JP4583402B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4583402B2
JP4583402B2 JP2007110471A JP2007110471A JP4583402B2 JP 4583402 B2 JP4583402 B2 JP 4583402B2 JP 2007110471 A JP2007110471 A JP 2007110471A JP 2007110471 A JP2007110471 A JP 2007110471A JP 4583402 B2 JP4583402 B2 JP 4583402B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
cylinder
amount
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007110471A
Other languages
Japanese (ja)
Other versions
JP2008267253A (en
Inventor
敏 和知
倫和 牧野
敏克 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007110471A priority Critical patent/JP4583402B2/en
Priority to DE102007055633.2A priority patent/DE102007055633B4/en
Publication of JP2008267253A publication Critical patent/JP2008267253A/en
Application granted granted Critical
Publication of JP4583402B2 publication Critical patent/JP4583402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1512Digital data processing using one central computing unit with particular means concerning an individual cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

この発明は、内燃機関の制御装置、特に排気浄化触媒の早期活性化を図るための制御装置に関するものである。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for early activation of an exhaust purification catalyst.

内燃機関からの排気を浄化するために用いられる排気浄化触媒としての三元触媒は、一般にある温度以上となったときに活性化する。したがって機関冷機時には、触媒温度が低いため触媒は活性化されず、また触媒が活性化温度に達するまでは十分な排気浄化性能を発揮することができない。   A three-way catalyst as an exhaust gas purification catalyst used for purifying exhaust gas from an internal combustion engine is generally activated when a temperature exceeds a certain temperature. Therefore, when the engine is cold, the catalyst temperature is low, so the catalyst is not activated, and sufficient exhaust purification performance cannot be exhibited until the catalyst reaches the activation temperature.

ところで、触媒の早期活性化の方法としては、触媒に未燃成分(HC,CO)と酸素とを供給することで酸化反応を促進し、触媒の昇温を促し早期活性化するものや、触媒に流入する排気ガスの温度を上昇させることによって触媒に供給される熱量を増加させ、触媒の昇温を促す方法等が知られている。(例えば特許文献1参照)。   By the way, as a method for early activation of the catalyst, an oxidation reaction is promoted by supplying unburned components (HC, CO) and oxygen to the catalyst, and the catalyst is activated at an early stage by increasing the temperature of the catalyst. There is known a method of increasing the amount of heat supplied to the catalyst by increasing the temperature of the exhaust gas flowing into the catalyst to promote the temperature rise of the catalyst. (For example, refer to Patent Document 1).

前者の酸化反応を促進させる方法としては、多気筒エンジンにおいて空燃比をリーンに設定する気筒と空燃比をリッチに設定する気筒とを設ける方法や、2次空気供給システムのように触媒の上流に酸素を供給する方法が知られている。後者の触媒への供給熱量を増加させる方法としては、燃焼安定限界を超えない範囲で点火時期を遅角設定し排気ガスの温度を上昇させて、触媒に供給する熱量を増加させるという方法等が知られている。   As a method for promoting the former oxidation reaction, in a multi-cylinder engine, a method of providing a cylinder for setting the air-fuel ratio to lean and a cylinder for setting the air-fuel ratio to be rich, or upstream of the catalyst as in the secondary air supply system is provided. A method for supplying oxygen is known. As a method of increasing the amount of heat supplied to the latter catalyst, there is a method of increasing the amount of heat supplied to the catalyst by retarding the ignition timing within a range not exceeding the combustion stability limit and increasing the temperature of the exhaust gas. Are known.

特開平9−79057号公報Japanese Patent Laid-Open No. 9-79057

従来の内燃機関の制御装置における触媒の早期活性化方法は上記のように構成されているが、依然として、次のような課題が解決されていない。即ち、多気筒エンジンで各気筒の空燃比をリーンとリッチとに設定する方法では、各気筒に対する燃料供給量が異なることから発生トルクが気筒ごとに変動する(リッチ気筒は燃料供給量が多いのでトルクが大きく、リーン気筒は燃料供給量が少ないためトルクが少ない)という問題点があり、これに対して空燃比をリッチに設定した気筒の点火時期を遅角させて発生トルクを低下させトルク変動を吸収する方法が知られている。   Although the conventional catalyst early activation method in the control device for an internal combustion engine is configured as described above, the following problems have not been solved. That is, in the method of setting the air-fuel ratio of each cylinder to lean and rich in a multi-cylinder engine, the generated torque varies from cylinder to cylinder because the fuel supply amount to each cylinder varies (the rich cylinder has a large fuel supply amount). The torque is large and the lean cylinder has a small amount of fuel supply, so the torque is small.) In contrast, the ignition timing of the cylinder with the air-fuel ratio set to rich is retarded to reduce the generated torque and torque fluctuation There are known methods of absorbing

また、空燃比をリッチに設定した気筒の吸気バルブを駆動するカムを開弁期間が小さなカムと切替えることで、吸気量を少なくし筒内圧力を小さくすることによりポンプ損失などを増大させ発生トルクを低下させて、リーン気筒とのトルク差を抑制する方法も提案されている。ところが、これらの方法によっても依然として次のような問題点が残っている。   In addition, by switching the cam that drives the intake valve of the cylinder whose air-fuel ratio is set to a rich one with a small valve opening period, the intake loss is reduced and the in-cylinder pressure is reduced to increase pump loss and the generated torque A method for reducing the torque difference between the lean cylinder and the lean cylinder has also been proposed. However, these methods still have the following problems.

即ち、空燃比をリッチに設定する気筒の燃料を増量補正、リーンに設定する気筒の燃料を減量補正することで、それぞれの気筒が所望の空燃比となるように燃料供給量を決定しており、これによって燃料供給量が気筒毎に異なることに起因してトルク差が発生している。このトルク差を吸収するために空燃比をリッチに設定した気筒の吸気量を減量しているが、空燃比をリッチに設定した気筒はもともと燃料供給量が増量補正されているので、吸気量を減量すると空燃比は更にリッチとなり、所望の空燃比から逸脱してしまう。   That is, the fuel supply amount is determined so that each cylinder has a desired air-fuel ratio by increasing the fuel in the cylinder that sets the air-fuel ratio rich and correcting the decrease in the fuel in the cylinder that sets lean. As a result, a difference in torque is generated due to a difference in fuel supply amount for each cylinder. In order to absorb this torque difference, the intake amount of the cylinder with the air-fuel ratio set to rich is reduced, but the cylinder with the air-fuel ratio set to rich has been corrected to increase the fuel supply amount. When the amount is decreased, the air-fuel ratio becomes richer and deviates from the desired air-fuel ratio.

この結果、空燃比をリッチに設定した気筒から触媒に供給されるHC,COの量が増加し、空燃比をリーンに設定した気筒から触媒に供給される酸素の量とのバランスが崩れ、触媒の昇温効果が低下するのみならず、過剰なHC,COが大気中に排出されてしまう可能性が出てくる。また、燃料を増量して空燃比をリッチ化した気筒のトルクを低減させるために吸気量を減量すると、空燃比が更にリッチとなりリッチ側の燃焼安定限界を超えて機関発生トルクのサイクル変動が大きくなる恐れがあるため、吸気量を減量するにも限度があり、発生トルクを低下させられる幅も限られてしまう。発生トルクを均一にしながら、所望のリッチ空燃比、リーン空燃比とするのは現実的には難しいといえる。   As a result, the amount of HC and CO supplied to the catalyst from the cylinder with the air-fuel ratio set to rich increases, and the balance with the amount of oxygen supplied to the catalyst from the cylinder with the air-fuel ratio set to lean is lost. As a result, there is a possibility that excessive HC and CO may be discharged into the atmosphere. Also, if the intake air amount is reduced to reduce the torque of the cylinder that has enriched the air-fuel ratio by increasing the fuel, the air-fuel ratio will become richer, exceeding the combustion stability limit on the rich side, and the cycle fluctuation of the engine-generated torque will be large. Therefore, there is a limit to reducing the intake air amount, and the range in which the generated torque can be reduced is limited. It can be said that it is practically difficult to obtain the desired rich air-fuel ratio and lean air-fuel ratio while making the generated torque uniform.

2次空気供給システムにおいては、排気系に直接空気を送り込むために空気ポンプや空気弁などの追加部品が必要でコスト面など不利な部分が多い。また、排気系に空気を入れることで排気ガスの温度が下がってしまうので、化学反応を促進するために多量の空気を導入しようとすると排気ガスの温度が下がり過ぎてかえって化学反応が抑制されてしまうという問題点もある。点火時期の遅角によって排気ガス温度を上昇させる方法は、触媒の昇温効果の面で他の方法に及ばない。   In the secondary air supply system, additional parts such as an air pump and an air valve are required to send air directly into the exhaust system, and there are many disadvantageous parts such as cost. In addition, since the temperature of the exhaust gas is lowered by introducing air into the exhaust system, if a large amount of air is introduced to promote the chemical reaction, the temperature of the exhaust gas is lowered too much and the chemical reaction is suppressed. There is also a problem that it ends up. The method of increasing the exhaust gas temperature by retarding the ignition timing is not as good as other methods in terms of the effect of increasing the catalyst temperature.

この発明は上記のような問題点に対処するためになされたもので、十分に気筒間の出力差を抑制することができ、運転性を維持しつつ、良好に触媒の早期活性化を図ることができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made in order to cope with the above-described problems, and can sufficiently suppress the output difference between the cylinders, and achieve good early activation of the catalyst while maintaining operability. It is an object of the present invention to provide a control device for an internal combustion engine capable of performing the above.

この発明に係る内燃機関の制御装置は、機関の排気を浄化する排気浄化触媒を備えた内燃機関の制御装置において、機関の運転状態を検出する運転状態検出手段と、上記運転状態検出手段によって検出された運転状態に応じて燃料供給量を設定する燃料供給量設定手段と、上記運転状態検出手段によって検出された運転状態に応じて吸気量を設定する要求吸気量設定手段と、上記機関の気筒のうち、所定の気筒の吸入混合気の空燃比を上記機関の冷機時に所定空燃比に対してリッチ側に設定すると共に、他の気筒の空燃比を所定空燃比に対してリーン側に設定する空燃比設定手段と、上記燃料供給量設定手段によって全気筒の燃料供給量を概ね均一となるように設定した状態で各気筒の空燃比が設定された値となるように上記要求吸気量を気筒毎に補正する気筒要求吸気量補正手段とを設け、上記空燃比設定手段はリーン化気筒の目標空燃比と理論空燃比との差分であるリーン側空燃比差、リッチ化気筒の目標空燃比と理論空燃比との差分であるリッチ側空燃比差に対して機関冷却水温の高温側では等しくなるように設定し、低温側では小さくなるように設定すると共に、上記気筒要求吸気量補正手段は、空燃比が理論空燃比に対してリッチ側に設定された気筒で減量補正する吸気量の総量と、空燃比が理論空燃比に対してリーン側に設定された気筒で増量補正する吸気量の総量とが等しくなるようにしたものである。 An internal combustion engine control apparatus according to the present invention is an internal combustion engine control apparatus provided with an exhaust purification catalyst that purifies the exhaust of the engine, and is detected by an operating state detecting means for detecting the operating state of the engine and the operating state detecting means. A fuel supply amount setting means for setting a fuel supply amount according to the operated state, a required intake amount setting means for setting an intake amount according to the operating state detected by the operating state detecting means, and a cylinder of the engine Among them, the air-fuel ratio of the intake mixture of a predetermined cylinder is set to a rich side with respect to the predetermined air-fuel ratio when the engine is cold, and the air-fuel ratios of other cylinders are set to the lean side with respect to the predetermined air-fuel ratio. With the air-fuel ratio setting means and the fuel supply amount setting means, the required intake air amount is adjusted so that the air-fuel ratio of each cylinder becomes a set value in a state where the fuel supply amounts of all cylinders are set to be substantially uniform. A cylinder required intake air quantity correcting means for correcting is provided for each, the air-fuel ratio setting means lean-side air-fuel ratio difference which is a difference between the target air-fuel ratio and the stoichiometric air-fuel ratio of the lean cylinders, the target air-fuel ratio enrichment cylinder which is the difference between the theoretical air-fuel ratio is set to be equal in the high temperature side of the engine coolant temperature with respect to the rich side air-fuel ratio difference, as well as set to be small at the low temperature side, the above cylinder required intake air quantity correcting means and , the total amount of intake air decreasing correction at a set cylinder to the rich side with respect to air-fuel ratio is the stoichiometric air-fuel ratio, the air-fuel ratio of the intake air amount increase correction in the cylinder that is set to the lean side with respect to a theoretical air-fuel ratio The total amount is made equal.

この発明に係る内燃機関の制御装置は上記のように構成されているため、触媒を通過する排気ガスが所定周期毎にリッチとリーンとを繰り返すことになり、触媒にHC,COと酸素とを供給して化学反応を促進させ触媒の昇温を促すことにより早期に活性状態にすると共に、気筒間の発生トルクの変動を引き起こす最も大きな要因となる各気筒への燃料供給量をほぼ均一としたので、運転性能に影響するようなトルクの変動を抑制することができる。   Since the control device for an internal combustion engine according to the present invention is configured as described above, the exhaust gas passing through the catalyst repeats rich and lean every predetermined period, and HC, CO and oxygen are added to the catalyst. By supplying and promoting the chemical reaction and promoting the temperature rise of the catalyst, the catalyst is activated quickly, and the fuel supply amount to each cylinder, which is the biggest factor causing the fluctuation of the generated torque between the cylinders, is made almost uniform. As a result, torque fluctuations that affect driving performance can be suppressed.

実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による内燃機関制御装置の全体構成を示すブロック図である。ここでは、直列4気筒の内燃機関(エンジン)において、個別吸気量制御手段として、各気筒の吸気管内で独立に駆動されるスロットル弁を備えた装置に適用した例を示している。なお、図1では、代表例として第1気筒のみの構成を具体的に示しているが、他の第2気筒〜第4気筒(図示せず)についても、同様に構成されていることは言うまでもない。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of the internal combustion engine control apparatus according to the first embodiment. Here, an example in which an in-line four-cylinder internal combustion engine (engine) is applied to an apparatus provided with a throttle valve that is independently driven in an intake pipe of each cylinder as individual intake air amount control means is shown. In addition, in FIG. 1, although the structure of only the 1st cylinder is specifically shown as a representative example, it cannot be overemphasized that it is comprised similarly about the other 2nd cylinder-4th cylinder (not shown). Yes.

図1において、エンジン1には、複数の気筒に対応して、個別に吸気管2が設けられている。各気筒の吸気管2には、それぞれ、吸気量を制限するスロットル弁3と、スロットル弁3を開閉駆動するスロットルアクチュエ−タ4と、スロットル弁3の開度θを検出するスロットル開度センサ5と、燃料噴射弁6とが設けられている。また、スロットルアクチュエ−タ4、燃料噴射弁6は、それぞれ電子制御装置(以下、ECUという)10からの駆動信号D4、D6により駆動されるようになっている。   In FIG. 1, the engine 1 is provided with intake pipes 2 corresponding to a plurality of cylinders. The intake pipe 2 of each cylinder includes a throttle valve 3 for limiting the intake amount, a throttle actuator 4 for opening and closing the throttle valve 3, and a throttle opening sensor 5 for detecting the opening θ of the throttle valve 3. And a fuel injection valve 6. The throttle actuator 4 and the fuel injection valve 6 are driven by drive signals D4 and D6 from an electronic control unit (hereinafter referred to as ECU) 10, respectively.

ECU10には、気筒識別手段(クランク角検出センサなど)11からの気筒識別信号Cと、スロットル開度センサ5からの検出信号(スロットル開度)θと、他の各種センサ(図示せず)からの検出信号とが入力されている。クランク角検出センサ11は、エンジン回転数Neを示すパルス信号も生成し、上述した気筒識別信号Cと共にECU10に入力している。   The ECU 10 receives a cylinder identification signal C from a cylinder identification means (crank angle detection sensor or the like) 11, a detection signal (throttle opening) θ from a throttle opening sensor 5, and other various sensors (not shown). Detection signal is input. The crank angle detection sensor 11 also generates a pulse signal indicating the engine speed Ne and inputs it to the ECU 10 together with the cylinder identification signal C described above.

各種センサ信号としては、冷却水温センサからの水温信号(エンジン1の冷却水温Tw)、吸気温センサからの吸気温信号(吸気温Ta)、エアフローセンサからの吸気量信号(吸気量Qa)、アクセルポジションセンサからのアクセルポジション信号(アクセルペダル踏み込み量α)などがあり、それぞれの信号が図1に示すようにECU10に入力されている。   Various sensor signals include the water temperature signal from the cooling water temperature sensor (cooling water temperature Tw of the engine 1), the intake air temperature signal from the intake air temperature sensor (intake air temperature Ta), the intake air amount signal from the air flow sensor (intake air amount Qa), the accelerator There is an accelerator position signal (accelerator pedal depression amount α) from the position sensor, and the respective signals are input to the ECU 10 as shown in FIG.

また、エンジン1には、吸気管2への連通を開閉する吸気バルブ12と、排気通路7への連通を開閉する排気バルブ13と、気筒ごとの点火制御を行なう点火プラグ14とが設けられている。点火プラグ14は、ECU10からの点火信号D14により駆動される。
さらに、排気通路7の下流側には、大気中に排出される排気ガスを浄化するための触媒コンバータ(以下、単に触媒という)15が設けられている。
Further, the engine 1 is provided with an intake valve 12 that opens and closes communication with the intake pipe 2, an exhaust valve 13 that opens and closes communication with the exhaust passage 7, and an ignition plug 14 that performs ignition control for each cylinder. Yes. The spark plug 14 is driven by an ignition signal D14 from the ECU 10.
Further, on the downstream side of the exhaust passage 7, a catalytic converter (hereinafter simply referred to as a catalyst) 15 for purifying exhaust gas discharged into the atmosphere is provided.

ここで、実施の形態1において、ECU10が行なう燃料噴射量設定、点火時期設定及び気筒ごとの吸気量設定の処理について、図2のフローチャートを用いて説明する。これらの処理は所定の周期ごとに繰り返し実行されるものである。
まずステップS101で、各種センサ類の入力信号から機関回転速度Ne,アクセルペダル踏み込み量α、冷却水温Tw,吸気量Qa,充填効率Ec等を算出する。
Here, the fuel injection amount setting, ignition timing setting, and intake air amount setting processing for each cylinder performed by the ECU 10 in the first embodiment will be described with reference to the flowchart of FIG. These processes are repeatedly executed at predetermined intervals.
First, in step S101, engine speed Ne, accelerator pedal depression amount α, cooling water temperature Tw, intake air amount Qa, charging efficiency Ec, and the like are calculated from input signals of various sensors.

ステップS102では、ステップS101で算出した各種情報にもとづいて、現在の運転状態でエンジンが発生することを期待されている駆動力にあたる要求トルク(要求Tq)を算出する。ここでは機関回転速度Ne,アクセルペダル踏み込み量α、冷却水温Twを引数とする関数Ftq(Ne,α,Tw)として算出する。具体的にはNeとαを引数とするMAPから基本となる要求トルクを算出すると共に、Twを引数とするMAPから水温補正係数を算出し、要求トルクと水温補正係数との乗算により要求Tqを算出する方法が一般に用いられている。   In step S102, a required torque (request Tq) corresponding to the driving force expected to be generated by the engine in the current operating state is calculated based on the various information calculated in step S101. Here, it is calculated as a function Ftq (Ne, α, Tw) having the engine speed Ne, the accelerator pedal depression amount α, and the coolant temperature Tw as arguments. Specifically, the basic required torque is calculated from the MAP using Ne and α as arguments, the water temperature correction coefficient is calculated from the MAP using Tw as an argument, and the required Tq is calculated by multiplying the required torque and the water temperature correction coefficient. A calculation method is generally used.

そしてステップS103では、この要求Tqからエンジンの吸気量制御をする上で基礎となる充填効率の制御目標値(目標基本Ec)を算出する。これはNe、要求Tq、Twを引数とする関数Fec(Ne,目標Tq,Tw)として算出され、例えばNeと要求Tqを引数とするMAPから読み出した値とTwを引数とするMAPから読み出した補正係数との乗算で算出するなどの方法がある。   In step S103, the control target value (target basic Ec) of the charging efficiency, which is the basis for controlling the intake air amount of the engine, is calculated from the request Tq. This is calculated as a function Fec (Ne, target Tq, Tw) with Ne, request Tq, Tw as arguments, for example, values read from MAP with Ne and request Tq as arguments, and read from MAP with Tw as arguments. There is a method of calculating by multiplication with a correction coefficient.

ステップS104では、触媒昇温制御を実施する条件が成立しているかどうかを判断する。ここでは冷却水温Twが図3に記載の所定値Tw1とTwhとの間にある(Tw1≦Tw≦Twh)ことを判定し、YESの場合には触媒昇温制御実施条件が成立しているとして触媒昇温制御を行なうべく、ステップS105以下へ進む。NOの場合には、触媒昇温制御実施条件が成立していないと判断して、通常制御を行なうべくステップS112へ進む。   In step S104, it is determined whether a condition for performing the catalyst temperature increase control is satisfied. Here, it is determined that the cooling water temperature Tw is between the predetermined values Tw1 and Twh shown in FIG. 3 (Tw1 ≦ Tw ≦ Twh). If YES, it is assumed that the catalyst temperature increase control execution condition is satisfied. In order to perform catalyst temperature increase control, the process proceeds to step S105 and subsequent steps. In the case of NO, it is determined that the catalyst temperature increase control execution condition is not satisfied, and the process proceeds to step S112 to perform normal control.

この実施の形態では上述のように、機関冷却水温を触媒昇温制御の実施条件としたが、触媒の温度を測定するセンサや触媒前後の排気ガス温度を検出する温度センサを装備して、これらの出力値を実施条件として用いる方法もある。   In this embodiment, as described above, the engine cooling water temperature is set as the execution condition of the catalyst temperature rise control. However, the sensor is equipped with a sensor for measuring the temperature of the catalyst and a temperature sensor for detecting the exhaust gas temperature before and after the catalyst. There is also a method of using the output value of

ステップS105以下が、この発明に関係する触媒昇温制御の処理について説明している部分である。ステップS105では、空燃比をリーンにする気筒、リッチにする気筒それぞれの目標空燃比を設定する。例えば図3に示すように機関冷却水温Twに応じて目標空燃比を設定する。次にステップS106で空燃比をリーンにする気筒とリッチにする気筒を設定する。例えば図4に示すように空燃比をリーンにする気筒とリッチにする気筒とを設定する。   Steps S105 and after are the part explaining the catalyst temperature increase control process related to the present invention. In step S105, the target air-fuel ratio is set for each of the cylinder that makes the air-fuel ratio lean and the cylinder that makes rich. For example, as shown in FIG. 3, the target air-fuel ratio is set according to the engine cooling water temperature Tw. Next, in step S106, a cylinder that makes the air-fuel ratio lean and a cylinder that makes the air-fuel ratio rich are set. For example, as shown in FIG. 4, a cylinder that makes the air-fuel ratio lean and a cylinder that makes the air-fuel ratio rich are set.

ここで、空燃比の設定と、空燃比をリーンにする気筒とリッチにする気筒との設定について少し詳細に説明する。触媒昇温制御を実施する条件の中でも比較的高温側(Twm≦Tw≦Twh)では、図3に示すように、リーン側の目標空燃比とリッチ側の目標空燃比とは、それぞれの理論空燃比との差が等しくなるように設定してある。つまり、空燃比をリーンにした気筒で増量補正する吸気量と空燃比をリッチにした気筒で減量補正する吸気量とが等しくなるような設定としている。   Here, the setting of the air-fuel ratio and the setting of the cylinder that makes the air-fuel ratio lean and the cylinder that makes the air-fuel ratio rich will be described in a little more detail. On the relatively high temperature side (Twm ≦ Tw ≦ Twh) among the conditions for performing the catalyst temperature increase control, as shown in FIG. 3, the target air-fuel ratio on the lean side and the target air-fuel ratio on the rich side are the respective theoretical air. The difference from the fuel ratio is set to be equal. In other words, the intake air amount for which the increase correction is performed in the cylinder having the lean air-fuel ratio is set to be equal to the intake air amount that is subjected to the decrease correction in the cylinder having the rich air-fuel ratio.

この場合、各気筒の空燃比は図4(b)に示すように、リッチにする気筒とリーンにする気筒とが交互になるように設定し、未燃成分(HC,CO)とそれに見合った量(理論空燃比相当)となる酸素とが交互に触媒に導入されるようにすることで酸化反応を促進し、触媒の昇温を促進する効果が得られる。   In this case, as shown in FIG. 4B, the air-fuel ratio of each cylinder is set so that the rich cylinder and the lean cylinder are alternated, and the unburned components (HC, CO) are commensurate with it. By making oxygen (which corresponds to the theoretical air-fuel ratio) into the catalyst alternately introduced into the catalyst, the oxidation reaction is promoted, and the effect of promoting the temperature rise of the catalyst is obtained.

一方、低温側(Tw1≦Tw≦Twm)では、図3に示すように、リーン側の目標空燃比と理論空燃比との差が、リッチ側の目標空燃比と理論空燃比との差よりも小さく(リーン側がリッチ側の約半分に)設定してある。これは機関低温時には燃焼安定限界となるリーン側の空燃比が小さく(理論空燃比に近く)、リーン度合いを大きく設定できないためである。   On the other hand, on the low temperature side (Tw1 ≦ Tw ≦ Twm), as shown in FIG. 3, the difference between the target air-fuel ratio on the lean side and the stoichiometric air-fuel ratio is larger than the difference between the target air-fuel ratio on the rich side and the stoichiometric air-fuel ratio. It is set small (the lean side is about half of the rich side). This is because when the engine is at a low temperature, the lean side air-fuel ratio that becomes the combustion stability limit is small (close to the theoretical air-fuel ratio), and the lean degree cannot be set large.

この場合は図4(a)に示すように、1つの気筒の空燃比をリッチに設定した後、2つの気筒の空燃比をリーンに設定するようにしている。こうすることで、空燃比をリッチにした気筒から排出される未燃成分の量に対して、続くリーンにした2気筒分を合わせた酸素の量が理論空燃比相当となるように設定している。   In this case, as shown in FIG. 4A, the air-fuel ratio of one cylinder is set to rich, and then the air-fuel ratio of two cylinders is set to lean. In this way, the amount of oxygen, which is the amount of unburned components discharged from the cylinder with the rich air-fuel ratio, and the two leaned cylinders, is set to be equivalent to the theoretical air-fuel ratio. Yes.

ステップS107では空燃比をリッチ化する気筒の目標空燃比RTAFとステップS103で求めた目標基本Ecとから、吸入混合気の空燃比が目標空燃比RTAFとなる充填効率(リッチ化気筒目標Ec)を算出する。具体的には目標基本Ecは理論空燃比を想定して設定しているので、目標空燃比RTAFと理論空燃比との比を演算して、目標基本Ecに乗算することで算出できる。   In step S107, the charging efficiency (riched cylinder target Ec) at which the air-fuel ratio of the intake air-fuel mixture becomes the target air-fuel ratio RTAF is determined from the target air-fuel ratio RTAF of the cylinder that enriches the air-fuel ratio and the target basic Ec obtained in step S103. calculate. Specifically, since the target basic Ec is set assuming a theoretical air-fuel ratio, it can be calculated by calculating the ratio between the target air-fuel ratio RTAF and the theoretical air-fuel ratio and multiplying the target basic Ec.

例えば、目標基本Ec=25%、RTAF=12.5、理論空燃比=14.7とした場合、リッチ化気筒目標Ec=25%×12.5÷14.7=21.26%となり、結果として吸気量を減量補正することになる。ステップS108では目標空燃比をリーンにした気筒の制御目標充填効率であるリーン化気筒目標Ecを算出する。このリーン化気筒目標Ecは、ステップS107と同様に、リーン化する気筒の目標空燃比LTAFと理論空燃比との比を演算して目標基本Ecに乗算することで算出できる。   For example, if target basic Ec = 25%, RTAF = 12.5, theoretical air-fuel ratio = 14.7, the enriched cylinder target Ec = 25% x 12.5 ÷ 14.7 = 21.26%. As a result, the intake air amount is corrected to decrease. . In step S108, a lean cylinder target Ec which is a control target charging efficiency of the cylinder with the target air-fuel ratio made lean is calculated. This lean cylinder target Ec can be calculated by calculating the ratio of the target air-fuel ratio LTAF of the cylinder to be leaned to the stoichiometric air-fuel ratio and multiplying it by the target basic Ec, as in step S107.

ステップS109では目標基本Ec、Neを引数とする関数Fqf(目標基本Ec,Ne)として基本燃料供給量を算出する。通常の制御であれば後述するステップS113のようにステップS101で求めたEcを用いて算出するが、ここでは目標基本Ecを用いる。これはこの発明の特徴である各気筒への燃料供給量を均一としつつ気筒ごとの吸気量を増減補正して目標とする空燃比が得られるようにするため、各気筒の実際の吸気量を表す充填効率Ecに応じて燃料供給量を決定するのではなく気筒ごとに増減補正する前の吸気量に応じて燃料供給量を決定する必要があるためである。こうすることによって各気筒の燃料供給量をほぼ均一とすることができ、トルク変動を抑制することにつながるのである。そしてこの基本燃料供給量に水温補正や空燃比帰還補正学習値などの各種補正を行って最終的な燃料供給量を決定する。ここでは各種補正係数をまとめたCtotalという係数を基本燃料供給量に乗算して求めることとする。   In step S109, a basic fuel supply amount is calculated as a function Fqf (target basic Ec, Ne) having target basic Ec and Ne as arguments. If it is normal control, it calculates using Ec calculated | required by step S101 like step S113 mentioned later, but here, target basic Ec is used. This is a feature of the present invention. In order to obtain a target air-fuel ratio by correcting the increase and decrease of the intake air amount for each cylinder while making the fuel supply amount to each cylinder uniform, the actual intake air amount of each cylinder is reduced. This is because it is necessary to determine the fuel supply amount according to the intake air amount before the increase / decrease correction for each cylinder, instead of determining the fuel supply amount according to the charging efficiency Ec expressed. By doing so, the fuel supply amount of each cylinder can be made substantially uniform, leading to suppression of torque fluctuation. The basic fuel supply amount is subjected to various corrections such as a water temperature correction and an air-fuel ratio feedback correction learning value to determine the final fuel supply amount. Here, the basic fuel supply amount is multiplied by a coefficient called Ctotal that is a collection of various correction coefficients.

ステップS110で空燃比をリッチにした気筒について、またステップS111で空燃比をリーンにした気筒について、それぞれの点火時期を算出する。まず基本となる点火時期を、充填効率Ec,機関回転数Ne,機関冷却水温度Twを引数とする関数Figt(Ec,Ne,Tw)として算出する。具体的にはEc,Neを引数としてMAP検索により求めた値に、Twを引数とするMAP検索で求めた補正係数を乗算することにより算出する。   The ignition timing is calculated for each cylinder whose air-fuel ratio is made rich in step S110 and for each cylinder whose air-fuel ratio is made lean in step S111. First, the basic ignition timing is calculated as a function Figt (Ec, Ne, Tw) with the charging efficiency Ec, the engine speed Ne, and the engine coolant temperature Tw as arguments. Specifically, it is calculated by multiplying a value obtained by MAP search using Ec and Ne as arguments by a correction coefficient obtained by MAP search using Tw as an argument.

このようにして求めた基本点火時期に対して空燃比をリッチにした気筒、空燃比をリーンにした気筒それぞれの点火時期遅角補正量を求めて遅角補正し、最終的な点火時期IGTr(空燃比をリッチにした気筒)をステップS110で、またIGTl(空燃比をリーンにした気筒)をステップS111でそれぞれ算出する。ここではリッチ気筒、リーン気筒それぞれの燃焼安定限界まで遅角されるように設定する。こうすることで排気ガスの温度が高くなり触媒に供給する熱量が増大するので、触媒の昇温効果が更に大きくなる。   The ignition timing retardation correction amount is determined for each of the cylinders in which the air-fuel ratio is rich and the cylinder in which the air-fuel ratio is lean with respect to the basic ignition timing thus determined, and the final ignition timing IGTr ( In step S110, the cylinder in which the air-fuel ratio is made rich is calculated in step S110, and IGTl (cylinder in which the air-fuel ratio is made lean) is calculated in step S111. Here, it is set so as to be retarded to the combustion stability limit of each of the rich cylinder and the lean cylinder. By doing so, the temperature of the exhaust gas is increased and the amount of heat supplied to the catalyst is increased, so that the temperature raising effect of the catalyst is further increased.

点火時期を燃焼安定限界まで遅角設定するための遅角補正量はEc,Ne,Twを引数とする関数Fretr(Ec,Ne,Tw) ,Fretl(Ec,Ne,Tw)としているが、これらの3つの引数によるMAP検索などにより求めるものとする。燃焼安定限界となる点火時期はEc,Ne,Twの他に空燃比が大きく影響するが、実施の形態1においては各気筒の空燃比はステップS105においてTwに対して一意に決定するようにしているので、ここではTwのみを引数として使用すれば空燃比による影響も考慮した遅角補正量の設定が可能となる。   The retardation correction amount for setting the ignition timing to the combustion stability limit is the functions Fretr (Ec, Ne, Tw) and Fretl (Ec, Ne, Tw) with Ec, Ne, and Tw as arguments. It is calculated by MAP search with three arguments. In addition to Ec, Ne, and Tw, the air-fuel ratio greatly affects the ignition timing that becomes the combustion stability limit. In the first embodiment, the air-fuel ratio of each cylinder is uniquely determined with respect to Tw in step S105. Therefore, here, if only Tw is used as an argument, it becomes possible to set the retardation correction amount in consideration of the influence of the air-fuel ratio.

点火時期を燃焼安定限界まで遅角設定するための遅角補正量を求めるMAPの値は、車両開発段階での車両試験やエンジン単体での試験などによって決定すればよい。具体的には、各気筒の空燃比を図3、図4に示す空燃比に設定した上で、点火時期を基本点火時期から徐々に遅角させていき、エンジンの振動や回転変動が許容値を超えてしまう点火時期を調べる。この時の点火時期から若干(例えばクランク角で3度程度)進角側の点火時期設定となるように、遅角補正量を求めるMAPの値を設定すればよい。   The MAP value for obtaining the retard correction amount for retarding the ignition timing to the combustion stability limit may be determined by a vehicle test at the vehicle development stage or a test with the engine alone. Specifically, the air-fuel ratio of each cylinder is set to the air-fuel ratio shown in FIGS. 3 and 4, and the ignition timing is gradually retarded from the basic ignition timing, and the engine vibration and rotational fluctuations are allowed. Check the ignition timing that exceeds. The MAP value for obtaining the retard correction amount may be set so that the ignition timing is slightly advanced (for example, about 3 degrees in crank angle) from the ignition timing at this time.

また、上記のように予め遅角補正量を設定する以外にも、気筒内で混合気が燃焼する時に発生するイオン電流を検出するセンサや、気筒内の圧力を検出するセンサを装備し、これらのセンサの検出値にもとづいて燃焼安定限界を検出する方法やエンジンの回転速度の変動等から燃焼安定限界を検出する方法も考案されており、これらを用いれば、車両運転中に基本点火時期から徐々に遅角していって燃焼安定限界を検出した時点でそれ以上遅角しないように構成することも可能である。   In addition to setting the retard angle correction amount in advance as described above, a sensor for detecting ion current generated when the air-fuel mixture burns in the cylinder and a sensor for detecting pressure in the cylinder are provided. A method for detecting the combustion stability limit based on the detection value of the sensor and a method for detecting the combustion stability limit from fluctuations in the engine speed have been devised. It is also possible to configure so that the angle is gradually retarded and no further retarded when the combustion stability limit is detected.

ステップS104で触媒昇温制御実施条件が成立していると判断された場合は、以上のステップS105〜S111の処理によって触媒昇温制御を実施する際の各気筒の目標充填効率、燃料供給量、点火時期が決定される。そして最後にステップS115ヘ進んで、各気筒に対応して設置されているスロットル弁を制御するための目標スロットル開度(目標Th)を各気筒の制御目標充填効率である目標Ec、機関回転数Neの関数Fth(目標Ec、Ne)として算出して全ての処理を終了する。目標Thの算出は目標EcとNeを引数とするMAP検索等の方法が一般的である。   If it is determined in step S104 that the catalyst temperature increase control execution condition is satisfied, the target charging efficiency, the fuel supply amount of each cylinder when performing the catalyst temperature increase control by the processing in steps S105 to S111, The ignition timing is determined. Finally, the routine proceeds to step S115, where the target throttle opening (target Th) for controlling the throttle valve installed corresponding to each cylinder is set to the target Ec, which is the control target charging efficiency of each cylinder, and the engine speed. Calculation is performed as a function Fth of Ne (target Ec, Ne), and all the processes are completed. The calculation of the target Th is generally performed by a method such as MAP search using the target Ec and Ne as arguments.

一方、ステップS104で触媒昇温制御実施条件が成立していないと判断された場合は、通常の吸気、燃料、点火時期制御をステップS112〜S114に従って処理することになる。ステップS112で各気筒の目標Ecを設定するが、ここでは各気筒の目標空燃比を個別に設定しないので、目標基本Ecをそのまま代入する。次にステップS113で燃料供給量を算出する。ここでは充填効率Ec、機関回転数Neを引数として、ステップS109と同様に、関数Fqf(Ec,Ne)から算出した値に、水温補正や空燃比帰還補正値、空燃比帰還補正学習値などの各種補正としてCtotalを乗算して最終的な燃料供給量を決定する。   On the other hand, when it is determined in step S104 that the catalyst temperature increase control execution condition is not satisfied, normal intake air, fuel, and ignition timing control is processed in accordance with steps S112 to S114. In step S112, the target Ec of each cylinder is set. However, since the target air-fuel ratio of each cylinder is not individually set here, the target basic Ec is substituted as it is. In step S113, the fuel supply amount is calculated. Here, the charging efficiency Ec and the engine speed Ne are used as arguments, and the values calculated from the function Fqf (Ec, Ne) are added to the values calculated from the function Fqf (Ec, Ne), such as the water temperature correction, the air / fuel ratio feedback correction value, the air / fuel ratio feedback correction learning value, etc. Multiply Ctotal as various corrections to determine the final fuel supply.

ステップS114ではステップS110と同様に充填効率Ec,機関回転数Ne,機関冷却水温度Twを引数とする関数Figt(Ec,Ne,Tw)として点火時期IGTを算出する。ここでは遅角補正を行なわないのでこの値がそのまま点火時期となる。最後はステップS115に進み各気筒に対応するスロットル弁の目標開度を算出して全ての処理を終了する。   In step S114, similarly to step S110, the ignition timing IGT is calculated as a function Figt (Ec, Ne, Tw) having the charging efficiency Ec, the engine speed Ne, and the engine coolant temperature Tw as arguments. Here, since the retard angle correction is not performed, this value becomes the ignition timing as it is. Finally, the process proceeds to step S115, the target opening of the throttle valve corresponding to each cylinder is calculated, and all the processes are completed.

実施の形態1は上記のように構成され、気筒間に空燃比差を設けて触媒の酸化反応を促進し、触媒温度の昇温を促して早期活性化を図るようにした場合において、各気筒への燃料供給量をほぼ均一とした状態で気筒ごとに吸気量を増減補正することにり気筒間に空燃比差を設けるようにしたので、各気筒の内部へ投入されるエネルギー量が均一となり、従来装置に比してより一層出力段差の抑制効果を高めることができる。また、併せて、点火時期も遅角させるようにして排気温度を高めるようにしたので、さらに触媒の昇温を促す効果が期待でき、早期活性化をより一層促進することができる。   The first embodiment is configured as described above. In the case where the air-fuel ratio difference is provided between the cylinders to promote the oxidation reaction of the catalyst, and the catalyst temperature is increased to accelerate the activation, each cylinder is activated. Since the air-fuel ratio difference is provided between the cylinders by increasing or decreasing the intake air amount for each cylinder while the fuel supply amount to the cylinder is almost uniform, the amount of energy input into each cylinder becomes uniform. Thus, the effect of suppressing the output step can be further enhanced as compared with the conventional device. In addition, since the exhaust gas temperature is increased by retarding the ignition timing, an effect of further increasing the temperature of the catalyst can be expected, and early activation can be further promoted.

なお、実施の形態1では、点火時期の遅角制御も併せて行なう構成について説明したが、気筒ごとの吸気量増減補正のみを行なうようにしても触媒の昇温効果は十分に得られ、各気筒の点火時期を燃焼安定限界近くまで遅角することによるトルク変動要因が無くなることから機関のトルク変動をさらに良好に抑制することができるので、吸気量制御のみを行なわせる構成としてもよい。   In the first embodiment, the configuration in which the retard control of the ignition timing is also performed has been described. However, even if only the intake air amount increase / decrease correction is performed for each cylinder, the catalyst temperature rise effect can be sufficiently obtained. Since the torque fluctuation factor caused by retarding the ignition timing of the cylinder to near the combustion stability limit is eliminated, the engine torque fluctuation can be suppressed more satisfactorily, so that only the intake air amount control may be performed.

また、実施の形態1において、空燃比をリッチにした気筒、リーンにした気筒に関わらず点火時期を燃焼安定限界まで遅角させた場合において、トルク変動抑制効果を優先させたい時には、空燃比をリッチにした気筒、リーンにした気筒いずれか一方の気筒を燃焼安定限界まで遅角させ、他方の気筒の点火時期を各気筒の発生トルクが等しくなるような時期に設定してもよい。具体的には、図2に示すフローチャートのステップS110,111における点火時期の遅角補正量を算出する関数Fretr(Ec,Ne,Tw) ,Fretl(Ec,Ne,Tw)に相当するMAPの値を以下のような方法で設定することで容易に実現できる。   Further, in the first embodiment, when the ignition timing is retarded to the combustion stability limit regardless of the cylinder in which the air-fuel ratio is rich or the cylinder in which the air-fuel ratio is lean, the air-fuel ratio is set to give priority to the torque fluctuation suppression effect. One of the rich cylinder and the lean cylinder may be retarded to the combustion stability limit, and the ignition timing of the other cylinder may be set to a time at which the generated torque of each cylinder becomes equal. Specifically, the value of MAP corresponding to the functions Fretr (Ec, Ne, Tw) and Fretl (Ec, Ne, Tw) for calculating the ignition timing retardation correction amount in steps S110 and 111 in the flowchart shown in FIG. Can be easily realized by setting as follows.

車両開発段階におけるエンジン単体での試験などの際に空燃比をリッチにして点火時期を燃焼安定限界まで遅角させた場合の機関発生トルクと空燃比をリーンにして点火時期を燃焼安定限界まで遅角させた場合の機関発生トルクとを比較して、発生トルクが大きかった方の空燃比にした気筒の点火時期が燃焼安定限界となるように遅角補正量算出用のMAPの値を設定する。そして点火時期を燃焼安定限界まで遅角させた場合の発生トルクが小さかった方は、点火時期を燃焼安定限界よりも進角側にする(遅角量を小さくする)ことで発生トルクを増大させ、両者の発生トルクの差がより小さくなる点火時期となるように遅角補正量算出用のMAPの値を設定する。このようにして空燃比をリッチにした気筒、リーンにした気筒それぞれの点火時期の遅角補正量を算出するMAPの値を設定しておけば、機関のトルク変動を非常に小さくすることができ、トルク変動の抑制効果と触媒の早期活性化の効果を最大限に引き出すことが可能となる。   When testing the engine alone at the vehicle development stage, etc., if the air-fuel ratio is rich and the ignition timing is retarded to the combustion stability limit, the engine-generated torque and air-fuel ratio are leaned to retard the ignition timing to the combustion stability limit. Comparing the engine generated torque when the angle is set, set the MAP value for calculating the retard correction amount so that the ignition timing of the cylinder with the air-fuel ratio with the larger generated torque becomes the combustion stability limit . And if the generated torque is small when the ignition timing is retarded to the combustion stability limit, increase the generated torque by making the ignition timing more advanced than the combustion stability limit (decrease the retard amount). Then, the value of MAP for calculating the retard correction amount is set so that the ignition timing is such that the difference between the generated torques becomes smaller. By setting the MAP value that calculates the ignition timing retardation correction amount for each of the cylinders with rich air-fuel ratio and lean cylinder in this way, engine torque fluctuations can be made extremely small. In addition, the effect of suppressing torque fluctuation and the effect of early activation of the catalyst can be maximized.

さらに、実施の形態1では、空燃比をリッチにした気筒で減量補正する吸気量と、リーンにした気筒で増量補正する吸気量とが全体として等しくなるような空燃比設定としたが、例えばリッチ側の空燃比を若干理論空燃比に近い値として、触媒に流入する排気ガス全体として若干酸素過剰となるような空燃比設定としてもよい。具体的には、図2のフローチャートのステップS105において図3のリッチ側の目標空燃比RTAFを若干(例えば空燃比で0.6程度)理論空燃比に近い側(図3では上方)に設定したり、ステップS107でリッチ化気筒目標Ecを算出する際にRTAFに所定の係数(例えば1.05程度)を乗算してから演算したりすることで実現できる。   Further, in the first embodiment, the air-fuel ratio is set such that the intake air amount to be corrected for reduction in the cylinder with the rich air-fuel ratio and the intake air amount to be corrected for increase in the cylinder with the lean air-fuel ratio as a whole are equal. The air-fuel ratio on the side may be set to a value slightly close to the stoichiometric air-fuel ratio, and the air-fuel ratio may be set so that the entire exhaust gas flowing into the catalyst becomes slightly oxygen excess. Specifically, in step S105 of the flowchart of FIG. 2, the target air-fuel ratio RTAF on the rich side in FIG. 3 is slightly set (for example, about 0.6 in the air-fuel ratio) closer to the theoretical air-fuel ratio (upward in FIG. 3), In calculating the enriched cylinder target Ec in step S107, this can be realized by calculating after multiplying RTAF by a predetermined coefficient (for example, about 1.05).

触媒が低温で不活性な状態にある時は酸素過剰雰囲気とした方が酸化反応の活性化が早まることが知られており、これにより機関冷機始動直後に問題となる未燃成分(HC,CO)の大気への放出量をより少なくする効果が期待できる。この場合、NOxの還元反応の活性化が遅れる懸念があるが、機関冷機状態ではNOxの排出量は元々少ないため、未燃成分の酸化反応促進を優先させることによる排気ガスの浄化への効果は大きい。   When the catalyst is in an inactive state at low temperatures, it is known that an oxygen-excess atmosphere accelerates the activation of the oxidation reaction, which causes unburned components (HC, CO) that become a problem immediately after engine cold start ) Can be expected to reduce the amount released to the atmosphere. In this case, there is a concern that the activation of the reduction reaction of NOx may be delayed, but since NOx emissions are originally low in the engine cold state, the effect on the purification of exhaust gas by prioritizing the oxidation reaction of unburned components is not effective large.

実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。内燃機関制御装置の全体構成については、図1のブロック図に示す実施の形態1と同一であるため、図示及び説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. The overall configuration of the internal combustion engine control device is the same as that of the first embodiment shown in the block diagram of FIG.

実施の形態1では空燃比をリッチに設定した気筒の吸気量を減量補正する一方、空燃比をリーンに設定した気筒の吸気量を増量補正することで、各気筒の空燃比が所望の空燃比となるようにしたが、実施の形態2では、各気筒の燃料供給量を概ね均一としながらも空燃比がリッチとなるような燃料供給量に設定する。そのうえで、触媒の早期活性化を促すために所定周期ごとに触媒に流入する排ガスがリッチとリーンとを繰返すようにするために、空燃比をリーンに設定した気筒の吸気量を増量し、空燃比がリッチになるような燃料供給量とした気筒に対して、吸気量を増量補正した結果空燃比がリーンとなるようにするものである。   In the first embodiment, the intake air amount of the cylinder in which the air-fuel ratio is set to be rich is corrected to be reduced, while the intake air amount of the cylinder in which the air-fuel ratio is set to be lean is corrected to increase the air-fuel ratio of each cylinder to a desired air-fuel ratio. In the second embodiment, the fuel supply amount is set so that the air-fuel ratio becomes rich while the fuel supply amount of each cylinder is substantially uniform. Then, in order to repeat the rich and lean exhaust gas flowing into the catalyst every predetermined period in order to promote early activation of the catalyst, the intake air amount of the cylinder having the air-fuel ratio set to lean is increased and the air-fuel ratio is increased. As a result, the air-fuel ratio becomes lean as a result of increasing the intake air amount for the cylinder with the fuel supply amount so as to be rich.

実施の形態2の特徴を、ECU10が行なう燃料噴射量設定、点火時期設定及び気筒ごとの吸気量設定の処理について図5に示すフローチャートを用いて説明する。   The characteristics of the second embodiment will be described with reference to the flowchart shown in FIG. 5 regarding the fuel injection amount setting, ignition timing setting, and intake air amount setting processing for each cylinder performed by the ECU 10.

図5のフローチャートは、実施の形態1における図2のフローチャートの一部を変更した形となっており、図2と同内容のステップについては図2のステップ番号と同じステップ番号を付して説明を省略する。図2と異なるステップはステップS207〜S209である。即ち、機関冷機状態において空燃比を気筒ごとに設定する処理のなかで、空燃比をリッチ化する気筒の目標充填効率(リッチ化気筒目標Ec)及び空燃比をリーン化する気筒の目標充填効率(リーン化気筒目標Ec)を算出するステップと各気筒への燃料供給量(Qfuel)を算出するステップとが相違している。以下、この変更されたステップでの処理について説明する。   The flowchart of FIG. 5 is a modified version of the flowchart of FIG. 2 in the first embodiment, and the steps having the same contents as those in FIG. 2 are described with the same step numbers as the step numbers in FIG. Is omitted. Steps different from FIG. 2 are steps S207 to S209. That is, in the process of setting the air-fuel ratio for each cylinder in the engine cold state, the target charging efficiency of the cylinder that enriches the air-fuel ratio (riched cylinder target Ec) and the target charging efficiency of the cylinder that makes the air-fuel ratio lean ( The step of calculating the lean cylinder target Ec) is different from the step of calculating the fuel supply amount (Qfuel) to each cylinder. Hereinafter, the process in the changed step will be described.

まず、実施の形態1の図2と同様にステップS101〜S106で運転状態を示す各種変数を算出し、触媒の昇温制御を実施すべき条件であった場合、空燃比をリッチ化する気筒とリーン化する気筒双方の目標空燃比を算出し、それぞれの目標空燃比とする気筒を決定する。そしてステップS207で空燃比をリッチ化する気筒の目標充填効率を算出する。この点は図2のステップS107と同様であるが、算出の方法が異なる。実施の形態2では、各気筒の燃料供給量は後述するステップS209で算出しているが、目標基本Ecに対して空燃比がリッチになるように燃料供給量を算出している。このため、ステップS207では空燃比をリッチ化する気筒のリッチ化気筒目標Ecは目標基本Ecをそのまま代入すればよい。   First, in the same manner as in FIG. 2 of the first embodiment, the various variables indicating the operating state are calculated in steps S101 to S106. The target air-fuel ratios of both cylinders to be leaned are calculated, and the cylinders to be used as the respective target air-fuel ratios are determined. In step S207, the target charging efficiency of the cylinder that enriches the air-fuel ratio is calculated. This is the same as step S107 in FIG. 2, but the calculation method is different. In the second embodiment, the fuel supply amount of each cylinder is calculated in step S209, which will be described later, but the fuel supply amount is calculated so that the air-fuel ratio becomes richer than the target basic Ec. Therefore, in step S207, the target basic Ec may be substituted for the enriched cylinder target Ec of the cylinder that enriches the air-fuel ratio.

次にステップS208にて空燃比をリーン化する気筒の目標充填効率であるリーン化気筒目標Ecを算出する。上述のように、燃料の供給量は空燃比がリッチとなるように設定してあるため、その分を考慮してなお空燃比がリーンとなるように、目標基本Ecを増量補正してリーン化気筒目標Ecを算出する必要がある。具体的には目標基本Ecであれば空燃比をリッチ化する気筒の目標空燃比であるRTAFとなるように燃料供給量を決めるので(ステップS209で後述)、空燃比をリーン化する気筒の目標空燃比であるLTAFとRTAFとの比を演算して、これを目標基本Ecに乗算することによって算出するようにしている。例えば、目標基本Ec=25%、RTAF=13、LTAF=16.5とした場合、リッチ化気筒目標Ec=25%×16.5÷13=31.73%となり、結果として吸気量を増量補正することになる。   Next, in step S208, a lean cylinder target Ec that is a target charging efficiency of the cylinder for leaning the air-fuel ratio is calculated. As described above, since the fuel supply amount is set so that the air-fuel ratio becomes rich, the target basic Ec is corrected to be leaner so that the air-fuel ratio is still lean considering the corresponding amount. It is necessary to calculate the cylinder target Ec. Specifically, since the fuel supply amount is determined so that the target air-fuel ratio is RTAF, which is the target air-fuel ratio of the cylinder that enriches the air-fuel ratio (described later in step S209), the target of the cylinder that leans the air-fuel ratio is determined. The ratio between LTAF and RTAF, which is the air-fuel ratio, is calculated and multiplied by the target basic Ec. For example, if target basic Ec = 25%, RTAF = 13, and LTAF = 16.5, the enriched cylinder target Ec = 25% × 16.5 ÷ 13 = 31.73%, and as a result, the intake amount is corrected to increase.

そして、ステップS209にて各気筒への燃料供給量を算出する。このステップも図2のステップS109とは算出の方法が異なるだけである。図2において燃料供給量は目標基本Ecに対して理論空燃比となるような設定であったので、これと同様に算出した燃料供給量に対して空燃比がリッチとなるように補正演算することにする。具体的には目標基本Ec、Neを引数とする関数Fqf(目標基本Ec,Ne)として基本燃料供給量を算出し、これに理論空燃比とリッチ側の目標空燃比RTAFとの比を乗算して、そこに各種補正係数Ctotalを乗算して算出する。   In step S209, the amount of fuel supplied to each cylinder is calculated. This step also differs from step S109 in FIG. 2 only in the calculation method. In FIG. 2, since the fuel supply amount is set to be the stoichiometric air-fuel ratio with respect to the target basic Ec, correction calculation is performed so that the air-fuel ratio becomes rich with respect to the calculated fuel supply amount in the same manner as this. To. Specifically, the basic fuel supply amount is calculated as a function Fqf (target basic Ec, Ne) with target basic Ec and Ne as arguments, and this is multiplied by the ratio of the theoretical air-fuel ratio and the rich target air-fuel ratio RTAF. Then, it is calculated by multiplying it by various correction coefficients Ctotal.

その後はステップS110,S111にて各気筒の点火時期を算出し、ステップS115で各気筒に対応するスロットルの目標開度を算出して処理を終了する。また、ステップS104にて触媒の昇温制御を実施すべき条件が成立していなかった場合は、ステップS112〜S114により図2と同一の処理を行なうことになる。   Thereafter, the ignition timing of each cylinder is calculated in steps S110 and S111, the target opening of the throttle corresponding to each cylinder is calculated in step S115, and the process ends. If the conditions for performing the catalyst temperature increase control are not satisfied in step S104, the same processing as in FIG. 2 is performed in steps S112 to S114.

一般に機関冷機時は燃焼が不安定になりやすく、特に吸気量が小さいと不安定になりやすいことが知られている。よって吸気量を減量補正すると、吸気量が小さくなり過ぎて燃焼が不安定になりトルク変動を誘発する懸念がある。これに対して、実施の形態2のように構成すれば、燃料供給量を一律増量補正して基本となる空燃比をリッチ化しつつ空燃比をリーン化する気筒だけ吸気量を増やすことになるので、空燃比をリッチ化する気筒の吸気量を減量補正すること無しに触媒を早期に活性化するための昇温促進制御を行なえるので、吸気量が小さくなり過ぎて燃焼が不安定になる懸念を払拭できるという効果が得られる。   In general, it is known that combustion tends to become unstable when the engine is cold, and in particular, tends to become unstable when the intake air amount is small. Therefore, if the intake air amount is corrected to decrease, there is a concern that the intake air amount becomes too small and combustion becomes unstable and torque fluctuations are induced. On the other hand, if configured as in the second embodiment, the intake amount is increased only by the cylinder that makes the air-fuel ratio lean while enriching the basic air-fuel ratio by correcting the fuel supply amount uniformly. , Because it is possible to perform temperature rise promotion control to activate the catalyst early without reducing the intake air amount of the cylinder that enriches the air-fuel ratio, there is a concern that the intake air amount becomes too small and combustion becomes unstable The effect that can be wiped off is obtained.

また、実施の形態1と実施の形態2とを組み合わせて、燃料の供給量を空燃比がリッチになるように設定しつつ、その空燃比は空燃比をリッチ化する気筒の目標空燃比よりも若干理論空燃比に近い値として、空燃比をリッチ化する気筒の吸気量を若干減量補正し、空燃比をリーン化する気筒は吸気量を大きく増量するような構成にしても同様の効果を得ることが出来る。   Further, combining the first embodiment and the second embodiment and setting the fuel supply amount so that the air-fuel ratio becomes rich, the air-fuel ratio is higher than the target air-fuel ratio of the cylinder that enriches the air-fuel ratio. The same effect can be obtained even if the intake air amount of the cylinder that enriches the air-fuel ratio is slightly reduced and corrected so that the air-fuel ratio is leaner and the intake air amount is greatly increased. I can do it.

上記各実施の形態では各気筒の吸気管にスロットル弁を設けた構成を前提として説明したが、例えば、吸気バルブ12を電磁式のアクチュエータで直接駆動してバルブリフト量や開弁期間を連続的に可変する機構を用いても、気筒ごとに吸気量を増減補正して気筒間に空燃比差を設けることができるので、上述した各実施の形態と同様な効果を期待することができる。   The above embodiments have been described on the assumption that a throttle valve is provided in the intake pipe of each cylinder. For example, the intake valve 12 is directly driven by an electromagnetic actuator to continuously adjust the valve lift amount and the valve opening period. Even when a variable mechanism is used, it is possible to provide an air-fuel ratio difference between the cylinders by increasing / decreasing the intake air amount for each cylinder. Therefore, the same effects as those of the above-described embodiments can be expected.

また、例えば特開2004−176644の図2,図3に記載されているような全気筒の吸気バルブの最大バルブリフト量と開弁期間を一括して連続的に可変する機構を用いても、各気筒の吸気行程に対応する期間ごとに設定する目標バルブリフト量を、気筒ごとに増減補正した吸気量に対応する値に設定すれば、やはり同様に気筒ごとに吸気量を増減補正して気筒間に空燃比差を設けることができるので、上述した各実施の形態と同様な効果を期待することができる。   Further, for example, a mechanism that continuously changes the maximum valve lift amount and the valve opening period of the intake valves of all cylinders as described in FIGS. 2 and 3 of Japanese Patent Application Laid-Open No. 2004-176644, If the target valve lift amount set for each period corresponding to the intake stroke of each cylinder is set to a value corresponding to the intake amount corrected for increase / decrease for each cylinder, the intake amount is similarly corrected for increase / decrease for each cylinder. Since an air-fuel ratio difference can be provided between them, an effect similar to that of each of the above-described embodiments can be expected.

この発明の実施の形態1による内燃機関の制御装置の全体構成を示すブロック図である。1 is a block diagram showing an overall configuration of a control device for an internal combustion engine according to Embodiment 1 of the present invention. FIG. 実施の形態1における内燃機関の制御手順を説明するためのフローチャートである。3 is a flowchart for illustrating a control procedure of the internal combustion engine in the first embodiment. 実施の形態1におけるリッチ気筒、リーン気筒の空燃比特性を示す説明図である。FIG. 2 is an explanatory diagram showing air-fuel ratio characteristics of a rich cylinder and a lean cylinder in the first embodiment. 実施の形態1における各気筒の空燃比設定の一例を示す図である。FIG. 3 is a diagram illustrating an example of air-fuel ratio setting for each cylinder in the first embodiment. 実施の形態2における内燃機関の制御手順を説明するためのフローチャートである。6 is a flowchart for illustrating a control procedure of the internal combustion engine in the second embodiment.

符号の説明Explanation of symbols

1 エンジン、 2 吸気管、 3 スロットル弁、
4 スロットルアクチュエ−タ、 5 スロットル開度センサ、 6 燃料噴射弁、
7 排気通路、 8 クランク軸、 9 エアフローセンサ、 10 ECU、
11 クランク角検出センサ、 12 吸気バルブ、 13 排気バルブ、
14 点火プラグ、 15 触媒。
1 engine, 2 intake pipe, 3 throttle valve,
4 throttle actuator, 5 throttle opening sensor, 6 fuel injection valve,
7 exhaust passage, 8 crankshaft, 9 air flow sensor, 10 ECU,
11 Crank angle detection sensor, 12 Intake valve, 13 Exhaust valve,
14 spark plug, 15 catalyst.

Claims (3)

機関の排気を浄化する排気浄化触媒を備えた内燃機関の制御装置において、機関の運転状態を検出する運転状態検出手段と、上記運転状態検出手段によって検出された運転状態に応じて燃料供給量を設定する燃料供給量設定手段と、上記運転状態検出手段によって検出された運転状態に応じて吸気量を設定する要求吸気量設定手段と、上記機関の気筒のうち、所定の気筒の吸入混合気の空燃比を上記機関の冷機時に所定空燃比に対してリッチ側に設定すると共に、他の気筒の空燃比を所定空燃比に対してリーン側に設定する空燃比設定手段と、上記燃料供給量設定手段によって全気筒の燃料供給量を概ね均一となるように設定した状態で各気筒の空燃比が設定された値となるように上記要求吸気量を気筒毎に補正する気筒要求吸気量補正手段とを設け、上記空燃比設定手段はリーン化気筒の目標空燃比と理論空燃比との差分であるリーン側空燃比差、リッチ化気筒の目標空燃比と理論空燃比との差分であるリッチ側空燃比差に対して機関冷却水温の高温側では等しくなるように設定し、低温側では小さくなるように設定すると共に、上記気筒要求吸気量補正手段は、空燃比が理論空燃比に対してリッチ側に設定された気筒で減量補正する吸気量の総量と、空燃比が理論空燃比に対してリーン側に設定された気筒で増量補正する吸気量の総量とが等しくなるようにしたことを特徴とする内燃機関の制御装置。 In a control device for an internal combustion engine having an exhaust purification catalyst for purifying engine exhaust, an operating state detecting means for detecting an operating state of the engine, and a fuel supply amount in accordance with the operating state detected by the operating state detecting means. A fuel supply amount setting means for setting, a required intake amount setting means for setting an intake air amount in accordance with the operating state detected by the operating state detecting means, and an intake air mixture of a predetermined cylinder among the cylinders of the engine An air-fuel ratio setting means for setting the air-fuel ratio to a rich side with respect to a predetermined air-fuel ratio when the engine is cold, and an air-fuel ratio setting means for setting the air-fuel ratio of other cylinders to a lean side with respect to the predetermined air-fuel ratio, and the fuel supply amount setting Cylinder required intake air amount correcting means for correcting the required intake air amount for each cylinder so that the air-fuel ratio of each cylinder becomes a set value in a state where the fuel supply amounts of all cylinders are set to be substantially uniform by the means. The provided lean-side air-fuel ratio difference is a difference of the air-fuel ratio setting means and the target air-fuel ratio and the stoichiometric air-fuel ratio of the lean cylinders, rich side is the difference between the target air-fuel ratio and the stoichiometric air-fuel ratio enrichment cylinder set the same at a high temperature side of the engine coolant temperature with respect to the air-fuel ratio difference, the rich as well as set to be small at the low temperature side, the cylinder required intake air amount correction means, air-fuel ratio is the theoretical air-fuel ratio The total amount of intake air that is corrected to decrease in the cylinder set on the side is equal to the total amount of intake air that is corrected to increase in the cylinder whose air-fuel ratio is set on the lean side with respect to the theoretical air-fuel ratio. A control device for an internal combustion engine. 上記空燃比が理論空燃比に対してリッチ側に設定された気筒とリーン側に設定された気筒のそれぞれの点火時期を遅角側の燃焼安定限界付近に設定することを特徴とする請求項1に記載の内燃機関の制御装置。 Claim, characterized in that the air-fuel ratio is set in the vicinity of each of the combustion stability limit of the ignition timing to the retard side of the cylinder set in the cylinder and the lean side is set to the rich side with respect to the stoichiometric air-fuel ratio 1 The control apparatus of the internal combustion engine described in 1. 上記空燃比が理論空燃比に対してリッチ側に設定された気筒とリーン側に設定された気筒のうち、発生トルクが大きくなる方の気筒の点火時期を、遅角側の燃焼安定限界付近に設定すると共に、他方の気筒の点火時期を、遅角側の燃焼安定限界よりも進角側に設定して気筒間の出力差を抑制するようにしたことを特徴とする請求項2に記載の内燃機関の制御装置。 Of the cylinder in which the fuel-air ratio is set cylinder and to the lean side, which is set to the rich side with respect to the stoichiometric air-fuel ratio, the ignition timing towards cylinder generated torque increases, in the vicinity of the combustion stability limit in the retard side The ignition timing of the other cylinder is set to an advance side with respect to the combustion stability limit on the retard side, and the output difference between the cylinders is suppressed. Control device for internal combustion engine.
JP2007110471A 2007-04-19 2007-04-19 Control device for internal combustion engine Expired - Fee Related JP4583402B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007110471A JP4583402B2 (en) 2007-04-19 2007-04-19 Control device for internal combustion engine
DE102007055633.2A DE102007055633B4 (en) 2007-04-19 2007-11-21 Control for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110471A JP4583402B2 (en) 2007-04-19 2007-04-19 Control device for internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009193173A Division JP5129214B2 (en) 2009-08-24 2009-08-24 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008267253A JP2008267253A (en) 2008-11-06
JP4583402B2 true JP4583402B2 (en) 2010-11-17

Family

ID=39777643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110471A Expired - Fee Related JP4583402B2 (en) 2007-04-19 2007-04-19 Control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4583402B2 (en)
DE (1) DE102007055633B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790787B2 (en) * 2008-12-17 2011-10-12 本田技研工業株式会社 Control device for internal combustion engine
WO2011135681A1 (en) * 2010-04-27 2011-11-03 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013096336A (en) * 2011-11-02 2013-05-20 Toyota Motor Corp Control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201891A (en) * 2001-12-27 2003-07-18 Denso Corp Device of controlling early warming-up of catalyst of multiple cylinder internal combustion engine
JP2005076552A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Internal combustion engine control device
JP2005256645A (en) * 2004-03-09 2005-09-22 Mitsubishi Electric Corp Operation control device of multiple cylinder engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979057A (en) * 1995-09-13 1997-03-25 Nissan Motor Co Ltd Control device for internal combustion engine
JP2000008892A (en) * 1998-06-19 2000-01-11 Hitachi Ltd Controller of engine comprising electromagnetic driving intake valve
JP2004176644A (en) 2002-11-28 2004-06-24 Denso Corp Cylinder intake air quantity detecting device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201891A (en) * 2001-12-27 2003-07-18 Denso Corp Device of controlling early warming-up of catalyst of multiple cylinder internal combustion engine
JP2005076552A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Internal combustion engine control device
JP2005256645A (en) * 2004-03-09 2005-09-22 Mitsubishi Electric Corp Operation control device of multiple cylinder engine

Also Published As

Publication number Publication date
DE102007055633B4 (en) 2017-02-23
DE102007055633A1 (en) 2008-10-30
JP2008267253A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5348190B2 (en) Control device for internal combustion engine
JP2005194891A (en) Engine controller
JP5278454B2 (en) Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
JP4583402B2 (en) Control device for internal combustion engine
WO2010106842A1 (en) Control device for engine
JP4987354B2 (en) Catalyst early warm-up control device for internal combustion engine
JP2008180225A (en) Engine control device
JP4270246B2 (en) Engine start control device and start control method
JP2008138579A (en) Variable valve timing control device for internal combustion engine
EP2594771B1 (en) Engine control device
JP5129214B2 (en) Control device for internal combustion engine
JP5140183B2 (en) Control device for internal combustion engine
US10900428B2 (en) Controller for internal combustion engine
JP5398994B2 (en) Operation control method for internal combustion engine
JP2822804B2 (en) Control device for internal combustion engine
JPH0783148A (en) Control device for internal combustion engine
JPH09126004A (en) Control device of internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP2012255398A (en) Internal combustion engine control device
JP3879342B2 (en) Exhaust gas purification device for internal combustion engine
JP4357388B2 (en) Control method for internal combustion engine
JP5886002B2 (en) Control device for internal combustion engine
JP4446873B2 (en) Air-fuel ratio control device for internal combustion engine
JP2022059349A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R151 Written notification of patent or utility model registration

Ref document number: 4583402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees