JP4586194B2 - Stress corrosion cracking test method - Google Patents

Stress corrosion cracking test method Download PDF

Info

Publication number
JP4586194B2
JP4586194B2 JP2005073964A JP2005073964A JP4586194B2 JP 4586194 B2 JP4586194 B2 JP 4586194B2 JP 2005073964 A JP2005073964 A JP 2005073964A JP 2005073964 A JP2005073964 A JP 2005073964A JP 4586194 B2 JP4586194 B2 JP 4586194B2
Authority
JP
Japan
Prior art keywords
test
test piece
corrosion cracking
stress corrosion
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005073964A
Other languages
Japanese (ja)
Other versions
JP2006258500A (en
Inventor
博之 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005073964A priority Critical patent/JP4586194B2/en
Publication of JP2006258500A publication Critical patent/JP2006258500A/en
Application granted granted Critical
Publication of JP4586194B2 publication Critical patent/JP4586194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

この出願の発明は金属材料の応力腐食割れ試験方法に関するものであり、さらに詳しくは、この出願の発明は実環境シュミレート大気腐食試験等のために有用な構造用金属材料の応力腐食割れ(SCC)試験方法に関するものである。   The invention of this application relates to a stress corrosion cracking test method for metal materials, and more particularly, the invention of this application relates to stress corrosion cracking (SCC) of structural metal materials useful for real environment simulated atmospheric corrosion tests and the like. It relates to the test method.

金属の材料破壊は一般に材料の表面や内部に小さな割れが発生しそこに何らかの力が集中して亀裂が大きくなることにより発生するが、このような材料破壊の多くは材料の腐食または疲労による亀裂が主な原因であるとされている。たとえば、構造材として汎用されているステンレス鋼も高温の水中で引張応力を付与しつづけると応力腐食割れを起こすことが知られている。このため、金属材料、特に構造材として用いる金属材料の応力腐食割れについては従来から大きな関心が払われてきている。とりわけ、海浜地域で金属材料を使用する場合には海から飛来する海塩粒子が金属材料の腐食に対して大きな影響を与えることから金属材料と海塩粒子による腐食に関する研究が数多くなされている。   In general, material fracture of metals occurs when small cracks occur on the surface or inside of the material, and some force concentrates on the material to make the cracks large. Many of these material breakdowns are cracks due to corrosion or fatigue of the material. Is the main cause. For example, stainless steel, which is widely used as a structural material, is known to cause stress corrosion cracking if it continues to apply tensile stress in high-temperature water. For this reason, much attention has been paid to stress corrosion cracking of metal materials, particularly metal materials used as structural materials. In particular, when a metal material is used in a beach area, sea salt particles flying from the sea have a great influence on the corrosion of the metal material.

最近では海塩粒子と銀の反応により液膜の動きが防止されることを利用して、湿度の増加に伴う水晶マイクロバランス法による周波数の増加から飛来海塩粒子量を推定する飛来海塩測定装置などが開発されている。この飛来海塩測定装置は実環境と同じく数十μmの飛来海塩粒子を発生飛来させ結露による凝縮を経て局部的な海塩の濃縮による腐食の加速する機構を再現できる試験装置であり特許出願もなされている(特許文献1〜4)。   Recently, using the fact that the movement of the liquid film is prevented by the reaction between sea salt particles and silver, flying sea salt measurement to estimate the amount of flying sea salt particles from the increase in frequency by the quartz crystal microbalance method with increasing humidity Devices are being developed. This flying sea salt measuring device is a test device that can reproduce the mechanism of acceleration of corrosion due to local sea salt concentration through the generation of flying sea salt particles of the same size as the actual environment, condensing by condensation, and condensing by condensation. (Patent Documents 1 to 4).

従来はこの実環境シュミレート大気腐食試験装置を用いて、応力腐食割れ試験を行なうに際し、試験片として平板形状のものやあらかじめ成形したU字型(U−bend)の簡易試験片が用いられている。
:特開2004−132752号公報 :特開2004−309248号公報 :特開平11−326019号公報 :特開平11−326020号公報
Conventionally, when performing a stress corrosion cracking test using the actual environment simulated atmospheric corrosion test apparatus, a flat plate or a pre-shaped U-bend simple test piece is used as a test piece. .
: JP-A-2004-132752 : JP 2004-309248 A : JP 11-326019 A : JP 11-326020 A

しかしながら、従来から利用されている応力腐食割れ測定用の試験片はいずれも厚く、その準備が面倒であり、加工時に滑り変形が生じていることから亀裂発生における表面変形を調べることが困難であるだけでなく、応力腐食割れ試験の終了後に観察するために試験片を切断するなどの面倒な作業が必要であった。そこでこの出願の発明は、このような従来の課題を解決するものであり、試験片の準備・調製が容易であって、しかも応力腐食割れの観察も容易な新しい応力腐食割れ試験方法を提供することを課題としている。   However, all of the test pieces for measuring stress corrosion cracking that have been used in the past are thick and troublesome to prepare, and it is difficult to investigate the surface deformation due to the occurrence of cracks due to slip deformation during processing. In addition, troublesome work such as cutting the test piece was necessary for observation after the end of the stress corrosion cracking test. Therefore, the invention of this application solves such a conventional problem, and provides a new stress corrosion cracking test method in which preparation and preparation of a test piece are easy and observation of stress corrosion cracking is easy. It is an issue.

この出願の発明は上記の課題を解決するものとして、第1には、方形の金属薄板を湾曲させて弾性応力が付与された状態でその両端部を折り曲げた留め具に係止した試験片をもって試験を行う金属材料の応力腐食割れ試験方法であって、前記留め具が、方形の金属薄板の両端部に折り曲げ部を設け、この折り曲げ部に前記試験片の両端部を係止させるものであって、前記折り曲げ部以外の部分が平面部とされており、前記試験片の厚さが0.05〜0.2mmであり、前記試験片の長辺の長さLと前記平面部の長辺の長さlの比L/lを1.58以上とすることを特徴とする金属材料の応力腐食割れ試験方法を提供する。
In order to solve the above-mentioned problems, the invention of this application firstly has a test piece that is bent to a fastener that is bent at both ends in a state where an elastic stress is applied by bending a rectangular metal thin plate. A stress corrosion cracking test method for a metal material to be tested , wherein the fastener is provided with bent portions at both ends of a rectangular metal thin plate, and the bent portions are engaged with both ends of the test piece. The portion other than the bent portion is a flat portion, the thickness of the test piece is 0.05 to 0.2 mm, the length L of the long side of the test piece and the long side of the flat portion A stress corrosion cracking test method for a metal material is provided, wherein the ratio L / l of the length l is 1.58 or more .

また、この試験方法について、この出願の発明は、第2には、試験片と留め具はともに一枚の金属薄板から裁断されたものであることを特徴とする方法を提供する。 Further, this test method, the invention of this application, the second provides a method characterized by test piece and the clasp are those together is cut from a single sheet metal.

この出願の発明によれば、試験に使用する試験片は専門の業者に依頼することなく測定対象の金属薄板を通常のハサミで裁断することにより簡単に準備、調製することができ、応力腐食割れ試験後の状態の観察も簡便、かつ容易に正確に可能とされる。   According to the invention of this application, the test specimen used for the test can be easily prepared and prepared by cutting a metal thin plate to be measured with ordinary scissors without requesting a specialized supplier, and stress corrosion cracking is possible. Observation of the state after the test is also possible simply and easily.

この出願の発明について説明すると、まず試験対象となる金属の薄板を2つの方形に裁断し、裁断された一方の方形の両端部を図1に示すように折り曲げて留め具(A)を成形し、切断されたもう一方の方形シートを湾曲して弾性応力が付与された状態の試験片(B)として、その両端部を留め具(A)の折り曲げ部に係止することができる。試験片(B)は弾性応力が付与された状態で保持される。この時の試験片に付与される弾性応力の大きさは試験片の湾曲された辺の長さ(L)と留め具(A)の平坦部の長さ(l)によって調整される。もちろん、図1は、試験片(B)が湾曲されている状態を示したものであってこの出願の発明の試験片(B)は、従来のU字型試験片のように、あらかじめU字形湾曲状に成形したものでないことは言うまでもない。従来のU−bend試験片は試験片として規格化されたものであり、塑性変形されている。このU−bend試験片は厚さ2mm、長さ70mm、幅15mmの金属板を両端近くを穴をあけ試験部の曲率半径が7.5mm程度になるようU形に曲げた後ボルトでさらに応力を負荷しており、大変な作業となる。試験部は曲率半径7.5mm程度の曲面であるため、原子間力顕微鏡のように10μm位の高低差しか測れない装置は使用できない。一方、本発明の試験法の特徴の一つは原子間力顕微鏡を使用できる試験環境を作ることにあり、そのためほとんど塑性変形が起こらない弾性変形内での応力を試験片(B)に負荷して実験を行う。弾性変形なので治具を取り除くと試験片は平らにもどる。このため表面亀裂が通常の金属顕微鏡や原子間力顕微鏡で観察が可能となる。従来のU−bend試験片はボルトを外しても塑性変形しているため平らにならない。また板厚が増すと応力負荷の機構が大変であるとともに試験片加工および観察のための切断が大変である。具体的には本発明では、治具を外せば試験片は曲面から平面にもどるような応力を治具である留め具(A)の長さで制御している。また、試験の容易さとしてハサミで試験片加工ができることも大きな特徴である。SEMで表面を見るにも試験片の切断がハサミで簡単にできる。   The invention of this application will be described. First, a metal thin plate to be tested is cut into two squares, and both ends of one of the cut squares are bent as shown in FIG. 1 to form a fastener (A). Then, as the test piece (B) in a state in which the other cut rectangular sheet is bent and elastic stress is applied, both ends thereof can be locked to the bent portions of the fastener (A). A test piece (B) is hold | maintained in the state to which the elastic stress was provided. The magnitude of the elastic stress applied to the test piece at this time is adjusted by the length (L) of the curved side of the test piece and the length (l) of the flat portion of the fastener (A). Of course, FIG. 1 shows a state in which the test piece (B) is curved, and the test piece (B) of the invention of this application is previously U-shaped like a conventional U-shaped test piece. Needless to say, it is not formed into a curved shape. The conventional U-bend test piece is standardized as a test piece and is plastically deformed. This U-bend test piece is a 2 mm thick, 70 mm long, 15 mm wide metal plate with holes drilled near both ends and bent into a U shape so that the radius of curvature of the test section is about 7.5 mm. Is a burdensome work. Since the test part is a curved surface with a curvature radius of about 7.5 mm, an apparatus that can measure only a height of about 10 μm like an atomic force microscope cannot be used. On the other hand, one of the features of the test method of the present invention is to create a test environment in which an atomic force microscope can be used. For this reason, stress within elastic deformation that hardly causes plastic deformation is applied to the test piece (B). Experiment. Because it is elastically deformed, the specimen will return flat when the jig is removed. Therefore, the surface crack can be observed with a normal metal microscope or atomic force microscope. The conventional U-bend specimen does not become flat because it is plastically deformed even if the bolt is removed. Further, as the plate thickness increases, the mechanism of stress loading becomes difficult and the cutting for specimen processing and observation becomes difficult. Specifically, in the present invention, when the jig is removed, the stress that the test piece returns from the curved surface to the plane is controlled by the length of the fastener (A) that is the jig. Another major feature is that the test piece can be processed with scissors for ease of testing. The specimen can be easily cut with scissors when the surface is viewed with SEM.

図2は以上のような留め具(A)や試験片(B)を用いることのできる、この出願の発明者等によって開発された実環境シュミレート大気腐食試験システムの全体を例示したものである。この実環境シュミレート大気腐食試験システムでは所定の動作をするプログラムが組み込まれたプログラマブルコンセント(1)によってエアーバブル発生装置(2)が定期的にON/OFF制御されて加圧空気が送気される。海水槽(4)に連通管(5)を介して加圧空気が圧送されると、海水中に圧送された加圧空気が吹き込まれて海塩飛沫粒子を発生し、発生した海塩飛沫粒子は上部の空気室の連通管(6)を通じて試験槽(8)へ送られる。この場合、平衡飽和濃度が湿度に依存することを利用して、海水槽(4)内の初期海水の塩素イオン濃度を変化させることにより飛来海塩粒子の寸法および量を制御することができる。試験槽(8)内では海水槽(4)から連通管(6)を介して送られてくる飛来海塩の海塩粒子が上記の試験片(9)の表面で捕獲される。上記の試験片(9)は、たとえば上記の留め具に係止されてプログラマブル恒温プレート(7)上に載置され、試験槽(8)内は温度コントロールされている。試験槽(8)に送られて来る飛来海塩量はエアーバブル発生装置(2)を一定時間ON/OFFを繰り返すことにより制御されている。そして、一定時間エアーバブルを発生させた後、試験片(9)の表面に捕獲された海塩粒子の付着量を、たとえば水晶マイクロバランス法による水晶振動子の共振周波数の変化により測定することができる。   FIG. 2 exemplifies the entire real-environment simulated atmospheric corrosion test system developed by the inventors of the present application, which can use the fastener (A) and the test piece (B) as described above. In this real environment simulated atmospheric corrosion test system, the air bubble generator (2) is periodically ON / OFF controlled by a programmable outlet (1) in which a program for performing a predetermined operation is incorporated, and pressurized air is supplied. . When pressurized air is pumped into the seawater tank (4) via the communication pipe (5), the pressurized air pumped into the seawater is blown to generate sea salt spray particles, and the generated sea salt spray particles Is sent to the test chamber (8) through the communication pipe (6) in the upper air chamber. In this case, the size and amount of the incoming sea salt particles can be controlled by changing the chlorine ion concentration of the initial seawater in the seawater tank (4) by utilizing the fact that the equilibrium saturation concentration depends on the humidity. In the test tank (8), sea salt particles of incoming sea salt sent from the sea water tank (4) through the communication pipe (6) are captured on the surface of the test piece (9). The above-mentioned test piece (9) is locked to the above-mentioned fastener, for example, and placed on the programmable thermostatic plate (7), and the temperature in the test tank (8) is controlled. The amount of incoming sea salt sent to the test tank (8) is controlled by repeating ON / OFF of the air bubble generator (2) for a certain period of time. Then, after air bubbles are generated for a certain period of time, the amount of the sea salt particles trapped on the surface of the test piece (9) can be measured, for example, by a change in the resonance frequency of the crystal resonator by the quartz crystal microbalance method. it can.

そして試験槽(8)には、排気槽(10)が連通管(11)を介して連結され、排気管(12)により排気されるようにしている。   An exhaust tank (10) is connected to the test tank (8) via a communication pipe (11) and is exhausted through the exhaust pipe (12).

この出願の発明では、このような実環境シミュレート大気腐食試験システムでの応力腐食割れ用試験に好適な試験片を提供することができる。試験片としては、一般的には、ハサミで裁断できる程度の、0.05mm〜0.2mm程度の厚みのきわめて薄い金属板を利用することが考慮される。   The invention of this application can provide a test piece suitable for the stress corrosion cracking test in such a real environment simulated atmospheric corrosion test system. As the test piece, it is generally considered to use a very thin metal plate having a thickness of about 0.05 mm to 0.2 mm, which can be cut with scissors.

金属薄板は通常のハサミで試験片、さらには留め具に裁断加工することができるため、これらの製造は容易である。しかもこの出願の発明では弾性応力を保持した状態で試験を行なうため表面の亀裂の詳細な観察が可能となる。また、この出願の発明の試験片では上記のとおり、応力分布を自由に制御することが可能である。弾性変形下で応力腐食割れ亀裂が容易に発生するため原子間力顕微鏡などの観察も可能である。さらには従来不可能であった応力腐食割れ亀裂発生に伴う原子レベルの変形挙動の観察が可能になり応力腐食割れによる機構解明が望める。原子力、化学プラントの応力腐食割れ亀裂発生に伴う損失は非常に大きく機構が解明されることにより適切な防止が期待できる。   Since the metal thin plate can be cut into a test piece and further a fastener with ordinary scissors, the production thereof is easy. Moreover, in the invention of this application, since the test is performed in a state where the elastic stress is maintained, detailed observation of the cracks on the surface is possible. In addition, as described above, the stress distribution can be freely controlled in the test piece of the invention of this application. Since stress corrosion cracking cracks easily occur under elastic deformation, observation with an atomic force microscope is also possible. Furthermore, it becomes possible to observe the deformation behavior at the atomic level associated with the occurrence of stress corrosion cracking, which was impossible in the past. Losses associated with the occurrence of stress corrosion cracking cracks in nuclear and chemical plants are very large, and appropriate prevention can be expected by elucidating the mechanism.

実際に長さ(L)が9.5cm、幅が2cm、厚さが0.2mmのSUS304ステンレス鋼を幅方向に半分に裁断して2枚の長方形のステンレス鋼シートを作製するとともに、一方のステンレス鋼シートを折り曲げて平面部(l)の長さが6cmになるように両端に留め具を形成し、もう一方の長方形のステンレス鋼シートを湾曲させて留め具に係止して試験片とし、この試験片を図2の実環境シュミレート大気腐食試験システムの試験槽(8)に入れて、湿度を30%、温度を70℃に保ちながら試験片の表面に塩化マグネシウム液滴を付着させた。24時間後、試験槽から試験片を取り出し試験片の表面を観察した。図3は、試験終了後の写真であり、図4は試験槽から取り出し試験片の表面の光学顕微鏡写真である。この光学顕微鏡写真からも明らかなようにピットから1mm近い亀裂が発生していることがわかる。   In actuality, SUS304 stainless steel having a length (L) of 9.5 cm, a width of 2 cm, and a thickness of 0.2 mm was cut in half in the width direction to produce two rectangular stainless steel sheets. Fold the stainless steel sheet to form a fastener at both ends so that the length of the flat part (l) is 6 cm, and curve the other rectangular stainless steel sheet and lock it to the fastener to make a test piece. The test piece was placed in the test tank (8) of the actual environment simulated atmospheric corrosion test system shown in FIG. 2, and magnesium chloride droplets were adhered to the surface of the test piece while maintaining the humidity at 30% and the temperature at 70 ° C. . After 24 hours, the test piece was removed from the test tank and the surface of the test piece was observed. FIG. 3 is a photograph after completion of the test, and FIG. 4 is an optical micrograph of the surface of the test piece taken out from the test tank. As is clear from this optical micrograph, it can be seen that a crack of about 1 mm has occurred from the pit.

両端が曲げられた試験片保持用シートと湾曲して弾性応力が付与された状態の試験片の斜視図である。It is a perspective view of the test piece of the state to which it bent and the elastic stress was provided with the test piece holding sheet | seat with which both ends were bent. 実環境シュミレート大気腐食試験装置の全体を例示した概要図である。It is the schematic which illustrated the whole real environment simulated atmospheric corrosion test apparatus. 試験終了後の光学顕微鏡写真である。It is an optical microscope photograph after completion | finish of a test. SUS304ステンレス鋼を用いて応力腐食割れ試験を行なった後の顕微鏡写真である。It is a microscope picture after performing a stress corrosion cracking test using SUS304 stainless steel.

符号の説明Explanation of symbols

1 プログラマブルコンセント
2 エアーバブル発生装置
3 プログラマブル恒温槽
4 海水槽
5 連通管
6 連通管
7 プログラマブル恒温プレート
8 試験槽
9 試験片
10排気槽
11連通管
12排気管
A 留め具
B 試験片

DESCRIPTION OF SYMBOLS 1 Programmable outlet 2 Air bubble generator 3 Programmable thermostat 4 Seawater tank 5 Communication pipe 6 Communication pipe 7 Programmable thermostatic plate 8 Test tank 9 Test piece 10 Exhaust tank 11 Communication pipe 12 Exhaust pipe A Fastening B Test piece

Claims (2)

方形の金属薄板を湾曲させて弾性応力が付与された状態でその両端部を留め具に係止し
た試験片をもって試験を行う金属材料の応力腐食割れ試験方法であって、前記留め具が、方形の金属薄板の両端部に折り曲げ部を設け、この折り曲げ部に前記試験片の両端部を係止させるものであって、前記折り曲げ部以外の部分が平面部とされており、前記試験片の厚さが0.05〜0.2mmであり、前記試験片の長辺の長さLと前記平面部の長辺の長さlの比L/lを1.58以上とすることを特徴とする金属材料の応力腐食割れ試験方法。
A stress corrosion cracking test method for a metal material, in which a test is performed with a test piece in which both ends thereof are locked to a fastener in a state where elastic stress is applied by bending a rectangular metal thin plate , wherein the fastener is a square A bent portion is provided at both ends of the thin metal plate, and both ends of the test piece are locked to the bent portion, and a portion other than the bent portion is a flat portion, and the thickness of the test piece is The ratio L / l of the long side length L of the test piece to the long side length l of the flat surface portion is 1.58 or more. Stress corrosion cracking test method for metal materials.
試験片と留め具は、ともに一枚の金属薄板から裁断されたものであることを特徴とする
請求項1の試験方法。
The test method according to claim 1, wherein the test piece and the fastener are both cut from a single sheet metal.
JP2005073964A 2005-03-15 2005-03-15 Stress corrosion cracking test method Expired - Fee Related JP4586194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073964A JP4586194B2 (en) 2005-03-15 2005-03-15 Stress corrosion cracking test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073964A JP4586194B2 (en) 2005-03-15 2005-03-15 Stress corrosion cracking test method

Publications (2)

Publication Number Publication Date
JP2006258500A JP2006258500A (en) 2006-09-28
JP4586194B2 true JP4586194B2 (en) 2010-11-24

Family

ID=37097943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073964A Expired - Fee Related JP4586194B2 (en) 2005-03-15 2005-03-15 Stress corrosion cracking test method

Country Status (1)

Country Link
JP (1) JP4586194B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870013B2 (en) * 2007-04-10 2012-02-08 新日本製鐵株式会社 Corrosion measurement sensor
JP6403637B2 (en) * 2015-06-08 2018-10-10 大阪瓦斯株式会社 Chemical resistance test apparatus, chemical solution holding member, and chemical resistance test method
US10012581B2 (en) * 2015-08-28 2018-07-03 The Boeing Company Cyclic flexing salt-spray chamber and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646855U (en) * 1979-09-18 1981-04-25
JPS58144251U (en) * 1982-03-24 1983-09-28 三菱重工業株式会社 Stress corrosion cracking test equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646855U (en) * 1979-09-18 1981-04-25
JPS58144251U (en) * 1982-03-24 1983-09-28 三菱重工業株式会社 Stress corrosion cracking test equipment

Also Published As

Publication number Publication date
JP2006258500A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Xiang et al. Time-dependent electrochemical behavior of carbon steel in MEA-based CO2 capture process
Xiang et al. Understanding the pitting corrosion mechanism of pipeline steel in an impure supercritical CO2 environment
Woldemedhin et al. Evaluation of the maximum pit size model on stainless steels under thin film electrolyte conditions
JP2006258506A (en) Actual environment simulating atmospheric corrosion test device and actual environment simulating atmospheric corrosion test method using the same device
JP4586194B2 (en) Stress corrosion cracking test method
CN100577875C (en) Pure aluminium sheet material corrosive agent
Schindelholz et al. FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters.
Syafei Events of corrosion phenomena on carbon steel pipes in environment of sea water and ammonia solutions due to the presence of sweet gas
Choi et al. Strategies for corrosion inhibition of carbon steel pipelines under supercritical CO2/H2S environments
Dadfarnia et al. On the environmental similitude for fracture in the SENT specimen and a cracked hydrogen gas pipeline
Haghshenas et al. Indentation-based assessment of the dependence of geometrically necessary dislocations upon depth and strain rate in FCC materials
JP2011179083A (en) Etching solution and etching method for high-chromium steel, replica sampling method and creep damage assessment method
Gao et al. Correspondence between hydrogen enhancing dezincification layer-induced stress and susceptibility to SCC of brass
UA49898C2 (en) Method for monitoring intensity of corrosion
CN104975294A (en) Metallographic phase corrosive agent suitable for silver-palladium copper alloy, and preparation method and use method thereof
Shin et al. Fabrication of free-standing nanoscale SiNx membranes with enhanced burst pressure via improved etching process
Patchigolla et al. Understanding dense phase CO2 corrosion problems
Li et al. Effect of sodium chloride concentration on carbon Steel sour corrosion
Turnbull et al. Chemistry of concentrated salts formed by evaporation of seawater on duplex stainless steel
Savelyeva et al. Integral equations for the mixed boundary value problem of a notched elastic half-plane
Repukaiti et al. Corrosion behavior of steels in supercritical CO2 for power cycle applications
Hirano et al. SCC behavior of low-pressure steam turbine materials for fossil power plants under conditions coexisted with oxygen and corrosive chemicals
Gao et al. Evolution of microstructure and electrochemical corrosion behavior of CuZn-based alloys induced by cold rolling
Wang et al. The pitting behavior of stainless steels under SO2 environments with Cl-and F
CN109898084A (en) A kind of five be the caustic solution of rust-preventing aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees