JP4587464B2 - Method for producing glyceryl ether - Google Patents

Method for producing glyceryl ether Download PDF

Info

Publication number
JP4587464B2
JP4587464B2 JP2005106587A JP2005106587A JP4587464B2 JP 4587464 B2 JP4587464 B2 JP 4587464B2 JP 2005106587 A JP2005106587 A JP 2005106587A JP 2005106587 A JP2005106587 A JP 2005106587A JP 4587464 B2 JP4587464 B2 JP 4587464B2
Authority
JP
Japan
Prior art keywords
water
reaction
reactor
hydrolysis reaction
glyceryl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005106587A
Other languages
Japanese (ja)
Other versions
JP2006282620A (en
Inventor
明良 齋藤
武 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005106587A priority Critical patent/JP4587464B2/en
Priority to ES06730826T priority patent/ES2376886T3/en
Priority to US11/910,357 priority patent/US20090275786A1/en
Priority to EP06730826A priority patent/EP1880988B1/en
Priority to CN200680010047XA priority patent/CN101151235B/en
Priority to PCT/JP2006/306878 priority patent/WO2006106940A1/en
Publication of JP2006282620A publication Critical patent/JP2006282620A/en
Application granted granted Critical
Publication of JP4587464B2 publication Critical patent/JP4587464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

本発明は、グリセリルエーテルの製造方法に関する。   The present invention relates to a method for producing glyceryl ether.

グリシジルエーテルを加水分解して得られるグリセリルエーテルは、例えば、溶剤、乳化剤、分散剤、洗浄剤、増泡剤等として有用な化合物である。   Glyceryl ether obtained by hydrolyzing glycidyl ether is a useful compound as, for example, a solvent, an emulsifier, a dispersant, a cleaning agent, a foaming agent and the like.

一般にグリセリルエーテルは触媒を用いて製造されるが、無触媒でグリセリルエーテルを製造し得る方法として、たとえば、亜臨界状態の水でグリシジルエーテルを加水分解する方法が知られている(特許文献1)。
特開2002−88000号公報
In general, glyceryl ether is produced using a catalyst. As a method for producing glyceryl ether without using a catalyst, for example, a method of hydrolyzing glycidyl ether with subcritical water is known (Patent Document 1). .
JP 2002-88000 A

しかし、上記の方法において、水の損失を減らしつつ多量の水を加水分解反応に使用して反応選択率を高く維持する目的で、加水分解反応後に反応混合物から水を回収し、加水分解反応が行われる反応器に供給し、かかる水をさらに加水分解反応に使用した場合、経時的にグリセリルエーテル以外の副生成物の生成が増加し、グリセリルエーテルの色相が悪化するなど、得られるグリセリルエーテルの品質が低下する問題が認められた。   However, in the above method, in order to maintain a high reaction selectivity by using a large amount of water in the hydrolysis reaction while reducing water loss, water is recovered from the reaction mixture after the hydrolysis reaction, and the hydrolysis reaction is performed. When this water is further used in the hydrolysis reaction, the production of by-products other than glyceryl ether increases over time, and the hue of glyceryl ether deteriorates. There was a problem of quality degradation.

すなわち、本発明は、使用する水の損失を抑えることができ、しかも副生成物の生成を抑制してグリセリルエーテルの色相の悪化を防ぐことができる、高品質なグリセリルエーテルの効率的な製造方法を提供することを目的とする。   That is, the present invention is an efficient method for producing high-quality glyceryl ether, which can suppress the loss of water to be used and can prevent the deterioration of the hue of glyceryl ether by suppressing the formation of by-products. The purpose is to provide.

本発明者らは、上記のような副生成物の増加と、加水分解反応に用いる水のpHの低下に相関があり、水のpHを調整することによって反応時の副生成物の生成を抑制することが出来ることを見出し、本発明を完成した。   The present inventors have a correlation between the increase of by-products as described above and a decrease in the pH of water used for the hydrolysis reaction, and by adjusting the pH of the water, the production of by-products during the reaction is suppressed. As a result, the present invention was completed.

すなわち、本発明は、一般式(I):   That is, the present invention relates to the general formula (I):

Figure 0004587464
Figure 0004587464

(式中、Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素数1〜20の炭化水素基を示し、OAは同一でも異なっていてもよい炭素数2〜4のオキシアルキレン基を示し、pは0〜20の数を示す。)
で示される化合物と水を反応器に供給し、水が亜臨界状態となる条件下に該化合物の加水分解反応を行うグリセリルエーテルの製造方法であって、加水分解反応後の反応混合物から水を回収し、当該水のpHを少なくとも3.5に調整して該反応器に供給する工程を有する、グリセリルエーテルの製造方法;ならびに、一般式(I):
(In the formula, R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms, and OA may be the same or different and has 2 to 4 carbon atoms. Represents an oxyalkylene group, and p represents a number of 0 to 20.)
And a method for producing glyceryl ether, wherein the compound and water are supplied to a reactor and the hydrolysis reaction of the compound is performed under a condition where the water is in a subcritical state, wherein water is removed from the reaction mixture after the hydrolysis reaction. Recovering, adjusting the pH of the water to at least 3.5 and feeding it to the reactor; and a method for producing glyceryl ether; and general formula (I):

Figure 0004587464
Figure 0004587464

(式中、Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素数1〜20の炭化水素基を示し、OAは同一でも異なっていてもよい炭素数2〜4のオキシアルキレン基を示し、pは0〜20の数を示す。)
で示される化合物と水を反応器に供給し、水が亜臨界状態となる条件下に該化合物の加水分解反応を行う工程1、及び加水分解反応後の反応混合物から水を回収し、該反応器に供給する工程2を経て製造されるグリセリルエーテルの着色防止方法であって、前記工程2において、水のpHを少なくとも3.5に調整して該反応器に供給する、グリセリルエーテルの着色防止方法に関する。
(In the formula, R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms, and OA may be the same or different and has 2 to 4 carbon atoms. Represents an oxyalkylene group, and p represents a number of 0 to 20.)
Step 1 in which a compound represented by the formula (1) and water are supplied to a reactor, and the hydrolysis reaction of the compound is carried out under conditions where water is in a subcritical state, and water is recovered from the reaction mixture after the hydrolysis reaction, A method for preventing coloration of glyceryl ether produced through Step 2 to be supplied to a reactor, wherein the pH of water is adjusted to at least 3.5 and supplied to the reactor in Step 2 above. Regarding the method.

本発明によれば、使用する水の損失を抑え、しかも副生成物の生成を抑制してグリセリルエーテルの色相の悪化を防ぎ、高品質なグリセリルエーテルを効率的に製造することができる。   According to the present invention, it is possible to suppress the loss of water to be used and suppress the formation of by-products to prevent the deterioration of the hue of glyceryl ether and to efficiently produce high-quality glyceryl ether.

本発明は、所定のグリシジルエーテルを原料とし、当該原料と水を反応器に供給し、水が亜臨界状態となる条件下に該原料の加水分解反応を行うグリセリルエーテルの製造方法であり、加水分解反応後の反応混合物から水を回収し、当該水のpHを少なくとも3.5に調整して該反応器に供給する工程を有することを1つの大きな特徴とする。   The present invention is a method for producing glyceryl ether using a predetermined glycidyl ether as a raw material, supplying the raw material and water to a reactor, and subjecting the raw material to a hydrolysis reaction under conditions where water becomes a subcritical state. One major characteristic is that it has a step of recovering water from the reaction mixture after the decomposition reaction, adjusting the pH of the water to at least 3.5, and supplying the water to the reactor.

本発明においては、原料の加水分解反応に使用されなかった未反応の水を分離回収し、該水の少なくとも一部を反応器に供給(リサイクル)するので使用する水の損失が抑制される。また、かかる水は所定のpHに調整されたものであることから、加水分解反応時にグリセリルエーテルの分解や副反応がグリセリルエーテルの品質上問題となる程度に進むことがなく、グリセリルエーテルの色相の悪化を防ぐことができる。さらに、加水分解反応は水が亜臨界状態となる条件下に行われることから、該反応は無触媒下においても高い反応選択率で進行し、また、反応産物からの触媒の除去操作を省略することができ、高品質なグリセリルエーテルを効率的に製造することができる。   In the present invention, unreacted water that has not been used for the hydrolysis reaction of the raw material is separated and recovered, and at least a part of the water is supplied (recycled) to the reactor, so that the loss of water used is suppressed. Further, since such water is adjusted to a predetermined pH, the glyceryl ether hue does not progress to the extent that degradation of glyceryl ether or side reaction becomes a problem on the quality of glyceryl ether during the hydrolysis reaction. Deterioration can be prevented. Furthermore, since the hydrolysis reaction is performed under conditions where water is in a subcritical state, the reaction proceeds with high reaction selectivity even in the absence of a catalyst, and the operation for removing the catalyst from the reaction product is omitted. And high-quality glyceryl ether can be produced efficiently.

