JP4586327B2 - Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator - Google Patents

Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator Download PDF

Info

Publication number
JP4586327B2
JP4586327B2 JP2002318269A JP2002318269A JP4586327B2 JP 4586327 B2 JP4586327 B2 JP 4586327B2 JP 2002318269 A JP2002318269 A JP 2002318269A JP 2002318269 A JP2002318269 A JP 2002318269A JP 4586327 B2 JP4586327 B2 JP 4586327B2
Authority
JP
Japan
Prior art keywords
separator
secondary battery
mol
resin
polyamideimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318269A
Other languages
Japanese (ja)
Other versions
JP2004152675A (en
Inventor
忠司 犬飼
弘 田近
潤 山田
和丈 岡本
久人 小林
恵造 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002318269A priority Critical patent/JP4586327B2/en
Publication of JP2004152675A publication Critical patent/JP2004152675A/en
Application granted granted Critical
Publication of JP4586327B2 publication Critical patent/JP4586327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、安全性の改善が要求されているリチウムイオン二次電池のセパレーターとして、優れたシャットダウン温度特性及び高いメルトダウン温度特性を示すポリアミドイミド樹脂に関し、さらにはその樹脂を用いたセパレーター、およびそのセパレーターを用いた二次電池に関する。
【0002】
【従来の技術】
近年、電子携帯機器の発達により、高エネルギー密度、高起電力の電池が開発されている。それらの中でも高起電力の点から非水電解液電池、特にリチウムイオン二次電池が精力的に開発されている。このような非水電解液電池には電解質として可燃性有機溶媒が通常用いられる。しかしながら万が一電池の両極が短絡、電池内容物の分解反応を起こした場合、電池内部の急激な温度上昇により、内容物が洩れることがある。この様な問題に対する対策としては現在、安全弁の取り付け、溶融性成分含有のセパレーターによるシャットダウン機能付与などが行われている。
【0003】
しかしながら安全弁は短絡に対する本質的な防護策ではなく、電池内部の急激な圧力上昇を緩和するだけのものである。
【0004】
一方、セパレーターのシャットダウン機能は熱溶融性材料を用いた多孔質膜を用いることにより、短絡などにより電池内部の温度がある一定の温度に達したときに、材料の熱溶融により多孔質膜の穴が塞がることにより、イオン導電性が妨げられ発熱の原因となる電池反応を抑えようとするものである(例えば特許文献1、2、3参照)。しかしながら、このような熱溶融性材料を用いた場合、熱上昇でシャットダウン機能が働いても更なる温度上昇が起こり、膜自体が溶融して本来の機能である電極間の隔離が損なわれてしまう。これはメルトダウンと呼ばれる現象であり電池としては好ましくない。このような問題点の改善策としてシャットダウン温度の範囲を広げることが提案されている(例えば特許文献4、5、6参照)。これらは多孔質膜、不織布基材に熱溶融性材料を積層、コーテイングするなどの技術である。しかしながらこれらの作成手法は煩雑になる場合があることと必ずしもシャットダウン時の絶縁性が十分なものが得られてはいない。
【0005】
【特許文献1】
特許2642206公報([特許請求の範囲])
【特許文献2】
特開平6−212006号公報([特許請求の範囲])
【特許文献3】
特開平8−138643号公報([特許請求の範囲])
【特許文献4】
特公平4−1692号公報([0010])
【特許文献5】
特開昭60−52号公報(第2頁)
【特許文献6】
特開昭61−232560号公報(第2頁)
【0006】
【発明が解決しようとする課題】
本発明はかかる事情に鑑みてなされたものであって、従来使用されている多孔質膜セパレーターに代わるシャットダウン特性及びメルトダウン特性が良好で絶縁性に優れた安価なセパレーターとそれを用いた二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、鋭意検討を重ねた結果、多孔質のポリアミドイミド樹脂膜を単独又は他の材料と組み合わせてセパレーターとして使用することにより、安全性、サイクル耐久性に優れた二次電池が得られることを見いだした。即ち本発明は以下の二次電池セパレーター用ポリアミドイミド樹脂、その樹脂を用いたセパレーター、およびそのセパレーターを用いた二次電池である。
【0008】
(1)対数粘度が0.5dl/g以上であり、かつガラス転移温度が100℃以上である二次電池セパレーター用ポリアミドイミド樹脂。
【0009】
(2)ポリアミドイミド樹脂が、末端にカルボキシル基、水酸基およびアミノ基の何れかを有するブタジエン系ゴム、ポリアルキレンエーテルおよびポリエステルのうち1種又は2種以上を共重合されている(1)記載の二次電池セパレーター用ポリアミドイミド樹脂。
【0010】
(3)ポリアミドイミド樹脂のジアミン成分にo−トリジン構造を有する(1)または(2)記載の二次電池セパレーター用ポリアミドイミド樹脂。
【0011】
(4)(1)〜(3)のいずれかに記載のポリアミドイミド樹脂を用いた二次電池セパレーター。
【0012】
(5)ポリアミドイミド樹脂が、空孔率30〜80%の多孔質膜を形成している(4)記載の二次電池用セパレーター。
【0013】
(6)(5)記載の二次電池用セパレーターにおいて、ポリアミドイミド多孔質膜にさらに空孔率が30〜80%である多孔質オレフィンを積層した二次電池用セパレーター。
【0014】
(7)膜厚が5〜100μmである(4)〜(6)のいずれかに記載の二次電池用セパレーター。
【0015】
(8)透気度が1〜2000sec/100ccAirである(4)〜(7)のいずれかに記載の二次電池用セパレーター。
【0016】
(9)(4)〜(8)のいずれかに記載のセパレーターを用いた二次電池。
【0017】
【発明の実施の形態】
以下本発明を詳細に説明する。本発明のポリアミドイミド樹脂はトリメリット酸クロリドとジアミンを用いる酸クロリド法やトリメリット酸無水物とジイソシアネートを用いるジイソシアネート法等の通常の方法で合成されるが製造コストの点からジイソシアネート法が好ましい。
【0018】
ポリアミドイミド樹脂の合成に用いられる酸成分はトリメリット酸無水物(クロリド)が望ましいが、その一部を他の多塩基酸またはその無水物に置き換えることができる。例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート等のテトラカルボン酸及びこれらの無水物、シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル−ブタジエン)、ジカルボキシポリ(スチレン−ブタジエン)等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、4,4’−ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。これらの中ではシャットダウン特性から分子量が1000以上のジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル−ブタジエン)、ジカルボキシポリ(スチレン−ブタジエン)を共重合することが好ましい。それらの共重合量は全酸成分を100モル%としたときに2モル%以上であることが好ましい。
