JP4586137B2 - Stratospheric aircraft - Google Patents

Stratospheric aircraft Download PDF

Info

Publication number
JP4586137B2
JP4586137B2 JP2001058239A JP2001058239A JP4586137B2 JP 4586137 B2 JP4586137 B2 JP 4586137B2 JP 2001058239 A JP2001058239 A JP 2001058239A JP 2001058239 A JP2001058239 A JP 2001058239A JP 4586137 B2 JP4586137 B2 JP 4586137B2
Authority
JP
Japan
Prior art keywords
water
gas
buoyancy
electrolysis
helium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001058239A
Other languages
Japanese (ja)
Other versions
JP2002255096A (en
Inventor
田 昌 彦 恩
辺 康 隆 渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001058239A priority Critical patent/JP4586137B2/en
Publication of JP2002255096A publication Critical patent/JP2002255096A/en
Application granted granted Critical
Publication of JP4586137B2 publication Critical patent/JP4586137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、封入された浮揚ガスによる浮力によって浮揚する気球や飛行船などの成層圏用飛行体に関する。
【0002】
【従来の技術】
長期間、高高度に滞空して地球環境監視などに従事する科学観測気球や無人成層圏飛行船は、水素やヘリウムなどの浮揚ガスが漏洩し浮力が徐々に減少するため、ミッション期間が制約される。
【0003】
そこで、科学観測気球は、ヘリウムガスを液化しておき、この液体ヘリウムを断熱性能の高いデュワー瓶に入れ、液体ヘリウムを浮力の減少に応じて電熱によって蒸発させガス化し、ヘリウムガスの必要量を浮揚ガス嚢に入れて浮力を回復させる浮力補償装置を備えている。
【0004】
たとえば、米国で発表された米国航空学会論文(AIAA99−3862,M.Schein et al.,An Integrated Cryogenic Helium System for Extended Duration Balloom Flights,1999年)に提案された、1m3の液体ヘリウムを保持する浮力補償装置の全重量は385kg、このうち液体ヘリウムの重量は135kg、装置のみの重量は250kgであり、この装置のみの重量250kgの中には、デュワー瓶の重量約200kgの他、デュワー瓶の断熱性能によって液体ヘリウムのガス化が速く進んだ場合に備えてヘリウムガスを電力で加圧液化してデュワー瓶に戻す装置の重量も含まれている。
そして、液体ヘリウムがすべてガスになると、740kgの浮力が発生することになり、装置の全重量を引くと355kgの正味浮力の回復が可能であり、これに要する電力は20〜50W程度と見込まれている。
【0005】
【発明が解決しようとする課題】
ところで、上記の如き浮力補償装置では、液体ヘリウムが熱によって自然蒸発し圧力を高めるので、液体ヘリウムを断熱性が高く耐圧性もあり表面積が最小のデュワー瓶に保持しなければならず、しかも耐衝撃などに格段の注意を払った設計で製作されたデュワー瓶収納用の容器が必要となり、重量がかなり大きくなる。
加えて、デュワー瓶の断熱性が悪くあるいは気球や飛行船のガス漏洩がきわめて小さい場合の液体ヘリウムの過剰ガス化に備え、ヘリウムガスの液化装置が必要になるので、浮力補償装置が大型化し重量が増大するという問題点がある。
【0006】
本発明は、上記のような問題点に鑑みてなされたものであって、その目的とするところは、小型軽量の浮力補償装置を備えた成層圏用飛行体を提供することにある。
本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【0007】
【課題を解決するための手段】
上記目的を達成すべく、本発明に係る成層圏用飛行体は、浮揚ガスが封入され上記浮揚ガスによる浮力によって浮揚する機体本体に、水の電気分解によって水素ガスを生成し上記水素ガスを上記機体本体に補給することにより上記浮揚ガスの漏洩による浮力の減少を補償する浮力補償装置を設け上記浮力補償装置は、軽量材からなる球形の断熱容器内に電解用の水を入れるブラダを収容して、そのブラダ内に上記水の凍結を防止するためのヒータが設置されると共に、上記ブラダからポンプにより水が導入されて上記電気分解が行われる電解チャンバが設置され、該電解チャンバには、内部の水の温度および圧力を電気分解が可能な水の状態に保持するための加熱器および加圧器がそれぞれ設けられていることを特徴としている。
また、上記成層圏用飛行体の飛行空域大気の温度、圧力、日射、飛行位置および対気速度を測定する大気計測用センサ群、並びに、ヘリウムガス嚢内に設けられヘリウムガスの温度、圧力、ヘリウム純度を測定するガス嚢内センサ群がマイクロコンピュータに接続され、該マイクロコンピュータが、上記大気計測用センサ群およびガス嚢内センサ群の測定結果に基づいて成層圏用飛行体の沈下もしくは上昇度合を算出し、浮力の減少度合を計算したうえで、必要な水素ガス量を算出し水の電気分解を行わせる機能を備え、更に、上記マイクロコンピュータが、水位センサおよび水温センサの検出結果より、電解チャンバへの水の導入量および加熱器の発熱量を制御するとともに、加圧器により上記電解チャンバ内の圧力を制御する機能を備えているものとすることができる。
【0008】
したがって、本発明によれば、水電解によって生成される水素ガスにより浮力が補償され、水電解装置は装置構成が簡単であるので、浮力補償装置の小型軽量化が達成され、低コストかつ安全に浮力の回復が行なわれる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。実施の形態を説明するに当たって、同一機能を奏するものは同じ符号を付して説明する。
図1は、本発明の一実施の形態に係る成層圏飛行船の一部切欠き正面図、図2は、図1の前面図、図3は、浮力補償装置の要部断面説明図である。
【0010】
図1、2に示す成層圏飛行船1は、機体長が200〜300mの大型飛行船であり、流線型気球の電動推進式成層圏無人プラットフォームとして期待されており、地上約20km高度(ミッション高度)の成層圏に長期間滞留して地球環境の調査観測や情報中継用として利用される。
【0011】
成層圏飛行船1は、ガスバリヤー膜であるヘリウムガス嚢3を収容した流線型の船体2と尾翼4とを備え、ヘリウムガス嚢3には浮揚ガスとしてのヘリウムガスが封入され、充分な強度と剛性を有する加圧膜構造もしくは硬骨構造あるいはこれらの組み合わせからなり、ヘリウムガスと大気圧との比重差により生じるヘリウムガスの余剰浮力で上昇しミッション高度で余剰浮力分のヘリウムガスを放出して滞留する。
【0012】
船体2の船尾には船尾プロペラ5がその回転軸を船体2の前後方向中心軸に一致するように突設されるとともに、船尾プロペラ5の回転軸と連結した推進駆動モータ6が内設され、船尾プロペラ5が推進駆動モータ6によって回転することにより成層圏飛行船1の推進力が得られるようになっている。
船体2の船首よりの側部には、回転軸が船体2の前後方向中心軸に対して略直角方向に向く船側プロペラ7が設けられ、この船側プロペラ7によって船体2の進行方向が変更されるようになっている。
【0013】
船体2の上側外周には太陽電池パネル8が張設され、この太陽電池パネル8によって発電された電力がバッテリ(図示略す)に蓄電され、このバッテリからの電力によって船尾プロペラ5、船側プロペラ7、その他の駆動部が駆動される。
船体2の略中央部には地球環境の調査観測、通信・放送および災害監視に用いられる観測・情報機器9、燃料電池10および後述する浮力補償装置11が配設されている。
【0014】
浮力補償装置11では、図3に示すように、球形で軽量な断熱容器12内に薄膜軽量のブラダ13が収容され、このブラダ13内に純水Wが貯留されている。
断熱容器12の下部には電解チャンバ14が設けられ、電解チャンバ14の上部に装着されたポンプ15によって断熱容器12内の純水Wが電解チャンバ14に導入されるようになっている。
断熱容器12の上部には外気圧と断熱容器12内の気圧とが同圧になるように空気孔23が開設され、ブラダ13内には純水Wの温度を一定に保ち凍結を防止するためのヒータ29が設置されている。
【0015】
電解チャンバ14内には、陽極16および陰極17が離間して配置されるとともに、純水Wの温度および水位を検出する水温センサ18および水位センサ20が配設され、さらには電解チャンバ14内を純水Wの電気分解に最適な圧力および温度に保持するための加圧器25および加熱器19がそれぞれ配設されている。
陽極16および陰極17の上半部はそれぞれガス導入管21内に位置し、陽極16側のガス導入管21は酸素ガスの流れは許容するが逆方向の流れは抑止する逆止弁22を途中に装着して大気中に開放され、陰極17側のガス導入管21は水素ガスの流れは許容するが逆方向の流れは抑止する逆止弁22を途中に装着してヘリウムガス嚢3に連通されている。なお、上記陽極16および陰極17としては、ニッケルメッキを施した鉄板が用いられている。
【0016】
ポンプ15、陽極16、陰極17、水温センサ18、加熱器19、水位センサ20、加圧器25、ヘリウムガス嚢3内に設けられヘリウムガスの温度、圧力、ヘリウム純度などを測定するガス嚢内センサ群24、成層圏飛行船1の飛行空域大気の温度、圧力および日射、成層圏飛行船1の飛行位置および対気速度などを測定する大気計測用センサ群28は、マイクロコンピュータ26に接続され、太陽電池パネル8(バッテリ)および燃料電池10の直流電源27より電力が供給されるようになっている。
【0017】
マイクロコンピュータ26は、大気計測用センサ群28およびガス嚢内センサ群24の測定結果に基づいて成層圏飛行船1の沈下もしくは上昇度合を算出し浮力の減少度合を計算した後、必要な水素ガス量を算出し水電解を行なわせ、水位センサ20および水温センサ18の検出結果よりポンプ15による純水Wの電解チャンバ14への導入量および加熱器19の発熱量を制御するとともに、電解チャンバ14内が適正圧力になるように加圧器25を制御するものである。
【0018】
成層圏飛行船1は、以上の如く構成されているので、電解チャンバ14内において、純水Wの電気分解が行われ、このとき生成される水素ガスはガス導入管21を介してヘリウムガス嚢3に補給され、酸素ガスはガス導入管21より大気中に排出される。
かくして、水素ガスの補給により浮力が増加するとともに、電気分解による純水Wの減少によって船体2の総重量が減少し、成層圏飛行船1における浮揚ガスの漏洩による浮力の減少が補償され、失った浮力が回復することになる。
【0019】
この場合、ヘリウムガス嚢3内の温度、圧力およびヘリウム純度などが測定されるとともに、飛行空域大気の温度、圧力および日射などが測定され、さらには成層圏飛行船1の沈下もしくは上昇度合が成層圏飛行船1の位置や対気速度から算出され、浮力の減少度合が計算される。この浮力の減少率に応じて水素ガスが生成され浮力の補償が行なわれる。
また、水電解に必要な電力は太陽電池パネル8(バッテリ)および/もしくは燃料電池10より供給すれば、電力供給系での全体重量の増減はない。
なお、水素ガスをヘリウムガスに混合した場合、約10%の混合比迄爆発しない領域であり、水素ガスを浮揚ガスとして使用している場合は発生水素ガスの量的制約はない。
【0020】
ところで、135kgの水を電気分解してできる水素ガスの量を考えると、2モルの水分子は1モルの酸素ガスと2モルの水素ガスに分解する。これらの質量は32kgと4kgであり、分解した酸素ガスと水素ガスの質量比は8:1である。
【0021】
したがって、135kgの水は質量120kgの酸素と質量15kgの水素とに分かれる。質量15kgの水素ガスは7500モルなので、7500モル×22.4(リットル/モル)=168,000リットル=168m3(常温常圧)となる。
【0022】
空気密度は1.29kg/m3、水素の密度は0.09kg/m3なので、168m3の水素の空気中での浮力(0°C)は、(168m3)×(1.29−0.09)kg/m3=201.6kgとなる。
したがって、残りの酸素120kgを捨てると、水の重量全部の135kgがなくなったことになり、見掛け上、336kgの浮力が発生することになる。
【0023】
このように、本実施の形態では、純水Wを船体2に搭載し浮力の減少に応じて純水Wを電気分解し水素ガスと酸素ガスとに分けた後、酸素ガスは大気に放出し、水素ガスをヘリウムガス嚢3に供給するので、純水Wの重量が減少し、水素ガスの発生により浮力が増加する。
【0024】
今、一定量の液体をガス化して浮力を発生させる場合、発生ガスによる浮力に、消失した液体の重量を加えた浮力増加を発生浮力といい、ガス化装置の重量を発生浮力から差し引いた量を正味の回復浮力というと、回復浮力は装置が存在しないと仮定した場合の浮力の増加分であるので、水の電解槽を薄膜製の袋とし断熱容器12にスタイロフォーム(ザ ダウ ケミカル社の登録商標)と呼ばれている気泡状プラスチックなどの軽量材を使用すれば、その重量は約10kg、パイプや制御器の重量を10kgとすれば、ガス化装置の全重量は155kgとなり、この装置では336kgの浮力が発生するので差し引き約180kgの正味浮力の回復が可能となる。50100
【0025】
液体ヘリウムのように、全装置の重量が385kgと同等重量の水電解方式の浮力回復装置を考えると、その浮力発生能力の関係は385:155=x:336となるので、発生浮力x=834kgとなり、ヘリウム液化の場合の発生浮力740kgを大幅に上回る。水電解槽とパイプ、制御器はさらに軽量化の可能性があり、発生浮力は840kg以上になると考えられる。液体ヘリウム方式との優位差は明らかである。
さらに、本実施の形態の水電解装置では、水を電解液としているので、安全上有利であり、しかも装置構成が簡単であるので、成層圏飛行船1の浮力の補償が簡便かつ小型軽量の浮力補償装置11によって行なうことができる。
【0026】
以上、本発明の実施の形態について詳述したが、本発明は、上記実施の形態に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で設計において種々の変更ができるものである。
たとえば、上記実施の形態では、電解チャンバ14の上部に装着されたポンプ15によって純水Wが電解チャンバ14に導入されるようになっているが、ポンプ15に代えて電解チャンバ14上にあって電解チャンバ14に自然落下する純水Wの流量を電磁弁によって制御してもよい。
また、ブラダ13内の純水Wに凍結防止用の添加物を投入することにより純水Wの融点を下げ凍結を回避してもよい。
さらに、純水Wに水酸化ナトリウムまたは水酸化カリウムなどを投与して電解液の電気抵抗を下げ電気分解を促進させてもよい。
また、水電解によって生成された水素ガスを燃料電池10の燃料として用いてもよい。
【0027】
【発明の効果】
以上の説明から理解されるように、本発明によれば、水の電気分解によって生成される水素ガスによって浮力を補償するので、従来のように極低温の液体ヘリウムを大量に保持する必要がなくなり、水電解装置は装置構成が簡単であるとともに、電解分の水がなくなり結果として装置重量が軽減化されるので、小型軽量の浮力補償装置によって低コストで安全かつ信頼性よく浮力回復効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す成層圏飛行船の一部切欠き正面図である。
【図2】本発明の一実施の形態を示す成層圏飛行船の前面図である。
【図3】本発明の一実施の形態を示す成層圏飛行船における浮力補償装置の要部断面説明図である。
【符号の説明】
1 成層圏飛行船
2 船体
3 ヘリウムガス嚢
4 尾翼
5 船尾プロペラ
6 推進駆動モータ
7 船側プロペラ
8 太陽電池パネル
9 観測・情報機器
10 燃料電池
11 浮力補償装置
12 断熱容器
13 ブラダ
14 電解チャンバ
15 ポンプ
16 陽極
17 陰極
18 水温センサ
19 加熱器
20 水位センサ
21 ガス導入管
22 逆止弁
23 空気孔
24 ガス嚢内センサ群
25 加圧器
26 マイクロコンピュータ
27 直流電源
28 大気計測用センサ群
29 ヒータ
W 純水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stratospheric flying object such as a balloon or an airship that floats by buoyancy caused by encapsulated buoyant gas.
[0002]
[Prior art]
Scientific observation balloons and unmanned stratospheric airships that are engaged in global environmental monitoring, etc., staying at a high altitude for a long period of time are limited in mission duration because buoyant gas such as hydrogen and helium leaks and gradually decreases.
[0003]
Therefore, the scientific observation balloon liquefies helium gas, puts this liquid helium in a dewar bottle with high heat insulation performance, evaporates liquid helium by electroheating according to the decrease in buoyancy, and gasifies the required amount of helium gas. It is equipped with a buoyancy compensator that recovers buoyancy by placing it in a buoyant gas sac.
[0004]
For example, 1 m 3 liquid helium was proposed in the American Aviation Society paper (AIAA 99-3862, M. Schein et al., An Integrated Cryogen Helium System for Extended Duration Ballots, 1999) published in the United States. The total weight of the buoyancy compensator is 385 kg, of which the weight of liquid helium is 135 kg, the weight of the device alone is 250 kg, and the weight of this device alone is 250 kg. It also includes the weight of the device that liquefies helium gas with electric power and returns it to the Dewar bottle in case the gasification of liquid helium proceeds rapidly due to the heat insulation performance.
When all the liquid helium becomes gas, 740 kg of buoyancy is generated. If the total weight of the device is subtracted, 355 kg of net buoyancy can be recovered, and the power required for this is expected to be about 20-50 W. ing.
[0005]
[Problems to be solved by the invention]
By the way, in the buoyancy compensator as described above, the liquid helium naturally evaporates by heat and increases the pressure. Therefore, the liquid helium must be kept in a dewar with high heat insulation and pressure resistance and a minimum surface area. A container for storing a Dewar bottle made with a design that pays special attention to impact and the like is required, and the weight is considerably increased.
In addition, a helium gas liquefaction device is required in preparation for excessive helium gas liquefaction when the dewar bottle has poor heat insulation or the gas leakage of the balloon or airship is extremely small, so the buoyancy compensator becomes large and heavy. There is a problem of increasing.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a stratospheric flying object including a small and light buoyancy compensator.
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a stratospheric aircraft according to the present invention generates hydrogen gas by electrolysis of water in a fuselage body that is encapsulated with levitation gas and floats by buoyancy by the levitation gas, and supplies the hydrogen gas to the aircraft body. the buoyancy compensator device for compensating the decrease in buoyancy due to the leakage of the levitation gas provided by replenishment to the body, the buoyancy compensator accommodates the bladder to put water for electrolysis into insulated container spherical consisting lightweight material In addition, a heater for preventing freezing of the water is installed in the bladder, and an electrolysis chamber in which water is introduced from the bladder by a pump to perform the electrolysis is installed. A heater and a pressurizer are provided for maintaining the temperature and pressure of the internal water in a state of water that can be electrolyzed, respectively .
In addition, a temperature sensor group for measuring the temperature, pressure, solar radiation, flight position and air speed of the airspace of the above stratosphere aircraft, and the temperature, pressure, and purity of helium gas provided in the helium gas sac A gas sac sensor group for measuring the buoyancy is connected to a microcomputer, and the microcomputer calculates the degree of subsidence or rise of the stratospheric aircraft based on the measurement results of the atmospheric sensor group and the gas sac sensor group. A function to calculate the amount of hydrogen gas required to perform electrolysis of water after the calculation of the degree of decrease in water, and the microcomputer detects water in the electrolysis chamber from the detection results of the water level sensor and the water temperature sensor. In addition to controlling the amount of heat introduced and the amount of heat generated by the heater, it has the function of controlling the pressure in the electrolysis chamber with a pressurizer. It can be assumed to have.
[0008]
Therefore, according to the present invention, the buoyancy is compensated by the hydrogen gas generated by water electrolysis, and the water electrolysis apparatus has a simple apparatus configuration. Therefore, the buoyancy compensation apparatus can be reduced in size and weight, and can be manufactured at low cost and safely. Buoyancy is restored.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the description of the embodiments, the same reference numerals are given to the same functions.
1 is a partially cutaway front view of a stratospheric airship according to an embodiment of the present invention, FIG. 2 is a front view of FIG. 1, and FIG. 3 is a cross-sectional explanatory view of a main part of a buoyancy compensator.
[0010]
The stratosphere airship 1 shown in FIGS. 1 and 2 is a large airship with a body length of 200 to 300 m, and is expected as an electric propulsion stratosphere unmanned platform for streamlined balloons, and is long in the stratosphere at an altitude of about 20 km (mission altitude). It stays for a period of time and is used for survey observation and information relay of the global environment.
[0011]
The stratospheric airship 1 includes a streamlined hull 2 containing a helium gas sac 3 that is a gas barrier film, and a tail wing 4. The helium gas sac 3 is filled with helium gas as a floating gas, and has sufficient strength and rigidity. It consists of a pressurized membrane structure, a bone structure, or a combination thereof, and rises due to the excess buoyancy of helium gas generated by the difference in specific gravity between helium gas and atmospheric pressure, and releases and retains helium gas for the excess buoyancy at the mission altitude.
[0012]
A stern propeller 5 is provided at the stern of the hull 2 so that its rotation axis coincides with the center axis in the front-rear direction of the hull 2 and a propulsion drive motor 6 connected to the rotation axis of the stern propeller 5 is provided internally. The stern propeller 5 is rotated by the propulsion drive motor 6 so that the propulsive force of the stratospheric airship 1 can be obtained.
On the side of the hull 2 from the bow, a ship-side propeller 7 whose rotation axis is substantially perpendicular to the center axis in the front-rear direction of the hull 2 is provided, and the ship-side propeller 7 changes the traveling direction of the hull 2. It is like that.
[0013]
A solar cell panel 8 is stretched on the upper outer periphery of the hull 2, and the electric power generated by the solar cell panel 8 is stored in a battery (not shown), and the stern propeller 5, the ship side propeller 7, Other driving units are driven.
Near the center of the hull 2, an observation / information device 9, a fuel cell 10 and a buoyancy compensator 11, which will be described later, are used for survey and observation of the global environment, communication / broadcasting and disaster monitoring.
[0014]
In the buoyancy compensator 11, as shown in FIG. 3, a thin and lightweight bladder 13 is accommodated in a spherical and lightweight heat insulating container 12, and pure water W is stored in the bladder 13.
An electrolysis chamber 14 is provided in the lower part of the heat insulation container 12, and pure water W in the heat insulation container 12 is introduced into the electrolysis chamber 14 by a pump 15 mounted on the upper part of the electrolysis chamber 14.
An air hole 23 is formed in the upper part of the heat insulating container 12 so that the external air pressure and the air pressure in the heat insulating container 12 become the same pressure, and the temperature of the pure water W is kept constant in the bladder 13 to prevent freezing. The heater 29 is installed.
[0015]
In the electrolysis chamber 14, an anode 16 and a cathode 17 are disposed apart from each other, and a water temperature sensor 18 and a water level sensor 20 for detecting the temperature and level of the pure water W are disposed. A pressurizer 25 and a heater 19 are provided for maintaining the pressure and temperature optimum for electrolysis of the pure water W, respectively.
The upper half portions of the anode 16 and the cathode 17 are respectively located in the gas introduction pipe 21, and the gas introduction pipe 21 on the anode 16 side allows a check valve 22 that allows oxygen gas flow but inhibits reverse flow. The gas introduction tube 21 on the cathode 17 side is connected to the helium gas sac 3 by installing a check valve 22 that allows the flow of hydrogen gas but inhibits the reverse flow. Has been. The anode 16 and the cathode 17 are made of nickel-plated iron plates.
[0016]
Pump 15, anode 16, cathode 17, water temperature sensor 18, heater 19, water level sensor 20, pressurizer 25, gas sac sensor group provided in the helium gas sac 3 and measuring the temperature, pressure, helium purity, etc. of helium gas 24. An atmospheric measurement sensor group 28 for measuring the temperature, pressure and solar radiation of the airspace of the stratosphere airship 1 and the flight position and air speed of the stratosphere airship 1 is connected to the microcomputer 26 and is connected to the solar panel 8 ( Battery) and a DC power supply 27 of the fuel cell 10 are supplied with electric power.
[0017]
The microcomputer 26 calculates the degree of subsidence or rise of the stratospheric airship 1 based on the measurement results of the atmospheric measurement sensor group 28 and the gas sac sensor group 24, calculates the degree of decrease in buoyancy, and then calculates the required amount of hydrogen gas. The amount of pure water W introduced into the electrolysis chamber 14 by the pump 15 and the amount of heat generated by the heater 19 are controlled from the detection results of the water level sensor 20 and the water temperature sensor 18, and the inside of the electrolysis chamber 14 is appropriate. The pressurizer 25 is controlled so as to be a pressure.
[0018]
Since the stratospheric airship 1 is configured as described above, the electrolysis of the pure water W is performed in the electrolysis chamber 14, and the hydrogen gas generated at this time passes through the gas introduction pipe 21 into the helium gas sac 3. The oxygen gas is replenished and discharged from the gas introduction pipe 21 into the atmosphere.
Thus, the buoyancy is increased by replenishment of hydrogen gas, the total weight of the hull 2 is reduced by the decrease of the pure water W due to electrolysis, the decrease in buoyancy due to leakage of the buoyant gas in the stratospheric airship 1 is compensated, and the lost buoyancy. Will recover.
[0019]
In this case, the temperature, pressure, helium purity, and the like in the helium gas sac 3 are measured, and the temperature, pressure, solar radiation, and the like of the airspace are measured. Further, the degree of subsidence or rise of the stratosphere airship 1 is determined by the stratosphere airship 1. The degree of buoyancy reduction is calculated from the position and airspeed. Hydrogen gas is generated according to the buoyancy reduction rate to compensate for buoyancy.
Moreover, if the electric power required for water electrolysis is supplied from the solar cell panel 8 (battery) and / or the fuel cell 10, there is no increase or decrease in the overall weight in the electric power supply system.
When hydrogen gas is mixed with helium gas, it does not explode to a mixing ratio of about 10%. When hydrogen gas is used as a levitation gas, there is no quantitative limitation of the generated hydrogen gas.
[0020]
By the way, considering the amount of hydrogen gas generated by electrolyzing 135 kg of water, 2 mol of water molecules are decomposed into 1 mol of oxygen gas and 2 mol of hydrogen gas. These masses are 32 kg and 4 kg, and the mass ratio of decomposed oxygen gas to hydrogen gas is 8: 1.
[0021]
Therefore, 135 kg of water is divided into a mass of 120 kg of oxygen and a mass of 15 kg of hydrogen. Since hydrogen gas with a mass of 15 kg is 7500 mol, 7500 mol × 22.4 (liter / mol) = 168,000 liter = 168 m 3 (normal temperature and normal pressure).
[0022]
Since the air density is 1.29 kg / m 3 and the density of hydrogen is 0.09 kg / m 3 , the buoyancy (0 ° C) of 168 m 3 of hydrogen in the air is (168 m 3 ) × (1.29-0 0.09) kg / m 3 = 201.6 kg.
Therefore, if the remaining 120 kg of oxygen is discarded, the total weight of water is 135 kg, and apparently 336 kg of buoyancy is generated.
[0023]
As described above, in the present embodiment, pure water W is mounted on the hull 2, and after the pure water W is electrolyzed and separated into hydrogen gas and oxygen gas according to the decrease in buoyancy, the oxygen gas is released into the atmosphere. Since the hydrogen gas is supplied to the helium gas sac 3, the weight of the pure water W is reduced, and the buoyancy is increased by the generation of the hydrogen gas.
[0024]
Now, when a certain amount of liquid is gasified to generate buoyancy, the buoyancy increase is the buoyancy generated by adding the weight of the lost liquid to the buoyancy caused by the generated gas, which is called generated buoyancy. The net recovery buoyancy is the increase in buoyancy when the device is assumed not to exist. Therefore, the water electrolyzer is used as a thin-film bag and the insulation container 12 is a styrofoam (registered by The Dow Chemical Company). If a lightweight material such as a cellular plastic called “trademark” is used, the weight is about 10 kg, and if the weight of the pipe and the controller is 10 kg, the total weight of the gasifier is 155 kg. Since 336 kg of buoyancy is generated, the net buoyancy of about 180 kg can be recovered. 50100
[0025]
Considering a water electrolysis-type buoyancy recovery device such as liquid helium whose weight is equivalent to 385 kg, the relationship between the buoyancy generation capabilities is 385: 155 = x: 336, so the generated buoyancy x = 834 kg. Thus, the generated buoyancy in the case of helium liquefaction greatly exceeds 740 kg. The water electrolyzer, pipe and controller may be further reduced in weight, and the generated buoyancy is considered to be 840 kg or more. The difference from the liquid helium system is clear.
Furthermore, in the water electrolysis apparatus of the present embodiment, water is used as an electrolyte solution, which is advantageous in terms of safety and has a simple apparatus configuration. Therefore, the buoyancy compensation of the stratospheric airship 1 is simple, small, and lightweight. This can be done by the device 11.
[0026]
As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment, In the range which does not deviate from the mind of the invention described in the claim of this invention Various changes can be made in the design.
For example, in the above-described embodiment, the pure water W is introduced into the electrolysis chamber 14 by the pump 15 attached to the upper part of the electrolysis chamber 14. The flow rate of the pure water W that naturally falls into the electrolysis chamber 14 may be controlled by an electromagnetic valve.
Moreover, the melting point of the pure water W may be lowered to avoid freezing by adding an antifreezing additive to the pure water W in the bladder 13.
Furthermore, sodium hydroxide or potassium hydroxide may be administered to the pure water W to reduce the electric resistance of the electrolyte and promote electrolysis.
Further, hydrogen gas generated by water electrolysis may be used as fuel for the fuel cell 10.
[0027]
【The invention's effect】
As understood from the above description, according to the present invention, since buoyancy is compensated by hydrogen gas generated by electrolysis of water, there is no need to hold a large amount of cryogenic liquid helium as in the prior art. The water electrolysis device has a simple device configuration and eliminates the water of electrolysis. As a result, the weight of the device is reduced, and the small and light buoyancy compensator improves buoyancy recovery efficiency safely and reliably at low cost. Can be made.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view of a stratospheric airship showing an embodiment of the present invention.
FIG. 2 is a front view of a stratospheric airship showing an embodiment of the present invention.
FIG. 3 is a cross-sectional explanatory view of a main part of a buoyancy compensator in a stratospheric airship showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stratospheric airship 2 Hull 3 Helium gas sac 4 Tail 5 Stern propeller 6 Propulsion drive motor 7 Ship side propeller 8 Solar panel 9 Observation and information equipment 10 Fuel cell 11 Buoyancy compensator 12 Heat insulation container 13 Bladder 14 Electrolysis chamber 15 Pump 16 Anode 17 Cathode 18 Water temperature sensor 19 Heater 20 Water level sensor 21 Gas introduction pipe 22 Check valve 23 Air hole 24 Gas sac sensor group 25 Pressurizer 26 Microcomputer 27 DC power supply 28 Atmospheric measurement sensor group 29 Heater W Pure water

Claims (3)

浮揚ガスが封入され上記浮揚ガスによる浮力によって浮揚する機体本体に、水の電気分解によって水素ガスを生成し上記水素ガスを上記機体本体に補給することにより上記浮揚ガスの漏洩による浮力の減少を補償する浮力補償装置を設け
上記浮力補償装置は、軽量材からなる球形の断熱容器内に電解用の水を入れるブラダを収容して、そのブラダ内に上記水の凍結を防止するためのヒータが設置されると共に、上記ブラダからポンプにより水が導入されて上記電気分解が行われる電解チャンバが設置され、該電解チャンバには、内部の水の温度および圧力を電気分解が可能な水の状態に保持するための加熱器および加圧器がそれぞれ設けられている、
ことを特徴とする成層圏用飛行体。
Compensation for reduction of buoyancy due to leakage of levitation gas by generating hydrogen gas by electrolysis of water and replenishing the aviation body with hydrogen gas in the fuselage main body that floats by buoyancy by the levitation gas enclosed with levitation gas A buoyancy compensator that
The buoyancy compensator accommodates a bladder in which water for electrolysis is contained in a spherical heat insulating container made of a lightweight material, and a heater for preventing freezing of the water is installed in the bladder. An electrolysis chamber is installed in which water is introduced by a pump and the electrolysis is performed, and the electrolysis chamber includes a heater for maintaining the temperature and pressure of water inside the electrolysable water and Each pressurizer is provided,
A stratospheric aircraft characterized by this.
成層圏用飛行体の飛行空域大気の温度、圧力、日射、飛行位置および対気速度を測定する大気計測用センサ群、並びに、ヘリウムガス嚢内に設けられヘリウムガスの温度、圧力、ヘリウム純度を測定するガス嚢内センサ群がマイクロコンピュータに接続され、A group of atmospheric measurement sensors that measure the temperature, pressure, solar radiation, flight position and airspeed of the airspace in the stratosphere, and measure the temperature, pressure, and helium purity of the helium gas provided in the helium gas sac. The gas sac sensor group is connected to the microcomputer,
該マイクロコンピュータが、上記大気計測用センサ群およびガス嚢内センサ群の測定結果に基づいて成層圏用飛行体の沈下もしくは上昇度合を算出し、浮力の減少度合を計算したうえで、必要な水素ガス量を算出し水の電気分解を行わせる機能を備えている、  The microcomputer calculates the degree of subsidence or rise of the stratospheric flying object based on the measurement results of the atmospheric measurement sensor group and the gas sac sensor group, and calculates the degree of decrease in buoyancy. It has a function to calculate the electrolysis of water,
ことを特徴とする請求項1に記載の成層圏用飛行体。The flying object for stratosphere according to claim 1 characterized by things.
上記マイクロコンピュータが、水位センサおよび水温センサの検出結果より、電解チャンバへの水の導入量および加熱器の発熱量を制御するとともに、加圧器により上記電解チャンバ内の圧力を制御する機能を備えている、The microcomputer has a function of controlling the amount of water introduced into the electrolysis chamber and the heating value of the heater from the detection results of the water level sensor and the water temperature sensor, and controlling the pressure in the electrolysis chamber with a pressurizer. Yes,
ことを特徴とする請求項2に記載の成層圏用飛行体。The flying object for stratosphere according to claim 2 characterized by things.
JP2001058239A 2001-03-02 2001-03-02 Stratospheric aircraft Expired - Lifetime JP4586137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058239A JP4586137B2 (en) 2001-03-02 2001-03-02 Stratospheric aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058239A JP4586137B2 (en) 2001-03-02 2001-03-02 Stratospheric aircraft

Publications (2)

Publication Number Publication Date
JP2002255096A JP2002255096A (en) 2002-09-11
JP4586137B2 true JP4586137B2 (en) 2010-11-24

Family

ID=18917992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058239A Expired - Lifetime JP4586137B2 (en) 2001-03-02 2001-03-02 Stratospheric aircraft

Country Status (1)

Country Link
JP (1) JP4586137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928456A (en) * 2018-06-20 2018-12-04 温州大学 The large-scale or compact ultra-large type rigid or half rigid big voyage dirigible of high speed

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396556B1 (en) 2012-01-31 2014-05-20 조선대학교산학협력단 buoyancy occurring apparatus
US9527569B2 (en) 2012-09-19 2016-12-27 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
US10427772B2 (en) 2012-09-19 2019-10-01 Solar Ship Inc. Hydrogen-regenerating solar-powered aircraft
KR101726803B1 (en) * 2015-10-22 2017-04-13 서울시립대학교 산학협력단 Aerial vehicle system using water electrolysis-hydrogen fuel cell
KR101956554B1 (en) 2017-12-15 2019-03-13 대한민국 Floating air condition detection device possible to flying
JP7036097B2 (en) * 2019-09-30 2022-03-15 株式会社豊田中央研究所 Flying object
CN113830280A (en) * 2021-11-09 2021-12-24 中国电子科技集团公司第三十八研究所 Buoyancy control device for long-endurance fixed-height flight of aerostat

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348254A (en) * 1992-07-01 1994-09-20 Kazuo Nakada Long period floating airship
JP2000016394A (en) * 1998-06-29 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Altitude control device for aerial floating body
WO2000034120A1 (en) * 1998-12-11 2000-06-15 Southwest Research Institute Autonomous stratospheric airship

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435995A (en) * 1977-08-26 1979-03-16 Nec Corp Altitude controller of balloon
JPS6441497A (en) * 1987-08-06 1989-02-13 Nippon Academic Center Kk Light-weight structural material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348254A (en) * 1992-07-01 1994-09-20 Kazuo Nakada Long period floating airship
JP2000016394A (en) * 1998-06-29 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Altitude control device for aerial floating body
WO2000034120A1 (en) * 1998-12-11 2000-06-15 Southwest Research Institute Autonomous stratospheric airship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928456A (en) * 2018-06-20 2018-12-04 温州大学 The large-scale or compact ultra-large type rigid or half rigid big voyage dirigible of high speed

Also Published As

Publication number Publication date
JP2002255096A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
US5348254A (en) Long period floating airship
JP6640729B2 (en) System and method for UAV fuel cells
JP4870758B2 (en) Unmanned aerial vehicles used as a platform for telecommunications or other scientific purposes
US8820681B2 (en) Lighter-than-air craft docking system using unmanned flight vehicle
US9004397B2 (en) Autonomous stratospheric unmanned airship
US10427772B2 (en) Hydrogen-regenerating solar-powered aircraft
US5645248A (en) Lighter than air sphere or spheroid having an aperture and pathway
AU2013317631B9 (en) Hydrogen-regenerating solar-powered aircraft
US10308340B2 (en) System, method and apparatus for widespread commercialization of hydrogen as a carbon-free fuel source
US9102391B2 (en) Hydrogen lighter-than-air craft structure
US11235631B2 (en) Extended duration autonomous craft
CA2853180A1 (en) High-altitude aerial vehicle, aerial vehicle formation and method for operating an aerial vehicle formation
US20120138733A1 (en) High-Altitude Aerial Vehicle
JP4586137B2 (en) Stratospheric aircraft
US20040155149A1 (en) Hydrogen lighter-than-air ship
US20180290720A1 (en) Hydrogen recycling flight system and flight method
JP2005053353A (en) Airship
WO2014088680A2 (en) Systems and methods for long endurance airship operations
US20220144405A1 (en) Method and apparatus for transporting hydrogen
CN113386940B (en) Airship and long-term floating capacity maintaining method thereof
JP2005053352A (en) Airship
JP2019216594A (en) Systems and methods for uav fuel cell
Bents Long-duration low-to medium-altitude solar electric airship concept
JP2023031226A (en) Flight body
TWM463710U (en) Transporting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4586137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term