なお、以下において説明する成分等は、本発明の所望の効果の発現を阻害しない限り、それぞれ単独で若しくは2種以上を混合して用いることができる。   In addition, as long as the component demonstrated below does not inhibit the expression of the desired effect of this invention, each can be used individually or in mixture of 2 or more types.

本発明において原料として使用するグリシジルエーテルは、上記一般式(I)で示される化合物である。   The glycidyl ether used as a raw material in the present invention is a compound represented by the above general formula (I).

上記式中、Rで示される一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素数1〜20の炭化水素基としては、たとえば、炭素数1〜20の直鎖または分岐鎖のアルキル基、炭素数2〜20の直鎖または分岐鎖のアルケニル基、炭素数6〜14のアリール基等が挙げられる。   In the above formula, as the hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms represented by R may be substituted with fluorine atoms, for example, a linear or branched chain having 1 to 20 carbon atoms An alkyl group having 2 to 20 carbon atoms, a linear or branched alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 14 carbon atoms, and the like.

当該炭化水素基として具体的には、たとえば、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基、2−プロピル基、2−ブチル基、2−メチル−2−プロピル基、2−ペンチル基、3−ペンチル基、2−ヘキシル基、3−ヘキシル基、2−オクチル基、2−エチルヘキシル基、フェニル基、ベンジル基等が挙げられる。また、炭化水素基の水素原子がフッ素原子に置換されたものとしては、たとえば、ナノフルオロヘキシル基、ヘキサフルオロヘキシル基、トリデカフルオロオクチル基、ヘプタデカフルオロオクチル基、ヘプタデカフルオロデシル基等のパーフルオロアルキル基等、前記例示する炭化水素基の水素原子がフッ素原子に、置換度および置換位置は特に限定されず任意に置換されたものが挙げられる。   Specific examples of the hydrocarbon group include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- Nonyl group, n-decyl group, n-dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, eicosyl group, 2-propyl group, 2-butyl group, 2-methyl-2-propyl group, 2-pentyl group, 3 -Pentyl group, 2-hexyl group, 3-hexyl group, 2-octyl group, 2-ethylhexyl group, phenyl group, benzyl group and the like. Examples of the hydrocarbon group in which the hydrogen atom is substituted with a fluorine atom include a nanofluorohexyl group, a hexafluorohexyl group, a tridecafluorooctyl group, a heptadecafluorooctyl group, and a heptadecafluorodecyl group. The hydrogen atom of the hydrocarbon group exemplified above such as a perfluoroalkyl group is a fluorine atom, the degree of substitution and the substitution position are not particularly limited, and those optionally substituted can be mentioned.

OAで示される炭素数2〜4のオキシアルキレン基の具体例としては、オキシエチレン基、オキシトリメチレン基、オキシプロピレン基、オキシブチレン基等のアルキレンオキサイドが挙げられる。   Specific examples of the oxyalkylene group having 2 to 4 carbon atoms represented by OA include alkylene oxides such as oxyethylene group, oxytrimethylene group, oxypropylene group and oxybutylene group.

なお、Rとして示される炭化水素基の炭素数としては、反応選択率を向上させる観点から、好ましくは1〜12である。また、pとしては、好ましくは0〜6、より好ましくは0である。   In addition, as carbon number of the hydrocarbon group shown as R, Preferably it is 1-12 from a viewpoint of improving reaction selectivity. Moreover, as p, Preferably it is 0-6, More preferably, it is 0.

原料として好適に使用されるグリシジルエーテルとしては、具体的には、たとえば、n−ブチルグリシジルエーテル、2−メチル−プロピルグリシジルエーテル、n−ペンチルグリシジルエーテル、2−メチル−ブチルグリシジルエーテル、n−ヘキシルグリシジルエーテル、2−メチル−ペンチルグリシジルエーテル、フェニルグリシジルエーテル、n−オクチルグリシジルエーテル、2−エチル−ヘキシルグリシジルエーテル、n−ステアリルグリシジルエーテル等が挙げられる。   Specific examples of the glycidyl ether suitably used as the raw material include n-butyl glycidyl ether, 2-methyl-propyl glycidyl ether, n-pentyl glycidyl ether, 2-methyl-butyl glycidyl ether, and n-hexyl. Examples include glycidyl ether, 2-methyl-pentyl glycidyl ether, phenyl glycidyl ether, n-octyl glycidyl ether, 2-ethyl-hexyl glycidyl ether, and n-stearyl glycidyl ether.

本発明において、原料の加水分解反応に使用される水の種類は、本発明の所望の効果の発現を阻害しない限り特に限定されるものではない。水としては、たとえば、イオン交換水、蒸留水、逆浸透濾過処理水等が挙げられ、本発明の本質を損なわない範囲で、水道水のような塩類等を含有するものを使用しても差し支えない。   In the present invention, the type of water used for the hydrolysis reaction of the raw material is not particularly limited as long as the desired effect of the present invention is not inhibited. Examples of water include ion exchange water, distilled water, reverse osmosis filtration treated water, and the like, and water containing salts such as tap water may be used as long as the essence of the present invention is not impaired. Absent.

また、本発明において原料の加水分解反応に使用される水として、その少なくとも一部に、加水分解反応後の反応混合物(その全部または一部が加水分解反応に供された後の反応混合物)から分離回収され、後述のようにしてpH調整された水(以下、リサイクル水という場合がある)が使用される。該水のpHは3.5以上であり、通常、上限は12程度である。副生成物の生成をいっそう抑制する観点から、pHとしては、4〜9が好ましく、5〜8がより好ましい。   In addition, as water used for the hydrolysis reaction of the raw material in the present invention, at least a part thereof is from a reaction mixture after the hydrolysis reaction (a reaction mixture after all or a part thereof has been subjected to the hydrolysis reaction). Water that has been separated and recovered and whose pH has been adjusted as described below (hereinafter sometimes referred to as recycled water) is used. The pH of the water is 3.5 or higher, and usually the upper limit is about 12. From the viewpoint of further suppressing the production of by-products, the pH is preferably 4 to 9, and more preferably 5 to 8.

なお、リサイクル水は、同一の反応系から得られたものであっても、異なる反応系から得られたものであってもよい。後者の態様としては、たとえば、後述の実施例2の態様を挙げることができる。   The recycled water may be obtained from the same reaction system or from different reaction systems. As the latter mode, for example, the mode of Example 2 described later can be cited.

本発明において、リサイクル水の使用量としては、特に限定はないが、外部から新規に反応器に供給される水(外部供給水)の量に対するモル比(リサイクル水/外部供給水)として、好ましくは1以上、より好ましくは10以上である。この比は水の損失の減少の指標であるといえ、その値が高い程、概して製造工程における水の損失が少ないと言える。なお、原料の加水分解反応に使用される水は全部がリサイクル水であってもよい。   In the present invention, the amount of recycled water used is not particularly limited, but is preferably a molar ratio (recycled water / externally supplied water) to the amount of water (externally supplied water) newly supplied to the reactor from the outside. Is 1 or more, more preferably 10 or more. This ratio can be said to be an indicator of the reduction in water loss, and the higher the value, the less water loss in the manufacturing process. The water used for the hydrolysis reaction of the raw material may be all recycled water.

本発明の製造方法では、上記のような原料および水を反応器に供給し、原料の加水分解反応を行ってグリセリルエーテルを製造する。本発明において、加水分解反応は、原料と水との反応性を高める観点から、水が亜臨界状態となる条件下にて行われる。水が亜臨界状態となる条件とは、高温・高圧条件下にて水を液体状に保持しうる条件をいい、具体的には、100〜350℃、好ましくは200〜300℃の温度で、および好ましくは0.12〜100MPa、より好ましくは0.5〜20MPa、さらに好ましくは1〜15MPaの圧力下で、水を液体状に保持しうる条件が好ましい。   In the production method of the present invention, the raw material and water as described above are supplied to a reactor, and the raw material is subjected to a hydrolysis reaction to produce glyceryl ether. In the present invention, the hydrolysis reaction is performed under conditions where water is in a subcritical state from the viewpoint of increasing the reactivity between the raw material and water. The condition that water becomes a subcritical state refers to a condition that can maintain water in a liquid state under a high temperature and high pressure condition. Specifically, the temperature is 100 to 350 ° C., preferably 200 to 300 ° C., And the conditions which can hold | maintain water in a liquid state under the pressure of 0.12-100 Mpa, more preferably 0.5-20 Mpa, still more preferably 1-15 Mpa are more preferable.

本発明の製造方法は、原料を1バッチ当たりに要する量だけ供給し、単回で加水分解反応を行なう回分式によっても、原料を連続的に供給して加水分解反応を行なう連続式によっても実施することができる。特に、温度の昇降にかかる時間が短く、反応条件の制御が容易であり、反応を効率的に進行させうる特性を有する連続式にて実施するのが好ましい。   The production method of the present invention is carried out by a batch system in which raw materials are supplied in an amount required per batch and a hydrolysis reaction is performed once, or by a continuous system in which raw materials are continuously supplied and a hydrolysis reaction is performed. can do. In particular, it is preferable to carry out in a continuous manner that has a characteristic that the time required for raising and lowering the temperature is short, the reaction conditions are easily controlled, and the reaction can proceed efficiently.

加水分解反応は、本発明の製造方法の実施態様に応じて選択される反応器内において行なわれる。当該反応器は、上記条件で加水分解反応を行うことができ、反応産物を回収可能なものであれば特に限定されるものではないが、たとえば、回分式にて実施する場合、オートクレーブなどの槽型反応器が好適に使用される。一方、連続式にて実施する場合、管型反応器、塔型反応器、スタティックミキサー型反応器などの流通式管型形式のものと、連続式撹拌槽型反応器などの半回分形式のものが好適に使用され、これらのうち、操作性や高圧反応時の耐圧性が良好であることから、管型反応器が特に好適に使用される。従って、本発明においては、管型反応器を用いて連続的に加水分解反応を行うのが好ましい。以上の反応器はいずれも市販のものが入手可能である。また、反応器としては攪拌手段を有するものでも、有さないものでもよいが、反応を均一に進行させる観点からは、攪拌手段を有するものが好ましい。   The hydrolysis reaction is carried out in a reactor selected according to the embodiment of the production method of the present invention. The reactor is not particularly limited as long as it can perform a hydrolysis reaction under the above-mentioned conditions and can recover the reaction product. For example, in the case of carrying out in a batch system, a tank such as an autoclave A type reactor is preferably used. On the other hand, in the case of carrying out in a continuous mode, a flow-through tubular type such as a tubular reactor, a tower type reactor, a static mixer type reactor, and a semi-batch type such as a continuous stirred tank type reactor Among these, a tubular reactor is particularly preferably used because of its good operability and pressure resistance during high-pressure reaction. Therefore, in the present invention, it is preferable to carry out the hydrolysis reaction continuously using a tubular reactor. All of the above reactors are commercially available. Further, the reactor may or may not have a stirring means, but from the viewpoint of allowing the reaction to proceed uniformly, a reactor having a stirring means is preferable.

本発明に用いる反応器の材質は特に限定されず、一般的に化学反応に利用される素材を任意に使用することができる。具体例としては、純鉄、炭素鋼、鋳鉄、ニッケル鋼等の鋼材、SUS304、SUS304L、SUS309、SUS309S、SUS316、SUS316L等のオーステナイト系ステンレス鋼、SUS403、SUS420等のマルテンサイト系ステンレス鋼、SUS430等のフェライト系ステンレス鋼、カーペンター20等のFe-Cr-Ni合金、純銅、アルミ青銅、黄銅等の銅合金、純アルミニウム、ジュラルミン等のアルミニウム合金、インコネル600、インコネル702等のNi-Cr-Fe合金、モネル等のNi-Cu合金、ハステロイB、ハステロイC、ハステロイC276等のNi-Mo-Fe-Cr合金、ステライト21、ステライト27、ハイネス25等のコバルト合金、純チタンを含むチタン合金、タングステン、ジルコニウムを含むジルコニウム合金、モリブデン、クロム等の金属材料;硬質ガラス、石英ガラス、磁器、グラスライニング、フェノール樹脂、ポリ4フッ化エチレン、ポリエチレン、エポキシ樹脂、ポリアミド樹脂等の合成樹脂、アルミナ、チタニア、炭化珪素、窒化珪素、窒化アルミニウム等のセラミック材料等が挙げられる。これらの中でも材質腐食が懸案される超臨界水条件に近い温度条件で反応を行う場合には、オーステナイト系ステンレス鋼、Ni-Cr-Fe合金、Ni-Mo-Fe-Cr合金のような金属材料の利用が好ましく、Ni-Cr-Fe合金、Ni-Mo-Fe-Cr合金がより好ましい。   The material of the reactor used in the present invention is not particularly limited, and materials generally used for chemical reactions can be arbitrarily used. Specific examples include steel materials such as pure iron, carbon steel, cast iron, nickel steel, austenitic stainless steels such as SUS304, SUS304L, SUS309, SUS309S, SUS316, and SUS316L, martensitic stainless steels such as SUS403 and SUS420, SUS430, and the like. Ferritic stainless steel, Fe-Cr-Ni alloys such as carpenter 20, copper alloys such as pure copper, aluminum bronze and brass, aluminum alloys such as pure aluminum and duralumin, Ni-Cr-Fe alloys such as Inconel 600 and Inconel 702 Ni-Cu alloys such as Monel, Ni-Mo-Fe-Cr alloys such as Hastelloy B, Hastelloy C, Hastelloy C276, Cobalt alloys such as Stellite 21, Stellite 27, Highness 25, Titanium alloys including pure titanium, tungsten, Jill Metal materials such as zirconium alloys containing molybdenum, molybdenum and chromium; hard glass, quartz glass, porcelain, glass lining, phenolic resin, polytetrafluoroethylene, polyethylene, epoxy resin, polyamide resin and other synthetic resins, alumina, titania, Examples thereof include ceramic materials such as silicon carbide, silicon nitride, and aluminum nitride. Among these, when the reaction is carried out under temperature conditions close to supercritical water conditions where material corrosion is a concern, metallic materials such as austenitic stainless steel, Ni—Cr—Fe alloy, Ni—Mo—Fe—Cr alloy Of Ni—Cr—Fe alloy and Ni—Mo—Fe—Cr alloy are more preferred.

また、加水分解反応時における原料に対する水の量は、特に限定されないがモル換算で、その化学量論量の好ましくは10〜1000倍であり、より好ましくは20〜500倍である。かかる範囲内において、原料としてのグリシジルエーテルと生成したグリセリルエーテルとの二量化等の副反応の進行が抑制されてグリセリルエーテルの反応選択率が高まる。また、本反応系特有の事象から、連続式の反応操作における効率的な生産性の観点からは、40〜200倍の条件範囲がさらに好ましい。ここで、水の量とは、リサイクル水と外部供給水の総量を言う。リサイクル水の外部供給水に対する使用量のモル比は、上記の通りに設定されるのが好ましい。   The amount of water relative to the raw material during the hydrolysis reaction is not particularly limited, but is preferably 10 to 1000 times, more preferably 20 to 500 times the stoichiometric amount in terms of mole. Within such a range, the progress of side reactions such as dimerization between the glycidyl ether as a raw material and the produced glyceryl ether is suppressed, and the reaction selectivity of glyceryl ether is increased. In addition, from the viewpoint of efficient productivity in a continuous reaction operation, a condition range of 40 to 200 times is more preferable from an event peculiar to the present reaction system. Here, the amount of water refers to the total amount of recycled water and externally supplied water. The molar ratio of the amount of recycled water used with respect to the external supply water is preferably set as described above.

本発明の方法を回分式にて実施する場合には、加水分解反応時における原料に対する水の量が前記範囲内となるように原料と水を仕込むのが好ましく、一方、連続式にて実施する場合には、反応の定常状態(すなわち、反応に関与する成分が一定となった状態)において原料に対する水の量が前記範囲内となるようにするのが好ましい。   When the method of the present invention is carried out batchwise, it is preferable to charge the raw material and water so that the amount of water relative to the raw material during the hydrolysis reaction is within the above range, while it is carried out continuously. In this case, it is preferable that the amount of water relative to the raw material is within the above range in the steady state of the reaction (that is, the state where the components involved in the reaction are constant).

加水分解反応を行なう際には原料および水は個別におよび/または予め混合して反応器内に供給される。予め混合せずに反応器内に供給する場合は、反応器内において混合する。混合は、原料として使用するグリシジルエーテルの化学構造によっては反応系が不均一であるため、剪断力の強い攪拌手段を用いて行なうのが好ましい。当該攪拌手段としては、回分式では、たとえば、プロペラミキサー、アジホモミキサー、ホモミキサーや、剪断性の高いディスクタービン型攪拌翼、傾斜パドル型攪拌翼、パドル型攪拌翼等が好適に使用され、連続式では、たとえば、パイプラインミキサー、ラインホモミキサー、スタティックミキサー、I.S.G.ミキサー、超音波ミキサー、高圧ホモジナイザー、剪断性の高い渦巻きポンプ等のポンプ類、ディスパー等が好適に使用される。また、加水分解反応もそれらの攪拌手段による混合条件下に進行させるのが好ましい。   When carrying out the hydrolysis reaction, the raw materials and water are supplied individually and / or premixed into the reactor. When supplying it in a reactor without mixing beforehand, it mixes in a reactor. Depending on the chemical structure of the glycidyl ether used as a raw material, the reaction system is not uniform, and therefore mixing is preferably performed using a stirring means having a strong shearing force. As the stirring means, in a batch type, for example, a propeller mixer, an azimuth homomixer, a homomixer, a highly shearable disk turbine type stirring blade, an inclined paddle type stirring blade, a paddle type stirring blade, and the like are preferably used. In the continuous type, for example, a pipeline mixer, a line homomixer, a static mixer, I.V. S. G. Mixers, ultrasonic mixers, high-pressure homogenizers, pumps such as high-shearing centrifugal pumps, and dispersers are preferably used. Further, the hydrolysis reaction is preferably allowed to proceed under the mixing conditions by these stirring means.

加水分解反応は、反応器内の水が亜臨界状態となる条件に、反応器内の内部流体の温度(反応温度)および反応器内の圧力(反応圧力)を制御して行なう。水が亜臨界状態となる条件としての、温度および/または圧力の好ましい範囲は上記の通りである。温度および圧力を水が亜臨界状態となる条件に制御することによって、無触媒下においても効率良く加水分解反応を行うことができ、また、水の超臨界またはそれに近い条件で起こり得る反応装置の腐食を抑制できる等の利点がある。   The hydrolysis reaction is performed by controlling the temperature of the internal fluid in the reactor (reaction temperature) and the pressure in the reactor (reaction pressure) under the condition that the water in the reactor is in a subcritical state. The preferable ranges of temperature and / or pressure as conditions for water to be in a subcritical state are as described above. By controlling the temperature and pressure to conditions under which water becomes a subcritical state, the hydrolysis reaction can be carried out efficiently even in the absence of a catalyst. There is an advantage that corrosion can be suppressed.

また、反応時間としては、反応温度や用いる原料の種類等により異なり一概には決められないが、バッチ式の場合、原料等の仕込み終了から、一方、連続式の場合、反応の定常状態に達してから、概ね1分〜10時間の範囲で選択される。たとえば、200℃で反応を行なう場合、反応時間としては好ましくは10分間程度である。尚、連続式の反応器における反応時間とは、かかる反応器に反応液が滞留している時間を意味し、反応器の容積を反応器に供給される単位時間あたりの原料流量で除した値を示す。   In addition, the reaction time varies depending on the reaction temperature and the type of raw material used, and cannot be determined unconditionally. However, in the case of a batch type, from the end of the charging of raw materials, etc., on the other hand, in the case of a continuous type, the reaction reaches a steady state. From about 1 minute to 10 hours. For example, when the reaction is performed at 200 ° C., the reaction time is preferably about 10 minutes. The reaction time in the continuous reactor means the time that the reaction liquid stays in the reactor, and is a value obtained by dividing the volume of the reactor by the raw material flow rate per unit time supplied to the reactor. Indicates.

本発明においては、加水分解反応を水が亜臨界状態となる条件下に行うため、無触媒下でも反応が進行するが、酸やアルカリの触媒を添加することも可能である。本発明において使用される触媒としては特に限定されるものではないが、例えば、一般に加水分解反応において使用される、酸、塩基、酸と塩基の併用系などを挙げることができる。   In the present invention, since the hydrolysis reaction is carried out under conditions where water is in a subcritical state, the reaction proceeds even in the absence of a catalyst, but it is also possible to add an acid or alkali catalyst. Although it does not specifically limit as a catalyst used in this invention, For example, the acid, base, combined use system of an acid and a base etc. which are generally used in a hydrolysis reaction can be mentioned.

触媒を使用する場合、その使用量としては、所望の原料の加水分解反応効率が得られれば特に限定されるものではないが、概ね原料100重量部に対して、好ましくは0.01〜10重量部、より好ましくは0.1〜5重量部である。   When the catalyst is used, the amount used is not particularly limited as long as the desired hydrolysis efficiency of the raw material can be obtained, but is preferably 0.01 to 10 weights with respect to 100 parts by weight of the raw material. Parts, more preferably 0.1 to 5 parts by weight.

以上のようにして原料であるグリシジルエーテルの加水分解反応が行われる。加水分解反応後の反応混合物からの水の分離回収は、たとえば、以下のような分離回収手段を使用して行うのが好適である。   As described above, the hydrolysis reaction of the raw material glycidyl ether is carried out. The separation and recovery of water from the reaction mixture after the hydrolysis reaction is preferably performed using, for example, the following separation and recovery means.

本発明に使用される分離回収手段とは、加水分解反応後の反応混合物から水以外の成分と水の回収とを行い得る手段をいう。水以外の成分の回収と水の回収は、それらを一体として行ってもよく(態様1)、各々独立して行ってもよい(態様2)。操作の容易性の観点から、態様1により水以外の成分と水の回収を行い得る分離回収手段を使用するのが好ましい。   The separation / recovery means used in the present invention means a means capable of recovering components other than water and water from the reaction mixture after the hydrolysis reaction. The recovery of components other than water and the recovery of water may be performed integrally (Aspect 1) or may be performed independently (Aspect 2). From the viewpoint of ease of operation, it is preferable to use a separation and recovery means that can recover components other than water and water according to Embodiment 1.

本発明において加水分解反応後の反応混合物は、原料として使用するグリシジルエーテルの化学構造によっては水以外の成分(反応産物であるグリセリルエーテルを含む)と水とに分層する性状を有する。それゆえ、態様1により水以外の成分と水の回収を行い得る分離回収手段としては、たとえば、比重差分離、膜分離等が挙げられる。比重差分離としては、API式オイルセパレーター、CPIオイルセパレーター、PPIオイルセパレーター等の静置分離、シャープレス型、ドラバル型等の遠心分離、湿式サイクロンなどが挙げられる。膜分離としては、精密濾過膜、限外濾過膜、ルーズRO膜(ルーズ逆浸透膜)、逆浸透膜等が挙げられる。これらの中でも静置分離は、反応混合物を供給して静置するだけで、反応混合物は水以外の成分(上層)と水(下層)とに分層するので、水を回収することで水以外の成分も回収され、水以外の成分の回収と水の回収とを一体として行うことができるので好ましい。   In the present invention, the reaction mixture after the hydrolysis reaction has a property of being separated into components other than water (including glyceryl ether as a reaction product) and water depending on the chemical structure of glycidyl ether used as a raw material. Therefore, examples of the separation and recovery means that can recover components other than water and water according to aspect 1 include specific gravity difference separation and membrane separation. Specific gravity difference separation includes static separation such as API type oil separator, CPI oil separator, PPI oil separator, centrifugal separation such as shear press type, Doraval type, wet cyclone and the like. Examples of membrane separation include microfiltration membranes, ultrafiltration membranes, loose RO membranes (loose reverse osmosis membranes), and reverse osmosis membranes. Among these, the stationary separation is performed by supplying the reaction mixture and allowing it to stand, and the reaction mixture is separated into components other than water (upper layer) and water (lower layer). These components are also recovered, and it is preferable because the recovery of components other than water and the recovery of water can be performed integrally.

一方、態様2により水以外の成分と水の回収を行い得る分離回収手段としては、たとえば、蒸発とリービッヒ凝縮とを組み合わせてなる手段が挙げられる。蒸発器に反応混合物を供給した後、水の沸点以上で加熱すると水が蒸発し、蒸発器には水以外の成分が残り回収される。蒸発した水はリービッヒ凝縮器で冷却され水として回収される。また、蒸発操作の代わりに精留等の蒸留操作を用いて分離回収しても良い。   On the other hand, examples of the separation / recovery means that can recover components other than water and water according to Aspect 2 include, for example, a means that combines evaporation and Liebig condensation. When the reaction mixture is supplied to the evaporator and then heated above the boiling point of water, the water evaporates, and components other than water remain and are recovered in the evaporator. The evaporated water is cooled by a Liebig condenser and recovered as water. Moreover, you may separate and collect | recover using distillation operations, such as rectification, instead of evaporation operation.

なお、水は、反応混合物から、その全部が回収される必要は必ずしもない。回収する水量は適宜決定すればよく、反応混合物中の少なくとも一部の水が回収されればよい。   Note that it is not always necessary to recover all of the water from the reaction mixture. The amount of water to be recovered may be determined as appropriate, and at least a part of the water in the reaction mixture may be recovered.

次いで、回収された水は所定の値にpH調整された上で、加水分解反応を行う反応器に供給される。リサイクル水のpHは経時的に低下するため、水のpH調整は、たとえば、以下のようなpH調整剤を用いて行う。   Next, the recovered water is pH adjusted to a predetermined value and then supplied to a reactor that performs a hydrolysis reaction. Since the pH of the recycled water decreases with time, the pH of the water is adjusted using, for example, the following pH adjuster.

前記pH調整剤としては、たとえば、無機系イオン吸着剤、イオン交換樹脂などのイオン吸着剤、無機塩基、有機塩基などの中和剤が挙げられる。本発明の製造方法は連続式にて実施するのが好適であるが、無機系イオン吸着剤やイオン交換樹脂によれば、それらと水とを接触させることにより水のpHの低下を抑制させることが可能であるので、本発明の製造方法を連続式にて実施する場合、pH調整剤としては、それらの吸着剤等を使用するのが好ましい。   Examples of the pH adjusting agent include inorganic ion adsorbents, ion adsorbents such as ion exchange resins, and neutralizing agents such as inorganic bases and organic bases. The production method of the present invention is preferably carried out continuously, but according to the inorganic ion adsorbent or ion exchange resin, it is possible to suppress a decrease in the pH of water by bringing them into contact with water. Therefore, when the production method of the present invention is carried out continuously, it is preferable to use such an adsorbent as the pH adjuster.

無機系イオン吸着剤としては、たとえば、ハイドロタルサイト、ゼオライト、珪酸マグネシウムなどの金属複合酸化物や、アルミナ、シリカ、酸化マグネシウム、酸化亜鉛、酸化カルシウムなどの金属酸化物、活性炭、活性白土などが挙げられ、ハイドロタルサイトが好ましい。イオン交換樹脂としては、たとえば、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、陰イオン交換膜、陰イオン交換繊維などが挙げられ、弱塩基性陰イオン交換樹脂が好ましい。中でも、pH調整能に優れることから、無機系イオン吸着剤が好適に使用される。なお、使用するイオン吸着剤の量は反応に用いるグリシジルエーテルの量により定めることができ、その使用量はグリシジルエーテル100重量部に対して0.01〜20重量部が好ましく、0.1〜10重量部がより好ましい。   Examples of inorganic ion adsorbents include metal composite oxides such as hydrotalcite, zeolite, and magnesium silicate, metal oxides such as alumina, silica, magnesium oxide, zinc oxide, and calcium oxide, activated carbon, and activated clay. And hydrotalcite is preferred. Examples of the ion exchange resin include a strong basic anion exchange resin, a weak basic anion exchange resin, an anion exchange membrane, and an anion exchange fiber, and a weak basic anion exchange resin is preferable. Especially, since it is excellent in pH adjustment ability, an inorganic ion adsorbent is used suitably. The amount of the ion adsorbent used can be determined by the amount of glycidyl ether used in the reaction, and the amount used is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of glycidyl ether, 0.1 to 10 Part by weight is more preferred.

中和剤としては、たとえば、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カリウムなどの金属炭酸塩、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物、燐酸カルシウム、燐酸水素カルシウムなどの金属燐酸塩などの無機塩基、およびアンモニア、アニリン、エチルアミン、ジエチルアミン、トリエチルアミン、ブチルアミン、ピリジン等の有機塩基が挙げられる。   Examples of the neutralizing agent include metal carbonates such as sodium carbonate, potassium carbonate, calcium carbonate, magnesium carbonate, sodium bicarbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, water Examples thereof include metal hydroxides such as aluminum oxide, inorganic bases such as metal phosphates such as calcium phosphate and calcium hydrogen phosphate, and organic bases such as ammonia, aniline, ethylamine, diethylamine, triethylamine, butylamine and pyridine.

pHの調整方法としては、たとえば、上記のような無機系イオン吸着剤やイオン交換樹脂をカラムに充填し、該カラムに分離回収された水を通過させる方法が挙げられる。尚、該カラムでの分離回収された水を処理する手段としては、連続式、回分式いずれで行っても何ら問題なく、連続式では分離回収した水を直列的に処理してもよく、一旦貯槽等を介して循環的に処理してもよい。また、たとえば、上記のような中和剤を、分離回収された水に添加し、所望のpHに調整する方法が挙げられる。pHの調整は、これらいずれかの方法により行なってもこれらの方法を組み合わせて行ってもよいが、本発明の製造方法を連続式にて実施する場合、水のpH調整が容易であることから、吸着剤等を用いる前者の方法がより好適である。   Examples of the pH adjustment method include a method in which a column is filled with the inorganic ion adsorbent and ion exchange resin as described above, and the water separated and recovered is passed through the column. As a means for treating the separated and recovered water in the column, there is no problem whether it is performed in a continuous type or a batch type, and in the continuous type, the separated and collected water may be treated in series. You may process cyclically through a storage tank etc. Further, for example, a method of adding a neutralizing agent as described above to the separated and recovered water and adjusting to a desired pH can be mentioned. The pH may be adjusted by any of these methods or a combination of these methods. However, when the production method of the present invention is carried out continuously, the pH of water is easy to adjust. The former method using an adsorbent or the like is more preferable.

なお、本発明において、水のpHは、常温・常圧下にて計測された値を示す。本pHの測定方法は特に限定されないが、例えば指示薬法、水素電極、アンチモン電極等の金属電極法、ガラス電極法が挙げられる。なお、温度・圧力変化にあわせ、常温・常圧下での値に換算される数値範囲内で技術実施してもよい。   In the present invention, the pH of water indicates a value measured at normal temperature and normal pressure. The method for measuring this pH is not particularly limited, and examples thereof include an indicator method, a metal electrode method such as a hydrogen electrode and an antimony electrode, and a glass electrode method. The technology may be implemented within a numerical range converted to a value at normal temperature and normal pressure in accordance with temperature and pressure changes.

なお、前記態様2により水以外の成分と水の回収を行い得る分離回収手段により水を回収する場合、回収された水のpHは3.5以上である場合がある。かかる場合は、水の回収と水のpHの調整とは同時に行われたものとする。また、たとえ回収された水のpHが既に3.5以上であったとしても、上記の通りのpH調整操作を経た場合、本発明においてはpH調整が実施されたものとする。   In addition, when recovering water by the separation / recovery means that can recover components other than water and water according to the aspect 2, the pH of the recovered water may be 3.5 or more. In such a case, it is assumed that the water recovery and the water pH adjustment are performed simultaneously. Further, even if the pH of the recovered water is already 3.5 or more, it is assumed that the pH adjustment is performed in the present invention when the pH adjustment operation as described above is performed.

本発明の製造方法を連続式にて実施する場合としては、後述の実施例1に例示されるように、反応器から排出される反応混合物から水を分離回収し、たとえば、前記吸着剤等を充填したカラムに水を通過させて水のpHを調整し、循環ラインを通して、更なる加水分解反応に使用するために再び反応器に供給するという、一連の操作が同一装置内で行われる態様が挙げられる。一方、本発明の製造方法をバッチ式にて実施する場合としては、後述の実施例2に例示されるように、反応混合物から水を分離回収し、たとえば、回収された水に前記中和剤を添加して水のpHを調整し、pH調整後の水を反応器に供給するという、一連の操作が同一若しくは異なる装置により行われる態様が挙げられる。なお、リサイクル水を反応器に供給する態様としては特に限定されるものではなく、直接反応器に供給してもよく、原料および/または外部供給水と混合して反応器に供給してもよい。   In the case where the production method of the present invention is carried out continuously, water is separated and recovered from the reaction mixture discharged from the reactor, as exemplified in Example 1 described later. A mode in which a series of operations are performed in the same apparatus, in which water is passed through a packed column to adjust the pH of the water, and is supplied again to the reactor for use in further hydrolysis reaction through a circulation line. Can be mentioned. On the other hand, when the production method of the present invention is carried out batchwise, as exemplified in Example 2 described later, water is separated and recovered from the reaction mixture, and for example, the neutralizing agent is recovered in the recovered water. A mode in which a series of operations are performed by the same or different apparatuses, such as adding water to adjust the pH of water and supplying water after pH adjustment to the reactor, can be mentioned. The aspect of supplying the recycled water to the reactor is not particularly limited, and may be directly supplied to the reactor, or may be mixed with raw materials and / or externally supplied water and supplied to the reactor. .

反応産物であるグリセリルエーテルは、前記水以外の成分として得られる。水以外の成分は、通常、そのままグリセリルエーテルとして使用可能であるが、たとえば、触媒を用いたような場合には、さらに、たとえば、公知の方法に従って蒸発、蒸留、抽出、精密濾過、吸着等により、グリセリルエーテルを精製するのが好ましい。   The reaction product glyceryl ether is obtained as a component other than water. Ingredients other than water can usually be used as glyceryl ethers as they are. For example, when a catalyst is used, further, for example, by evaporation, distillation, extraction, microfiltration, adsorption, etc. according to a known method. It is preferable to purify glyceryl ether.

以上によりグリセリルエーテルが得られる。前記のようにして回収された水のpHを調整しない場合、原料の加水分解反応に使用される水のpHは経時的に低下し、その結果、グリセリルエーテルの分解や副反応が進行し、また、使用する反応器によっては金属の溶出が生じ、得られるグリセリルエーテルは、色相が悪化したり、刺激臭を伴ったりするようになる。本発明の製造方法によれば、リサイクル水を長時間加水分解反応に使用した際にも、そのような種々の現象の発生を抑えて、高品質なグリセリルエーテルを得ることができる。   Thus, glyceryl ether is obtained. If the pH of the water recovered as described above is not adjusted, the pH of the water used for the hydrolysis reaction of the raw material decreases with time, and as a result, decomposition and side reactions of glyceryl ether proceed, Depending on the reactor used, elution of the metal occurs, and the resulting glyceryl ether is deteriorated in hue or accompanied by an irritating odor. According to the production method of the present invention, even when recycled water is used for a hydrolysis reaction for a long time, the occurrence of such various phenomena can be suppressed and high-quality glyceryl ether can be obtained.

なお、本発明において、グリセリルエーテルの色相はガードナー法(JIS K 0071-2に準拠)により測定される。本発明の製造方法により得られるグリセリルエーテルの色相としては、好ましくは4以下である。   In the present invention, the hue of glyceryl ether is measured by the Gardner method (conforming to JIS K 0071-2). The hue of glyceryl ether obtained by the production method of the present invention is preferably 4 or less.

また、本発明の製造方法における、反応混合物から回収された水のpH調整は、かかる方法により得られるグリセリルエーテルの側から見た場合、グリセリルエーテルの着色防止手段と捉えることができる。従って、本発明の一態様として、前記一般式(I)で示される化合物と水を反応器に供給し、水が亜臨界状態となる条件下に該化合物の加水分解反応を行う工程1、及び加水分解反応後の反応混合物から水を回収し、該反応器に供給する工程2を経て製造されるグリセリルエーテルの着色防止方法であって、前記工程2において、水のpHを少なくとも3.5に調整して該反応器に供給する、グリセリルエーテルの着色防止方法が提供される。当該方法における各工程の操作等については、本発明の製造方法についての上記記載に従えばよい。   Moreover, the pH adjustment of the water recovered from the reaction mixture in the production method of the present invention can be regarded as a means for preventing glyceryl ether coloring when viewed from the glyceryl ether side obtained by such a method. Therefore, as one aspect of the present invention, a step 1 of supplying the compound represented by the general formula (I) and water to a reactor and performing a hydrolysis reaction of the compound under a condition in which the water is in a subcritical state; A method for preventing coloration of glyceryl ether produced through the step 2 of recovering water from the reaction mixture after the hydrolysis reaction and supplying it to the reactor, wherein the pH of the water is set to at least 3.5 in the step 2 There is provided a method for preventing coloration of glyceryl ether, which is adjusted and fed to the reactor. About the operation of each process in the said method, what is necessary is just to follow the said description about the manufacturing method of this invention.

実施例1
図1に示す反応装置を用いた。図1に示す装置は、管型反応器1、分離回収部2、水供給部3及び原料供給部4を備えている。水供給部3と原料供給部4はそれぞれ管型反応器1に、管型反応器1は水循環ライン5を介して分離回収部2と接続されている。分離回収部2には静置分離器を用い、水循環ライン5には水処理部6及び水循環ポンプ7を備え付けている。水処理部6では無機系イオン吸着剤としてキョーワード1015〔協和化学工業(株)製ハイドロタルサイト〕200gをSUS製のカラムに充填して用いた。
Example 1
The reaction apparatus shown in FIG. 1 was used. The apparatus shown in FIG. 1 includes a tubular reactor 1, a separation / recovery unit 2, a water supply unit 3, and a raw material supply unit 4. The water supply unit 3 and the raw material supply unit 4 are respectively connected to the tubular reactor 1, and the tubular reactor 1 is connected to the separation and recovery unit 2 through a water circulation line 5. A stationary separator is used for the separation and recovery unit 2, and a water treatment unit 6 and a water circulation pump 7 are provided in the water circulation line 5. In the water treatment unit 6, 200 g of KYOWARD 1015 (Kyowa Chemical Industry Co., Ltd. hydrotalcite) as an inorganic ion adsorbent was packed in a SUS column and used.

グリセリルエーテルの製造を開始するに際し、分離回収部2にイオン交換水を13kg仕込んだ。原料として2−エチル−ヘキシルグリシジルエーテルを50.1g/分で、およびイオン交換水(初期pH6.8)を28.6g/分で、原料供給部4および水供給部3から、ならびに分離回収部2の水を464.3g/分で水循環ライン5を介して、それぞれ管型反応器1(管径:16mm、管長:11m、材質:SUS316)に連続的に供給し背圧弁8を通して反応混合物を分離回収部2に導入した。管型反応器1はヒーターにて内部流体の温度(反応温度)が275℃になるように加熱した。一方、管型反応器1内の圧力(反応圧力)は8MPaとなるようにした。管型反応器1では、かかる温度・圧力条件下、すなわち、水が亜臨界状態となる条件下に原料の加水分解反応が行われた。なお、反応の定常状態において原料に対する水の量は、モル換算で、その化学量論量の100倍であった。加水分解反応後、反応混合物は冷却部(50℃)により冷却された後、分離回収部2に至った。分離回収部2では反応混合物が分層し、水は下層として回収され、常時、水循環ライン5を介して水処理部6に当該水を通過させて水のpHを調整した後、管型反応器1に供給した。   When the production of glyceryl ether was started, 13 kg of ion-exchanged water was charged into the separation and recovery unit 2. 2-ethyl-hexyl glycidyl ether as a raw material at 50.1 g / min and ion-exchanged water (initial pH 6.8) at 28.6 g / min from the raw material supply unit 4 and the water supply unit 3, and a separation and recovery unit 2 water was continuously supplied to the tubular reactor 1 (tube diameter: 16 mm, tube length: 11 m, material: SUS316) through the water circulation line 5 at 464.3 g / min, and the reaction mixture was passed through the back pressure valve 8. It was introduced into the separation and recovery unit 2. The tubular reactor 1 was heated with a heater so that the temperature of the internal fluid (reaction temperature) was 275 ° C. On the other hand, the pressure in the tubular reactor 1 (reaction pressure) was set to 8 MPa. In the tubular reactor 1, the hydrolysis reaction of the raw material was performed under such temperature and pressure conditions, that is, under conditions where water was in a subcritical state. In the steady state of the reaction, the amount of water relative to the raw material was 100 times its stoichiometric amount in terms of mole. After the hydrolysis reaction, the reaction mixture was cooled by a cooling part (50 ° C.), and then reached the separation and recovery part 2. In the separation and recovery unit 2, the reaction mixture is separated and water is recovered as a lower layer. After the water is constantly passed through the water treatment unit 6 through the water circulation line 5 to adjust the pH of the water, a tubular reactor is used. 1 was supplied.

以上の操作によりグリセリルエーテルを製造した。グリシジルエーテルを供給し加水分解反応を開始してから4時間ごとに28時間後までの反応産物を回収した。回収を始めてから300gの2−エチル−ヘキシルグリシジルエーテルを管型反応器1に供給する間に得られた反応産物のガスクロマトグラムから算出された、グリセリルエーテルの反応選択率及び分解率、並びにグリセリルエーテルの色相を表1に示す。また、反応産物の回収を行っている間の水処理部6通過後の、反応混合物から回収された水のpH(常温・常圧下、ガラス電極法により測定)を表1に併せて示す。   The glyceryl ether was manufactured by the above operation. Glycidyl ether was supplied to start the hydrolysis reaction, and the reaction product was collected every 4 hours until 28 hours later. Reaction selectivity and decomposition rate of glyceryl ether and glyceryl ether calculated from a gas chromatogram of a reaction product obtained while supplying 300 g of 2-ethyl-hexyl glycidyl ether to tube reactor 1 from the start of recovery The hues of are shown in Table 1. Table 1 also shows the pH (measured by the glass electrode method under normal temperature and normal pressure) of the water collected from the reaction mixture after passing through the water treatment unit 6 while collecting the reaction product.

なお、反応選択率は、生成したグリセリルエーテルの生成率/供給されたグリシジルエーテルの転化率×100により算出した。また、分解率はグリセリルエーテル分解生成物の生成率により算出した。色相はガードナー法(JIS K 0071−2に準拠)により測定した。   The reaction selectivity was calculated by the following formula: production rate of produced glyceryl ether / conversion rate of supplied glycidyl ether × 100. Moreover, the decomposition rate was calculated from the generation rate of the glyceryl ether decomposition product. Hue was measured by the Gardner method (based on JIS K 0071-2).

比較例1
図1に示すものと同様の装置を用いたが、ここでは水処理部6を設置せず、分離回収部2から回収された水が水循環ライン5を介して直接、管型反応器1に導入されるように設定した。
Comparative Example 1
The apparatus similar to that shown in FIG. 1 was used, but here the water treatment unit 6 was not installed, and the water recovered from the separation and recovery unit 2 was directly introduced into the tubular reactor 1 via the water circulation line 5. Set to be.

グリセリルエーテルの製造を開始するに際し、分離回収部2にイオン交換水を13kg仕込んだ。原料として2−エチル−ヘキシルグリシジルエーテルを50.1g/分で、およびイオン交換水(初期pH6.8)を28.6g/分で、原料供給部4および水供給部3から、ならびに分離回収部2の水を464.3g/分で水循環ライン5を介して、それぞれ管型反応器1に連続的に供給し背圧弁8を通して反応混合物を分離回収部2に導入した。管型反応器1はヒーターにて内部流体の温度(反応温度)が275℃になるように加熱した。一方、管型反応器1内の圧力(反応圧力)は8MPaとなるようにした。管型反応器1では、かかる温度・圧力条件下、すなわち、水が亜臨界状態となる条件下に原料の加水分解反応が行われた。加水分解反応後、反応混合物は冷却部(50℃)により冷却された後、分離回収部2に至った。分離回収部2では反応混合物が分層し、水は下層として回収され、常時、循環ライン5を介して管型反応器1に供給された。   When the production of glyceryl ether was started, 13 kg of ion-exchanged water was charged into the separation and recovery unit 2. 2-ethyl-hexyl glycidyl ether as a raw material at 50.1 g / min and ion-exchanged water (initial pH 6.8) at 28.6 g / min from the raw material supply unit 4 and the water supply unit 3, and a separation and recovery unit 2 water was continuously supplied to the tubular reactor 1 through the water circulation line 5 at 464.3 g / min, and the reaction mixture was introduced into the separation and recovery unit 2 through the back pressure valve 8. The tubular reactor 1 was heated with a heater so that the temperature of the internal fluid (reaction temperature) was 275 ° C. On the other hand, the pressure in the tubular reactor 1 (reaction pressure) was set to 8 MPa. In the tubular reactor 1, the hydrolysis reaction of the raw material was performed under such temperature and pressure conditions, that is, under conditions where water was in a subcritical state. After the hydrolysis reaction, the reaction mixture was cooled by a cooling part (50 ° C.), and then reached the separation and recovery part 2. In the separation and recovery unit 2, the reaction mixture was separated into layers, and water was recovered as a lower layer, and was always supplied to the tubular reactor 1 via the circulation line 5.

以上の操作によりグリセリルエーテルを製造した。グリシジルエーテルを供給し加水分解反応を開始してから4時間ごとに16時間後までの反応産物を回収した。回収を始めてから300gの2−エチル−ヘキシルグリシジルエーテルを管型反応器1に供給する間に得られた反応産物のガスクロマトグラムから算出された、グリセリルエーテルの反応選択率及び分解率、並びにグリセリルエーテルの色相を表1に示す。また、反応混合物から回収され、分離回収部2の下層にある状態の水のpHを表1に併せて示す。   The glyceryl ether was manufactured by the above operation. Glycidyl ether was supplied to start the hydrolysis reaction, and the reaction product was collected every 4 hours until 16 hours later. Reaction selectivity and decomposition rate of glyceryl ether and glyceryl ether calculated from a gas chromatogram of a reaction product obtained while supplying 300 g of 2-ethyl-hexyl glycidyl ether to tube reactor 1 from the start of recovery The hues of are shown in Table 1. Table 1 also shows the pH of water recovered from the reaction mixture and in the lower layer of the separation and recovery unit 2.

なお、グリセリルエーテルの反応選択率、分解率、色相、並びに水のpHは、実施例1と同様の方法によって算出ないし測定した。   The reaction selectivity, decomposition rate, hue, and water pH of glyceryl ether were calculated or measured by the same method as in Example 1.

Figure 0004587464
Figure 0004587464

実施例1では、水のpH調整剤として無機系イオン吸着剤を用い、加水分解反応後の反応混合物から回収される水のpHを連続的に調整した後、反応器に循環させて加水分解反応を行った。その結果、表1に示される通り、長時間の運転を行った際にも、高いグリセリルエーテルの反応選択率が示され、また、その分解率も低く、色相の悪化も認められなかった。   In Example 1, an inorganic ion adsorbent was used as a water pH adjuster, and after continuously adjusting the pH of water recovered from the reaction mixture after the hydrolysis reaction, it was circulated through the reactor to cause hydrolysis reaction. Went. As a result, as shown in Table 1, even when the operation was performed for a long time, a high reaction selectivity of glyceryl ether was shown, the decomposition rate was low, and the hue was not deteriorated.

一方、比較例1では、水のpH調整剤を使用せず、反応混合物から回収される水を直接反応器に循環させて加水分解反応を行った。その結果、表1に示される通り、運転時間の経過とともに反応選択率は減少する傾向が見られ、分解率は実施例1と比較して明らかに高かった。また、色相の顕著な悪化が認められた。   On the other hand, in Comparative Example 1, the hydrolysis reaction was carried out by directly circulating water recovered from the reaction mixture to the reactor without using a water pH adjuster. As a result, as shown in Table 1, the reaction selectivity tended to decrease with the lapse of operation time, and the decomposition rate was clearly higher than that of Example 1. Moreover, the remarkable deterioration of the hue was recognized.

実施例2
図2に示す反応装置を用いた。図2に示す装置は、管型反応器1、分離回収部2、水供給部3、原料供給部4、および背圧弁8を備えている。水供給部3と原料供給部4はそれぞれ管型反応器1に、管型反応器1は分離回収部2と接続されている。分離回収部2には静置分離器を用いた。
Example 2
The reaction apparatus shown in FIG. 2 was used. The apparatus shown in FIG. 2 includes a tubular reactor 1, a separation and recovery unit 2, a water supply unit 3, a raw material supply unit 4, and a back pressure valve 8. The water supply unit 3 and the raw material supply unit 4 are connected to the tubular reactor 1, and the tubular reactor 1 is connected to the separation and recovery unit 2. A stationary separator was used for the separation and recovery unit 2.

比較例1で、グリシジルエーテルを供給し加水分解反応を開始してから20時間後に分離回収された水(pH3.2)に、中和剤として水酸化ナトリウムを加え、pHが6.0になるように調整した。これを、水供給部3より15.9 mL/分で、また、原料供給部4より2−エチル−ヘキシルグリシジルエーテルを1.8 mL/分でそれぞれ連続的に管型反応器1へ供給し、背圧弁8を通じて反応混合物を分離回収部2に導入した。なお、管型反応器1内の内部流体の温度を、油浴により280℃に維持した。一方、管型反応器1内の圧力を、8MPaとなるようにした。管型反応器1では、かかる温度、圧力条件下、すなわち水が亜臨界状態となる条件下に原料の加水分解反応が行われた。なお、反応の定常状態において原料に対する水の量は、モル換算で、その化学量論量の100倍であった。加水分解反応後、反応混合物は冷却部(50℃)により冷却された後、分離回収部2に至った。分離回収部2では反応混合物が分層し、反応産物は上層として得られた。この操作により反応組成が定常になった2時間後から反応産物を回収した。回収を始めてから20gの2−エチル−ヘキシルグリシジルエーテルを供給する間に得られた反応産物のガスクロマトグラムから算出されたグリセリルエーテル選択率は98.3%であった。また、グリセリルエーテルの分解率は0.7%であった。   In Comparative Example 1, sodium hydroxide was added as a neutralizing agent to water (pH 3.2) separated and recovered 20 hours after the hydrolysis reaction was started by supplying glycidyl ether, and the pH became 6.0. Adjusted as follows. This was continuously supplied from the water supply unit 3 to the tubular reactor 1 at 15.9 mL / min and from the raw material supply unit 4 to 2-ethyl-hexyl glycidyl ether at 1.8 mL / min. The reaction mixture was introduced into the separation and recovery unit 2 through the back pressure valve 8. The temperature of the internal fluid in the tubular reactor 1 was maintained at 280 ° C. with an oil bath. On the other hand, the pressure in the tubular reactor 1 was set to 8 MPa. In the tubular reactor 1, the hydrolysis reaction of the raw material was performed under such temperature and pressure conditions, that is, under conditions where water was in a subcritical state. In the steady state of the reaction, the amount of water relative to the raw material was 100 times its stoichiometric amount in terms of mole. After the hydrolysis reaction, the reaction mixture was cooled by a cooling part (50 ° C.), and then reached the separation and recovery part 2. In the separation and recovery unit 2, the reaction mixture was separated, and the reaction product was obtained as the upper layer. By this operation, the reaction product was recovered 2 hours after the reaction composition became steady. The glyceryl ether selectivity calculated from the gas chromatogram of the reaction product obtained while supplying 20 g of 2-ethyl-hexyl glycidyl ether from the start of the recovery was 98.3%. The decomposition rate of glyceryl ether was 0.7%.

実施例2において、比較例1の加水分解反応後に分離回収された水のpHを調整し、これを加水分解反応に用いることにより、高いグリセリルエーテルの反応選択率が得られ、またグリセリルエーテルの分解率も低く抑えられた。また、色相の悪化も認められなかった。   In Example 2, by adjusting the pH of the water separated and recovered after the hydrolysis reaction of Comparative Example 1, and using this in the hydrolysis reaction, a high reaction selectivity of glyceryl ether can be obtained, and the decomposition of glyceryl ether can be achieved. The rate was also kept low. Further, no deterioration of hue was observed.

本発明により、溶剤、乳化剤、分散剤、洗浄剤、増泡剤等に使用可能な品質の高いグリセリルエーテルを提供することができる。   According to the present invention, a high-quality glyceryl ether that can be used for a solvent, an emulsifier, a dispersant, a cleaning agent, a foaming agent and the like can be provided.

本発明の製造方法の実施に好適に使用される装置の一例を示す装置概略図である。It is an apparatus schematic which shows an example of the apparatus used suitably for implementation of the manufacturing method of this invention. 本発明の製造方法の実施に好適に使用される装置の一例を示す装置該略図である。It is the apparatus schematic which shows an example of the apparatus used suitably for implementation of the manufacturing method of this invention.

符号の説明Explanation of symbols

1 管型反応器
2 分離回収部
3 水供給部
4 原料供給部
5 水循環ライン
6 水処理部
7 水循環ポンプ
8 背圧弁
1 Tubular reactor 2 Separation and recovery unit 3 Water supply unit 4 Raw material supply unit 5 Water circulation line 6 Water treatment unit 7 Water circulation pump 8 Back pressure valve

Claims (6)

一般式(I):
Figure 0004587464
(式中、Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素数1〜20の炭化水素基を示し、OAは同一でも異なっていてもよい炭素数2〜4のオキシアルキレン基を示し、pは0〜20の数を示す。)
で示される化合物と水を反応器に供給し、水が亜臨界状態となる条件下に該化合物の加水分解反応を行うグリセリルエーテルの製造方法であって、加水分解反応後の反応混合物から水を回収し、当該水のpHを3.5〜9に調整して該反応器に供給する工程を有する、グリセリルエーテルの製造方法。
Formula (I):
Figure 0004587464
(In the formula, R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms, and OA may be the same or different and has 2 to 4 carbon atoms. Represents an oxyalkylene group, and p represents a number of 0 to 20.)
And a method for producing glyceryl ether, wherein the compound and water are supplied to a reactor and the hydrolysis reaction of the compound is performed under a condition where the water is in a subcritical state, wherein water is removed from the reaction mixture after the hydrolysis reaction. Collect the pH of the water 3 . The manufacturing method of glyceryl ether which has the process of adjusting to 5-9 and supplying to this reactor.
加水分解反応時における一般式(I)で示される化合物に対する水の量が、モル換算で、その化学量論量の10〜1000倍である請求項1記載の方法。   The method according to claim 1, wherein the amount of water relative to the compound represented by the general formula (I) during the hydrolysis reaction is 10 to 1000 times its stoichiometric amount in terms of mole. 水のpHの調整を無機系イオン吸着剤を用いて行う請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the pH of water is adjusted using an inorganic ion adsorbent. 加水分解反応を100〜350℃の温度範囲で行う請求項1〜3いずれか記載の方法。   The method according to any one of claims 1 to 3, wherein the hydrolysis reaction is performed in a temperature range of 100 to 350 ° C. 連続的に加水分解反応を行う請求項1〜4いずれか記載の方法。   The method according to any one of claims 1 to 4, wherein the hydrolysis reaction is continuously carried out. 一般式(I):
Figure 0004587464
(式中、Rは一部もしくは全部の水素原子がフッ素原子で置換されていてもよい炭素数1〜20の炭化水素基を示し、OAは同一でも異なっていてもよい炭素数2〜4のオキシアルキレン基を示し、pは0〜20の数を示す。)
で示される化合物と水を反応器に供給し、水が亜臨界状態となる条件下に該化合物の加水分解反応を行う工程1、及び加水分解反応後の反応混合物から水を回収し、該反応器に供給する工程2を経て製造されるグリセリルエーテルの着色防止方法であって、前記工程2において、水のpHを3.5〜9に調整して該反応器に供給する、グリセリルエーテルの着色防止方法。
Formula (I):
Figure 0004587464
(In the formula, R represents a hydrocarbon group having 1 to 20 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms, and OA may be the same or different and has 2 to 4 carbon atoms. Represents an oxyalkylene group, and p represents a number of 0 to 20.)
Step 1 in which a compound represented by the formula (1) and water are supplied to a reactor, and the hydrolysis reaction of the compound is carried out under conditions where water is in a subcritical state, and water is recovered from the reaction mixture after the hydrolysis reaction, A method for preventing coloration of glyceryl ether produced through Step 2 of supplying to a vessel, wherein the pH of water is 3 . A method for preventing coloration of glyceryl ether, which is adjusted to 5 to 9 and supplied to the reactor.
JP2005106587A 2005-04-01 2005-04-01 Method for producing glyceryl ether Active JP4587464B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005106587A JP4587464B2 (en) 2005-04-01 2005-04-01 Method for producing glyceryl ether
ES06730826T ES2376886T3 (en) 2005-04-01 2006-03-31 Procedure to produce glyceryl ether
US11/910,357 US20090275786A1 (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether
EP06730826A EP1880988B1 (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether
CN200680010047XA CN101151235B (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether
PCT/JP2006/306878 WO2006106940A1 (en) 2005-04-01 2006-03-31 Process for producing glyceryl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106587A JP4587464B2 (en) 2005-04-01 2005-04-01 Method for producing glyceryl ether

Publications (2)

Publication Number Publication Date
JP2006282620A JP2006282620A (en) 2006-10-19
JP4587464B2 true JP4587464B2 (en) 2010-11-24

Family

ID=37404894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106587A Active JP4587464B2 (en) 2005-04-01 2005-04-01 Method for producing glyceryl ether

Country Status (2)

Country Link
JP (1) JP4587464B2 (en)
CN (1) CN101151235B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5406422B2 (en) * 2005-12-28 2014-02-05 花王株式会社 Method for producing reaction product
CN110724041B (en) * 2018-07-16 2022-06-03 唐山旭阳化工有限公司 Separation method of glycerol monomethyl ether reaction mixed liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267901A (en) * 2002-03-14 2003-09-25 Kao Corp Method for producing glyceryl ether
JP2007176883A (en) * 2005-12-28 2007-07-12 Kao Corp Method for producing glyceryl ether

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003267901A (en) * 2002-03-14 2003-09-25 Kao Corp Method for producing glyceryl ether
JP2007176883A (en) * 2005-12-28 2007-07-12 Kao Corp Method for producing glyceryl ether

Also Published As

Publication number Publication date
CN101151235B (en) 2011-05-04
JP2006282620A (en) 2006-10-19
CN101151235A (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP5149456B1 (en) Process for producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene
EP2826766B1 (en) Production method for 2,3,3,3-tetra-fluoropropene
EP3763696B1 (en) Production method for gamma, delta-unsaturated alcohols
MX2014001835A (en) Process for manufacturing hmb and salts thereof.
JP5454567B2 (en) Method for producing hexafluoropropylene oxide
JP2010275295A (en) Method for producing 2,2-bis(4-hydroxyphenyl)hexafluoropropane
JP4587464B2 (en) Method for producing glyceryl ether
JP2017014160A (en) Manufacturing method of 1,2-dichloro-3,3,3-trifluoropropene
JP4738169B2 (en) Method for producing glyceryl ether
JPWO2013146709A1 (en) Process for producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene
WO2006106940A1 (en) Process for producing glyceryl ether
JP3977109B2 (en) Method for producing glyceryl ether
JP4790346B2 (en) Method for producing hydrolyzate
JP5103547B2 (en) Method for producing epoxy compound
JP3955223B2 (en) Method for producing glyceryl ether
JPWO2011099112A1 (en) Acrolein synthesis method
JP5167734B2 (en) Method for producing fluorine-containing epoxy compound
JP4540442B2 (en) Method for producing glycidyl ether
JP2006104096A (en) Purification method of ethylene carbonate
WO2019168115A1 (en) Production method for 1,2-dichloro-2,3,3,3-tetrafluoropropane and production method for 1-chloro-2,3,3,3-tetrafluoropropene
JP5406422B2 (en) Method for producing reaction product
JP2015110533A (en) Method of producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene
JPWO2019124220A1 (en) Method for producing 5-chloro-1,1,2,2,3,3,4,5-octafluoropentane and production of 1-chloro-2,3,3,4,5,5-heptafluoropentene Method
CN109400475A (en) A kind of preparation method of R- propene carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R151 Written notification of patent or utility model registration

Ref document number: 4587464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250