JP4586166B2 - Feathery aluminum alloy ingot and casting method thereof - Google Patents

Feathery aluminum alloy ingot and casting method thereof Download PDF

Info

Publication number
JP4586166B2
JP4586166B2 JP2006171317A JP2006171317A JP4586166B2 JP 4586166 B2 JP4586166 B2 JP 4586166B2 JP 2006171317 A JP2006171317 A JP 2006171317A JP 2006171317 A JP2006171317 A JP 2006171317A JP 4586166 B2 JP4586166 B2 JP 4586166B2
Authority
JP
Japan
Prior art keywords
ingot
mold
aluminum alloy
casting method
feathery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006171317A
Other languages
Japanese (ja)
Other versions
JP2008000775A (en
Inventor
博 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2006171317A priority Critical patent/JP4586166B2/en
Publication of JP2008000775A publication Critical patent/JP2008000775A/en
Application granted granted Critical
Publication of JP4586166B2 publication Critical patent/JP4586166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、羽毛状晶組織からなるアルミニウム合金鋳塊及びその鋳造方法に関する。   The present invention relates to an aluminum alloy ingot having a feather-like crystal structure and a casting method thereof.

アルミニウム合金は、連続鋳造法(半連続鋳造を含む)にてビレットと称される鋳塊を鋳造し、押出加工等に供されている。
押出加工には直接押出と間接押出があるがいずれの場合にも熱間でビレットを押圧し、ダイス孔を通過させる塑性加工にて押出形材を得るものである。
従って、押出加工時にはダイスに大きな押出圧力が負荷されるとともにダイス孔のベアリング面をアルミニウム合金が通過する際の押出抵抗にてダイスにたわみひずみが生じる。
従来から広く使用されているAl−Mg−Si系合金(JIS6000系合金)は比較的押出性に優れているがAl−Mg−Si系合金より高強度であるAl−Zn−Mg系合金(JIS7000系合金)は押出成形性がAl−Mg−Si系合金に比較して悪く、ダイス割れ等ダイス寿命が短くなり、その結果、押出製品が高価になる技術的課題があった。
また、押出圧が高いことは、押出装置の稼働に必要なエネルギーも多大になるので省エネルギーの観点からも押出性に優れたアルミニウム基合金が必要とされていた。
Aluminum alloys are cast into ingots called billets by a continuous casting method (including semi-continuous casting) and are used for extrusion and the like.
Extrusion processing includes direct extrusion and indirect extrusion. In either case, the billet is pressed hot, and an extruded shape is obtained by plastic processing that passes through a die hole.
Accordingly, during extrusion, a large extrusion pressure is applied to the die, and a deflection strain occurs in the die due to the extrusion resistance when the aluminum alloy passes through the bearing surface of the die hole.
Al-Mg-Si-based alloys (JIS6000-based alloys) that have been widely used in the past are relatively excellent in extrudability, but have higher strength than Al-Mg-Si-based alloys (JIS7000). The alloy has a technical problem that the extrudability is worse than that of the Al—Mg—Si alloy, and the die life such as die cracking is shortened, resulting in an expensive extruded product.
Moreover, since the energy required for operation | movement of an extrusion apparatus becomes large when extrusion pressure is high, the aluminum-based alloy excellent in extrudability was also needed from a viewpoint of energy saving.

(非特許文献1)には、JIS6063合金を用いて粒状晶ビレットと全羽毛状晶ビレットとの押出性比較をした実験結果を開示している。
この報告によると全羽毛状晶の方が、粒状晶よりも約30%以上押出時間が短くなっている。
よって、押出性の悪いAl−Zn−Mg系合金において安定した羽毛状晶から得られれば、さらに大きな押出性改善が期待できる。
(Non-patent Document 1) discloses an experimental result of a comparison of extrudability between a granular crystal billet and a whole feather crystal billet using JIS6063 alloy.
According to this report, the extrusion time is about 30% or more shorter for all feather crystals than for granular crystals.
Therefore, if it is obtained from stable feather crystals in an Al—Zn—Mg alloy having poor extrudability, an even greater extrudability improvement can be expected.

しかし、非特許文献1において検討された羽毛状晶合金は、JIS6063合金であり、当時主流であったDC鋳造法(鋳型冷却による一次冷却と直接水冷による二次冷却による鋳造方法)によるものであり、ホットトップ鋳造法(鋳型の上部に断熱ヘッダー部を有し、鋳型上部にフロートを有していない鋳造方法)に対する知見は得られていない。   However, the feathery crystal alloy examined in Non-Patent Document 1 is JIS6063 alloy, which is based on the DC casting method (a casting method by primary cooling by mold cooling and secondary cooling by direct water cooling), which was the mainstream at that time. No knowledge has been obtained about the hot top casting method (a casting method having a heat insulating header portion above the mold and no float above the mold).

「全羽毛状晶からなる6063DCビレットの工業的規模押出し試験について」、室町茂雄,多々静夫,時沢貢,穴田博、軽金属、P545〜P550 Vol.30、No.10、1980“Industrial scale extrusion test of 6063DC billet consisting of whole feathery crystals”, Shigeo Muromachi, Shizuo Tada, Mitsugu Tokizawa, Hiroshi Anada, Light Metal, P545-P550 Vol. 30, no. 10, 1980

本発明の目的は、第1に、連続鋳造法による羽毛状晶アルミニウム合金の鋳造方法の提供にあり、第2に、種結晶を用いた種付け法による羽毛状晶アルミニウム合金の鋳造方法にある。
更には、そのようにして製造された羽毛状晶鋳塊の提供を目的とする。
An object of the present invention is firstly to provide a method for casting a feathery aluminum alloy by a continuous casting method, and secondly, to a method for casting a feathery aluminum alloy by a seeding method using a seed crystal.
Furthermore, it aims at provision of the feathery crystal ingot manufactured by doing in that way.

本発明は、連続鋳造法において、鋳塊の下端(鋳塊の鋳造先端部)を受ける受け型に羽毛状晶発生起点を形成すれば羽毛状晶の方が粒状晶よりも優先的に成長する特性を活かして羽毛状晶鋳塊(ビレット)を得ることができると推定して実験検討した結果、本発明に至った。
また、このような羽毛状晶の成長性を活かして、羽毛状晶の種結晶を用いた種付け鋳造方法も検討した。
According to the present invention, in a continuous casting method, if a starting point for generating a feather crystal is formed in a receiving mold that receives the lower end of the ingot (the casting tip of the ingot), the feather crystal grows preferentially over the granular crystal. As a result of an experimental study on the assumption that a feathered crystal ingot (billet) can be obtained utilizing the characteristics, the present invention has been achieved.
In addition, a seeded casting method using a feather crystal seed crystal was also studied by taking advantage of the growth characteristics of the feather crystal.

本発明に係るアルミニウム合金の鋳造方法は、上下に貫通した鋳型の上部に溶湯を投入し、鋳型の下部から出てくる鋳塊に冷却水を噴射し、鋳塊の下端を受け型で受けるアルミニウム合金の鋳塊の連続鋳造方法であって、受け型の鋳塊受け面に溝部を形成することで羽毛状晶発生起点を出現させ、金属組織が羽毛状晶からなる鋳塊を得ることを特徴とする。
受け型の鋳塊受け面に溝部を形成したことにより、溝部からの急冷効果によって凝固ひずみが生じ、羽毛状晶が発生する。
ここで溝部の形状は直線状でも曲線状でもよい。
なお、受け型外形が円柱状の場合には同心円状の溝部が好ましい。
本発明にて羽毛状晶とは鳥の羽根に似た羽毛状の結晶組織をいい、結晶学的な特徴から成長双晶とも呼ばれ、粒状晶及び柱状晶に対比される金属組織である。
The aluminum alloy casting method according to the present invention is a method in which molten metal is poured into an upper part of a mold penetrating vertically, and cooling water is injected into an ingot coming out from the lower part of the mold, and the lower end of the ingot is received by the mold. A method for continuously casting an ingot of an alloy, characterized in that a groove is formed on a receiving surface of an ingot of a receiving mold so that a feather crystal starting point appears and a metal structure has a feather crystal. And
By forming the groove on the receiving surface of the ingot of the receiving mold, solidification strain occurs due to the rapid cooling effect from the groove, and feather-like crystals are generated.
Here, the shape of the groove may be linear or curved.
In the case where the outer shape of the receiving mold is cylindrical, concentric grooves are preferable.
In the present invention, the feather crystal refers to a feather-like crystal structure similar to a bird's feather, which is also called a growth twin because of crystallographic characteristics, and is a metal structure contrasted with granular crystals and columnar crystals.

受け型は、冷却用の溝部又は孔部若しくは中空部を設けてあってもよい。
また、受け型の側部外周に沿って溝部を形成し、溝部に受け型側部を貫通する冷却孔を設けてもよく、さらには受け型に中空部を設けて中空部に冷却水を流し込んでもよい。
受け型の冷却効果を高くすることで受け面から上方に向けて一方向凝固性を確保する。
この場合に受け面直上、約2mmで冷却速度60〜70℃/secにするのが好ましい。
The receiving mold may be provided with a cooling groove, hole or hollow .
Moreover, a groove part may be formed along the outer periphery of the side part of the receiving mold, and a cooling hole penetrating the receiving mold side part may be provided in the groove part. Further, a hollow part is provided in the receiving mold and cooling water is poured into the hollow part. But you can.
By increasing the cooling effect of the receiving mold, unidirectional solidification is ensured upward from the receiving surface.
In this case, it is preferable that the cooling rate is 60 to 70 ° C./sec.

アルミニウム合金は、展伸用合金であれば特に成分を限定する必要がないが、押出性向上の効果が高い点ではAl−Zn−Mg系の高強度合金に適用するのがよい。
この種の合金は特に押出性が悪く、ダイス寿命も短いからである。
Al−Zn−Mg系合金とはアルミニウム基に最も多く含有する成分がZnで次にMg成分であるアルミニウム合金をいい、Cuを含まない溶接構造用合金とCuを含む高力合金とがある。
The aluminum alloy is not particularly limited as long as it is a wrought alloy, but is preferably applied to an Al—Zn—Mg based high strength alloy in terms of a high effect of improving extrudability.
This is because this type of alloy has particularly poor extrudability and a short die life.
The Al—Zn—Mg-based alloy refers to an aluminum alloy in which the most abundant component in the aluminum group is Zn and then the Mg component, and includes a welded structure alloy that does not contain Cu and a high strength alloy that contains Cu.

粒状晶と柱状晶との中間的な鋳造条件にて鋳造すると羽毛状晶が得られ、局部的に羽毛状晶が出現すると、それを起点に全羽毛状晶が得られることから、羽毛状晶を種結晶として種付け方法にて羽毛状晶の鋳塊が得られる。   When casting under intermediate casting conditions between granular crystals and columnar crystals, feather-like crystals are obtained, and when feather-like crystals appear locally, all feather-like crystals are obtained starting from it. As a seed crystal, a feathered ingot is obtained by a seeding method.

本発明においては、連続鋳造方法にて使用する鋳塊の受け型の鋳塊受け面に溝部を形成することで鋳塊に溝部急冷効果による凝固ひずみを形成し、安定した羽毛状発生起点となる。
また、例えば受け型の冷却水が当たる側部外周に溝部、冷却孔等を設けること等を手段にして、冷却効果を向上させると高い冷却勾配により鋳塊組織の殆どが羽毛状晶からなる鋳塊を連続的にあるいは半連続的に鋳造できる。
羽毛状晶鋳塊の一部を例えば板状に切り出し種結晶とすると、フロート式DC鋳造方法、ホットトップ鋳造方法等の連続鋳造方法にて種付けすることのみならず、少量生産の場合に適したバッチ式鋳造炉にても簡単に羽毛状晶鋳塊が得られる。
In the present invention, by forming a groove on the ingot receiving surface of the ingot receiving mold used in the continuous casting method, a solidification strain is formed in the ingot due to the rapid cooling effect of the groove, and this becomes a stable feather-like occurrence starting point. .
For example, when the cooling effect is improved by providing a groove, a cooling hole, etc. on the outer periphery of the side where the receiving type cooling water hits, a high cooling gradient causes most of the ingot structure to be cast with feather crystals. Mass can be cast continuously or semi-continuously.
For example, when a part of a feathery crystal ingot is cut into a plate shape and used as a seed crystal, it is suitable not only for seeding by a continuous casting method such as a float type DC casting method or a hot top casting method, but also for small-scale production. Feathery crystal ingots can be easily obtained even in a batch casting furnace.

本発明に係る羽毛状晶鋳塊を押出ビレットとして用いて、押出試験したところ押出性が30%以上向上した。   When the feather-shaped ingot according to the present invention was used as an extrusion billet and subjected to an extrusion test, the extrudability was improved by 30% or more.

以下、本発明に係る羽毛状晶鋳塊の鋳造例について説明する。
試験評価に用いたAl−Zn−Mg系合金の化学組成を図8の表に示す。
JIS7003合金に相当し、溶解前の化学組成と溶解後の化学組成を示す。
Hereinafter, a casting example of the feathery crystal ingot according to the present invention will be described.
The chemical composition of the Al—Zn—Mg alloy used for the test evaluation is shown in the table of FIG.
It corresponds to JIS7003 alloy and shows the chemical composition before melting and the chemical composition after melting.

まず、事前に冷却速度と鋳造組織の関係を把握すべく、図9に示したような一方向凝固装置を用いて実験評価した。
一方向凝固装置は外径90φmm、内径25φmm、高さ150mmの半割可能な断熱材鋳型の底部にチルプレートを配設したものであり、鋳型をヒーターで加熱できるようになっている。
鋳型及びチルプレートには温度測定用の熱電対を挿入してある。
チルプレートの形状を図10に示す。
なお、図10はチルプレートの縦方向半割断面図を示す。
チルプレートはアルミ製からなり、ビレット当り面はa=25φmmであり、上面の中央部に深さa=3mm、幅a=5mm及び幅a=3mmの2本の直線溝を入れてある。
熱電対をチルプレートの下側から挿入し、a,aの溝底及び平坦部から2mm、4mmの高さに配設してチルプレート直上の温度を測定して冷却曲線を採取できるようにした。
この装置に溶解した約200gの溶湯を流し込み、溶湯温度と鋳型温度を変化させて鋳造実験をした。
なお、チルプレートは実験開始前に100℃まで水冷し、注湯後は水冷を行った。
水量は7L/minであった。
図11のグラフに熱電対の高さと冷却曲線の直線勾配から求めた冷却速度℃/secとの関係を示す。
この結果、チルプレートの直上2mmの高さでおおむね、冷却速度が60〜70℃/secの範囲にて全羽毛状晶になっていることが明らかになった。
First, in order to grasp the relationship between the cooling rate and the cast structure in advance, an experimental evaluation was performed using a unidirectional solidification apparatus as shown in FIG.
The unidirectional solidification device has a chill plate disposed at the bottom of a heat-insulating material mold having an outer diameter of 90 mm, an inner diameter of 25 mm, and a height of 150 mm, which can be heated with a heater.
A thermocouple for temperature measurement is inserted in the mold and the chill plate.
The shape of the chill plate is shown in FIG.
FIG. 10 shows a longitudinal half sectional view of the chill plate.
The chill plate is made of aluminum, the billet contact surface is a 1 = 25φmm, and two straight grooves of depth a 4 = 3 mm, width a 2 = 5 mm and width a 3 = 3 mm are put in the center of the upper surface. It is.
Insert a thermocouple from the bottom of the chill plate and place it at a height of 2 mm and 4 mm from the groove bottom and flat part of a 2 and a 3 so that the temperature just above the chill plate can be measured to collect a cooling curve I made it.
About 200 g of molten metal melted in this apparatus was poured, and a casting experiment was performed by changing the molten metal temperature and the mold temperature.
The chill plate was water-cooled to 100 ° C. before starting the experiment, and water-cooled after pouring.
The amount of water was 7 L / min.
The graph of FIG. 11 shows the relationship between the thermocouple height and the cooling rate ° C / sec determined from the linear gradient of the cooling curve.
As a result, it became clear that the whole feather crystal was formed at a cooling rate of 60 to 70 ° C./sec.

次に図1に示すようなホットトップ方式の半連続鋳造装置を用いて鋳造方法の実験を行った。
半連続装置は外径φ78mm、内径φ50mm、高さ65mmの上下に貫通した黒鉛鋳型1の上部に断熱材からなるヘッダー部(湯だめ部)7を配設してある。
ヘッダー部7に注湯した溶湯4は鋳型の上部から下部に向けて流れ込み、受け型10の受け面にて初期冷却凝固し、鋳塊(ビレット)5の側部に設けた水冷ジャケット2から噴射された冷却水2aにて冷却されながら鋳造が進行する。
この受け型10の受け面での初期冷却にて羽毛状晶が出現すれば、これが種になりほぼ全羽毛状晶のビレットになる。
そこで初期冷却の冷却速度が60〜70℃/secとなる受け型の形状例を図2に示す。
なお、図2は受け型の縦方向半割断面図を示す。
鋳塊を受ける受け型10の受け面11には同心円状に深さb=3mm、幅5mm(b=25φmm,b=15φmm)の溝12を形成してある。
この溝12は、局部的な急冷凝固により凝固ひずみを生じさせることで羽毛状晶の発生起点とするものである。
Next, an experiment of a casting method was performed using a hot-top semi-continuous casting apparatus as shown in FIG.
In the semi-continuous apparatus, a header portion (bath portion) 7 made of a heat insulating material is disposed on the upper portion of a graphite mold 1 having an outer diameter of 78 mm, an inner diameter of 50 mm, and a height of 65 mm.
The molten metal 4 poured into the header portion 7 flows from the upper part to the lower part of the mold, is initially cooled and solidified on the receiving surface of the receiving mold 10, and is sprayed from the water cooling jacket 2 provided on the side of the ingot (billet) 5. Casting proceeds while being cooled by the cooling water 2a.
If feathery crystals appear in the initial cooling at the receiving surface of the receiving mold 10, they become seeds and become billets of almost all feathery crystals.
Therefore, FIG. 2 shows an example of the shape of the receiving mold in which the cooling rate of the initial cooling is 60 to 70 ° C./sec.
FIG. 2 shows a longitudinal half sectional view of the receiving mold.
A groove 12 having a depth b 5 = 3 mm and a width 5 mm (b 2 = 25 φmm, b 3 = 15 φmm) is formed concentrically on the receiving surface 11 of the receiving die 10 that receives the ingot.
The groove 12 serves as a starting point for generation of feather crystals by causing solidification strain by local rapid solidification.

受け型10の側面には外周方向に沿って溝幅b=10mmの深さ5mm(b12=40φmm,b13=50φmm)また外周溝13には横方向に貫通したφ10mmの冷却孔14a、14bを十字状にクロス配置してある。
この外周溝13及び冷却孔14a、14bは冷却水が当たる部分であり、受け型10の冷却能を向上させるためのものである。
今回試験評価に用いた受け型10は銅製とした。
このような半連続鋳造装置を用いて鋳造実験評価した結果、溶湯温度730〜770℃、好ましくは750〜770℃,鋳型温度500〜600℃,鋳造速度50〜60mm/minにて安定して全羽毛状晶ビレットが得られた。
なおこのときの水量は15L/minであった。
On the side surface of the receiving mold 10, a groove width b 7 = 10 mm depth 5 mm (b 12 = 40 φmm, b 13 = 50 φmm) along the outer circumferential direction, and a φ10 mm cooling hole 14 a penetrating in the lateral direction in the outer circumferential groove 13, 14b is arranged in a cross shape.
The outer peripheral groove 13 and the cooling holes 14a and 14b are portions where the cooling water hits, and are for improving the cooling ability of the receiving mold 10.
The receiving mold 10 used for the test evaluation this time was made of copper.
As a result of casting experiment evaluation using such a semi-continuous casting apparatus, the molten metal temperature was 730 to 770 ° C., preferably 750 to 770 ° C., the mold temperature was 500 to 600 ° C., and the casting speed was 50 to 60 mm / min. Feathery billets were obtained.
The amount of water at this time was 15 L / min.

この時の冷却速度を鋼線挿入探深法(鋼線を鋳型中心に垂直に挿入し時間変化とともに凝固界面の高さの基準位置からのずれ量を測定することで凝固速度を求める方法)を用いて測定した結果を図3に示す。
この結果、鋳型500℃溶湯770℃のものは先に求めた羽毛状晶発生範囲に一致していた。
Steel wire insertion probing method (method to obtain solidification rate by inserting the steel wire perpendicular to the mold center and measuring the deviation of the solidification interface height from the reference position with time change) FIG. 3 shows the results of measurement using this.
As a result, the mold having a casting temperature of 500 ° C. and a melt temperature of 770 ° C. was consistent with the previously determined feathery crystal generation range.

図4に全羽毛状晶ビレットのマクロ組織写真を示す。
この結果、羽毛状発生起点から約60mmで鋳塊全断面に成長し、ほぼ100%の羽毛状晶になっていることが分かる。
また、ビレット上部に行くほど鋳塊軸に平行で微細になっていることも明らかになった。
図5にビレット高さ500mm部分の縦断面ミクロ組織を示し、(b)中央部、(a)左側端部、(c)右側端部の組織写真である。
羽毛状晶は板状の双晶組織になっていて、中央部(b)は鋳塊軸に平行であり、左側端部、右側端部も多少外側に角度がついているものの、ほぼ鋳塊軸に平行な双晶組織を有している。
FIG. 4 shows a macrostructure photograph of all feathery billets.
As a result, it can be seen that the entire ingot cross section is grown at about 60 mm from the starting point of the generation of feathers, and almost 100% of the feathers are formed.
Moreover, it became clear that it became parallel and fine to the ingot axis | shaft, so that it went to the billet upper part.
FIG. 5 shows a longitudinal cross-sectional microstructure of a billet height of 500 mm, and is a structural photograph of (b) center, (a) left end, and (c) right end.
The feather-like crystal has a plate-like twin structure, and the central portion (b) is parallel to the ingot axis, and the left end portion and the right end portion are also slightly angled outward, but the ingot axis is almost the same. Have a twin structure.

図6は粒状晶の組織写真例(a)と本発明に係る羽毛状晶の組織写真例(b)とを示す。
図6(a)は、鋳型温度500℃,溶湯温度710℃,鋳造速度60mm/minにて鋳造したもので、図6(b)は溶湯温度770℃にして鋳型温度500℃,鋳造速度60mm/minで鋳造したものである。
図6(a)の粒状晶の平均結晶粒径は135.8μmであり、図6(b)の双晶間隔の平均値が80.6μmであることから平均結晶間隔は40.3μmとなり、(a)の粒状晶の平均粒径に比較して非常に小さいことが明らかになった。
これにより、全羽毛状晶ビレットは均質化処理時間も粒状晶ビレットに比較して短いと推定できる。
FIG. 6 shows an example of a structure photograph of granular crystals (a) and a structure photograph of feather crystals according to the present invention (b).
FIG. 6A shows the casting performed at a mold temperature of 500 ° C., a melt temperature of 710 ° C., and a casting speed of 60 mm / min. FIG. 6B shows a mold temperature of 770 ° C. and a mold temperature of 500 ° C. and a casting speed of 60 mm / min. Cast in min.
The average crystal grain size of the granular crystals in FIG. 6A is 135.8 μm, and the average twin spacing in FIG. 6B is 80.6 μm, so the average crystal spacing is 40.3 μm. It became clear that it was very small compared with the average particle diameter of the granular crystal of a).
Accordingly, it can be estimated that the entire feathery billet has a shorter homogenization time than the granular billet.

図7は、鋳造中に少量のスズ(Sn)を添加して凝固界面を検出して一方向凝固性を確認した結果を示す。
鋳造中に少量のスズを添加するとアルミニウムよりも比重が大きく、融点の低いスズが凝固界面まで沈み、スズの層を形成する。
鋳型温度500℃,溶湯温度730℃,鋳造速度60mm/min,鋳造開始より90s,150s後にスズを添加したもので凝固界面は極めて水平に近い状態になっていて一方向凝固性が確認できた。
FIG. 7 shows the result of confirming the unidirectional solidification by detecting a solidification interface by adding a small amount of tin (Sn) during casting.
When a small amount of tin is added during casting, tin having a specific gravity larger than that of aluminum and having a low melting point sinks to the solidification interface to form a tin layer.
The mold temperature was 500 ° C., the molten metal temperature was 730 ° C., the casting speed was 60 mm / min, tin was added 90 s and 150 s after the start of casting, and the solidification interface was in a very nearly horizontal state, confirming unidirectional solidification.

図1に示した半連続鋳造装置を用いて得られた鋳塊から板厚10mmの種結晶となる種板を円板状に切り出し、これを、図9に示したチルプレートに載置し、鋳型温度500℃,種板を300℃に予備加熱した状態で上から溶湯温度780℃の溶湯を流し込んで鋳造した。
その鋳塊の金属組織写真を図12に示すように鋳塊のほぼ全域にわたって羽毛状晶になっていた。
From the ingot obtained using the semi-continuous casting apparatus shown in FIG. 1, a seed plate that becomes a seed crystal having a thickness of 10 mm is cut into a disk shape, and this is placed on the chill plate shown in FIG. In a state where the mold temperature was 500 ° C. and the seed plate was preheated to 300 ° C., a molten metal having a melt temperature of 780 ° C. was poured from above and cast.
As shown in FIG. 12, the metal structure photograph of the ingot had feathery crystals throughout almost the entire ingot.

本発明により羽毛状晶からなる鋳塊が得られることから、このような羽毛状晶鋳塊を用いると押出圧が低下し、押出ダイスの型寿命の向上、生産エネルギーの省エネ化を図ることができ、押出材の生産性が向上する。
また、複雑な形状を有する形材の押出生産も可能になり、自動車部品等のこれまでアルミ化出来なかった製品のアルミ化も可能になることが期待される。
Since an ingot made of feathery crystals can be obtained by the present invention, when such a feathery crystal ingot is used, the extrusion pressure is lowered, the die life of the extrusion die can be improved, and the production energy can be saved. And the productivity of the extruded material is improved.
In addition, it becomes possible to produce extruded products having complicated shapes, and it is expected that products such as automobile parts that could not be made in the past can be made into aluminum.

本発明に係る鋳造方法の実施に用いた半連続鋳造装置の例を示す。The example of the semi-continuous casting apparatus used for implementation of the casting method concerning this invention is shown. 本発明に係る鋳造方法に用いる受け型の形状例の半割断面図を示す。The half sectional drawing of the example of a shape of the receiving die used for the casting method which concerns on this invention is shown. 冷却速度と鋳造組織の関係を示す。The relationship between cooling rate and cast structure is shown. 本発明にて得られた羽毛状晶ビレットのマクロ組織写真を示す。The macro structure photograph of the feather-like billet obtained by the present invention is shown. 本発明にて得られた羽毛状晶ビレットのミクロ組織写真を示す。The microstructure photograph of the feather-like billet obtained by this invention is shown. 粒状晶と羽毛状晶との比較写真を示す。The comparative photograph of a granular crystal and a feather crystal is shown. スズ添加にて一方向凝固性を確認した結果を示す。The result of confirming unidirectional solidification by adding tin is shown. 試験評価に供したJIS7003合金の化学成分組成を示す。The chemical component composition of JIS7003 alloy used for test evaluation is shown. 予備実験に用いた一方向凝固装置の構造を示す。The structure of the unidirectional solidification apparatus used for the preliminary experiment is shown. 一方向凝固内に用いたチルプレートの半割断面図を示す。The half sectional view of the chill plate used in the unidirectional solidification is shown. 冷却速度と金属組織の関係を示す。The relationship between cooling rate and metal structure is shown. 本発明に係る種付け方法にて得られた鋳塊の金属組織写真を示す。The metal structure photograph of the ingot obtained by the seeding method concerning the present invention is shown.

符号の説明Explanation of symbols

1 黒鉛鋳型
2 水冷ジャケット
2a 冷却水
3 昇降装置
4 溶湯
5 ビレット
6a,6b 熱電対
7 断熱ヘッダー部
10 受け型
DESCRIPTION OF SYMBOLS 1 Graphite mold 2 Water cooling jacket 2a Cooling water 3 Lifting device 4 Molten metal 5 Billet 6a, 6b Thermocouple 7 Heat insulation header part 10 Receiving type

Claims (2)

上下に貫通した鋳型の上部に溶湯を投入し、鋳型の下部から出てくる鋳塊に冷却水を噴射し、鋳塊の下端を受け型で受けるアルミニウム合金の鋳塊の連続鋳造方法であって、
受け型の鋳塊受け面に羽毛状晶発生起点となる溝部を形成し、前記アルミニウム合金の溶湯温度を730〜770℃に設定し、受け型の鋳塊受け面直上約2mmの高さにて冷却速度60〜70℃/secの範囲になるように鋳造することで金属組織が羽毛状晶からなる鋳塊を得ることを特徴とするアルミニウム合金の鋳造方法。
It is a continuous casting method of an aluminum alloy ingot that receives molten metal at the upper part of a mold that penetrates vertically, injects cooling water into the ingot coming out from the lower part of the mold, and receives the lower end of the ingot with a mold. ,
A groove serving as a starting point for the formation of feathery crystals is formed on the receiving surface of the ingot of the receiving mold, the molten metal temperature of the aluminum alloy is set to 730 to 770 ° C., and the height is about 2 mm directly above the receiving surface of the receiving surface of the ingot. A casting method of an aluminum alloy, characterized in that an ingot having a metal structure made of feather crystals is obtained by casting so that a cooling rate is in a range of 60 to 70 ° C / sec .
アルミニウム合金は、Al−Zn−Mg系合金であることを特徴とする請求項1記載のアルミニウム合金の鋳造方法。The aluminum alloy casting method according to claim 1, wherein the aluminum alloy is an Al-Zn-Mg alloy.
JP2006171317A 2006-06-21 2006-06-21 Feathery aluminum alloy ingot and casting method thereof Active JP4586166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171317A JP4586166B2 (en) 2006-06-21 2006-06-21 Feathery aluminum alloy ingot and casting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171317A JP4586166B2 (en) 2006-06-21 2006-06-21 Feathery aluminum alloy ingot and casting method thereof

Publications (2)

Publication Number Publication Date
JP2008000775A JP2008000775A (en) 2008-01-10
JP4586166B2 true JP4586166B2 (en) 2010-11-24

Family

ID=39005567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171317A Active JP4586166B2 (en) 2006-06-21 2006-06-21 Feathery aluminum alloy ingot and casting method thereof

Country Status (1)

Country Link
JP (1) JP4586166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223475B (en) * 2013-04-11 2015-04-15 宁波钰烯阴极保护材料有限责任公司 Device and method for semi-continuous casting of magnesium alloy sacrificial anode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752248U (en) * 1980-09-09 1982-03-26
JPH0550186A (en) * 1991-08-23 1993-03-02 Showa Alum Corp Lower mold for semi-continuous casting apparatus for aluminum
US5947183A (en) * 1993-03-05 1999-09-07 Vaw Aluminium Ag Continuous casting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752248U (en) * 1980-09-09 1982-03-26
JPH0550186A (en) * 1991-08-23 1993-03-02 Showa Alum Corp Lower mold for semi-continuous casting apparatus for aluminum
US5947183A (en) * 1993-03-05 1999-09-07 Vaw Aluminium Ag Continuous casting apparatus

Also Published As

Publication number Publication date
JP2008000775A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
CN110144489B (en) High-strength, high-electric-conductivity and high-heat-conductivity copper-silver alloy wire and preparation method thereof
JP4907248B2 (en) Continuous casting method of Al-Si aluminum alloy
CN104353795A (en) Continuous directional solidification technology adopting temperature gradient crystallizer
CN103805801A (en) Cu-Mg alloy, producing method of Cu-Mg alloy and wire-drawing material
CN102719688B (en) Process method capable of improving thermal fatigue property of polynary zinc-aluminum alloy
JP4586166B2 (en) Feathery aluminum alloy ingot and casting method thereof
CN107794403A (en) A kind of nickel aluminum bronze bar preparation methods of ZQA19 442
CN102517476B (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
CN205393483U (en) Compound crystallizer for titanium -nickel alloy continuous casting
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
JP6070080B2 (en) Continuous casting method of Cu-Zn-Si alloy
CN110643841B (en) Method for preventing aluminum alloy cast rod from generating stress surface cracks
CN102806330A (en) Method for improving inner quality of continuous casting billet with thick and large section
JPS58103941A (en) Production of metallic material having specular surface
RU2516178C2 (en) Method of hollow part casting
JP2016043377A (en) Continuous casting method of Cu-Ga alloy
WO2023084867A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
JP6354391B2 (en) Continuous casting method of Cu-Zn-Sn alloy
WO2023084864A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
JP2013001988A (en) Molding of hypereutectic aluminum-silicon alloy rolled sheet and method for manufacturing the same
Luo et al. Experimental and numerical simulation of surface segregation in two-phase zone continuous casting Cu–Sn alloy
Gamanyuk et al. An Investigation of Ingots Teemed under Different Thermal and Physical Solidification Conditions and the Analysis of Metal Quality of the Hollow Forgings Produced
JP2023094439A (en) Aluminum alloy forging
RU2472599C1 (en) Method of making castings from leaded bronze
JP2023094440A (en) Aluminum alloy forging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150