【0019】
また、トリメリット酸化合物の一部をグリコールに置き換えることもできる。グリコールとしてはエチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールや上述のジカルボン酸の1種又は2種以上と上記グリコールの1種又は2種以上とから合成される、末端水酸基のポリエステル等が挙げられ、これらの中ではシャットダウン効果から分子量が1000以上のポリエチレングリコール、または末端水酸基のポリエステルを共重合することが好ましい。それらの共重合量は全酸成分を100モル%としたときに2モル%以上であることが好ましい。
【0020】
ポリアミドイミド樹脂の合成に用いられるジアミン(ジイソシアネート)成分としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、イソホロンジアミン、4,4’−ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、ベンジジン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン等の芳香族ジアミン及びこれらのジイソシアネート等が挙げられ、これらの中では反応性、コスト、耐電解液性の点から4,4’−ジアミノジフェニルメタン、o−トリジンジアミン及びこれらのジイソシアネートが好ましく、その共重合量は全アミン成分を100モル%としたときに、その両成分が50モル%以上であることが好ましく、中でもo−トリジンジアミン及びこれらのジイソシアネートが30モル%以上共重合すると膜強度の点でより好ましい。
【0021】
本発明のポリアミドイミド樹脂はN,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン、γ―ブチロラクトン等の極性溶剤中、60〜200℃に加熱しながら攪拌することで容易に製造することができる。この場合、必要に応じてトリエチルアミン、ジエチレントリアミン等のアミン類、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド等のアルカリ金属塩等を触媒として用いることもできる。
【0022】
本発明のポリアミドイミド樹脂はガラス転移温度が100℃以上で対数粘度は0.5dl/g以上が好ましい。ガラス転移温度が100℃以下では、シャットダウン効果はあるが、メルトダウン温度が低くなり、セパレーターに用いた場合、正極と負極が短絡を起こすおそれがある。また、対数粘度が0.5dl/g未満でも溶融温度の低下により同様のおそれがあることと分子量が低いため多孔質膜が脆くなるからである。
【0023】
次にポリアミドイミド多孔質膜の製造方法について説明する。本発明のフィルムの製造は特に制限はないが、上記のポリアミドイミド重合溶液をポリエステルフィルム等の基材に所定の厚みにコーテイングした後、あるいは重合溶液をスリットダイからフィルム状に押し出して、水を主成分とする溶液中に投入して凝固させるのが好ましい。
【0024】
凝固浴にはメタノール、エタノール、プロピルアルコール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、N,N’−ジメチルホルムアミド、N,N’−ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶剤等、水と混和する溶剤を水と共に用いることにより空孔率を制御することができる。ポリアミドイミド多孔質膜の膜厚は5〜100μm、好ましくは10〜70μm、更に好ましくは15〜50μmである。膜厚が5μm以下では膜が弱くなり破断するおそれがある。逆に膜厚が100μmを越えるとサイクル特性が低下する場合がある。ポリアミドイミ多孔質膜の空孔率は30〜80%が好ましい。更に好ましくは40〜70%であり、空孔率が30%未満では膜の電気抵抗が高くなり、大電流を流しにくくなることがある。一方、80%を越えると膜強度が弱くなることがある。ここで空孔率とはポリアミドイミド樹脂溶液から流延乾燥して作成したフィルム(A)の平均膜厚(At)と10cm四方の重量(Aw)を測定し、同じポリアミドイミド樹脂溶液から水中で凝固させて作成した多孔質膜(B)の平均膜厚(Bt)と10cm四方の重量(Bw)とから下記式により算出した値である。両者の膜厚は溶剤を完全に留去するために25μm前後に調節する必要がある。
空孔率=[1−(Bw/Bt)/(Aw/At)]×100(%)
また孔径の尺度である透気度はJIS P−8117に準拠した方法(ガーレー試験機法)により測定した値が1〜2000sec/100ccAirであることが好ましく、透気度が1sec/100ccAircc以下では膜強度が弱くなり、2000sec/100ccAirを越えるとサイクル特性が悪くなる虞がある。
【0025】
このようにして製造されるポリアミドイミド多孔質膜はセパレーターとして単独で用いられた場合でも優れたシャットダウン特性とメルトダウン特性を示す。特に数平均分子量1000以上のブタジエン系ゴムやポリアルキレングリコール、ポリエステル等がブロック状に共重合されたポリアミドイミド樹脂からなる多孔質フィルムの場合その効果が顕著である。
【0026】
また、本発明のポリアミドイミド多孔質膜はポリオレフィン系の多孔質膜と積層、組み合わせて用いることができる。ポリオレフィン系多孔質膜とはポリエチレンやポリプロピレンフィルムを延伸開孔法や相分離法等によって製造されるものである。ポリアミドイミド多孔質膜とポリオレフィン多孔質膜を積層する場合の膜厚は5〜100μm、好ましくは15〜70μmである。空孔率は30〜80%、透気度は1〜2000sec/100ccAirであるものが好ましい。
【0027】
積層フィルムは各々単層フィルムを単純に積層しても良いし、ポリオレフィン多孔膜を基材としてこれにポリアミドイミド樹脂溶液を塗布、水中に投入して凝固させた複合フィルムを用いても良い。
【0028】
このように構成された本発明のポリアミドイミド多孔質膜をセパレーターとして使用した二次電池は従来と同様の電池性能を発揮し、シャットダウン特性、メルトダウン特性に優れた安全な電池を得ることができる。ここでそのイオン種は特に限定されないが、特にリチウムイオンが汎用性の面で好ましい。本発明に関わる二次電池は本発明のセパレーターを用いること以外は、常法に従って製造することができる。
【0029】
即ち、正極活物質としてはリチウムを含んだ材料、負極としてはリチウムをイオンとして吸蔵、放出可能な材料、電解液としてはリチウムとフッ素を含む化合物からなる電解質の有機溶剤溶液を用いることができる。
【0030】
具体的には、正極活物質としてはリチウムイオンを挿入、離脱できるコバルト酸リチウムやマンガン酸リチウム等のリチウム金属酸化物を使用することができる。正極活物質には導電剤として公知の活性炭、各種コークス、カーボンブラック、結着剤及び溶剤等を配合し、この分散液をアルミニウム等の集電体に塗布、乾燥したものを正極材とすることができる。
【0031】
負極活物質としてはコークス、グラファイト、非晶質カーボン等が用いられ、これらを結着剤と有機溶剤からなる分散液を銅箔等の集電体に塗布、乾燥して負極材とすることができる。
【0032】
電解液に使用される電解質としては、LiClO4、LiAsF6、LiPF4、LiBF4、LiBr、LiCF3SO3等が挙げられ、有機溶剤としてはプロピレンカービネート、エチレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン等の1種又は2種以上が用いられる。
【0033】
【実施例】
以下、実施例で本発明を更に詳細に説明するが、本発明はこれらの実施例で制限されるものではない。
尚、実施例中の測定値は以下の方法で測定した。
1.対数粘度:ポリアミドイミド樹脂0.5gを100mlのN−メチル−2−ピロリドンに溶解した溶液を30℃に保ちウベローデ粘度管を用いて測定した。
2.ガラス転移温度:測定幅4mm、長さ15mmのポリアミドイミドフィルムをレオロジー社製DVE−V4レオスペクトラーを用い、周波数110Hzの振動を与えて測定した動的粘弾性の損失弾性率の変曲点をガラス転移温度とした。
3.膜厚:ポリアミドイミド多孔質膜をSONY社製マイクロメーター(μ−Mate)で測定した。
4.空孔率:ポリアミドイミド樹脂溶液から流延乾燥して作成した約25μmフィルム(A)の平均膜厚(At)と10cm四方の重量(Aw)を測定し、同じポリアミドイミド樹脂溶液から水中で凝固させて作成した約25μm多孔質膜(B)の平均膜厚(Bt)と10cm四方の重量(Bw)とから下記式によって空孔率を算出した。
空孔率=[1−(Bw/Bt)/(Aw/At)]×100(%)
5.シャットダウン温度特性:プロピレンカーボネートに4−フッ化ホウ酸リチウムを1モル/lで溶解した溶液を充填した多孔質膜を用い、交流周波数1kHz、交流振幅100mV、昇温速度2℃/分で測定した。温度上昇に伴うインピーダンス値の上昇が一旦100Ωcm2になったときの温度をシャットダウン開始温度とし、インピーダンスの値が1kΩcm2を越え、更に上昇した後低下し再び1kΩcm2になった温度をメルトダウン温度とした。
【0034】
参考例1
温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにトリメリット酸無水物(TMA)1モル、ジフェニルメタンジイソシアネート(MDI)1モル、フッ化カリウム0.01モルを固形分濃度が20%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間攪拌した後180℃に昇温して更に約3時間攪拌を行いポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.86dl/g、ガラス転移温度は290℃であった。
このポリアミドイミド樹脂溶液を100μm厚みのポリエステルフィルム上に塗布し、25℃の水中に約3分間浸漬した後、ポリエステルフィルムから剥がし取り、金属枠で固定して100℃で10分間乾燥した。得られたポリアミドイミドフィルムの膜厚は27μm、空孔率は65%、透気度は3.4sec/100ccAirであった。この膜のシャットダウン温度は167℃、メルトダウン温度は200℃以上であった。この多孔質膜をセパレーターに用い、正極活物質としてコバルト酸リチウム、導電剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデンを用いた正極及び黒鉛と非晶質炭素を混合した負極活物質とポリフッ化ビニリデンをバインダーにした負極、電解液としてソルライト(三菱化学製)を用いてコイン型電池を作成して電池特性を評価した。市販のセパレーター(東燃化学製セルガード:25μ)に比べて放電容量、サイクル特性ともほぼ同等の性能を示した。
【0035】
参考例2
参考例1でTMA0.9モル、ジカルボキシポリ(アクリロニトリル−ブタジエン)ゴム(宇部興産製ハイカーCTBN1300×13:分子量3500)を0.1モルとした以外は参考例1と同じ条件でポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.65dl/g、ガラス転移温度は203℃であった。このポリアミドイミド樹脂溶液から参考例1と同じ方法で多孔質膜を作成した。この多孔質膜の膜厚は25μm、空孔率は48%、透気度は4.6sec/100ccAirでシャットダウン温度は142℃、メルトダウン温度は200℃以上であった。
【0036】
参考例3
参考例1と同じ装置を用い、TMA0.94モル、分子量2000のポリプロピレングリコール0.06モル、イソホロンジイソシアネート1.02モルを固形分濃度が50%となるようにγ−ブチロラクトンと共に仕込み200℃で3時間反応させた後、固形分濃度が20%となるようにN−メチル−2−ピロリドンで希釈してポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.63dl/g、ガラス転移温度は198℃であった。このポリアミドイミド樹脂溶液から参考例1と同じ方法で多孔質膜を作成した。この多孔質膜の厚みは30μm、空孔率は55%、透気度は4.1sec/100ccAirでシャットダウン温度は134℃、メルトダウン温度は200℃以上であった。
【0037】
参考例4
参考例1と同じ装置を用い、TMA0.93モル、ポリカプロラクトン(ダイセル化学製プラクセル220:分子量2000)0.07モル、MDI1.02モル、フッ化カリウム0.02モルを固形分濃度が50%となるようにγ−ブチロラクトンと共に仕込み、200℃で約5時間反応させた後固形分濃度が20%となるようにN−メチル−2−ピロリドンで希釈した。得られたポリアミドイミド樹脂の対数粘度は0.71dl/g、ガラス転移温度は175℃であった。このポリアミドイミド樹脂溶液を参考例1と同じ方法で多孔質膜を作成した。この多孔質膜の膜厚は22μm、空孔率は43%、透気度は6.7sec/100ccAirで、シャットダウン温度は128℃、メルトダウン温度は200℃以上であった。
【0038】
実施例5
参考例1と同じ装置を用い、TMA0.5モル、ダイマー酸0.5モル、o−トリジンジイソシアネート0.5モル、MDI0.5モルを固形分濃度が30%となるようにN−メチル−2−ピロリドンと共に仕込み、120℃で1.5時間、180℃で3時間反応させた。得られたポリアミドイミド樹脂の対数粘度は0.70dl/g、ガラス転移温度は153℃であった。このポリアミドイミド樹脂溶液から参考例1と同じ方法で多孔質膜を作成した。この多孔質膜の厚みは28μm、空孔率は55%、透気度は4.1sec/100ccAirでシャットダウン温度は121℃、メルトダウン温度は186℃であった。
【0039】
比較例1
参考例1でTMAを1.07モルとした以外は参考例1と同じ条件でポリアミドイミド樹脂を合成した。得られたポリアミドイミド樹脂の対数粘度は0.35dl/g、ガラス転移温度は285℃であった。このポリアミドイミド樹脂を用いた多孔質膜は分子量が低いため脆く、セパレーターとしては不適であった。
【0040】
比較例2
参考例1と同じ装置を用い、TMA0.3モル、ダイマー酸0.7モル、MDI1モルを固形分濃度が40%となるようにN−メチル−2−ピロリドンと共に仕込み、180℃で4時間反応させた。得られたポリアミドイミド樹脂の対数粘度は0.63dl/g、ガラス転移温度は82℃であった。このポリアミドイミド樹脂から参考例1と同じ方法で多孔質膜を作成した。この多孔質膜の膜厚は23μm、空孔率は67%、透気度は3.4sec/100ccAirと良好であったが、シャットダウン温度が72℃、メルトダウン温度が118℃と低くセパレーターとしての安全性が不十分であった。
【0041】
【発明の効果】
本発明のポリアミドイミド樹脂を用いた二次電池用セパレーターは、従来使用されてきた多孔質膜セパレーターに比べてシャットダウン特性及びメルトダウン特性が良好で絶縁性に優れた安価なセパレーターであるため、安全性、サイクル耐久性に優れた性能を示す二次電池を提供することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyamide-imide resin exhibiting excellent shutdown temperature characteristics and high meltdown temperature characteristics as a separator for lithium ion secondary batteries that are required to improve safety, and a separator using the resin, and The present invention relates to a secondary battery using the separator.
[0002]
[Prior art]
In recent years, with the development of electronic portable devices, batteries with high energy density and high electromotive force have been developed. Among them, nonaqueous electrolyte batteries, particularly lithium ion secondary batteries, have been vigorously developed from the viewpoint of high electromotive force. In such a non-aqueous electrolyte battery, a flammable organic solvent is usually used as an electrolyte. However, in the unlikely event that both electrodes of the battery are short-circuited and a decomposition reaction of the battery contents occurs, the contents may leak due to a rapid temperature rise inside the battery. At present, countermeasures against such problems include attaching a safety valve and providing a shutdown function with a separator containing a meltable component.
[0003]
However, the safety valve is not an essential protective measure against a short circuit, but only relieves a sudden pressure increase inside the battery.
[0004]
On the other hand, the shutdown function of the separator uses a porous film made of a heat-meltable material. When the temperature inside the battery reaches a certain temperature due to a short circuit or the like, As a result, the ionic conductivity is hindered and the battery reaction causing heat generation is suppressed (see, for example, Patent Documents 1, 2, and 3). However, when such a heat-meltable material is used, even if the shutdown function works due to heat rise, the temperature rises further, and the film itself melts and the isolation between the electrodes, which is the original function, is impaired. . This is a phenomenon called meltdown, which is not preferable for a battery. As measures for improving such problems, it has been proposed to widen the range of the shutdown temperature (see, for example, Patent Documents 4, 5, and 6). These are techniques such as laminating and coating a heat-meltable material on a porous membrane or a nonwoven fabric substrate. However, these preparation methods may be complicated and an insulation property at the time of shutdown is not necessarily obtained.
[0005]
[Patent Document 1]
Japanese Patent No. 2642206 ([Claims])
[Patent Document 2]
JP-A-6-212006 ([Claims])
[Patent Document 3]
Japanese Patent Laid-Open No. 8-138643 ([Claims])
[Patent Document 4]
Japanese Patent Publication No. 4-1692 ([0010])
[Patent Document 5]
JP-A-60-52 (Page 2)
[Patent Document 6]
JP 61-232560 A (page 2)
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and is an inexpensive separator excellent in insulation and excellent in shutdown characteristics and meltdown characteristics in place of conventionally used porous membrane separators, and secondary using the same. An object is to provide a battery.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present invention is excellent in safety and cycle durability by using a porous polyamideimide resin film alone or in combination with other materials as a separator. We have found that a secondary battery can be obtained. That is, this invention is the following polyamideimide resin for secondary battery separators, the separator using the resin, and the secondary battery using the separator.
[0008]
(1) A polyamideimide resin for a secondary battery separator having a logarithmic viscosity of 0.5 dl / g or more and a glass transition temperature of 100 ° C. or more.
[0009]
(2) The polyamideimide resin is copolymerized with one or more of butadiene rubber, polyalkylene ether and polyester having any of a carboxyl group, a hydroxyl group and an amino group at the terminal. Polyamideimide resin for secondary battery separator.
[0010]
(3) The polyamideimide resin for a secondary battery separator according to (1) or (2), wherein the diamine component of the polyamideimide resin has an o-tolidine structure.
[0011]
(4) A secondary battery separator using the polyamideimide resin according to any one of (1) to (3).
[0012]
(5) The separator for secondary batteries according to (4), wherein the polyamideimide resin forms a porous film having a porosity of 30 to 80%.
[0013]
(6) The secondary battery separator according to (5), wherein a porous olefin having a porosity of 30 to 80% is further laminated on the polyamideimide porous membrane.
[0014]
(7) The separator for secondary batteries according to any one of (4) to (6), wherein the film thickness is 5 to 100 μm.
[0015]
(8) The separator for secondary batteries according to any one of (4) to (7), wherein the air permeability is 1 to 2000 sec / 100 cc Air.
[0016]
(9) A secondary battery using the separator according to any one of (4) to (8).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. The polyamide-imide resin of the present invention is synthesized by an ordinary method such as an acid chloride method using trimellitic acid chloride and diamine or a diisocyanate method using trimellitic anhydride and diisocyanate, but the diisocyanate method is preferred from the viewpoint of production cost.
[0018]
The acid component used for the synthesis of the polyamideimide resin is preferably trimellitic anhydride (chloride), but a part of it can be replaced with another polybasic acid or its anhydride. For example, tetracarboxylic acids such as pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, ethylene glycol bistrimellitate, propylene glycol bistrimellitate and their anhydrides, Aliphatic dicarboxylic acids such as oxalic acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), dicarboxypoly (styrene-butadiene), 1,4 -Cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 4,4'-dicyclohexylmethanedicarboxylic acid, alicyclic dicarboxylic acids such as dimer acid, terephthalic acid, isophthalic acid Aromatic dicarboxylic acids such as phosphoric acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, naphthalene dicarboxylic acid and the like can be mentioned. Among these, it is preferable to copolymerize dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), and dicarboxypoly (styrene-butadiene) having a molecular weight of 1000 or more from the standpoint of shutdown characteristics. Their copolymerization amount is preferably 2 mol% or more when the total acid component is 100 mol%.
[0019]
In addition, a part of the trimellitic acid compound can be replaced with glycol. Examples of glycols include alkylene glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, and hexanediol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and one or two of the aforementioned dicarboxylic acids. Examples include polyesters having terminal hydroxyl groups synthesized from the above and one or more of the above glycols. Among these, polyethylene glycol having a molecular weight of 1000 or more or polyesters having terminal hydroxyl groups are copolymerized due to a shutdown effect. It is preferable. Their copolymerization amount is preferably 2 mol% or more when the total acid component is 100 mol%.
[0020]
Examples of the diamine (diisocyanate) component used in the synthesis of the polyamideimide resin include aliphatic diamines such as ethylenediamine, propylenediamine, and hexamethylenediamine, and diisocyanates thereof, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, and isophoronediamine. Alicyclic diamines such as 4,4′-dicyclohexylmethanediamine and their diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4 ′ -Aromatic diamines such as diaminodiphenylsulfone, benzidine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, and diisocyanates thereof. Among these, 4,4′-diaminodiphenylmethane, o-tolidinediamine and these diisocyanates are preferable from the viewpoint of reactivity, cost, and resistance to electrolytic solution, and the amount of copolymerization thereof is 100 mol% of all amine components. In this case, it is preferable that both components are 50 mol% or more, and it is more preferable in terms of film strength that o-tolidinediamine and these diisocyanates are copolymerized in an amount of 30 mol% or more.
[0021]
The polyamideimide resin of the present invention is stirred in a polar solvent such as N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone while heating at 60 to 200 ° C. It can be manufactured easily. In this case, amines such as triethylamine and diethylenetriamine, alkali metal salts such as sodium fluoride, potassium fluoride, cesium fluoride, sodium methoxide, and the like can be used as a catalyst as necessary.
[0022]
The polyamideimide resin of the present invention preferably has a glass transition temperature of 100 ° C. or higher and a logarithmic viscosity of 0.5 dl / g or higher. When the glass transition temperature is 100 ° C. or lower, there is a shutdown effect, but the meltdown temperature is lowered, and when used for a separator, the positive electrode and the negative electrode may be short-circuited. Moreover, even if the logarithmic viscosity is less than 0.5 dl / g, the porous film becomes brittle because there is a similar possibility due to a decrease in melting temperature and the molecular weight is low.
[0023]
Next, a method for producing a polyamideimide porous membrane will be described. The production of the film of the present invention is not particularly limited, but after coating the polyamideimide polymerization solution on a base material such as a polyester film to a predetermined thickness, or extruding the polymerization solution from a slit die into a film shape, It is preferable to put into a solution containing the main component and solidify.
[0024]
In the coagulation bath, alcohols such as methanol, ethanol, propyl alcohol, ethylene glycol, propylene glycol, diethylene glycol and polyethylene glycol, ketones such as acetone and methyl ethyl ketone, N, N′-dimethylformamide, N, N′-dimethylacetamide, The porosity can be controlled by using a water-miscible solvent such as an amide solvent such as N-methyl-2-pyrrolidone together with water. The film thickness of the polyamideimide porous membrane is 5 to 100 μm, preferably 10 to 70 μm, more preferably 15 to 50 μm. If the film thickness is 5 μm or less, the film becomes weak and may break. Conversely, when the film thickness exceeds 100 μm, the cycle characteristics may deteriorate. The porosity of the polyamide-imi porous film is preferably 30 to 80%. More preferably, it is 40 to 70%. If the porosity is less than 30%, the electrical resistance of the film is increased, and it may be difficult to flow a large current. On the other hand, if it exceeds 80%, the film strength may be weakened. Here, the porosity is measured by measuring the average film thickness (At) and 10 cm square weight (Aw) of a film (A) prepared by casting and drying from a polyamideimide resin solution. It is a value calculated by the following formula from the average film thickness (Bt) of the porous film (B) prepared by solidification and the weight (Bw) of 10 cm square. Both film thicknesses must be adjusted to around 25 μm in order to completely remove the solvent.
Porosity = [1- (Bw / Bt) / (Aw / At)] × 100 (%)
The air permeability, which is a measure of the pore diameter, is preferably 1 to 2000 sec / 100 cc Air measured by a method (Gurley tester method) based on JIS P-8117, and if the air permeability is 1 sec / 100 cc Aircc or less, the membrane If the strength becomes weak and exceeds 2000 sec / 100 cc Air, the cycle characteristics may be deteriorated.
[0025]
The polyamideimide porous membrane thus produced exhibits excellent shutdown characteristics and meltdown characteristics even when used alone as a separator. In particular, the effect is remarkable in the case of a porous film made of a polyamideimide resin in which a butadiene rubber having a number average molecular weight of 1000 or more, polyalkylene glycol, polyester, or the like is copolymerized in a block shape.
[0026]
The polyamideimide porous membrane of the present invention can be used in combination with a polyolefin-based porous membrane. The polyolefin-based porous membrane is produced by stretching a polyethylene or polypropylene film by a stretch opening method or a phase separation method. The film thickness in the case of laminating the polyamideimide porous membrane and the polyolefin porous membrane is 5 to 100 μm, preferably 15 to 70 μm. The porosity is preferably 30 to 80% and the air permeability is preferably 1 to 2000 sec / 100 cc Air.
[0027]
Each of the laminated films may be formed by simply laminating a single layer film, or a composite film obtained by applying a polyamide-imide resin solution to a polyolefin porous membrane as a base material, and adding the solution to water for solidification.
[0028]
The secondary battery using the polyamideimide porous membrane of the present invention thus configured as a separator exhibits the same battery performance as before, and can provide a safe battery with excellent shutdown characteristics and meltdown characteristics. . Here, the ionic species is not particularly limited, but lithium ion is particularly preferable in terms of versatility. The secondary battery according to the present invention can be manufactured according to a conventional method except that the separator of the present invention is used.
[0029]
That is, a material containing lithium can be used as the positive electrode active material, a material that can store and release lithium as ions can be used as the negative electrode, and an organic solvent solution of an electrolyte composed of a compound containing lithium and fluorine can be used as the electrolytic solution.
[0030]
Specifically, lithium metal oxides such as lithium cobaltate and lithium manganate that can insert and remove lithium ions can be used as the positive electrode active material. A known active carbon, various cokes, carbon black, a binder, a solvent, and the like are blended into the positive electrode active material as a conductive agent, and this dispersion is applied to a current collector such as aluminum and dried to form a positive electrode material. Can do.
[0031]
Coke, graphite, amorphous carbon, etc. are used as the negative electrode active material, and these are applied to a current collector such as a copper foil with a dispersion composed of a binder and an organic solvent, and dried to form a negative electrode material. it can.
[0032]
Examples of the electrolyte used in the electrolytic solution include LiClO 4 , LiAsF 6 , LiPF 4 , LiBF 4 , LiBr, LiCF 3 SO 3 , and the organic solvents include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate. , Ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran or the like is used.
[0033]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited by these Examples.
In addition, the measured value in an Example was measured with the following method.
1. Logarithmic viscosity: A solution obtained by dissolving 0.5 g of polyamideimide resin in 100 ml of N-methyl-2-pyrrolidone was kept at 30 ° C. and measured using an Ubbelohde viscosity tube.
2. Glass transition temperature: The inflection point of the loss elastic modulus of dynamic viscoelasticity measured by applying a vibration of a frequency of 110 Hz to a polyamideimide film having a measurement width of 4 mm and a length of 15 mm, using a DVE-V4 rheospectr made by Rheology. The glass transition temperature was taken.
3. Film thickness: The polyamideimide porous film was measured with a micrometer (μ-Mate) manufactured by Sony.
4). Porosity: The average film thickness (At) and weight of 10 cm square (Aw) of an approximately 25 μm film (A) prepared by casting and drying from a polyamideimide resin solution were measured, and solidified in water from the same polyamideimide resin solution. The porosity was calculated from the average thickness (Bt) of the approximately 25 μm porous membrane (B) prepared and the weight (Bw) of 10 cm square by the following formula.
Porosity = [1- (Bw / Bt) / (Aw / At)] × 100 (%)
5). Shutdown temperature characteristics: Using a porous membrane filled with a solution of lithium 4-fluoroborate dissolved in propylene carbonate at 1 mol / l, measurement was performed at an AC frequency of 1 kHz, an AC amplitude of 100 mV, and a heating rate of 2 ° C./min. . The temperature at which the rise in impedance value due to temperature rise once becomes 100 Ωcm 2 is the shutdown start temperature, and the temperature at which the impedance value exceeds 1 kΩcm 2 , then rises and decreases again to 1 kΩcm 2 is the meltdown temperature. It was.
[0034]
Reference example 1
A four-necked flask equipped with a thermometer, a condenser tube, and a nitrogen gas inlet tube contains 1 mole of trimellitic anhydride (TMA), 1 mole of diphenylmethane diisocyanate (MDI) and 0.01 mole of potassium fluoride with a solid content of 20 %, Together with N-methyl-2-pyrrolidone, stirred at 120 ° C. for 1.5 hours, heated to 180 ° C. and further stirred for about 3 hours to synthesize a polyamideimide resin. The obtained polyamideimide resin had a logarithmic viscosity of 0.86 dl / g and a glass transition temperature of 290 ° C.
This polyamideimide resin solution was applied onto a 100 μm-thick polyester film, immersed in water at 25 ° C. for about 3 minutes, peeled off from the polyester film, fixed with a metal frame, and dried at 100 ° C. for 10 minutes. The film thickness of the obtained polyamideimide film was 27 μm, the porosity was 65%, and the air permeability was 3.4 sec / 100 cc Air. The shutdown temperature of this film was 167 ° C., and the meltdown temperature was 200 ° C. or higher. Using this porous membrane as a separator, a positive electrode using lithium cobaltate as a positive electrode active material, acetylene black as a conductive agent, polyvinylidene fluoride as a binder, a negative electrode active material mixed with graphite and amorphous carbon, and polyvinylidene fluoride A coin-type battery was prepared using a negative electrode as a binder and Sollite (manufactured by Mitsubishi Chemical) as an electrolytic solution, and the battery characteristics were evaluated. Compared to a commercially available separator (Cell Guard manufactured by Tonen Chemical Co., Ltd .: 25 μ), the discharge capacity and cycle characteristics were almost equivalent.
[0035]
Reference example 2
Polyamideimide resin was used under the same conditions as in Reference Example 1 except that TMA was 0.9 mol in Reference Example 1 and 0.1 mol of dicarboxypoly (acrylonitrile-butadiene) rubber (Hiker CTBN 1300 × 13: molecular weight 3500 made by Ube Industries) was changed to 0.1 mol. Synthesized. The obtained polyamidoimide resin had a logarithmic viscosity of 0.65 dl / g and a glass transition temperature of 203 ° C. A porous membrane was prepared from this polyamideimide resin solution by the same method as in Reference Example 1. This porous film had a thickness of 25 μm, a porosity of 48%, an air permeability of 4.6 sec / 100 cc Air, a shutdown temperature of 142 ° C., and a meltdown temperature of 200 ° C. or more.
[0036]
Reference example 3
Using the same apparatus as in Reference Example 1, 0.94 mol of TMA, 0.06 mol of polypropylene glycol having a molecular weight of 2000, and 1.02 mol of isophorone diisocyanate were charged together with γ-butyrolactone so that the solid concentration would be 50%. After reacting for a period of time, a polyamide-imide resin was synthesized by diluting with N-methyl-2-pyrrolidone so that the solid concentration was 20%. The obtained polyamideimide resin had a logarithmic viscosity of 0.63 dl / g and a glass transition temperature of 198 ° C. A porous membrane was prepared from this polyamideimide resin solution by the same method as in Reference Example 1. This porous film had a thickness of 30 μm, a porosity of 55%, an air permeability of 4.1 sec / 100 cc Air, a shutdown temperature of 134 ° C., and a meltdown temperature of 200 ° C. or more.
[0037]
Reference example 4
Using the same apparatus as in Reference Example 1, 0.93 mol of TMA, 0.07 mol of polycaprolactone (Placcel 220: molecular weight 2000) manufactured by Daicel Chemical Industries, 1.02 mol of MDI, and 0.02 mol of potassium fluoride had a solid content concentration of 50%. Then, the mixture was charged with γ-butyrolactone so that the mixture was reacted at 200 ° C. for about 5 hours, and then diluted with N-methyl-2-pyrrolidone so that the solid content was 20%. The obtained polyamideimide resin had a logarithmic viscosity of 0.71 dl / g and a glass transition temperature of 175 ° C. A porous membrane was prepared from this polyamideimide resin solution in the same manner as in Reference Example 1. The porous film had a thickness of 22 μm, a porosity of 43%, an air permeability of 6.7 sec / 100 cc Air, a shutdown temperature of 128 ° C., and a meltdown temperature of 200 ° C. or more.
[0038]
Example 5
Using the same apparatus as in Reference Example 1, 0.5 mol of TMA, 0.5 mol of dimer acid, 0.5 mol of o-tolidine diisocyanate, and 0.5 mol of MDI were added so that the solid concentration was 30%. -Charged together with pyrrolidone and allowed to react at 120 ° C for 1.5 hours and at 180 ° C for 3 hours. The obtained polyamideimide resin had a logarithmic viscosity of 0.70 dl / g and a glass transition temperature of 153 ° C. A porous membrane was prepared from this polyamideimide resin solution by the same method as in Reference Example 1. This porous film had a thickness of 28 μm, a porosity of 55%, an air permeability of 4.1 sec / 100 cc Air, a shutdown temperature of 121 ° C., and a meltdown temperature of 186 ° C.
[0039]
Comparative Example 1
A polyamideimide resin was synthesized under the same conditions as in Reference Example 1 except that TMA was changed to 1.07 mol in Reference Example 1. The obtained polyamideimide resin had a logarithmic viscosity of 0.35 dl / g and a glass transition temperature of 285 ° C. A porous membrane using this polyamideimide resin is fragile because of its low molecular weight, and is not suitable as a separator.
[0040]
Comparative Example 2
Using the same apparatus as in Reference Example 1, 0.3 mol of TMA, 0.7 mol of dimer acid, and 1 mol of MDI were charged together with N-methyl-2-pyrrolidone so that the solid concentration would be 40%, and reacted at 180 ° C. for 4 hours. I let you. The obtained polyamideimide resin had a logarithmic viscosity of 0.63 dl / g and a glass transition temperature of 82 ° C. A porous film was prepared from this polyamideimide resin by the same method as in Reference Example 1. This porous film had a good film thickness of 23 μm, porosity of 67%, and air permeability of 3.4 sec / 100 cc Air, but the shutdown temperature was as low as 72 ° C. and the meltdown temperature was as low as 118 ° C. Safety was insufficient.
[0041]
【The invention's effect】
The separator for secondary batteries using the polyamide-imide resin of the present invention is an inexpensive separator that has better shutdown characteristics and meltdown characteristics and better insulation than conventional porous membrane separators. It is possible to provide a secondary battery exhibiting excellent performance and cycle durability.

Claims (8)

対数粘度が0.5dl/g以上であり、かつガラス転移温度が100℃以上であり、ジアミン成分にo−トリジン構造を有するポリアミドイミド樹脂を用いた、透気度が1〜2000sec/100ccAirである二次電池セパレーターAnd a logarithmic viscosity of 0.5 dl / g or more, and the glass transition temperature of Ri der 100 ° C. or higher, with a polyamideimide resin having a o- tolidine structure diamine component, air permeability of at 1~2000sec / 100ccAir A secondary battery separator . ポリアミドイミド樹脂が、末端にカルボキシル基、水酸基およびアミノ基の何れかを有するブタジエン系ゴム、ポリアルキレンエーテルおよびポリエステルのうち1種又は2種以上を共重合されている請求項1記載の二次電池セパレーター。The secondary battery according to claim 1, wherein the polyamide-imide resin is copolymerized with one or more of butadiene rubber, polyalkylene ether and polyester having any of a carboxyl group, a hydroxyl group and an amino group at the terminal. separator. 全アミン成分を100モル%としたときに、4,4’−ジアミノジフェニルメタン、o−トリジンジアミン及びこれらのジイソシアネートが50モル%以上共重合されたポリアミドイミド樹脂を用いた請求項1又は2に記載の二次電池セパレーター。The polyamidoimide resin in which 4,4'-diaminodiphenylmethane, o-tolidinediamine, and these diisocyanates are copolymerized at 50 mol% or more when the total amine component is 100 mol% is used. Secondary battery separator. 全アミン成分を100モル%としたときに、o−トリジンジアミン及びこれらのジイソシアネートが30モル%以上共重合されたポリアミドイミド樹脂を用いた請求項1〜3いずれかに記載の二次電池セパレーター。The secondary battery separator according to any one of claims 1 to 3, wherein a polyamide-imide resin in which o-tolidinediamine and these diisocyanates are copolymerized at 30 mol% or more when the total amine component is 100 mol% is used. ポリアミドイミド樹脂が、空孔率30〜80%の多孔質膜を形成している請求項1〜4いずれかに記載の二次電池用セパレーター。The separator for secondary batteries according to any one of claims 1 to 4 , wherein the polyamideimide resin forms a porous film having a porosity of 30 to 80%. 請求項1〜5いずれかに記載の二次電池用セパレーターにおいて、ポリアミドイミド多孔質膜にさらに空孔率が30〜80%である多孔質オレフィンを積層した二次電池用セパレーター。The separator for a secondary battery according to any one of claims 1 to 5 , wherein a porous olefin having a porosity of 30 to 80% is further laminated on the polyamideimide porous membrane. 膜厚が5〜100μmである請求項1〜6のいずれかに記載の二次電池用セパレーター。The separator for a secondary battery according to any one of claims 1 to 6 , wherein the film thickness is 5 to 100 µm. 請求項1〜7のいずれかに記載のセパレーターを用いた二次電池。Secondary battery using the separator according to any one of claims 1 to 7.
JP2002318269A 2002-10-31 2002-10-31 Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator Expired - Fee Related JP4586327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318269A JP4586327B2 (en) 2002-10-31 2002-10-31 Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318269A JP4586327B2 (en) 2002-10-31 2002-10-31 Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator

Publications (2)

Publication Number Publication Date
JP2004152675A JP2004152675A (en) 2004-05-27
JP4586327B2 true JP4586327B2 (en) 2010-11-24

Family

ID=32461438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318269A Expired - Fee Related JP4586327B2 (en) 2002-10-31 2002-10-31 Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator

Country Status (1)

Country Link
JP (1) JP4586327B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134484A1 (en) * 2004-02-23 2007-06-14 Jun Yamada Porous film, process for producing the same, and lithium-ion secondary cell made with the same
JP2006147349A (en) * 2004-11-19 2006-06-08 Toyobo Co Ltd Porous film, forming method of the same, and secondary battery using the same
JP4843935B2 (en) * 2004-11-25 2011-12-21 東レ株式会社 Composite porous membrane, process for producing the same, and secondary battery using the same
JP2007002054A (en) * 2005-06-22 2007-01-11 Toyobo Co Ltd Composite ion exchange membrane and method for producing the same
JP5239445B2 (en) * 2008-03-26 2013-07-17 Tdk株式会社 Electrochemical devices
TWI432510B (en) 2008-05-26 2014-04-01 Mitsui Mining & Smelting Co And a resin composition for forming a layer of a multilayer flexible wiring board
JP2016091963A (en) * 2014-11-11 2016-05-23 株式会社ダイセル Secondary battery separator and secondary battery
CN105552278A (en) * 2016-01-27 2016-05-04 江苏巨贤合成材料有限公司 Preparation method of polyamide-imide lithium battery membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100201A (en) * 1993-10-07 1995-04-18 Toyobo Co Ltd Membrane for purifying blood
JP2003313356A (en) * 2002-04-22 2003-11-06 Daicel Chem Ind Ltd Porous film and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100201A (en) * 1993-10-07 1995-04-18 Toyobo Co Ltd Membrane for purifying blood
JP2003313356A (en) * 2002-04-22 2003-11-06 Daicel Chem Ind Ltd Porous film and its manufacturing method

Also Published As

Publication number Publication date
JP2004152675A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4983256B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
US8512898B2 (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP5126813B2 (en) Nonaqueous electrolyte secondary battery
US8088510B2 (en) Lithium secondary battery comprising double-structured battery case
US20100255380A1 (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP6398298B2 (en) Aromatic polyamide / aromatic polyimide composite porous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2007324073A (en) Lithium secondary battery, its separator and its manufacturing method
JP2001068115A (en) Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery
WO2006123798A1 (en) Porous film and multilayer porous film
JP6299168B2 (en) Aromatic polyamide porous membrane and battery separator
JP5040058B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP4586327B2 (en) Polyamideimide resin for secondary battery separator, separator using the resin, and secondary battery using the separator
JP2007227361A (en) Lithium ion secondary battery and its charging system
JP4892819B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP4591010B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP4569074B2 (en) Method for manufacturing lithium secondary battery
JP2013206560A (en) Nonaqueous secondary battery separator
JP4591011B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP2006147349A (en) Porous film, forming method of the same, and secondary battery using the same
JP4892818B2 (en) Porous membrane, method for producing the same, and lithium ion secondary battery using the same
JP4843935B2 (en) Composite porous membrane, process for producing the same, and secondary battery using the same
JP2015065164A (en) Binder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR102579616B1 (en) Electrode for lithium secondary battery and method of manufacturing same
JPH10261404A (en) Nonaqueous electrolyte secondary battery and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R151 Written notification of patent or utility model registration

Ref document number: 4586327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees