ距離だけ、点lmLから点tmT側に範囲を設け、少なくともその範囲よりも点tmT側の翼型曲線の形状は変えないものとする。この条件を満足する限り、点lmL付近から突出部lexにかけての翼型曲線形状は自由であるが、隣合う回転曲面上の翼型曲線とはなめらかにつながるようにする。
【0034】
最後に、ステップ#7において、羽根曲面を構成する処理手順7を行なう。すなわち、翼型曲線cs1、cs2、…、csnおよびcp1、cp2、…、cpnを結ぶ処理を自動的に行ない、突出部lexを含めて厚みのある翼型断面を持った表裏の羽根曲面を構成する。
【0035】
以上のようにして、反り線曲線c1、c2、…、cnを基準線としてその両側に厚み分布を設け翼型を構成し、かつ、突出部の形状を後から追加で形成する手順をとり、翼型曲線を部分的に修正して滑らかに結ぶことにより、厚みの無い薄型翼の設計手法や設計パラメータを活かしながら、突出部を設けたことによる羽根曲面の変化を生じない、翼型翼の設計検討が可能になる。
【0036】
【発明の効果】
以上説明したように、本発明の羽根曲面計算方法によれば、コンピュータシステム上において、羽根曲面を決定するパラメータを任意に与えて、広範囲な羽根形状の設計ができるとともに以下のような効果が得られる。
【0037】
羽根前縁に設けられる突出部を後から追加で形成する手順を取ることにより、突出部以外の羽根曲面を固定したまま、各種突出部の形状を設計することができる。
【0038】
反り線曲線を形成しそれを基準線としてその両側に厚み分布を設けて翼型を構成する手順を取ることにより、厚みの無い薄型翼の設計手法や設計パラメータを活かしながら、新たな翼型を容易に設計検討できる。
【0039】
反り線曲線を基準線としてその両側に厚み分布を設けて翼型を構成し、かつ突出部の形状を後から追加で形成し、翼型曲線を部分的に修正して滑らかに結ぶ手順を取ることにより、厚みの無い薄型翼の設計手法や設計パラメータを活かしながら、突出部を設けたことによる羽根曲面の変化を生じない、翼型翼の設計検討が可能になる。
【0040】
さらに、上記したような羽根曲面設計方法をプログラム化し記録媒体に収めることによって、プログラムの持ち運びや移動が可能になり、複数の場所や離れた場所での活用が可能になる。
【0041】
また、各処理手順を間違いなく、より早く行なうことが可能になるだけでなく、コンピュータシミュレーションやCADなどとの連携を強化することが可能になり、業務効率を高めることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における羽根曲面設計装置の構成を示す説明図
【図2】本発明の実施例1における羽根曲面設計方法の処理手順を示すフローチャート
【図3】同方法の処理手順1における演算設計を説明する説明図
【図4】同方法の処理手順1のフローチャート
【図5】同方法の処理手順1で作成される回転曲面を示す模式図
【図6】同方法の処理手順2における演算設計を説明する回転曲面展開図
【図7】同方法の処理手順2のフローチャート
【図8】同方法の処理手順3における演算設計を説明する平面図
【図9】同方法の処理手順3のフローチャート
【図10】同方法の処理手順4における演算設計を説明する平面図
【図11】同方法の処理手順4における演算設計を説明する回転曲面展開図
【図12】本発明の実施例2における羽根曲面設計方法の処理手順を示すフローチャート
【図13】同方法の処理手順6における演算設計を説明する回転曲面展開図
【図14】本発明の実施例3における羽根曲面設計方法の処理手順を示すフローチャート
【図15】同方法の処理手順8における演算設計を説明する回転曲面展開図
【符号の説明】
1 処理手段
2 演算手段
3 記憶手段
4 入力手段
5 表示手段
6 出力手段
#1 処理手順1
#2 処理手順2
#3 処理手順3
#4 処理手順4
#5 処理手順5
#6 処理手順6
#7 処理手順7
#8 処理手順8[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blade curved surface design method for designing an axial flow type or a diagonal flow type impeller used for a domestic air conditioner or a ventilation fan,Blade surfaceDesign program recording medium, andBlade surfaceThe present invention relates to a design apparatus.
[0002]
[Prior art]
While air blowers are used throughout the life of home air conditioners, relatively low noise and large air flow are obtained, and because of low manufacturing costs, axial flow and mixed flow impellers Is often used. This kind of impeller is designed by a design method based on a carpet diagram, a hydrodynamic simulation, or an empirical design based on an enormous amount of experiments, like an airplane propeller. Then, several kinds of high-performance impellers obtained by repeating such design and correction design are prepared for each operating point, and thereafter, it is necessary to enlarge and reduce the blade shape almost similar to the basic shape. Designed impeller with various dimensions and operating point. For design of the blade curved surface, an apparatus which can design a wide range of blade shapes by arbitrarily giving parameters for determining the blade curved surface as described in Japanese Patent Publication No. 2827613 is used.
[0003]
[Problems to be solved by the invention]
However, the conventional design method as described above has a problem that the optimum design according to the use condition of the impeller cannot be performed. That is, unlike the sirocco fan and the turbo fan, the axial flow and diagonal flow type impellers do not have a casing covering the periphery, and thus are easily affected by mounting conditions and obstacles around the mounting portion. As a result, it often happens that an impeller that was very high performance in one device does not perform well in another device. In particular, the noise characteristics change greatly, and therefore, it is indispensable to make an optimum design according to the equipment so that high performance can be realized while maintaining low noise.
[0004]
In order to perform the optimum design of the impeller, a great variety of parameters that determine the three-dimensional shape of the blades are required. As general ones, there are the number of blades, distribution of blade inlet angles, outlet angles, meridian shapes, and the like, and the number of types of parameters becomes enormous if the three-dimensionality of the blade curved surface is taken into consideration. Recently, for the purpose of improving noise performance, wing-type wings with a streamlined cross-section, such as aircraft wings, and blades with a unique planar shape with a protruding part at the leading edge have been adopted. However, not only a variety of parameters are required, but also the parameters have become complicated, and it has become impossible to perform appropriate parameter studies with conventional design apparatuses.
[0005]
For example, the change in the planar shape due to the protrusion on the leading edge needs to be considered at the initial stage of the design as a change in the chord length of the blade, and this change in chord length is considered based on this. It also affects the maximum thickness of the airfoil. That is, there are many cases where parameters influence each other without functioning independently, and a very complicated work of blade curved surface design in consideration of all these relationships is required. In addition, many of these parameters cannot be discretely leveled and need to be treated as irregular shapes (meridian shape, blade warp shape, etc.) or distribution shapes (blade angle, airfoil shape, etc.) There is. Therefore, it is not easy to consider a wide range of combinations for finding the optimum value.
[0006]
In addition, the various design methods described above have the following problems, and it is difficult to design with combinations of various parameters from the viewpoint of the design technique. That is, the method based on the carpet diagram uses an existing airfoil whose performance is known, and a new airfoil cannot be designed or a new blade warp shape cannot be determined. The empirical design method based on experimental data cannot, of course, design a new impeller without experimental data, and there is a degree of freedom to study various impellers by freely changing design parameters. Too low. The simulation-based method predicts the performance and internal flow of the designed impeller, and the shape of the original impeller must be designed in a different way, creating a model for simulation. However, it takes a lot of time and the performance prediction accuracy is still insufficient.
[0007]
Therefore, the development of a design method and a design apparatus that can design an impeller having an optimum blade curved surface corresponding to each device by combining various parameters in a short time is an issue.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, the blade curved surface design method of the present invention includes a line segment L on the quadrilateral and line segments T, line segments T, and line segments b1, b2,. .., Bn are rotated around an arbitrary straight line X to form rotating curved surfaces s1, s2,..., Sn and Ls, Ts, and the rotating curved surface Ls on the rotating curved surfaces s1, s2,. , Cn are formed, and the end points of the warp line curves c1, c2,..., Cn coincide with an arbitrary curve portion le on the rotating curved surface Ls. The procedure of rotating around the straight line X is performed as described above, and thereafter, a circumferential protruding portion lex is provided on the curve portion le.WhenIn addition, the warp line curve cm is extended in a predetermined direction to define the protrusion end point lmx, or the airfoil curves cs1, cs2 constituting the airfoil shape with the warp line curves c1, c2,. ,..., Csn and the airfoil curves cp1, cp2,..., Cpn, and finally the warp curve c1, c2,..., Cn, or the airfoil curves cs1, cs2,. .., csn, cp1, cp2,..., Cpn are smoothly connected to define a curved surface. By doing so, it becomes possible to study the shape of the protrusion of the leading edge of the blade without changing the parameter for determining the curved surface shape of the entire blade, and to easily handle the irregular parameter of the airfoil.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The blade curved surface design method according to
[0010]
The above configuration means that the protrusion of the leading edge of the blade is separated from the design of the entire blade curved surface, which is consistent with the conventional blade curved surface design method and facilitates the design of the blade curved surface, as well as aerodynamic performance. This makes it possible to examine the optimum shape of the protruding part, which has a large influence on the noise performance, separately from the blade curved surface, without greatly changing the curved surface of the entire blade having a large influence.
[0013]
Claim2The blade surface design method described isThe computing means is set through the input means connected to the computing meansArbitrary four points on the plane are connected by a smooth closed curve to form a substantially quadrilateral. One of the opposite sides of the quadrilateral is defined as a line segment L, and the other as a line segment T. .., Ln and t1, t2,..., Tn equal in number to the minute T, and line segments b1, b2,. Rotate by rotating the line segments b1, b2,..., Bn, the line segment L, and the line segment T with an arbitrary straight line X on the same plane having no intersection with the closed curve as a rotation axis.
[0014]
The above configuration means that the blade warp line and the thickness distribution that forms the airfoil are handled separately, making it easy to handle the irregular parameters of the airfoil, and the experience of the design method mainly of the conventional warp line. It becomes possible to save. further,The above configuration means changing the blade thickness distribution only near the leading edge protrusion,FeathersIn this case, the curved surface shape of the entire blade and the shape of the protruding portion can be considered separately.
[0015]
Claim3The blade curved surface design program recording medium described in claim 1Or 2ListedFeatherRoot surface design method processing procedureFor the calculation means to executeprogramTheRecordedA computer-readable recording medium.As a result, the program can be carried and moved, and can be used in a plurality of locations or at remote locations.
[0016]
Claim4The described blade curved surface design apparatus isA blade curved surface design apparatus comprising processing means, input means connected to the processing means, and display means, wherein the processing means includes calculation means and storage means, and the storage means passes through the input means. Arbitrary four points on the set plane are connected by a smooth closed curve to form a substantially quadrilateral. One of the opposite sides of the quadrilateral is set as a line segment L and the other as a line segment T. .., And ln and t1, t2,..., Tn are provided, and line segments b1, b2,. , Bn, and the line segments b1, b2,..., Bn, the line segment L, and the line segment T are rotated about an arbitrary straight line X on the same plane having no intersection with the closed curve. , Rotate curved surfaces s1, s2, ..., sn and Ls, Ts , Sn, and the end points l1L, l2L,..., LnL, and the rotating curved surface Ls side are connected to the rotating curved surfaces Ls and Ts on the rotating curved surfaces s1, s2,. ..., TnT, the angles formed with the circumferential direction in the rotation around the straight line X are α1, α2,..., Αn and β1, β2, .., Βn warping line curves
The blade curved surface design apparatus according to
According to the present inventionNot only can each processing procedure be performed without fail, but also cooperation with computer simulation and CAD can be strengthened, and work efficiency can be improved.
[0017]
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
First, the configuration of the blade curved surface design apparatus will be described with reference to FIG. In the figure,
[0018]
[0019]
Next, the blade curved surface design method using the blade curved surface design apparatus will be described with reference to examples.
Example 1
FIG. 2 shows a processing procedure of the blade curved surface design method according to the first embodiment of the present invention. The entire processing is performed in
[0020]
In
[0021]
In
[0022]
In this procedure, the end point lmL on the rotating curved surface Ls side and the end point tmT on the rotating curved surface Ts side are parameters related to the planar shape of the blade, and what is required in this processing procedure is the distance between the two points. This can be given arbitrarily, but in general, the most basic arc wing is assumed based on the values input in
[0023]
The curve connecting the end point lmL and tmT can also be defined in a three-dimensional space, but to reduce the dimensions handled and simplify the definition of design specifications, and to make use of the know-how of conventional design methods In addition, the method of defining on the development surface of the rotating curved surface sm is taken. As shown in FIG. 7, this process is performed for all of the rotating curved surfaces s1, s2,... Sn, and warp curve curves c1, c2,. At this time, α1, α2,..., Αn and β1, β2,..., Βn may all be input to the rotating curved surfaces from s1 to s2, but here, representative values of 5 and 6 points are used. By giving a value, it is automatically interpolated based on that value.
[0024]
In
[0025]
Next, in
When providing a protrusion part, in
[0026]
Next, in
[0027]
As described above, the blade curved surface other than the projecting portion lex is fixed by taking the procedure of additionally forming the shape of the projecting portion lex later, and the blade curved surface due to the provision of the projecting portion lex is fixed. No change will occur. Accordingly, when variously examining the shape of the protruding portion for reasons such as considering noise characteristics, the influence of only the protruding portion may be considered. This is also effective when designing a new blade shape provided with a protrusion based on the existing blade curved surface.
(Example 2)
FIG. 12 shows a processing procedure of the blade curved surface design method according to the second embodiment of the present invention. The entire process is performed in
[0028]
In the same manner as in the first embodiment, in Step # 1 (Processing Procedure 1), rotating curved surfaces s1, s2,..., Sm,..., Sn, Ls, Ts are configured, and in Step # 2 (Processing Procedure 2), Contour lines c1, c2,..., Cn are formed, and in step # 3 (processing procedure 3), the intersections l1L, l2L,..., LnL of the warp lines c1, c2,. The rotation curved surfaces s1, s2,..., Sn are rotated around the straight line X so as to ride on the minute le.
[0029]
Next, in
[0030]
Finally, in
[0031]
As described above, by using the warp line curves c1, c2,..., Cn as a reference line and providing a thickness distribution on both sides thereof to configure the airfoil, while utilizing the design method and design parameters of a thin blade with no thickness, Regardless of the airfoil performance given by the so-called carpet diagram, a new airfoil can be easily designed and studied. In addition, since the warp curve c1, c2,..., Cn are composed of a plurality of cubic curves, the degree of freedom of the warp line shape is high, and even if the thickness distribution of the airfoil is limited to the back and front target, the design The degree of freedom of the shape of the wing shape itself can be kept high.
(Example 3)
FIG. 14 shows a processing procedure of the blade curved surface design method according to the third embodiment of the present invention. The entire processing is performed in
[0032]
In the same manner as in the second embodiment, in step # 1 (processing procedure 1), the rotational curved surfaces s1, s2,..., Sm,..., Sn, Ls, Ts are configured, and in step # 2 (processing procedure 2), Contour lines c1, c2,..., Cn are formed, and in step # 3 (processing procedure 3), the intersections l1L, l2L,..., LnL of the warp lines c1, c2,. The rotation curved surfaces s1, s2,..., Sn are rotated around the straight line X so as to ride on the minute le, and in step # 6 (processing procedure 6), the airfoil curves cs1, cs2, ..., csn and cp1, cp2, ..., find cpn.
[0033]
Next, in
[0034]
Finally, in
[0035]
As described above, the warp line curves c1, c2,..., Cn are used as reference lines, thickness distribution is provided on both sides thereof to form the airfoil, and the shape of the protrusion is additionally formed later, By correcting the airfoil curve partially and connecting it smoothly, the blade surface of the airfoil does not change due to the provision of protrusions while utilizing the design method and design parameters of thin thin wings. Design considerations are possible.
[0036]
【The invention's effect】
As explained above, according to the blade curved surface calculation method of the present invention,On a computer system,A wide range of blade shapes can be designed by arbitrarily giving parameters for determining the blade curved surface, and the following effects can be obtained.
[0037]
By taking the procedure of additionally forming the protrusion provided on the blade leading edge later, the shape of the various protrusions can be designed while fixing the blade curved surface other than the protrusion.
[0038]
By creating a warp line curve and using it as a reference line and providing a thickness distribution on both sides of the airfoil, a new airfoil can be created while taking advantage of the design method and design parameters of thin airfoils. Easy design review.
[0039]
A warp line curve is used as a reference line, thickness distribution is provided on both sides to form an airfoil, and the shape of the protrusion is additionally formed later, and the airfoil curve is partially corrected and connected smoothly. This makes it possible to study the design of an airfoil wing that does not cause a change in the blade curved surface due to the provision of the protrusion, while utilizing the design method and design parameters of a thin wing with no thickness.
[0040]
Furthermore, by programming the blade curved surface design method as described above into a recording medium, the program can be carried and moved, and can be used at a plurality of locations.
[0041]
Also,eachNot only can the processing procedure be performed without fail, but also cooperation with computer simulation, CAD, etc. can be strengthened, and work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of a blade curved surface design apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a processing procedure of a blade curved surface design method according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram for explaining calculation design in
FIG. 4 is a flowchart of
FIG. 5 is a schematic diagram showing a rotating curved surface created in
FIG. 6 is a development view of a rotating curved surface for explaining calculation design in
FIG. 7 is a flowchart of
FIG. 8 is a plan view for explaining calculation design in
FIG. 9 is a flowchart of
FIG. 10 is a plan view for explaining calculation design in
FIG. 11 is a development view of a rotating curved surface for explaining calculation design in
FIG. 12 is a flowchart showing a processing procedure of a blade curved surface design method in
FIG. 13 is a rotation curved surface development view for explaining calculation design in
FIG. 14 is a flowchart showing a processing procedure of a blade curved surface design method in
FIG. 15 is a development view of a rotating curved surface for explaining calculation design in
[Explanation of symbols]
1 Processing means
2 Calculation means
3 storage means
4 input means
5 display means
6 Output means
# 1
# 2
# 3
# 4
# 5
# 6
# 7
# 8
Claims (5)
前記演算手段が、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、
前記演算手段が、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、
前記演算手段が、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定める処理手順4と、
前記演算手段が、前記処理手順3で回転し前記処理手順4で定められた突出部端点lmxを有する前記反り線曲線c1、c2、・・・、cnを滑らかに結んで曲面を定義する処理手順5と
を有する羽根曲面設計方法。 The computing means connects an arbitrary four points on the plane set through the input means connected to the computing means with a smooth closed curve to form a substantially quadrilateral, and one side of a set of opposite sides of the quadrilateral is drawn as a line The segment L and the other segment T are provided with the same number of division points l1, l2,..., Ln and t1, t2,. Line segments b1, b2,..., Bn connecting the dividing points are set, and the line segments b1, b2,... Are set with an arbitrary straight line X on the same plane having no intersection with the closed curve as a rotation axis. , Bn and the line segment L and the line segment T, respectively, to form the rotation curved surfaces s1, s2,..., Sn and Ls, Ts;
The calculation means connects the rotation curved surfaces Ls and Ts on the rotation curved surfaces s1, s2,..., Sn, and the end points l1L, l2L,. endpoint t1T, t2T, ···, in TNT, [alpha] 1 angle between the circumferential direction of rotation about the line X is inputted from each of said input means, α2, ···, αn and β1, β2, ·· Process procedure 2 representing warp line curves c1, c2,..., Cn to be βn as a result of connecting a plurality of cubic curves on the development surface of the rotating curved surfaces s1, s2,. When,
The warp line so that the end points l1L, l2L,..., LnL coincide with an arbitrary curve segment le set in the direction connecting the rotating curved surfaces s1 and sn on the rotating curved surface Ls. Processing procedure 3 for rotating the curves c1, c2,..., Cn around the straight line X;
The computing means extends the warp curve curve cm in the direction of the angle αm at the end point lmL corresponding to the circumferential protrusion lex provided on the curve segment le, and the protrusion end point lmx on the extended warp line curve cm. Processing procedure 4 for determining
Defining a curved surface the arithmetic unit, the procedure 3 is rotated in the processing procedure SL before having a protrusion end point lmx defined by 4 camber line curves c1, c2, · · ·, concluded smoothly the cn And a blade curved surface design method.
前記演算手段が、前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、
前記演算手段が、前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、
前記演算手段が、前記回転曲面s1、s2、・・・、sn上において、前記処理手順3で回転した反り線曲線c1、c2、・・・、cnを中心線として翼型形状を構成する翼型曲線cs1、cs2、・・・、csnと翼型曲線cp1、cp2、・・・、cpnを求める処理手順6と、
前記演算手段が、前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定めるとともに、前記翼型曲線csmおよびcpmを、少なくとも、その端点lmLから前記突出部端点lmxと端点lmLの距離Ymを超える部分の形状を変更することなく、前記反り線曲線cmに合わせて突出部端点lmxまで延長させる処理手順8と、
前記演算手段が、前記処理手順8で定められた突出部端点lmxを有する翼型曲線cs1、cs2、・・・、csn、および翼型曲線cp1、cp2、・・・、cpnを滑らかに結んで曲面を定義する処理手順7と
を有する羽根曲面設計方法。 The computing means connects an arbitrary four points on the plane set through the input means connected to the computing means with a smooth closed curve to form a substantially quadrilateral, and one side of a set of opposite sides of the quadrilateral is drawn as a line The segment L and the other segment T are provided with the same number of division points l1, l2,..., Ln and t1, t2,. Line segments b1, b2,..., Bn connecting the dividing points are set, and the line segments b1, b2,... Are set with an arbitrary straight line X on the same plane having no intersection with the closed curve as a rotation axis. , Bn and the line segment L and the line segment T, respectively, to form the rotation curved surfaces s1, s2,..., Sn and Ls, Ts;
The calculation means connects the rotation curved surfaces Ls and Ts on the rotation curved surfaces s1, s2,..., Sn, and the end points l1L, l2L,. endpoint t1T, t2T, ···, in TNT, [alpha] 1 angle between the circumferential direction of rotation about the line X is inputted from each of said input means, α2, ···, αn and β1, β2, ·· Process procedure 2 representing warp line curves c1, c2,..., Cn to be βn as a result of connecting a plurality of cubic curves on the development surface of the rotating curved surfaces s1, s2,. When,
The warp line so that the end points l1L, l2L,..., LnL coincide with an arbitrary curve segment le set in the direction connecting the rotating curved surfaces s1 and sn on the rotating curved surface Ls. Processing procedure 3 for rotating the curves c1, c2,..., Cn around the straight line X;
The blades forming the airfoil shape with the warp line curves c1, c2,..., Cn rotated in the processing procedure 3 on the rotating curved surfaces s1, s2,. , Csn and airfoil curves cp1, cp2,..., Cpn to obtain mold curves cs1, cs2,.
The computing means extends the warp curve curve cm in the direction of the angle αm at the end point lmL corresponding to the circumferential protrusion lex provided on the curve segment le, and the protrusion end point lmx on the extended warp line curve cm. The airfoil curves csm and cpm are projected in accordance with the warp curve cm without changing the shape of at least the distance Ym between the end point lmx and the end point lmL from the end point lmL. Processing procedure 8 for extending to the end point lmx,
Said computing means, said processing airfoil curve cs1 having protrusions endpoint lmx defined in Step 8, cs2, · · ·, csn, and airfoil curve cp1, cp2, · · ·, smooth the cpn A blade curved surface design method including processing procedure 7 for connecting and defining a curved surface.
前記処理手段は、演算手段と記憶手段を有し、
前記記憶手段は、
前記入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、
前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、
前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、
前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定める処理手順4と、
前記処理手順3で回転し前記処理手順4で定められた突出部端点lmxを有する前記反り線曲線c1、c2、・・・、cnを滑らかに結んで曲面を定義する処理手順5
を前記演算手段に実行させるためのプログラムを記憶し、
前記演算手段は、前記記憶手段が記憶している前記プログラムに従い、前記処理手順1、前記処理手順2、前記処理手順3、前記処理手順4および前記処理手順5を実行し、
前記処理手段は、前記処理手順5で定義された曲面を前記表示手段に表示させる
ことを特徴とする羽根曲面設計装置。 A blade curved surface design apparatus comprising processing means, input means connected to the processing means, and display means,
The processing means includes a calculation means and a storage means,
The storage means
Arbitrary four points on the plane set through the input means are connected by a smooth closed curve to form a substantially quadrilateral, and one of the opposite sides of this quadrilateral set is a line segment L and the other is a line segment T. .., Ln and t1, t2,..., Tn are provided in equal numbers to each of the line segment L and line segment T, and the line segments b1 and b2 connecting the aforementioned division points. ,..., Bn are set, and the line segments b1, b2,..., Bn, the line segment L, and the line segment are set with an arbitrary straight line X on the same plane having no intersection with the closed curve as a rotation axis. Processing procedure 1 for rotating T respectively to form rotating curved surfaces s1, s2,..., Sn and Ls, Ts;
The rotating curved surfaces Ls and Ts are connected on the rotating curved surfaces s1, s2,..., Sn, and the end points l1L, l2L,. ,..., TnT, the angles formed with the circumferential direction in the rotation around the straight line X are α1, α2,..., Αn and β1, β2,. Process sequence 2 representing warp line curves c1, c2,..., Cn as a plurality of cubic curves connected on the development surface of the rotating curved surfaces s1, s2,.
The curved line curves c1, c2, c, c2, c, c2, c so that the end points l1L, l2L,..., LnL coincide with an arbitrary curve segment le set in a direction connecting the rotating curved surfaces s1 and sn on the rotating curved surface Ls. ..., processing procedure 3 for rotating cn around the straight line X;
Processing procedure 4 for extending the warp curve curve cm in the direction of the angle αm at the end point lmL corresponding to the circumferential protrusion lex provided on the curve segment le and determining the protrusion end point lmx on the extended warp curve cm. When,
Process procedure 5 for defining a curved surface by smoothly connecting the warp line curves c1, c2,..., Cn that rotate in the process procedure 3 and have the protrusion end point lmx defined in the process procedure 4.
Stores a program for causing the computing means to execute
The calculation means executes the processing procedure 1, the processing procedure 2, the processing procedure 3, the processing procedure 4 and the processing procedure 5 according to the program stored in the storage unit,
The processing means displays the curved surface defined in the processing procedure 5 on the display means.
A blade curved surface design apparatus characterized by that .
前記処理手段は、演算手段と記憶手段を有し、
前記記憶手段は、
前記入力手段を通じて設定された平面上の任意の4点を滑らかな閉曲線で結んで略四辺形を形成し、この四辺形の一組の対辺の一方を線分L、他方を線分Tとして、各々の線分L及び線分Tに等しい数の分割点l1、l2、・・・、lnおよびt1、t2、・・・、tnを設け、相対する前記分割点を結んだ線分b1、b2、・・・、bnを設定し、前記閉曲線と交わり部分を持たない同一平面上の任意の直線Xを回転軸として前記線分b1、b2、・・・、bnおよび前記線分Lおよび線分Tをそれぞれ回転させ、回転曲面s1、s2、・・・、snおよびLs、Tsを構成する処理手順1と、
前記回転曲面s1、s2、・・・、sn上で前記回転曲面LsとTsを結び、かつ、回転曲面Ls側の端点l1L、l2L、・・・、lnLおよび回転曲面Ts側の端点t1T、t2T、・・・、tnTにおいて、前記直線X周りの回転における周方向となす角度がそれぞれ前記入力手段より入力されたα1、α2、・・・、αnおよびβ1、β2、・・・、βnとなる反り線曲線c1、c2、・・・、cnを、前記回転曲面s1、s2、・・・、snの展開面上で複数個の三次曲線を連結したものとして表わす処理手順2と、
前記回転曲面Ls上に前記回転曲面s1とsnとを結ぶ方向に設定される任意の曲線分leに前記端点l1L、l2L、・・・、lnLが一致するように前記反り線曲線c1、c2、・・・、cnを前記直線X周りに回転させる処理手順3と、
前記回転曲面s1、s2、・・・、sn上において、前記処理手順3で回転した反り線曲線c1、c2、・・・、cnを中心線として翼型形状を構成する翼型曲線cs1、cs2、・・・、csnと翼型曲線cp1、cp2、・・・、cpnを求める処理手順6と、
前記曲線分leに設ける周方向の突出部lexに対応する端点lmLにおいて前記反り線曲線cmを前記角度αmの方向に延長し、延長した反り線曲線cm上に突出部端点lmxを定めるとともに、前記翼型曲線csmおよびcpmを、少なくとも、その端点lmLから前記突出部端点lmxと端点lmLの距離Ymを超える部分の形状を変更することなく、前記反り線曲線cmに合わせて突出部端点lmxまで延長させる処理手順8と、
前記処理手順8で定められた突出部端点lmxを有する翼型曲線cs1、cs2、・・・、csn、および翼型曲線cp1、cp2、・・・、cpnを滑らかに結んで曲面を定義する処理手順7
を前記演算手段に実行させるためのプログラムを記憶し、
前記演算手段は、前記記憶手段が記憶している前記プログラムに従い、前記処理手順1、前記処理手順2、前記処理手順3、前記処理手順6、前記処理手順8および前記処理手順7を実行し、
前記処理手段は、前記処理手順7で定義された曲面を前記表示手段に表示させる
ことを特徴とする羽根曲面設計装置。 A blade curved surface design apparatus comprising processing means, input means connected to the processing means, and display means,
The processing means includes a calculation means and a storage means,
The storage means
Arbitrary four points on the plane set through the input means are connected by a smooth closed curve to form a substantially quadrilateral, and one of the opposite sides of this quadrilateral set is a line segment L and the other is a line segment T. .., Ln and t1, t2,..., Tn are provided in equal numbers to each of the line segment L and line segment T, and the line segments b1 and b2 connecting the aforementioned division points. ,..., Bn are set, and the line segments b1, b2,..., Bn, the line segment L, and the line segment are set with an arbitrary straight line X on the same plane having no intersection with the closed curve as a rotation axis. Processing procedure 1 for rotating T respectively to form rotating curved surfaces s1, s2,..., Sn and Ls, Ts;
The rotating curved surfaces Ls and Ts are connected on the rotating curved surfaces s1, s2,..., Sn, and the end points l1L, l2L,. ,..., TnT, the angles formed with the circumferential direction in the rotation around the straight line X are α1, α2,..., Αn and β1, β2,. Process sequence 2 representing warp line curves c1, c2,..., Cn as a plurality of cubic curves connected on the development surface of the rotating curved surfaces s1, s2,.
The curved line curves c1, c2, c, c2, c, c2, c so that the end points l1L, l2L,..., LnL coincide with an arbitrary curve segment le set in a direction connecting the rotating curved surfaces s1 and sn on the rotating curved surface Ls. ..., processing procedure 3 for rotating cn around the straight line X;
On the rotating curved surfaces s1, s2,..., Sn, the airfoil curves cs1, cs2 constituting the airfoil shape with the warp line curves c1, c2,. ,..., Csn and airfoil curves cp1, cp2,.
The warp curve curve cm is extended in the direction of the angle αm at the end point lmL corresponding to the circumferential protrusion lex provided on the curve segment le, and the protrusion end point lmx is defined on the extended warp line curve cm. The airfoil curves csm and cpm are extended to the protrusion end point lmx in accordance with the warp curve curve cm without changing the shape of at least the distance Ym between the end point lmL and the end point lmL from the end point lmL. Processing procedure 8
A process of defining a curved surface by smoothly connecting the airfoil curves cs1, cs2,..., Csn and the airfoil curves cp1, cp2,. Step 7
Stores a program for causing the computing means to execute
The arithmetic means executes the processing procedure 1, the processing procedure 2, the processing procedure 3, the processing procedure 6, the processing procedure 8 and the processing procedure 7 according to the program stored in the storage means,
The processing means displays the curved surface defined in the processing procedure 7 on the display means.
A blade curved surface design apparatus characterized by that .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000168328A JP4587527B2 (en) | 2000-06-06 | 2000-06-06 | Blade surface design method, blade surface design program recording medium, and blade surface design apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000168328A JP4587527B2 (en) | 2000-06-06 | 2000-06-06 | Blade surface design method, blade surface design program recording medium, and blade surface design apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001350805A JP2001350805A (en) | 2001-12-21 |
JP4587527B2 true JP4587527B2 (en) | 2010-11-24 |
Family
ID=18671345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000168328A Expired - Fee Related JP4587527B2 (en) | 2000-06-06 | 2000-06-06 | Blade surface design method, blade surface design program recording medium, and blade surface design apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4587527B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7510475B2 (en) * | 2001-05-22 | 2009-03-31 | Wms Gaming, Inc. | Gaming machine with superimposed display image |
US6517433B2 (en) | 2001-05-22 | 2003-02-11 | Wms Gaming Inc. | Reel spinning slot machine with superimposed video image |
JP2005282490A (en) * | 2004-03-30 | 2005-10-13 | Mitsubishi Fuso Truck & Bus Corp | Program and method for preparing aerofoil profile |
WO2007078752A2 (en) | 2005-12-19 | 2007-07-12 | Wms Gaming Inc. | Multigame gaming machine with transmissive display |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05101148A (en) * | 1991-10-07 | 1993-04-23 | Matsushita Electric Ind Co Ltd | Blade curved surface calculating and plotting device |
-
2000
- 2000-06-06 JP JP2000168328A patent/JP4587527B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05101148A (en) * | 1991-10-07 | 1993-04-23 | Matsushita Electric Ind Co Ltd | Blade curved surface calculating and plotting device |
Also Published As
Publication number | Publication date |
---|---|
JP2001350805A (en) | 2001-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110727995B (en) | Blade shape construction method, blade, and computer device | |
JP6471158B2 (en) | How to model a non-streamlined propeller blade | |
US20080050240A1 (en) | Axial fan and blade design method for the same | |
WO2009103528A2 (en) | Parametric blades with either sinusoidal lean or airfoils with arcs of ellipses | |
JP2000515944A (en) | Turbomachine and manufacturing method thereof | |
CN111859556A (en) | Centrifugal impeller design method and system based on double-quartic Bezier curved surface | |
CN109356666B (en) | Blade profile design method for large and small blade combined blade cascade of axial flow turbine | |
CN106843140A (en) | A kind of finishing tool method for planning track of double shrouded wheel | |
CN116050031B (en) | Axial flow impeller blade design method and device, storage medium and electronic equipment | |
CN108167229A (en) | A kind of cooling fan and its aerodynamic noise computational methods of blade inlet edge protrusion | |
JP4587527B2 (en) | Blade surface design method, blade surface design program recording medium, and blade surface design apparatus | |
JPH11311130A (en) | Booster structure for jet engine | |
CN115758629A (en) | High-speed centrifugal fan special for sweeping robot and design method and device thereof | |
CN113094964B (en) | Method and device for generating blade machining coordinates | |
JP2005282492A (en) | Program and method for preparing aerofoil profile | |
JP3754244B2 (en) | Wing design method for axial flow fan and axial flow fan | |
CN112528427A (en) | Method for designing blade skeleton line of impeller machinery | |
CN208153385U (en) | A kind of cooling fan of blade inlet edge protrusion | |
Smith et al. | The use of analytic surfaces for the design of centrifugal impellers by computer graphics | |
CN105829651B (en) | Blade, impeller and turbine;The method for manufacturing the blade | |
CN108304606B (en) | Impeller with chamfer structure | |
JP2827613B2 (en) | Blade surface calculation plotter | |
JP3962931B2 (en) | Method for forming cooling holes in gas turbine blades by image processing | |
CN115358027B (en) | Parameter optimization method for oblique-placement airfoil-shaped centrifugal fan | |
CN113642130B (en) | Blade cavity design method, machine-readable storage medium and data processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130917 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |