JP4584012B2 - Human transport vehicle - Google Patents

Human transport vehicle Download PDF

Info

Publication number
JP4584012B2
JP4584012B2 JP2005126212A JP2005126212A JP4584012B2 JP 4584012 B2 JP4584012 B2 JP 4584012B2 JP 2005126212 A JP2005126212 A JP 2005126212A JP 2005126212 A JP2005126212 A JP 2005126212A JP 4584012 B2 JP4584012 B2 JP 4584012B2
Authority
JP
Japan
Prior art keywords
radiation
wall
dose
thickness
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005126212A
Other languages
Japanese (ja)
Other versions
JP2006296917A (en
Inventor
雅之 平川
Original Assignee
株式会社フリール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フリール filed Critical 株式会社フリール
Priority to JP2005126212A priority Critical patent/JP4584012B2/en
Publication of JP2006296917A publication Critical patent/JP2006296917A/en
Application granted granted Critical
Publication of JP4584012B2 publication Critical patent/JP4584012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Nuclear Medicine (AREA)

Description

本発明は、人体移送車、特にPET装置搭載車と医療設備との間で放射線源を注入した受診者を安全に移動するための移動車に関する。尚、本明細書において、PETとは陽電子断層撮影(Positron Emission Tomography)のことをいう。   The present invention relates to a human body transportation vehicle, and more particularly to a mobile vehicle for safely moving a patient who has injected a radiation source between a PET apparatus loaded vehicle and a medical facility. In this specification, PET refers to positron emission tomography.

従来、MRI(磁気共鳴診断)装置などの高価な医療用診断装置の稼働率を上げるために、こうした装置を、検査室を備えたトレーラーに搭載して各地を巡回可能とすること(モバイル化)が行われている(特許文献1)。   Conventionally, in order to increase the operating rate of expensive medical diagnostic equipment such as MRI (magnetic resonance diagnostic) equipment, such equipment can be mounted on a trailer equipped with an examination room so that it can be visited in various places (mobileization). (Patent Document 1).

しかしながら、MRIでは臓器の形状の知見が得られるに留まるため、近年、体内の局所血流量やブドウ糖消費量などの生理学的機能情報を提供して癌などの早期発見に寄与するPET検査が脚光を浴びており、又、この検査装置も相当に高価であることから、そのモバイル化が要望されている。ここでPET検査の原理を簡単に説明すると、F18−FDG(フルオロデオキシグルコース)などの放射性薬剤を受診者の身体内に注入して、その薬剤から放出される陽電子が他の電子と対消滅して、その消滅光子(γ線)を放出する。癌細胞は正常細胞の3〜8倍のブドウ糖を消費するため、FDGが集まり、PET画像で光って表れるものというものである。この方法では、受診者の身体から放出されるγ線により他の受診者や医療従事者などが被爆する可能性があり、これを回避するために診療施設の待合室向けの椅子であって後面と側面とに放射線遮蔽板を設けたものが提案されている(特許文献2)。
特開2001−095780号 特開2004−361288号
However, since MRI only provides knowledge of the shape of an organ, in recent years, PET examinations that contribute to early detection of cancer and the like by providing physiological function information such as local blood flow in the body and glucose consumption are attracting attention. In addition, since this inspection apparatus is also quite expensive, it is desired to make it mobile. Here, the principle of the PET examination will be briefly explained. A radiopharmaceutical such as F 18 -FDG (fluorodeoxyglucose) is injected into the body of the examinee, and the positron emitted from the medicine is annihilated with other electrons. Then, the annihilation photons (γ rays) are emitted. Since cancer cells consume 3 to 8 times as much glucose as normal cells, FDG is collected and appears in the PET image. In this method, there is a possibility that other examinees and medical workers may be exposed to radiation by gamma rays emitted from the patient's body, and in order to avoid this, it is a chair for the waiting room of the medical facility, The thing which provided the radiation shielding board in the side surface is proposed (patent document 2).
JP 2001-095780 A JP 2004-361288 A

我国では放射性物質の取扱いに厳しい規制があるため、PET装置を搭載した車両で巡回診療をしようとすれば、医療施設内の放射線管理区域で受診者に放射性薬剤を注射した後に医療施設の周囲に駐車したPET装置搭載車まで受診者を移送する必要があるが、このとき移送中の受診者の身体からの放射線の放出を確実に遮断する手段が必要である。このために、例えば特許文献2の放射線遮蔽機能付きの椅子を移動可能な車椅子とし、更に椅子の前面をも放射遮蔽板で覆うことが考えられる。しかしながら、放射線遮蔽材料としては鉛や鉄などの比重の大きい金属が使用されるため、放射線を完全に遮断しようとすると放射線遮蔽用車椅子の重量が極めて大きくなり、移動が困難となるという問題点がある。     In Japan, there are strict regulations on the handling of radioactive substances, so if you are going to visit a hospital with a vehicle equipped with a PET device, you will be injected around the medical facility after injecting the radiopharmaceutical to the patient in the radiation control area of the medical facility. Although it is necessary to transfer the examinee to the parked vehicle equipped with the PET apparatus, a means for reliably blocking radiation emission from the body of the examinee during the transfer is necessary. For this purpose, for example, it is conceivable that the chair with the radiation shielding function of Patent Document 2 is a movable wheelchair and that the front surface of the chair is also covered with a radiation shielding plate. However, since metal with high specific gravity such as lead or iron is used as the radiation shielding material, the weight of the radiation shielding wheelchair becomes extremely large and difficult to move when attempting to completely block radiation. is there.

そこで本発明は、受診者の移送中の介添人や通行人への被爆を有効に防止しながら操作及び移動が容易な人体移送車を提供することを目的とする。     Therefore, an object of the present invention is to provide a human transport vehicle that can be easily operated and moved while effectively preventing exposure of a caregiver or a passerby during the transfer of a medical examinee.

第1の手段は、核医療用放射線源を体内へ注入した受診者Pを移送するための移送車であって、
台座12を有するとともに周囲に放射線遮蔽壁24を囲成した台車2を設け
この台車の後側から少なくとも台車の後方へ突出した操作アーム42の後部に、上記放射線遮蔽壁24から離して、操作アームの突出長より前後の巾の短い、介添人Nが操作するためのハンドル部46を取り付けている。
The first means is a transport vehicle for transporting the examinee P injecting a nuclear medical radiation source into the body,
The carriage 2 that囲成radiation shielding wall 24 around while have a pedestal 12 is provided,
A handle for operation by a caregiver N, which is spaced from the radiation shielding wall 24 at the rear of the operation arm 42 protruding from the rear side of the carriage at least to the rear of the carriage, and is shorter than the projection length of the operation arm. Part 46 is attached.

「核医療」としては上述のPET検査があるが、それ以外にもSPECT(Single Photon Emission Tomography)などに本発明の人体移動車を用いても良い。   “Nuclear medicine” includes the above-described PET examination, but the human body transportation vehicle of the present invention may also be used for SPECT (Single Photon Emission Tomography).

「台車」は、複数の車輪を付設した基礎フレーム(又は基板)の周囲から放射線遮蔽壁を起立するとともに、その放射線遮蔽壁の適所(例えば側壁部)を乗降車用扉に形成したものとすることができる。また、台車には自走用の駆動部を設けることが望ましい。この駆動部は例えば電動モーターなどで形成することができる。   “Car” is a structure in which a radiation shielding wall is erected from the periphery of a base frame (or substrate) provided with a plurality of wheels, and an appropriate location (for example, a side wall) of the radiation shielding wall is formed on a boarding / alighting door. be able to. In addition, it is desirable to provide a self-propelled drive unit in the cart. This drive unit can be formed by an electric motor, for example.

「台座」は、基礎フレームの一部(例えば後部)から立設させて後述の椅子形に形成することが望ましい。しかしながら、病人である受診者を寝たままの姿勢で移動するため、上記台座を一方向(好ましくは前後方向)に細長い寝台タイプとすることもできる。この場合には基礎フレームを台座に対応して縦長に形成してその周囲を放射線遮蔽壁で囲い、台車全体を遮蔽壁付きのストレッチャーのように構成すれば良い。     It is desirable that the “pedestal” is formed in a chair shape to be described later by standing from a part (for example, the rear part) of the basic frame. However, since the examinee who is a sick person moves while lying down, the pedestal can be a bed type that is elongated in one direction (preferably in the front-rear direction). In this case, the base frame may be formed vertically corresponding to the pedestal and surrounded by a radiation shielding wall, and the entire carriage may be configured as a stretcher with a shielding wall.

「放射線遮蔽壁」は、台車の回り全体を覆うように台車の周囲から好ましくは垂直に起立する。その放射線遮蔽壁の高さは、受診者の身体から放出される放射線が台車の前後のハンドル部を操作する介添人が直接被爆しないように設定する。放射線遮蔽壁は鉛又は鉄の如く十分な放射線遮蔽能力を有しかつ不透明な素材で形成することが望ましい。     The “radiation shielding wall” stands preferably vertically from the periphery of the carriage so as to cover the entire circumference of the carriage. The height of the radiation shielding wall is set so that the radiation emitted from the body of the examinee is not directly exposed to the attendant who operates the handle portions before and after the carriage. The radiation shielding wall is preferably made of an opaque material having sufficient radiation shielding ability such as lead or iron.

「ハンドル部」は、介添人が移送車の進行方向を誘導するという操作部の機能の他に、介添人などが人体移送車の向きを代えたりする場合に、その放射線遮蔽壁に直接に手を触れなくて済むようにするものである。本発明の移送車は嵩張るもので、移送車の後方からは移送車前方の安全を確認しづらいため、移送車の前後両側にハンドル部を設けてそれぞれに介添人が付き添うようにすることが望ましい。台座を台車の後部側に設置したときには、前側のハンドル部は放射線遮蔽壁の前壁部分の近くに、又、後側のハンドル部は放射線遮蔽壁の後壁部分から離れた位置に好ましくは上記台座を中心として等距離に設置することができる。前側のハンドル部は、台車の前部から前方へ突出した左右一対の操作アームの前部の間に、又後側のハンドル部は台車の後部から後方へ突出した左右一対の操作アームの後部の間にそれぞれ架設した水平棒状の手摺り形に形成することが好適であるが、これに代えて、例えば前側の各操作アームの前端部及び後側の各操作アームの後端部で形成することもできる。     In addition to the function of the operation unit that the attendant guides the traveling direction of the transport vehicle, the “handle portion” is directly attached to the radiation shielding wall when the attendant or the like changes the direction of the human transport vehicle. It is to avoid touching. Since the transfer vehicle of the present invention is bulky and it is difficult to confirm the safety in front of the transfer vehicle from the rear of the transfer vehicle, it is desirable to provide a handle portion on both the front and rear sides of the transfer vehicle so that the attendant is accompanied by each. . When the pedestal is installed on the rear side of the carriage, the front handle portion is preferably near the front wall portion of the radiation shielding wall, and the rear handle portion is preferably located away from the rear wall portion of the radiation shielding wall. It can be installed equidistant from the pedestal. The front handle is between the front of the pair of left and right operation arms protruding forward from the front of the carriage, and the rear handle is the rear of the pair of left and right operation arms protruding rearward from the rear of the carriage. It is preferable to form it in the shape of a horizontal bar-like handrail erected between them, but instead, for example, it is formed at the front end of each front operation arm and the rear end of each rear operation arm. You can also.

第2の手段は、第1の手段を有し、かつ上記台座12に載った受診者の身体の一部から放射線遮蔽壁24の前乃至後方対応壁部分24f、24bを透して前方乃至後方のハンドル部46,48に至る放射線の線量が規定量以下となるように身体の一部からハンドル部46,48迄の距離に応じて上記対応壁部分24f、24bの厚さを定めている。     The second means includes the first means, and passes through the front or rear corresponding wall portions 24f, 24b of the radiation shielding wall 24 from the part of the body of the examinee who is placed on the pedestal 12 to the front or rear. The thicknesses of the corresponding wall portions 24f and 24b are determined according to the distance from a part of the body to the handle portions 46 and 48 so that the dose of radiation reaching the handle portions 46 and 48 becomes a prescribed amount or less.

即ち、本手段においては、この放射線遮蔽壁の前壁部分、後壁部分及び左右側壁部分の厚さは後述の如く周囲の介添人や通行人・施設関係者などの遭遇者の被爆量が一定以下となるように定めている。具体的には、鉛で形成された放射線遮蔽壁にあっては、受診者の身体から前後のハンドル部までの距離を1m程度とした場合に、後方壁部分の厚さを5〜8mm,前方壁部分の厚さを5mm程度とすると良い。又、人体移動車の傍らをすれ違う通行人と受診者との距離を550mm程度としたときに3mm程度とすると良い。     That is, in this means, the thickness of the front, rear and left and right side walls of this radiation shielding wall is constant for the amount of exposure of the attendees such as attendants, passersby, and facility personnel as described later. It is determined to be as follows. Specifically, in the case of a radiation shielding wall made of lead, the thickness of the rear wall portion is 5-8 mm forward when the distance from the examinee's body to the front and rear handle portions is about 1 m. The wall thickness should be about 5mm. In addition, when the distance between the passerby passing by the human body moving vehicle and the examinee is about 550 mm, it should be about 3 mm.

換言すれば、本発明のハンドル部は、このハンドル部以上に放射線遮蔽壁に近い場所に介添人が一定時間接近すると、基準値以上の放射線を被爆する可能性があることを示す警告標識となる。     In other words, the handle portion of the present invention becomes a warning sign indicating that there is a possibility of being exposed to radiation exceeding the reference value when the attendant approaches a place closer to the radiation shielding wall than the handle portion for a certain time. .

本手段においては、病院の廊下やエレベータ内を移動可能な範囲で台座の位置(より具体的には台座に座る受診者の身体の一部)からハンドル部までの水平距離をできるだけ大きくとり、この距離に応じてハンドル部での介添人の放射線被爆線量が規定値に達しないように放射線遮蔽壁の対応壁部分の厚さを定めれば良い。台座(又は台座に座る受診者の身体の一部)からハンドル部までの水平距離としては、1m程度とすることが好ましく、この程度の長さであれば前方のハンドル部から後方のハンドル部まで2m程度となるのでエレベータなどへの搭載や廊下の角でのターンが可能としながら、放射線遮蔽壁の厚みを合理的な範囲に抑えることができる。もっともこの水平距離は、病院等の通路の広さに応じて適宜変更することができる。     In this means, the horizontal distance from the position of the pedestal (more specifically, part of the body of the patient sitting on the pedestal) to the handle is set as large as possible within the range that can be moved in the hospital corridor and elevator. The thickness of the corresponding wall portion of the radiation shielding wall may be determined so that the radiation exposure dose of the attendant at the handle portion does not reach the specified value according to the distance. The horizontal distance from the pedestal (or part of the body of the examinee sitting on the pedestal) to the handle is preferably about 1 m, and if this length is from the front handle to the rear handle Since it is about 2 m, the thickness of the radiation shielding wall can be suppressed to a reasonable range while enabling mounting on an elevator or the like and turning at the corner of the hallway. However, this horizontal distance can be changed as appropriate according to the size of the passage of a hospital or the like.

放射線の被爆線量は、単位時間当りの放射線量で規定してもよいが、病院などの放射線管理区域からPET装置搭載車までの移送時間内の積算線量で規定しても良い。この点に関しては、第4の手段において更に後述する。     The radiation exposure dose may be defined by a radiation dose per unit time, but may be defined by an integrated dose within a transfer time from a radiation management area such as a hospital to a vehicle equipped with a PET apparatus. This point will be further described later in the fourth means.

又、受診者の体内に注入したF18FDGは血液とともに体内を循環するため、ハンドル部までの水平距離の起算点となる受診者の身体の一部は、胴部、より具体的には体内で最も多くの血液が集まる受診者の心臓とすることが望ましい。もっとも必ずしも胴部や心臓に限られるものではなく、例えば上述のストレッチャータイプの寝台において、前後のハンドル部に最も近い身体部分(頭部乃至足部)から上記水平距離をとることも可能である。 In addition, since F 18 FDG injected into the body of the examinee circulates in the body together with blood, the part of the examinee's body that is the starting point of the horizontal distance to the handle portion is the torso, more specifically the internal body. It is desirable to use the heart of the patient who collects the most blood. However, it is not necessarily limited to the torso or heart. For example, in the above-described stretcher type bed, it is possible to take the horizontal distance from the body part (head to foot) closest to the front and rear handle parts. .

第3の手段は、第2の手段を有し、かつ
上記放射線遮蔽壁24を箱形として、この放射線遮蔽壁24の後壁部分24b下部側に接近させて台車2の後半部に受診者Pが着座可能な椅子形の台座12を設けている。
The third means includes the second means, and the radiation shielding wall 24 is box-shaped, and is approached to the lower side of the rear wall portion 24b of the radiation shielding wall 24 so that the examinee P A chair-shaped pedestal 12 that can be seated is provided.

本手段では、台座を椅子形とすることで台車をコンパクトに形成するとともに、既述ストレッチャー形の台車と比較して、椅子に腰掛けた受診者の身体の各部からハンドル部までの距離のばらつきを小さくすることで、身体の一部(例えば胴部)を基準とした放射線の被爆線量の計算誤差が小となるように構成している。   In this means, the pedestal is made into a chair shape to make the trolley compact, and the distance from each part of the examinee's body seated on the chair to the handle part compared to the stretcher type trolley described above Is made small so that the calculation error of the radiation exposure dose based on a part of the body (for example, the trunk) becomes small.

上記椅子形の台座は放射線遮蔽壁の後壁部分と連続して設け、この後壁部分を背もたれとすることができる。   The chair-shaped base can be provided continuously with the rear wall portion of the radiation shielding wall, and the rear wall portion can be used as a backrest.

第4の手段は、第3の手段を有し、かつ上記身体の一部を受診者Pの胴部として、この胴部から前方乃至後方のハンドル部46,48へ到達する放射線の線量を、移送時間中に介添人Nが前方乃至後方のハンドル部46,48の位置で被爆し得る積算線量として、この積算線量から放射線遮蔽壁24の前乃至後方対応壁部分24f、24bの厚さを定め、更に上記移送時間よりも短く設定された遭遇時間内に台車2の傍らに近づいた遭遇者が上記放射線遮蔽壁24の側壁部分24sを透して被爆し得る線量が規定量以下となるように側壁部分24sの厚さを定めている。   The fourth means includes the third means, and uses the body part as the torso of the examinee P, and determines the dose of radiation reaching the front or rear handle parts 46, 48 from the torso, As an integrated dose that the attendant N can be exposed to at the positions of the front and rear handle portions 46 and 48 during the transfer time, the thicknesses of the front and rear corresponding wall portions 24f and 24b of the radiation shielding wall 24 are determined from this integrated dose. Further, the dose that can be exposed through the side wall portion 24s of the radiation shielding wall 24 by an encounter person who approaches the carriage 2 within an encounter time set shorter than the transfer time is less than a prescribed amount. The thickness of the side wall portion 24s is determined.

本手段では、介添人が移送車による移送時間内に、又遭遇者が移送車の傍らに近づいた遭遇時間内にそれぞれ被爆し得る積算線量が基準値以下になるように、放射線遮蔽壁の前又は後方対応壁部分及び左右側壁部分の厚さを定めるように構成したものである。ここで移送時間とは、病院などの放射線管理区域からPET装置搭載車への移送時間を想定しており、又、遭遇時間とは、施設関係者にあっては、人体移送車が通行する廊下やエレベータなどに他の業務のために居合わせる時間や、人体移送車をPET装置搭載車へリフトで格納する際に傍についている時間、他の患者などにあっては、移送車と擦れ違う時間などを想定している。もちろんこれらの移送時間や遭遇時間は個々のケースで異なるため、実際の計算では、標準的な移送時間や遭遇時間を設定して被爆線量を算出すれば良い。この移送時間は少なくとも遭遇時間よりも長く設定するものとする。より具体的には、移送時間としては、例えば5〜10分程度、より好ましくは20分程度とし、更に遭遇時間としては、例えば30秒〜1分程度、より好ましくは2分程度とすると良い。又、許容される放射線の規定量は例えば4μsV(シーベルト)とすることができる。   In this measure, in front of the radiation shielding wall, the cumulative dose that can be exposed to the caretaker within the transport time by the transport vehicle and the encounter time when the encounter is close to the transport vehicle is below the reference value. Or it is comprised so that the thickness of a back corresponding | compatible wall part and a left-right side wall part may be defined. Here, the transfer time is assumed to be the transfer time from a radiation control area such as a hospital to a vehicle equipped with a PET device, and the encounter time is a corridor through which a human transport vehicle passes for those concerned in the facility. Time to be present in other places such as in a car or elevator for other work, time when a human transport vehicle is stored in a lift on a PET device-equipped vehicle, and time for other patients to rub against the transport vehicle Assumed. Of course, since these transfer times and encounter times are different in each case, in an actual calculation, the exposure dose may be calculated by setting standard transfer times and encounter times. This transfer time is set longer than at least the encounter time. More specifically, the transfer time is, for example, about 5 to 10 minutes, more preferably about 20 minutes, and the encounter time is, for example, about 30 seconds to 1 minute, more preferably about 2 minutes. Further, the prescribed amount of radiation allowed can be set to 4 μsV (sievert), for example.

第5の手段は、上記第1の手段乃至第4の手段の何れかを有し、更に上記放射線遮蔽壁24のうち少なくとも前壁乃至後壁の上端部に、上内方へ傾斜する補助遮蔽板26を付設している。   The fifth means includes any one of the first means to the fourth means, and further, auxiliary shielding that is inclined upward and inward at least at the upper end of the front wall or the rear wall of the radiation shielding wall 24 A plate 26 is attached.

「補助遮蔽板」は、受診者の身体から上方へ放出される放射線を介添人などが被爆することを防止するためのものである。もちろん放射線遮蔽壁の上面開口を鉛板などの遮蔽板で閉塞することが放射能洩れの防止という観点から望ましいのであるが、そうすると移送車全体の重量が過度に大きくなり、取り扱い難い。そこで垂直な放射線遮蔽壁の上端部から斜め上内方へ補助遮蔽板を突出させることで少ない遮蔽材料で効果的に遮蔽を行っている。   The “auxiliary shielding plate” is for preventing the attendant and the like from being exposed to radiation emitted upward from the body of the examinee. Of course, it is desirable to block the upper surface opening of the radiation shielding wall with a shielding plate such as a lead plate from the viewpoint of preventing radiation leakage, but in this case, the weight of the entire transport vehicle becomes excessively large and difficult to handle. Therefore, shielding is effectively performed with a small amount of shielding material by projecting the auxiliary shielding plate obliquely upward and inward from the upper end of the vertical radiation shielding wall.

この補助遮蔽板は、放射線遮蔽壁の前方又は後方壁部分の上端に付設すると良く、更に放射線遮蔽壁の左右側壁部分の上端に付設することが望ましい。補助遮蔽板の長さは100mm程度が望ましいが、50mm程度でも良い。又放射線遮蔽壁の上端からの補助遮蔽板の突出角度は、垂直方向に対して30度程度とすると良い。   The auxiliary shielding plate may be attached to the upper end of the front or rear wall portion of the radiation shielding wall, and is preferably attached to the upper ends of the left and right side wall portions of the radiation shielding wall. The length of the auxiliary shielding plate is preferably about 100 mm, but may be about 50 mm. The projection angle of the auxiliary shielding plate from the upper end of the radiation shielding wall is preferably about 30 degrees with respect to the vertical direction.

更に上記補助遮蔽板26は、下方より放出された放射線を上方へ散乱させないように内方へ湾曲して張り出す湾曲板部とすると良く、これにより受診者の身体から放射された放射線が補助遮蔽板26の内面で一回乃至複数回反射して下方へ戻るように構成することができる。この補助遮蔽板は、長手方向(前後の補助遮蔽板では左右方向)から見て円弧形状に形成するとよく、更に先端部内面が水平となった円弧形状(特に四半円弧形状)に形成することが望ましい。   Further, the auxiliary shielding plate 26 may be a curved plate portion that curves inward and protrudes so as not to scatter the radiation emitted from below, so that the radiation emitted from the body of the examinee is auxiliary shielded. The inner surface of the plate 26 can be configured to reflect one or more times and return downward. The auxiliary shielding plate may be formed in an arc shape when viewed from the longitudinal direction (left and right directions in the front and rear auxiliary shielding plates), and may be formed in an arc shape (particularly, a quarter arc shape) with the inner surface of the tip portion being horizontal. desirable.

第1の手段に係る発明によれば、次の効果を奏する。
○台車2の前後にハンドル部46,48を放射線遮蔽壁24から離して設けたから、病院の廊下などで人体移送車を誘導している介添人Pが不用意に接近したり、或いは放射線遮蔽壁に不用意に触ることを防止できる。
○受診者用の台座の周囲を放射線遮蔽壁で囲ったから、病院内を通過する患者など受診者のプライバシーも保護される。
The invention according to the first means has the following effects.
○ Because the handle portions 46 and 48 are provided at the front and rear of the carriage 2 apart from the radiation shielding wall 24, the attendant P guiding the human transport vehicle in a hospital corridor or the like approaches carelessly or the radiation shielding wall You can prevent inadvertent touching.
○ Since the periphery of the pedestal for the patient is surrounded by a radiation shielding wall, the privacy of the patient and other patients who pass through the hospital is also protected.

第2の手段に係る発明によれば、上記放射線遮蔽壁の前後壁部分の厚さをこのハンドル部46,48の位置での被爆量が規定量以下となるように設定したから、このハンドル部を目印にしてこの人体移送車を操作する介添人が規定量を超える放射線を被爆しないようにすることができ、周囲に対する安全性を確実に担保しながら人体移送車の軽量性を図ることができる。   According to the invention relating to the second means, the thickness of the front and rear wall portions of the radiation shielding wall is set so that the amount of exposure at the positions of the handle portions 46, 48 is less than the prescribed amount. It is possible to prevent the attendant who operates this human transport vehicle from being exposed to radiation exceeding the prescribed amount, and to reduce the weight of the human transport vehicle while ensuring safety to the surroundings. .

第3の手段に係る発明によれば、台座12を椅子形にしたから、台車全体としてコンパクトに形成され、椅子に腰掛けた受診者Pの身体の各部からハンドル部までの距離のばらつきを小さくなり、放射線による被爆量をより的確に予測することができる。   According to the invention relating to the third means, since the pedestal 12 is made into a chair shape, the entire trolley is compactly formed, and the variation in the distance from each part of the body of the examinee P sitting on the chair to the handle part is reduced. The amount of radiation exposure due to radiation can be predicted more accurately.

第4の手段に係る発明によれば、次の効果が得られる。
○受診者Pの胴部から放射される放射線が規定量以下となるように設計したから、受診者Pから実際に被爆する線量に近い放射線量が的確かつ簡易に得られる。
○放射線遮蔽壁24の前乃至後方壁部分24f、24bは介添人Nの移送時間内の積算放射線量に基づいて、又、左右側方壁部分24sは通行人の遭遇時間内の積算放射線量に基づいて定めたから、放射線遮蔽壁の各部分毎に必要な厚みを無駄なく確保することができる。
According to the invention relating to the fourth means, the following effects can be obtained.
○ Designed so that the radiation emitted from the torso of the examinee P is less than the prescribed amount, the radiation dose close to the dose actually exposed from the examinee P can be obtained accurately and easily.
○ The front and rear wall portions 24f and 24b of the radiation shielding wall 24 are based on the accumulated radiation dose within the transfer time of the caregiver N, and the left and right side wall portions 24s are based on the accumulated radiation dose within the encounter time of the passerby. Since it was determined based on the above, it is possible to ensure the necessary thickness for each part of the radiation shielding wall without waste.

第5の手段に係る発明によれば、放射線遮蔽壁24の上端部から上内方へ傾斜する補助遮蔽板26を付設したから、少ない放射線遮蔽材料でより効果的に放射線を遮蔽できる。   According to the fifth aspect of the invention, since the auxiliary shielding plate 26 inclined upward and inward from the upper end of the radiation shielding wall 24 is attached, radiation can be shielded more effectively with a small amount of radiation shielding material.

図1から図5は、本発明の実施形態に係る人体移送車1を示している。   1 to 5 show a human transport vehicle 1 according to an embodiment of the present invention.

この人体移送車は、台車2と、放射線遮蔽用包囲体22と、操作部材40F、40Bとで構成されている。   This human body transfer vehicle includes a carriage 2, a radiation shielding enclosure 22, and operation members 40F and 40B.

台車2は、上方から見て矩形の基礎フレーム4の前後に前輪6及び後輪8を付設するとともに、基礎フレーム4の後部に後輪駆動用の駆動部10を載置させ、更にこの駆動部の上方を覆うように基礎フレーム4の後部側に椅子形の台座12を取り付けている。又、基礎フレーム4の前部上面には足踏み用の基板14を張設している。更に図示例では、基礎フレーム前部から左右一対の前方張出板16,16を、又、基礎フレーム後部から1枚の後方張出板18をそれぞれ突設して、各前方張出板の裏面に前輪6であるキャスターを付設するとともに、上記後方張出板18の左右両部可能に左右一対の駆動輪を後輪8として支持させている。   The carriage 2 has front wheels 6 and rear wheels 8 attached to the front and rear of a rectangular base frame 4 as viewed from above, and a drive unit 10 for driving rear wheels is mounted on the rear part of the base frame 4. A chair-shaped pedestal 12 is attached to the rear side of the base frame 4 so as to cover the upper part of the base frame 4. Further, a stepping substrate 14 is stretched on the upper surface of the front portion of the base frame 4. Further, in the illustrated example, a pair of left and right front projecting plates 16 and 16 are projected from the front portion of the base frame, and one rear projecting plate 18 is projected from the rear portion of the base frame, so that the back surface of each front projecting plate is provided. A caster, which is the front wheel 6, is attached to the rear projecting plate 18, and a pair of left and right drive wheels are supported as the rear wheel 8 so that the left and right parts of the rear projecting plate 18 can be provided.

包囲体22は、図3に示す如く放射線遮蔽壁24と補助遮蔽板26とで、台座12に着座した受診者Pの上方及び下方を除く周囲全体を覆うように構成している。この包囲体は鉛で形成されている。上記放射線遮蔽壁24は、基礎フレーム4の上面から垂直に起立する四角筒形に形成しており、その放射線遮蔽壁の後壁部分24bは、受診者Pの背もたれとして利用さるように台座12の後端部に連続させて形成している。又、放射線遮蔽壁24の上端部には補助遮蔽板26を付設している。この補助遮蔽板26は、放射線遮蔽壁の前後壁部分24f,24bの上端から前後方向上内方へそれぞれ突出した前側及び後側の補助遮蔽板26f、26bと、上記放射線遮蔽壁の左右側壁部分24s,24sの上端から左右方向上内方へそれぞれ突出した側方補助遮蔽板26s、26sとで、各コーナー部で隙間を生じないように形成している。又、この包囲体22の側方一部をヒンジ28を中心として包囲体他部に対して開閉自在な扉30に形成している。32は扉30に付設した把手である。又、補助遮蔽板26は、垂直上方に対して30〜60度程度の角度で突出させることができる。   As shown in FIG. 3, the enclosure 22 is configured to cover the entire periphery except for the upper side and the lower side of the examinee P seated on the pedestal 12 by the radiation shielding wall 24 and the auxiliary shielding plate 26. This enclosure is made of lead. The radiation shielding wall 24 is formed in a square cylinder shape that stands vertically from the upper surface of the base frame 4, and the rear wall portion 24 b of the radiation shielding wall is used as a backrest of the examinee P so as to be used as a backrest. It is formed continuously at the rear end. Further, an auxiliary shielding plate 26 is attached to the upper end portion of the radiation shielding wall 24. The auxiliary shielding plate 26 includes front and rear auxiliary shielding plates 26f and 26b protruding from the upper ends of the front and rear wall portions 24f and 24b of the radiation shielding wall in the front and rear direction, and left and right side wall portions of the radiation shielding wall. The side auxiliary shielding plates 26s and 26s that protrude from the upper ends of 24s and 24s inward in the left-right direction are formed so as not to cause a gap at each corner. A part of the side of the enclosure 22 is formed as a door 30 that can be opened and closed with respect to the other parts of the enclosure around the hinge 28. Reference numeral 32 denotes a handle attached to the door 30. Further, the auxiliary shielding plate 26 can be projected at an angle of about 30 to 60 degrees with respect to the vertical upper side.

放射線遮蔽壁24の前後方壁部分24f,24bと前側の補助遮蔽板26との厚さは、前後のハンドル部48,46の位置との関係により、又、放射線遮蔽壁の側方壁部分24sの厚さは通行人などとの距離によりそれぞれ移送時間乃至通過時間中の積算放射線量が規定値に達しないように定めるものとする。具体的な厚さの求め方は、実施例で述べる。   The thicknesses of the front and rear wall portions 24f and 24b of the radiation shielding wall 24 and the front auxiliary shielding plate 26 depend on the positions of the front and rear handle portions 48 and 46, and the side wall portion 24s of the radiation shielding wall. The thickness is determined so that the accumulated radiation dose during the transfer time or passage time does not reach the specified value depending on the distance from the passerby. A specific method of obtaining the thickness will be described in the examples.

操作部材40F、40Bは、台車2の前後両側にそれぞれ着脱自在に付設している。後側の操作部材40Bは、図1に示す如く、上記後方張出板24の上面左右両部からそれぞれ起立してから後方へ屈曲する逆L字形の操作アーム42,42を有しており、これら左右一対の操作アームの後端部の間に水平棒状のハンドル部46に形成している。同様に、前側の操作部40Fは、上記前方張出板16,16から起立してから前方へ屈曲する逆L字形の操作アーム44,44を有しており、これら左右一対の操作アームの前端部の間に水平棒状のハンドル部46に形成している。これら両ハンドル部46,48は、それぞれ人体移送車を操作し易い高さ、例えば介添人Nの腰程度の高さに設定すれば良い。上記操作アーム42, 44は台車2に対して着脱自在に形成すると良い。尚、これら操作アーム42,44又はハンドル部46,48の適所には、既述駆動部を操作するための操作ボタン(図示せず)を付設すると良い。尚、図示例と異なり、前後の操作部材40F、40Bは前後対称に(即ち放射線遮蔽壁からハンドル部までの距離もほぼ同じに)形成しても良く、そうすれば、同じ形状の操作部材を台車の前後何れにも使用できる。   The operation members 40F and 40B are detachably attached to the front and rear sides of the carriage 2, respectively. As shown in FIG. 1, the rear operation member 40B has inverted L-shaped operation arms 42 and 42 that are erected from both the left and right upper surfaces of the rear projecting plate 24 and then bent rearward. A horizontal bar-like handle portion 46 is formed between the rear end portions of the pair of left and right operation arms. Similarly, the front operation portion 40F has inverted L-shaped operation arms 44, 44 that stand up from the front projecting plates 16, 16 and then bend forward, and the front ends of the pair of left and right operation arms. A horizontal bar-shaped handle portion 46 is formed between the portions. Both the handle portions 46 and 48 may be set to a height at which the human body transportation vehicle can be easily operated, for example, the height of the waist of the attendant N. The operation arms 42 and 44 are preferably formed so as to be detachable from the carriage 2. It should be noted that an operation button (not shown) for operating the above-described drive unit is preferably attached to an appropriate position of the operation arms 42 and 44 or the handle portions 46 and 48. Unlike the illustrated example, the front and rear operation members 40F and 40B may be formed symmetrically in the front-rear direction (that is, the distance from the radiation shielding wall to the handle portion is substantially the same). Can be used both before and after the carriage.

上記構成において、PET診断を行うときには、まず図5に記載の如く病院60内の放射線管理区域62内で放射線薬剤を受診者Pに注射し、所要時間経過後にこの放射線管理区域に載り入れた人体移送車1内に受診者Pを搭乗させる。この人体移送車1は、その前後に付き添う介添人Nの誘導により、廊下64を通って玄関から外に出る。そして玄関に駐車していたPET診断装置搭載車66内へ、リフト68などを用いて人体移送車1ごと受診者Pを運び入れれば良い。これらの過程においてもっとも受診者Pの身体から放出される放射能を被爆し易いのは介添人Nであるが、その移送時間を考慮して放射線遮蔽壁の前後方壁部分の厚さが決定されているので、不必要に長時間ハンドル部よりも人体移送車側へ近づかない限り規定量以上の放射線を被爆することはない。又、廊下で遭遇する通行人、例えばすれ違う病人Bや、受付その他の業務を行う施設関係者Bに対しても、その距離と通行時間とを考慮して放射線遮蔽壁の側方壁部分の厚さを決定しているので、不意の被爆を防止することができる。 In the above configuration, when performing a PET diagnosis, first, a radiopharmaceutical is injected into the examinee P in the radiation control area 62 in the hospital 60 as shown in FIG. 5, and the human body placed in this radiation management area after the required time has elapsed. The examinee P is boarded in the transfer vehicle 1. This human transport vehicle 1 goes out of the entrance through the corridor 64 under the guidance of the attendant N who attends the front and rear. Then, it is only necessary to bring the examinee P together with the human transport vehicle 1 into the PET diagnostic device-equipped vehicle 66 parked at the entrance using a lift 68 or the like. In these processes, the person N is most likely to be exposed to the radiation released from the body of the examinee P. The thickness of the front and rear wall portions of the radiation shielding wall is determined in consideration of the transfer time. As a result, radiation exceeding the specified amount will not be exposed unless it is unnecessarily close to the human transporter side of the handle portion for a long time. In addition, a passerby encountered in the hallway, and sick B 1 pass each other, for example, accepted even for facility personnel B 2 to carry out other business, the side wall portion of the radiation shielding wall taking into account the passage time and the distance Since the thickness of the material is determined, unexpected exposure can be prevented.

図6及び図7は、本発明の補助遮蔽板26の変形例であり、各補助遮蔽板を図7に示す如く人体移送車1の内方へ湾曲して張出しさせることで、受診者Pの身体から放出された放射線が一回又は複数回反射して放射線遮蔽壁24内へ戻り、外部へ逃げないように設けたものである。   6 and 7 show modifications of the auxiliary shielding plate 26 according to the present invention. Each auxiliary shielding plate is curved inwardly of the human body transportation vehicle 1 as shown in FIG. It is provided so that the radiation emitted from the body is reflected once or a plurality of times, returns to the radiation shielding wall 24, and does not escape to the outside.

図1乃至図5の実施形態の如く補助遮蔽板を傾斜平板とすると、後述の実施例で述べる如く受診者の身体からの放射線が後側の補助遮蔽板で斜めやや上前方へ反射して前側の介添人の頭部に当る可能性がある。そこで本実施形態では、図示の様に補助遮蔽板を、少なくとも先端部内面が水平となった円弧板としたのであり、この形状であれば図7に示す如く受診者から補助遮蔽板の先端e2寄り部分内面に当った放射線はそのまま下方へ、更に補助遮蔽板の基端e1寄り部分内面に当った放射線は更に先端e2寄り部分内面で反射した後に下方へ反射して、それぞれ包囲体22内へ戻されるので外部に反射光が洩れ難く、特に、前方の介添人の頭部を直射し易い、浅い仰角での後側補助遮蔽板26bからの放射線の射出を有効に阻止することができる。 When the auxiliary shielding plate is an inclined flat plate as in the embodiment of FIGS. 1 to 5, the radiation from the examinee's body is reflected obliquely upward and forward by the rear auxiliary shielding plate as described in the examples below. There is a possibility of hitting the head of a caregiver. Therefore, in the present embodiment, as shown in the figure, the auxiliary shielding plate is an arc plate with at least the inner surface of the distal end portion being horizontal. With this shape, the tip e of the auxiliary shielding plate is received from the examinee as shown in FIG. 2 The radiation hitting the inner surface of the portion closer to the lower part is further lowered, and the radiation hitting the inner surface of the auxiliary shielding plate closer to the proximal end e 1 is further reflected from the inner surface of the portion closer to the distal end e 2 and then reflected downward. Since the reflected light is not easily leaked to the outside because it is returned to the inside, it is possible to effectively prevent the radiation of radiation from the rear auxiliary shielding plate 26b at a shallow elevation angle, which is particularly easy to directly irradiate the head of the front attendant. it can.

特に好適なのは図7に示す如く基端e1付近内面で垂直でe2付近内面で水平な四半円板であり、こうすると、基端e1での入射角θが45度以下でない限り、補助遮蔽板26内面の基端寄り部分に下内方から入射した放射線は、図示の如く先端寄り部分で再反射して下方へ向かうので、より確実に外部への散乱を防止することができる。 Particularly preferred is a quadrant that is perpendicular to the inner surface near the base end e 1 and horizontal at the inner surface near e 2 , as shown in FIG. 7, and in this way, as long as the incident angle θ at the base end e 1 is not less than 45 degrees, the auxiliary The radiation incident on the inner surface of the shielding plate 26 near the base end from the lower inner side is re-reflected at the front end portion as shown in the figure and travels downward, so that scattering to the outside can be prevented more reliably.

本手段では、後方補助遮蔽板26bを湾曲板にすることが特に重要であるが、それ以外の前方補助遮蔽板26b及び側方補助遮蔽板26sも同様に構成することが望ましい。   In this means, it is particularly important that the rear auxiliary shielding plate 26b is a curved plate, but the other front auxiliary shielding plates 26b and side auxiliary shielding plates 26s are preferably configured similarly.

上記構成において、放射線遮蔽壁24の厚さは人体移送車の各部の寸法との関係を配慮して定める。まず、台車2及び放射線遮蔽壁24の寸法は、通常の体格の受診者Pが圧迫感を感じない範囲でできるだけコンパクトに形成することが望ましい。このために好適な寸法の一例は、例えば台車2及び放射線遮蔽壁24の左右巾が700mm程度、台車2及び放射線遮蔽壁24の前後巾が1000mm程度である。次に上記前後のハンドル部48,46は、台座に着座した受診者Pの胴部上半部分後面及び前面からそれぞれ1000mm程度離すと良い。そうすると仮に受診者Pの胸板の厚さが300mmあったとしても人体移送車の前端から後端までの距離は2300mm程度となり、病院の廊下などを通行するのに差し支えない範囲の大きさとなる。   In the above configuration, the thickness of the radiation shielding wall 24 is determined in consideration of the relationship with the dimensions of each part of the human transport vehicle. First, it is desirable that the dimensions of the carriage 2 and the radiation shielding wall 24 be made as compact as possible within a range in which the examinee P having a normal physique does not feel pressure. For this purpose, for example, the width of the carriage 2 and the radiation shielding wall 24 is about 700 mm and the width of the carriage 2 and the radiation shielding wall 24 is about 1000 mm. Next, the front and rear handle portions 48 and 46 are preferably separated by about 1000 mm from the rear and front surfaces of the upper half of the trunk of the examinee P sitting on the pedestal. Then, even if the thickness of the chest of the examinee P is 300 mm, the distance from the front end to the rear end of the human body transportation vehicle is about 2300 mm, which is a size that can be safely passed through a hospital corridor or the like.

こうして前後のハンドル部48,46を操作する介添人Nと受診者Pの胴部前後両面との間の距離L1、2(≒1000mm)から、介添人Nの被爆線量を一定以下とするように放射線遮蔽壁24の前後壁部分24f、24bの厚さを実験的に定める。又、本願の人体移動車の側面に通行人が最も近づく距離を300mm程度と想定して、この通行人と受診者Pの胴部左右側面との距離L3から放射線遮蔽壁の左右側壁部分24sの厚さを実験的に定める。受診者Pの胴部の左右巾を400mm程度と想定したとき、上記距離L3は550mm程度となる。台座の高さは、受診者Pの心臓が前方及び後方のハンドル部48,46とほぼ同じ高さとなるように設定しており、その高さは床面から1000mmである。
(1)実験内容
上記の実施例で述べた人体移送車の放射線遮蔽壁の厚さと放射線遮蔽能力とを調べるために被験者A、B、C、Dを放射線遮蔽壁の各部の厚さdを変えた人体移送車に搭乗させて、前方測定点f、後方測定点b、側方測定点s、及び斜め前上方測定点u、u’で放射線量を経時的に測定した。ここで図3に示す如く後方測定点bは、後側ハンドル部46の設置箇所であって台車の左右巾方向中間位置(図2に示す如く受診者Pの心臓Hと重なる位置)に、前方測定点fは、前側ハンドル部48の設置箇所であって台車の左右巾方向中間位置にそれぞれ設置するものとする。尚、これらの位置に放射線測定器を設置する際には予め操作アーム及び支柱を取り外しておけば良い。側方測定点sは図2に示す如く受診者Pの胴部左右側面から距離L3(=550mm)をとって受診者Pの心臓Hとほぼ同じ位置に設置した。更に斜め前上方測定点u、u’は,図3に示す如くs側方から見て受診者Pの心臓Hから放射線遮蔽壁の前壁部分24f上端に沿って延びる仮想線Lの近くであってこの前方壁部分24fと前側の介添人Nとの間に、図2の如く左右中間位置からそれぞれ150mm程度左右側方にずらして設定した。そして各被験者に対して、投与量10mCi(370MBq)の放射性薬剤F18−FDG を投与し、その投与時から5分間毎の各時間帯の積算放射線量を測定した。
(2)実験結果
次の表1は前方測定点fでの各被験者A、B、C、D毎の積算放射線量測定値A,B,C,Dを示している。被験者Aは放射線遮蔽壁を取り外した台車に、被験者Cは、放射線遮蔽壁の前壁部分の厚さが3mmの台車に、被験者B及び被験者Dは、放射線遮蔽壁の前壁部分の厚さが5mmの台車にそれぞれ搭乗した。計測値は、被験者B及び被験者Dでの測定値の平均値である。縦軸に各時間帯の積算放射線量の測定値を、又横軸に時間をとって、それらの測定値を各遮蔽壁の厚さごとにグラフ化すると図8のようになる。同図中の破線は、遮蔽厚さ毎の積算線量についての後述の線形近似線である。
Thus, from the distances L 1 and L 2 (≈1000 mm) between the attendant N who operates the front and rear handle parts 48 and 46 and both sides of the torso of the examinee P, the exposure dose of the attendant N is kept below a certain level. Thus, the thicknesses of the front and rear wall portions 24f and 24b of the radiation shielding wall 24 are determined experimentally. Further, the distance that passerby closest to the side surface of the body transport vehicle of the present application assumes about 300 mm, the left and right sidewall portions of the radiation shield wall from a distance L 3 between the barrel portion left and right side surfaces of the examinee P and the passers 24s The thickness of is experimentally determined. Assuming that the left and right width of the body of the examinee P is about 400 mm, the distance L 3 is about 550 mm. The height of the pedestal is set so that the heart of the examinee P is almost the same height as the front and rear handle portions 48 and 46, and the height is 1000 mm from the floor surface.
(1) Experiment contents In order to examine the radiation shielding wall thickness and radiation shielding ability of the human body transportation vehicle described in the above embodiment, subjects A, B, C, and D were changed in thickness d of each part of the radiation shielding wall. The human body transportation vehicle was mounted, and the radiation dose was measured over time at the front measurement point f, the rear measurement point b, the side measurement point s, and the diagonally front upper measurement points u and u ′. Here, as shown in FIG. 3, the rear measurement point b is an installation location of the rear handle 46 and is located at an intermediate position in the lateral width direction of the carriage (position overlapping the heart H of the examinee P as shown in FIG. 2). The measurement point f is an installation location of the front handle portion 48 and is installed at an intermediate position in the left-right width direction of the carriage. In addition, when installing a radiation measuring instrument in these positions, the operation arm and the support | pillar should just be removed beforehand. As shown in FIG. 2, the side measurement point s is set at a position approximately the same as the heart H of the examinee P, taking a distance L 3 (= 550 mm) from the left and right side surfaces of the examinee P. Further, the diagonally upper front measurement points u and u ′ are near an imaginary line L extending from the heart H of the examinee P along the upper end of the front wall portion 24f of the radiation shielding wall as seen from the side s as shown in FIG. Between the front wall portion 24f and the front side attendant N, as shown in FIG. Each subject was administered a radiopharmaceutical F 18 -FDG with a dose of 10 mCi (370 MBq), and the cumulative radiation dose was measured every 5 minutes from the time of administration.
(2) Experimental results Table 1 below shows the accumulated radiation dose measurement values A f , B f , C f , and D f for each subject A, B, C, and D at the front measurement point f. Subject A is a cart with the radiation shielding wall removed, subject C is a cart with a thickness of the front wall portion of the radiation shielding wall of 3 mm, and subjects B and D have a thickness of the front wall portion of the radiation shielding wall. Each boarded a 5-mm bogie. The measured value is an average value of the measured values of the subject B and the subject D. FIG. 8 is a graph in which the measured value of the integrated radiation dose in each time zone is plotted on the vertical axis and the time is plotted on the horizontal axis, and these measured values are graphed for each thickness of each shielding wall. The broken line in the figure is a linear approximation line described later for the accumulated dose for each shielding thickness.

Figure 0004584012
Figure 0004584012

次の表2は後方測定点bでの各被験者B、C、D毎の積算放射線量測定値B,C,Dを示している。被験者Bは、放射線遮蔽壁の後壁部分24bの厚さが10mmの台車に、被験者C及び被験者Dは、放射線遮蔽壁の前壁部分の厚さが8mmの台車にそれぞれ搭乗した。計測値は、被験者C及び被験者Dでの測定値の平均値である。縦軸に各時間帯の積算放射線量の測定値を、又横軸に時間をとって、それらの測定値を各遮蔽壁の厚さごとにグラフ化すると図9のようになる。同図中の破線は、遮蔽厚さ毎の積算線量についての後述の線形近似線である。 The following Table 2 shows the accumulated radiation dose measured values B b , C b , D b for each subject B, C, D at the rear measurement point b. Subject B boarded a cart with a thickness of the rear wall portion 24b of the radiation shielding wall of 10 mm, and subject C and subject D boarded a cart with a thickness of the front wall portion of the radiation shielding wall of 8 mm. The measurement value is an average value of the measurement values of the subject C and the subject D. FIG. 9 is a graph in which the measured value of the integrated radiation dose in each time zone is plotted on the vertical axis and the time is plotted on the horizontal axis, and these measured values are graphed for each thickness of each shielding wall. The broken line in the figure is a linear approximation line to be described later for the accumulated dose for each shielding thickness.

Figure 0004584012
Figure 0004584012

次の表3は斜め前上方測定点u,u’での各被験者B、C、D毎の積算放射線量測定値B,B’,C,C’,D,D’を示している。測定点uでの測定においては、被験者Bは、前方側の補助遮蔽板の厚さが5mmの台車に、被験者C及び被験者Dは、前方側の補助遮蔽板の厚さが8mmの台車にそれぞれ搭乗しており、又、測定点u’での測定においては、被験者B、被験者C及び被験者Dは、前方側の補助遮蔽板を設けていない台車に搭載している。計測値は、同じ遮蔽厚での測定値の平均値である。又、縦軸に各時間帯の積算放射線量の測定値を、又横軸に時間をとって、それらの測定値を各遮蔽壁の厚さごとにグラフ化すると図10のようになる。同図中の破線は、遮蔽厚さ毎の積算線量についての後述の線形近似線である。 The following Table 3 shows the accumulated radiation dose measurement values B u , B u ′, C u , C u ′, D u , D u ′ for each subject B, C, D at the diagonally upper front measurement point u, u ′. Is shown. In the measurement at the measurement point u, the subject B is a cart with a front auxiliary shield plate thickness of 5 mm, and the subject C and the subject D are a cart with a front auxiliary shield plate thickness of 8 mm. In the measurement at the measurement point u ′, the subject B, the subject C, and the subject D are mounted on a carriage that is not provided with a front auxiliary shielding plate. The measured value is an average value of the measured values at the same shielding thickness. Further, FIG. 10 is a graph in which the measured value of the integrated radiation dose in each time zone is plotted on the vertical axis and the time is plotted on the horizontal axis, and the measured values are graphed for each shielding wall thickness. The broken line in the figure is a linear approximation line to be described later for the accumulated dose for each shielding thickness.

Figure 0004584012
Figure 0004584012

次の表4は側方測定点sでの各被験者B、C、D毎の積算放射線量測定値B,C,Dを示している。被験者Bは、放射線遮蔽壁の前壁部分24fの厚さが5mmの台車に、被験者C及び被験者Dは、放射線遮蔽壁の前壁部分の厚さが8mmの台車にそれぞれ搭乗した。計測値は、被験者C及び被験者Dでの測定値の平均値である。又、縦軸に各時間帯の積算放射線量の測定値を、又横軸に時間をとって、それらの測定値を各遮蔽壁の厚さごとにグラフ化すると図11のようになる。同図中の破線は、遮蔽厚さ毎の積算線量についての後述の線形近似線である。 Table 4 below shows the accumulated radiation dose measurement values B s , C s , and D s for each subject B, C, and D at the side measurement point s. Test subject B boarded a cart with a thickness of the front wall portion 24f of the radiation shielding wall of 5 mm, and subject C and test subject D boarded a cart with a thickness of the front wall portion of the radiation shield wall of 8 mm. The measurement value is an average value of the measurement values of the subject C and the subject D. Further, FIG. 11 is a graph in which the measured values of the integrated radiation dose in each time zone are plotted on the vertical axis and the time is plotted on the horizontal axis, and the measured values are graphed for each thickness of each shielding wall. The broken line in the figure is a linear approximation line to be described later for the accumulated dose for each shielding thickness.

Figure 0004584012
Figure 0004584012

(3)実験結果の解析
まず、人体移送車の前後に連れ添う介添人の被曝線量から包囲体22の前後部分の厚さを決定するため、前方、後方及び斜め前上方の各測定点での放射線量を検討する。
(3) Analysis of the experimental results First, in order to determine the thickness of the front and rear parts of the enclosure 22 from the exposure dose of the attendant accompanying the front and rear of the human transport vehicle, at each of the measurement points at the front, rear, and diagonally upper front Consider radiation dose.

前方測定点fにおいて図8に示す各遮蔽厚さd(=0mm、3mm、5mm)毎に得られた測定値を線形近似すると、破線で表す如くy0=−0.0159t+3.2682,y3=−0.01t+1.9,y5=−0.0101t+1.3826という式が得られる。但し、y0,y3,y5はそれぞれd=0mm,3mm,5mmでの積算線量(μsV)、tは時間(分)である。 When the measured values obtained for each shielding thickness d (= 0 mm, 3 mm, 5 mm) shown in FIG. 8 at the front measurement point f are linearly approximated, y 0 = −0.0159t + 3.2682, y 3 = The following equation is obtained: −0.01t + 1.9, y 5 = −0.0101t + 1.3826. However, y 0 , y 3 , and y 5 are integrated doses (μsV) at d = 0 mm, 3 mm, and 5 mm, respectively, and t is time (minutes).

次にこれらの測定値からd=4mm,d=6mmでの放射線量の予想値y4,y6を計算する。そのために各経過時間ごとの厚さdに関する放射線量の関数Y=f(t、d)を考えて、Y(t、d)=md+bと表す。ここで傾きmと定数bとはともに経過時間tに依存する変数である。y3とy5との間で傾きmを求めると、m=(y5−y3)/2であり、t=5(分)のときには、m=(1.332−1.850)/2=−0.259(μsV/mm)となる。又、定数はb=Y−mdであり、t=5分のときにb=y3−m×3=1.850−(−0.259)×3=2.627(μsV)となる。これより、Y(t、d)=Y(5、d)=−0.259×d+2.627を得る。これにd=4及びd=6を代入すると、Y(t、d)=Y(5、4)=1.591(μsV)及びY(t、d)=Y(5、6)=1.073(μsV)を得る。同じ作業をt=10,15,…60について行うと、図12に示す予想値が得られる。 Next, predicted values y 4 and y 6 of radiation dose at d = 4 mm and d = 6 mm are calculated from these measured values. Therefore, considering the radiation dose function Y = f (t, d) with respect to the thickness d for each elapsed time, Y (t, d) = md + b. Here, both the slope m and the constant b are variables that depend on the elapsed time t. When the slope m is obtained between y 3 and y 5 , m = (y 5 −y 3 ) / 2, and when t = 5 (minutes), m = (1.332−1.850) /2=−0.259 (ΜsV / mm). The constant is b = Y−md, and when t = 5 minutes, b = y 3 −m × 3 = 1.850 − (− 0.259) × 3 = 2.627 (μsV). As a result, Y (t, d) = Y (5, d) = − 0.259 × d + 2.627 is obtained. Substituting d = 4 and d = 6 into this, Y (t, d) = Y (5,4) = 1.593 (μsV) and Y (t, d) = Y (5,6) = 1.703 (μsV) Get. When the same operation is performed for t = 10, 15,... 60, the expected value shown in FIG.

後方測定点において図9に示す各遮蔽厚さd(=8mm、10mm)毎に得られた測定値を線形近似すると、破線で表す如くy8=−0.003t+0.5258,y10=−0.001t+0.3318という式が得られる。但し、y8,y10はそれぞれd=8mm,10mmでの積算線量(μsV)、tは時間(分)である。 When the measured values obtained for each shielding thickness d (= 8 mm, 10 mm) shown in FIG. 9 at the rear measurement point are linearly approximated, y 8 = −0.003 t + 0.5258, y 10 = −0.001 t + 0 as shown by the broken line. .3318 is obtained. However, y 8 and y 10 are integrated doses (μsV) at d = 8 mm and 10 mm, respectively, and t is time (minutes).

次にこれらの測定値からd=3〜7mmでの放射線量の予想値y3,y4,y5,y6,y7を計算する。前方測定点で述べたのと同様の手順により図13に示す予想値が得られる。 Then calculate the expected value y 3, y 4, y 5 , y 6, y 7 radiation dose at d = 3 to 7 mm from these measurements. The expected value shown in FIG. 13 is obtained by the same procedure as described for the front measurement point.

斜め前上方測定点u,u’において図10に示す各遮蔽厚さd(=0mm,5mm,8mm)毎に得られた測定値を線形近似すると、破線で表す如くy0=−0.005t+1,y5=−0.0045t+0.7894,y8=−0.0032t+0.6545という式が得られる。但し、y0,y5,y8はそれぞれd=0mm,5mm,8mmでの積算線量(μsV)、tは時間(分)である。 When linearly approximating the measured values obtained for each shielding thickness d (= 0 mm, 5 mm, 8 mm) shown in FIG. 10 at the diagonally upper measurement points u, u ′, y 0 = −0.005 t + 1, The following equations are obtained: y 5 = −0.0045t + 0.7894, y 8 = −0.0032t + 0.6545. However, y 0 , y 5 , and y 8 are integrated doses (μsV) at d = 0 mm, 5 mm, and 8 mm, respectively, and t is time (minutes).

次にこれらの測定値からd=3mm,4mmでの放射線量の予想値y3,y4を計算する。前方測定点で述べたのと同様の手順により図14に示す予想値が得られる。 Then calculate the expected value y 3, y 4 radiation dose at d = 3 mm, 4 mm from these measurements. The expected value shown in FIG. 14 is obtained by the same procedure as described for the front measurement point.

放射線薬剤を注入してから40分間を安静期として、安静期経過後に人体移送車による移送を開始するものとし、この移送に20分間かかるものとして、受診者から介添人までの水平距離が1000mmという条件での前方、後方、及び斜め上方の各測定点での介添人の20分間の積算被爆放射線量を次の表5に表す。人体に対する被爆許容量を4μsVとして、各方向における積算線量がこの許容量を下回る最小の遮蔽厚さdを放射線遮蔽壁のうち当該方向の壁部分の厚さをすることができる。   40 minutes after injecting the radiopharmaceutical, the resting period is 40 minutes, and after the resting period, the transportation by the human body transportation vehicle is started. As this transportation takes 20 minutes, the horizontal distance from the examinee to the caregiver is 1000 mm. Table 5 below shows the cumulative radiation dose for the attendant for 20 minutes at each of the front, rear, and diagonally upper measurement points. When the allowable exposure amount to the human body is 4 μsV, the minimum shielding thickness d in which the integrated dose in each direction is less than the allowable amount can be set to the thickness of the wall portion in the direction of the radiation shielding wall.

前方測定点fに関しては遮蔽厚さ4mmでの積算線量は4.455μSvであり、遮蔽厚さ5mmでの積算線量は3.409μSvであるから、前方壁部分24fの厚さは5mmとすれば良い。尚、5mmでの積算線量は実際に測定した数値であり、この数値は信頼性が高いものと考えられる。     Regarding the front measurement point f, the accumulated dose at the shielding thickness of 4 mm is 4.455 μSv, and the accumulated dose at the shielding thickness of 5 mm is 3.409 μSv. Therefore, the thickness of the front wall portion 24 f may be 5 mm. The accumulated dose at 5 mm is a value actually measured, and this value is considered to be highly reliable.

後方測定点bに関しては遮蔽厚さ4mmでの積算線量は3.361μSvであり、遮蔽厚さ3mmでの積算線量は3.707μSvであるから、計算上は遮蔽厚さ3mm程度でも安全基準である4μSvを満たすことになる。しかしながら、遮蔽厚さd=3〜7mmでの積算線量は遮蔽厚さd=8mm、10mmでの実測値から推測した値であり、その推定誤差はd=8mmから離れるほど大きいと考えられること、及び、受診者の身体からの距離が同じである前方測定点の測定から所要の壁厚をd=5mmと割り出したことを総合的に勘案すると、後方壁部分24bの厚さも5mm程度とすることが望ましい。又、前後両壁部分の厚さが同じである方が人体移送車のバランスもとり易い。他方、実測値に裏付けられた後方壁部分の必要厚さとして、8mmを好適な壁厚と考えることもできる。   For the rear measurement point b, the accumulated dose at a shielding thickness of 4 mm is 3.361 μSv, and the accumulated dose at a shielding thickness of 3 mm is 3.707 μSv. Will meet. However, the cumulative dose at the shielding thickness d = 3 to 7 mm is a value estimated from the measured values at the shielding thickness d = 8 mm and 10 mm, and the estimation error is considered to increase as the distance from d = 8 mm increases. And, taking into account that the required wall thickness is determined as d = 5mm from the measurement of the front measurement point where the distance from the examinee's body is the same, the thickness of the rear wall portion 24b should also be about 5mm. Is desirable. In addition, it is easier to balance the human transport vehicle if the thicknesses of the front and rear wall portions are the same. On the other hand, 8 mm can be considered as a suitable wall thickness as the required thickness of the rear wall portion supported by the actually measured values.

斜め前上方測定点uに関しては、遮蔽厚さ4mmでの積算線量は3.130μSvであり、遮蔽厚さ3mmでの積算線量は3.292μSvであるから、遮蔽厚さ3mmで安全基準を満たしている。そしてこれらの積算線量は遮蔽厚さd=0mm、5mm、8mmでの実測値に基づく推定値であるが、遮蔽厚さd=5〜8mmの間の放射線量Yの勾配mが‐0.044であるのに対してd=0〜5mmの間のmが−0.042で大きな違いがないことから、推定値であってもかなり信頼できることがわかる。従って前方の補助遮蔽板の厚さは3mmとすれば良い。   Regarding the diagonally upper measurement point u, the accumulated dose at a shielding thickness of 4 mm is 3.130 μSv, and the accumulated dose at a shielding thickness of 3 mm is 3.292 μSv. Therefore, the shielding standard of 3 mm satisfies the safety standard. These accumulated doses are estimated values based on the measured values at the shielding thickness d = 0 mm, 5 mm, and 8 mm, and the gradient m of the radiation dose Y between the shielding thickness d = 5 to 8 mm is −0.044. On the other hand, since m between d = 0 to 5 mm is −0.042 and there is no significant difference, it can be seen that even the estimated value is quite reliable. Therefore, the thickness of the front auxiliary shielding plate may be 3 mm.

Figure 0004584012
Figure 0004584012

次に人体移送車に遭遇して被曝する者の被曝線量から放射線遮蔽壁の側方壁部分24sの厚さを決定する。こうした遭遇者は二つのグループに分けられる。一つは、人体移送車のすぐ近くを比較的短い時間すれ違う通行人であり、他の一つは、放射線作業従事者を除く施設関係者であって、人体移送車から比較的遠いところにいるが繰り返し被曝する可能性があるものである。人体移送車からの通行人の通過位置を想定して、本出願人は、既述の側方測定点fで放射線線量測定を行った。     Next, the thickness of the side wall portion 24s of the radiation shielding wall is determined from the exposure dose of the person who encounters and is exposed to the human body transportation vehicle. These encounters can be divided into two groups. One is a passerby who passes in the immediate vicinity of a human transport vehicle for a relatively short time, and the other is a person related to the facility except for a radiation worker and is relatively far from the human transport vehicle. May be repeatedly exposed. Assuming the passing position of a passerby from the human body transportation vehicle, the present applicant performed radiation dose measurement at the side measurement point f described above.

この側方測定点fにおいて図11に示す各遮蔽厚さd(=5mm、8mm)毎に得られた測定値を線形近似すると、破線で表す如くy5=−0.0145t+2.2455,y8=−0.005t+1.0864という式が得られる。但し、y5,y8はそれぞれd=5mm、8mmでの積算線量(μsV)、tは時間(分)である。次にこれらの測定値からd=3mm、4mm、6mm、7mmでの放射線量の予想値y3,y4,y6,y7を計算する。前方測定点で述べたのと同様の手順により図15に示す予想値が得られる。側方測定点は受診者Pの身体から550mmの距離の点であり、人体移送車とすれ違う通行人の位置を想定している。 When the measured values obtained for each shielding thickness d (= 5 mm, 8 mm) shown in FIG. 11 at this side measurement point f are linearly approximated, y 5 = −0.0145t + 2.2455, y 8 = The expression -0.005t + 1.0864 is obtained. However, y 5 and y 8 are integrated doses (μsV) at d = 5 mm and 8 mm, respectively, and t is time (minutes). Next, predicted values y 3 , y 4 , y 6 , and y 7 of radiation dose at d = 3 mm, 4 mm, 6 mm, and 7 mm are calculated from these measured values. The expected value shown in FIG. 15 is obtained by the same procedure as described in the front measurement point. The side measurement point is a point at a distance of 550 mm from the body of the examinee P, and assumes the position of a passerby who passes the human body transportation vehicle.

更に通行人よりも遠い場所にいる施設設備者の被曝線量を計算で求める。放射線遮蔽壁の側方壁部分から通行人までの距離をI、側方壁部分から施設関係者までの距離をLとし、各遮蔽厚での側方測定点における放射線測定量に(I/L)2を係数としてかけると施設関係者の被曝線量を計算することができる。I=395mm、L=450mmとして上記係数を上記放射線測定量にかけると、図16が得られる。 Furthermore, the exposure dose of the facility equipment person far away from the passerby is calculated. The distance from the side wall portion of the radiation shielding wall to the passerby is I, the distance from the side wall portion to the facility personnel is L, and the radiation measurement amount at the side measurement point at each shielding thickness is (I / L ) Multiply 2 as a coefficient to calculate the radiation dose for the personnel involved in the facility. When the above coefficient is applied to the radiation measurement amount with I = 395 mm and L = 450 mm, FIG. 16 is obtained.

通行人の遭遇時間を30秒、施設関係者の遭遇時間を2分として、上記図15及び図16から通行人と施設関係者との遭遇時間中の被曝放射線量を計算すると、次の表6のようになる。この表から安全基準(4μSv)を満たすように遮蔽厚を選択すると、3mm程度の厚さがあればあれば良いことが判る。     Assuming that the passer-by encounter time is 30 seconds and the facility-related person's encounter time is 2 minutes, the radiation dose during the encounter time between the passer-by and the facility-related person is calculated from the above-mentioned FIG. 15 and FIG. become that way. From this table, when the shielding thickness is selected so as to satisfy the safety standard (4 μSv), it is understood that a thickness of about 3 mm is sufficient.

Figure 0004584012
Figure 0004584012

本発明の第1の実施形態に係る人体移送車の側面図である。1 is a side view of a human body transport vehicle according to a first embodiment of the present invention. 図1の人体移送車の左右方向縦断面図である。It is a left-right direction longitudinal cross-sectional view of the human body transportation vehicle of FIG. 図1の人体移送車の前後方向縦断面図である。It is a longitudinal cross-sectional view of the human body transportation vehicle of FIG. 図1の人体移送車の横断面図である。It is a cross-sectional view of the human body transportation vehicle of FIG. 図1の人体移送車の使用例の説明図である。It is explanatory drawing of the usage example of the human body transport vehicle of FIG. 図1の人体移送車の要部変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the principal part modification of the human body transport vehicle of FIG. 図6の要部の拡大図である。It is an enlarged view of the principal part of FIG. 図1の人体移送車から洩れる放射線の前方測定点fでの測定線量を表す図である。It is a figure showing the measurement dose in the front measurement point f of the radiation which leaks from the human body transportation vehicle of FIG. 図1の人体移送車から洩れる放射線の後方測定点bでの測定線量を表す図である。It is a figure showing the measurement dose in the back measurement point b of the radiation which leaks from the human body transportation vehicle of FIG. 図1の人体移送車から洩れる放射線の斜め前上方測定点u,u‘での測定線量を表す図である。It is a figure showing the measurement dose in the diagonally front upper measurement point u and u 'of the radiation which leaks from the human body transportation vehicle of FIG. 図1の人体移送車から洩れる放射線の側方測定点sでの測定線量を表す図である。It is a figure showing the measurement dose in the side measurement point s of the radiation which leaks from the human body transportation vehicle of FIG. 図8の測定結果に基づき各遮蔽厚さに対応した前方測定点での放射線量の経時変化を表したグラフである。It is a graph showing the time-dependent change of the radiation dose in the front measurement point corresponding to each shielding thickness based on the measurement result of FIG. 図9の測定結果に基づき各遮蔽厚さに対応した後方測定点での放射線量の経時変化を表したグラフである。FIG. 10 is a graph showing a change with time in radiation dose at a rear measurement point corresponding to each shielding thickness based on the measurement result of FIG. 9. 図10の測定結果に基づき各遮蔽厚さに対応した斜め前上方測定点での放射線量の経時変化を表したグラフである。FIG. 11 is a graph showing a change in radiation dose with time at a diagonally upper front measurement point corresponding to each shielding thickness based on the measurement result of FIG. 図11の測定結果に基づき各遮蔽厚さに対応した側方測定点での放射線量の経時変化を表したグラフである。FIG. 12 is a graph showing changes in radiation dose with time at side measurement points corresponding to respective shielding thicknesses based on the measurement results of FIG. 図11の測定結果に基づき各遮蔽厚さに対応した側方測定点よりも更に遠方での放射線量(計算値)の経時変化を表したグラフである。12 is a graph showing a change with time of a radiation dose (calculated value) farther than a side measurement point corresponding to each shielding thickness based on the measurement result of FIG.

符号の説明Explanation of symbols

1…人体移送車 2…台車 4…基礎フレーム 6…前輪 8…後輪
10…駆動部 12…台座 14…基板 16…前方張出板 18…後方張出板
22…包囲体 24…放射線遮蔽壁 24f…前壁部分 24b…後壁部分
24s…側壁部分 26…補助遮蔽板 26f…前方側補助遮蔽板
26b…後方側補助遮蔽板 26s…側方補助遮蔽板 28…ヒンジ 30…扉 32…把手
40F、40B…操作部材 42,44…操作アーム 46,48…ハンドル
48…前側ハンドル部
60…病院 62…放射線管理区域 64…廊下 66…PET装置搭載車 68…リフト
f…前方測定点 s…側方測定点 b…後方測定点 u,u’…斜め上前方測定点
P…受診者 N…介添人 B1…通行人 B2…施設関係者

DESCRIPTION OF SYMBOLS 1 ... Human body transfer vehicle 2 ... Carriage 4 ... Base frame 6 ... Front wheel 8 ... Rear wheel
10 ... Drive unit 12 ... Base 14 ... Substrate 16 ... Front projecting plate 18 ... Back projecting plate
22 ... enclosure 24 ... radiation shielding wall 24f ... front wall part 24b ... rear wall part
24s ... side wall part 26 ... auxiliary shielding plate 26f ... front side auxiliary shielding plate
26b ... Back side auxiliary shielding plate 26s ... Side auxiliary shielding plate 28 ... Hinge 30 ... Door 32 ... Handle
40F, 40B ... Operation member 42, 44 ... Operation arm 46, 48 ... Handle
48 ... Front handle
60 ... Hospital 62 ... Radiation control area 64 ... Corridor 66 ... PET equipped car 68 ... Lift f ... Front measurement point s ... Side measurement point b ... Rear measurement point u, u '... Diagonal upper front measurement point P ... Patient N ... Intermediary B 1 ... Passer-by B 2 ... Facility personnel

Claims (5)

核医療用放射線源を体内へ注入した受診者()移送するための移送車であって、
台座(12)を有するとともに周囲に放射線遮蔽壁(24)を囲成した台車()を設け
この台車の後側から少なくとも台車の後方へ突出した操作アーム(42)の後部に、上記放射線遮蔽壁(24)から離して、操作アームの突出長より前後の巾の短い、介添人(N)が操作するためのハンドル部(46)を取り付けたことを特徴とする人体移送車。
A transport vehicle for transporting a patient ( P ) who has injected a nuclear medical radiation source into the body,
It provided the dolly (2) that囲成radiation shielding wall (24) around while have a base (12),
A caregiver (N) having a width at the back of the operation arm (42) protruding from the rear side of the dolly at least to the rear of the dolly at a distance from the radiation shielding wall (24) and shorter than the protruding length of the operation arm. A human body transporting vehicle equipped with a handle portion (46) for operating .
さらに台車(2)の前側に、上記放射線遮蔽壁(24)から離して介添人(N)が操作するためのハンドル部(48)を設け
上記台座(12)に載った受診者()の身体の一部から放射線遮蔽壁(24)の前乃至後方対応壁部分(24f、24b)を透して前方乃至後方のハンドル部(46,48)に至る放射線の線量が規定量以下となるように身体の一部からハンドル部(46,48)迄の距離に応じて上記対応壁部分(24f、24b)の厚さを定めたことを特徴とする、請求項1記載の人体移送車。
In addition, a handle (48) is provided on the front side of the carriage (2) to be operated by the attendant (N) away from the radiation shielding wall (24) .
The front or rear handle portion ( 46, 46 b ) passes through the front or rear corresponding wall portion ( 24 f, 24 b ) of the radiation shielding wall ( 24 ) from a part of the body of the examinee ( P ) placed on the pedestal ( 12 ) . the dose of radiation reaching the 48) that defines the thickness of the corresponding wall portions in accordance with the distance from the part of the body to be equal to or less than a specified amount until the handle portion (46,48) (24f, 24b) The human body transportation vehicle according to claim 1, wherein
上記放射線遮蔽壁(24)を箱形として、この放射線遮蔽壁(24)の後壁部分(24b)下部側に接近させて台車()の後半部に受診者(Pが着座可能な椅子形の台座(12)設けたことを特徴とする、請求項2記載の人体移送車。 As a box-shaped of the radiation shielding wall (24), the rear wall portion (24b) is brought closer to the lower side examinees in the second half portion of the carriage (2) (P capable seated chair form of the radiation shield wall (24) characterized in that a pedestal (12), according to claim 2 human transport carriage according. 上記身体の一部を受診者()の胴部として、この胴部から前方乃至後方のハンドル部(46,48)へ到達する放射線の線量を、介添人()がこの人体移送車での移送時間中に前方乃至後方のハンドル部(46,48)の位置で被爆し得る積算線量として、この積算線量から放射線遮蔽壁(24)の前乃至後方対応壁部分(24f,24b)の厚さを定め、更に上記移送時間よりも短く設定された遭遇時間内に台車()の傍らに近づいた遭遇者が上記放射線遮蔽壁(24)の側壁部分(24s)を透して被爆し得る線量が規定量以下となるように側壁部分(24s)の厚さを定めたことを特徴とする、請求項3記載の人体移送車。 Using the body part as the torso of the examinee ( P ) , the caregiver ( N ) uses this body transport vehicle to determine the radiation dose reaching the front or rear handle ( 46,48 ) from this torso. As the cumulative dose that can be exposed at the position of the front or rear handle ( 46,48 ) during the transfer time of this, the thickness of the front or rear corresponding wall portion ( 24f, 24b ) of the radiation shielding wall ( 24 ) is calculated from this cumulative dose. encountered who approached beside the truck (2) can be exposed to radiation it through sidewall portions (24s) of the radiation shielding wall (24) in the set, further set the encounter time shorter than the transport time of 4. The human transport vehicle according to claim 3, wherein the thickness of the side wall portion ( 24s ) is determined so that the dose is below a prescribed amount. 上記放射線遮蔽壁(24)のうち少なくとも前壁乃至後壁の上端部に、上内方へ傾斜する補助遮蔽板(26)を付設したことを特徴とする、請求項1乃至請求項4のいずれかに記載の人体移送車。 The auxiliary shielding plate ( 26 ) inclined upward and inward is attached to at least an upper end portion of the front wall or the rear wall of the radiation shielding wall ( 24 ). The human body transport vehicle described in Crab.
JP2005126212A 2005-04-25 2005-04-25 Human transport vehicle Expired - Fee Related JP4584012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126212A JP4584012B2 (en) 2005-04-25 2005-04-25 Human transport vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126212A JP4584012B2 (en) 2005-04-25 2005-04-25 Human transport vehicle

Publications (2)

Publication Number Publication Date
JP2006296917A JP2006296917A (en) 2006-11-02
JP4584012B2 true JP4584012B2 (en) 2010-11-17

Family

ID=37465724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126212A Expired - Fee Related JP4584012B2 (en) 2005-04-25 2005-04-25 Human transport vehicle

Country Status (1)

Country Link
JP (1) JP4584012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7054368B2 (en) * 2018-06-20 2022-04-13 住友重機械工業株式会社 Radioactive drug administration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135071U (en) * 1974-04-22 1975-11-07
JP2003194944A (en) * 2001-12-26 2003-07-09 Hitachi Ltd System and method for control of radiation
JP2004108996A (en) * 2002-09-19 2004-04-08 Hitachi Ltd Pet equipment
JP2004361288A (en) * 2003-06-05 2004-12-24 Itoki Co Ltd Chair provided with radiation shield function
JP2005021433A (en) * 2003-07-03 2005-01-27 Oyo Igaku Kenkyusho:Kk Wheelchair type isolator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50135071U (en) * 1974-04-22 1975-11-07
JP2003194944A (en) * 2001-12-26 2003-07-09 Hitachi Ltd System and method for control of radiation
JP2004108996A (en) * 2002-09-19 2004-04-08 Hitachi Ltd Pet equipment
JP2004361288A (en) * 2003-06-05 2004-12-24 Itoki Co Ltd Chair provided with radiation shield function
JP2005021433A (en) * 2003-07-03 2005-01-27 Oyo Igaku Kenkyusho:Kk Wheelchair type isolator

Also Published As

Publication number Publication date
JP2006296917A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US20120136196A1 (en) Mobile imaging unit with environmental containment
JP6890676B2 (en) Mobile X-ray system with mobile X-ray device
US20070025527A1 (en) Computed tomography apparatus and patient positioning table therefor allowing rotation of the patient support plate
US11141118B2 (en) System with a gantry and a radiation protection booth and method for operating a medical imaging apparatus
JP2008278902A (en) Ct apparatus and ct scan unit
JP4584012B2 (en) Human transport vehicle
JP2021130925A (en) Administration facility unit
Bannazadeh et al. Patterns of procedure-specific radiation exposure in the endovascular era: impetus for further innovation
Hsi et al. Effective and organ specific radiation doses from videourodynamics in children
JP6515739B2 (en) Radiation detector
US6984827B2 (en) Medical system including X-ray CT apparatus and nuclear medicine diagnostic apparatus
JP2021179697A (en) Medical diagnostic imaging device and disinfection management device
JP3936646B2 (en) PET facility
JP3027769U (en) CT examination car
Bradley Radiation safety for radiologic technologists
CN215689417U (en) Radioactive substance treatment vehicle
Malone et al. The design of diagnostic medical facilities where ionising radiation is used
Uradomo et al. Radiation protection in the endoscopy suite minimizing radiation exposure for patients and staff in endoscopy: a joint ASGE/IAEA/WGO guideline
CN212679123U (en) Auxiliary device is kept apart with inspection to radiology department
JP2008043648A (en) Wheelchair equipped with radiation exposure preventing function and medical institution system using the same
CN208077374U (en) Dept. of radiology's radiation warning alarm set
JP4644239B2 (en) Treatment room mobile nuclear medicine system and mobile vehicle and standby equipment used in this system
CN214712582U (en) Radiation protective cover for double-energy X-ray bone age tester
Cruzate et al. Shielding of medical facilities. Shielding design considerations for PET-CT facilities
Hindorf et al. Radiation protection in nuclear medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees