JP4583345B2 - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium Download PDF

Info

Publication number
JP4583345B2
JP4583345B2 JP2006190830A JP2006190830A JP4583345B2 JP 4583345 B2 JP4583345 B2 JP 4583345B2 JP 2006190830 A JP2006190830 A JP 2006190830A JP 2006190830 A JP2006190830 A JP 2006190830A JP 4583345 B2 JP4583345 B2 JP 4583345B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
layer
magnetic layer
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006190830A
Other languages
Japanese (ja)
Other versions
JP2006277937A (en
Inventor
洋之 上住
泰志 酒井
忠昭 及川
雅 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006190830A priority Critical patent/JP4583345B2/en
Publication of JP2006277937A publication Critical patent/JP2006277937A/en
Application granted granted Critical
Publication of JP4583345B2 publication Critical patent/JP4583345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、垂直磁気記録媒体に関し、より詳細には、コンピュータの外部記憶装置をはじめとする各種磁気記録装置に搭載される垂直磁気記録媒体に関するものである。   The present invention relates to a perpendicular magnetic recording medium, and more particularly to a perpendicular magnetic recording medium mounted on various magnetic recording devices including an external storage device of a computer.

磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。   As a technique for realizing a high density magnetic recording, a perpendicular magnetic recording system is drawing attention in place of the conventional longitudinal magnetic recording system.

垂直磁気記録媒体用の磁気記録層用材料としては、現在主にCoCr系合金結晶質膜が検討されており、垂直磁気記録に用いるために、hcp構造をもつCoCr系合金のc軸が膜面に垂直(c面が膜面に平行)になるように結晶配向を制御している。今後の更なる高密度化に対し、このCoCr系結晶粒の微細化、粒径のばらつきの低減、結晶粒間の磁気的相互作用の低減等の試みが行われている。   As a material for a magnetic recording layer for a perpendicular magnetic recording medium, a CoCr-based alloy crystalline film is currently being studied, and the c-axis of a CoCr-based alloy having an hcp structure is used as a film surface for use in perpendicular magnetic recording. The crystal orientation is controlled to be perpendicular to (the c-plane is parallel to the film surface). In order to further increase the density in the future, attempts have been made to refine the CoCr crystal grains, reduce the variation in grain size, reduce the magnetic interaction between crystal grains, and the like.

一方、長手記録媒体の高密度化のための磁性層構造制御の一方式として、一般にグラニュラー磁性層と呼ばれる、磁性結晶粒の周囲を酸化物や窒化物のような非磁性非金属物質で囲んだ構造をもつ磁性層が、例えばUSP5,679,473などで提案されている。このようなグラニュラー磁性膜では、非磁性非金属の粒界相が磁性粒子を分離するため、磁性粒子間の磁気的な相互作用が低下し、記録ビットの遷移領域に生じるジグザグ磁壁の形成を抑制するので、低ノイズ特性が得られるものと考えられている。   On the other hand, as a method of controlling the magnetic layer structure for increasing the density of the longitudinal recording medium, a magnetic crystal grain, generally called a granular magnetic layer, is surrounded by a nonmagnetic nonmetallic material such as an oxide or nitride. A magnetic layer having a structure has been proposed in, for example, USP 5,679,473. In such a granular magnetic film, the nonmagnetic nonmetallic grain boundary phase separates the magnetic particles, thereby reducing the magnetic interaction between the magnetic particles and suppressing the formation of zigzag domain walls that occur in the transition region of the recording bit. Therefore, it is considered that low noise characteristics can be obtained.

これらの背景の下、垂直磁気記録媒体の記録層として、グラニュラー磁性層を用いることが提案されている。例えば、IEEE Trans.,Magn.,Vol.36, 2393(2000)には、Ruを下地層とし、グラニュラー構造をもつCoPtCrO合金を磁性層とした垂直記録媒体が記載されている。しかし、ここではグラニュラー磁性層の下地層であるRu層の膜厚を増加させることによって、Ru層の結晶性、及びそのc軸配向性が向上し、それに伴い優れた磁気特性と電磁変換特性が得られている。なお、ここに挙げた例では、CoPtCrターゲットを用い、酸素含有雰囲気中での反応性スパッタにより、グラニュラー構造の磁性膜を形成している。しかしながら、反応性スパッタを用いた成膜では、酸化物の生成量はスパッタ雰囲気の酸素量に非常に敏感であるため、磁性結晶粒を取り巻く酸化物の量の制御が困難であるとともに、磁性結晶粒も容易に酸化され易く、磁性結晶粒と酸化物粒界のそれぞれの構成材料の分離が非常に困難であるため、改善が必要である。   Under these circumstances, it has been proposed to use a granular magnetic layer as a recording layer of a perpendicular magnetic recording medium. For example, IEEE Trans., Magn., Vol. 36, 2393 (2000) describes a perpendicular recording medium having Ru as an underlayer and a CoPtCrO alloy having a granular structure as a magnetic layer. However, here, by increasing the film thickness of the Ru layer, which is the underlying layer of the granular magnetic layer, the crystallinity of the Ru layer and its c-axis orientation are improved, resulting in excellent magnetic properties and electromagnetic conversion properties. Has been obtained. In the example given here, a magnetic film having a granular structure is formed by reactive sputtering in an oxygen-containing atmosphere using a CoPtCr target. However, in film formation using reactive sputtering, the amount of oxide produced is very sensitive to the amount of oxygen in the sputtering atmosphere, so it is difficult to control the amount of oxide surrounding the magnetic crystal grains, and the magnetic crystal Since the grains are also easily oxidized and it is very difficult to separate the constituent materials of the magnetic crystal grains and the oxide grain boundaries, improvement is necessary.

すなわち、酸化物と金属を含有するグラニュラー磁性層において、低ノイズ特性を確保するために結晶粒やその偏析構造を制御するためには、磁性層中に含まれる酸化物の量を適切に制御することが重要である。また、磁性結晶粒中には酸化物が含まれないようにすることも、優れた磁気特性を得るために必要となる。   That is, in the granular magnetic layer containing oxide and metal, in order to control the crystal grains and the segregation structure thereof in order to ensure low noise characteristics, the amount of oxide contained in the magnetic layer is appropriately controlled. This is very important. In addition, it is necessary to prevent the magnetic crystal grains from containing oxides in order to obtain excellent magnetic properties.

グラニュラー磁性層を用いた垂直磁気記録媒体において、磁性層中に含まれる酸化物量、及び酸化物を適切に粒界に分離させる方法について鋭意検討した結果、グラニュラー磁性層、すなわち磁性層が強磁性を有する結晶粒とそれを取り巻く酸化物を主体とする非磁性粒界からなる磁性層を垂直磁気記録媒体として用いるために以下のような構成および製造方法をとることが好適であることを見出した。   In a perpendicular magnetic recording medium using a granular magnetic layer, the amount of oxide contained in the magnetic layer and a method for appropriately separating the oxide into grain boundaries have been intensively studied. As a result, the granular magnetic layer, i.e., the magnetic layer becomes ferromagnetic. It has been found that the following configuration and manufacturing method are suitable for using as a perpendicular magnetic recording medium a magnetic layer composed of non-magnetic grain boundaries mainly composed of crystal grains and oxides surrounding them.

すなわち、本発明は、非磁性基体上に少なくともシード層、非磁性下地層、磁性層、保護膜が順次積層されてなる垂直磁気記録媒体であって、前記シード層は、面心立方(fcc)の結晶構造を有する金属または合金であり、前記非磁性下地層が六方最密充填(hcp)の結晶構造を有する金属または合金であり、前記磁性層が強磁性を有する結晶粒とそれを取り巻く酸化物を主体とする非磁性粒界からなり、該強磁性を有する結晶粒が少なくともCoとPtを含む合金であり、該酸化物を主体とする非磁性粒界の体積が、磁性層全体の体積の15%以上40%以下であり、前記磁性層の膜厚が5nm以上20nm以下であることを特徴とする。 That is, the present onset Ming, at least the seed layer on the non-magnetic substrate, a non-magnetic undercoat layer, a magnetic layer, a protective layer a perpendicular magnetic recording medium which are sequentially stacked, wherein the seed layer is a face-centered cubic (fcc ), The nonmagnetic underlayer is a metal or alloy having a hexagonal close-packed (hcp) crystal structure, and the magnetic layer surrounds the crystal grains having ferromagnetism and the surroundings. The non-magnetic grain boundary mainly composed of oxide is an alloy in which the ferromagnetic crystal grains contain at least Co and Pt, and the volume of the non-magnetic grain boundary mainly composed of the oxide is that of the entire magnetic layer. Ri 40% der than 15% or more by volume, the thickness of the magnetic layer is characterized in der Rukoto than 20nm or less 5 nm.

本発明の態様は、前記垂直磁気記録媒体おいて、前記非磁性基体が、プラスチック樹脂であることを特徴とする。 One aspect of the present invention is characterized in that, in the perpendicular magnetic recording medium, the nonmagnetic substrate is a plastic resin.

以上述べたように本発明によれば、グラニュラー磁性層、すなわち磁性層が強磁性を有する結晶粒とそれを取り巻く酸化物を主体とする非磁性粒界からなる磁性層と六方最密充填(hcp)の結晶構造を有する金属または合金である非磁性下地層とを有する垂直磁気記録媒体において、強磁性を有する結晶粒が少なくともCoとPtを含む合金であることとし、酸化物を主体とする非磁性粒界の体積が、磁性層全体の体積の15%以上40%以下とすることにより、結晶粒と粒界偏析を好ましく制御し、優れた磁気特性と低ノイズ特性を実現できる。   As described above, according to the present invention, a granular magnetic layer, that is, a magnetic layer composed of nonmagnetic grain boundaries mainly composed of crystal grains having ferromagnetism and surrounding oxides, and hexagonal close-packed packing (hcp ) In a perpendicular magnetic recording medium having a non-magnetic underlayer that is a metal or alloy having a crystal structure of (2), the ferromagnetic crystal grains are an alloy containing at least Co and Pt, By setting the volume of the magnetic grain boundary to 15% or more and 40% or less of the entire volume of the magnetic layer, crystal grains and grain boundary segregation are preferably controlled, and excellent magnetic characteristics and low noise characteristics can be realized.

さらに、磁性層の膜厚を5nm以上20nm以下にすることで、記録再生時に必要十分な再生出力を得ると共に、結晶配向性の劣化や結晶粒径の粗大化を防ぐことができる。   Furthermore, by setting the film thickness of the magnetic layer to 5 nm or more and 20 nm or less, it is possible to obtain a necessary and sufficient reproduction output during recording and reproduction, and to prevent deterioration of crystal orientation and coarsening of the crystal grain size.

さらにそのような垂直磁気記録媒体の製造方法として、磁性層の成膜を、強磁性を有する合金と酸化物とを含有する複合型ターゲットを用い、RFマグネトロンスパッタ法により行うこととし、かつターゲットに含まれる酸化物の体積が、ターゲット全体の体積の20%以上35%以下とすることで、強磁性を有する結晶粒内に取りこまれる酸化物を低下させることができる上、磁性層中に含まれる、主に粒界を形成する酸化物の量を好ましい範囲に制御することができる。   Furthermore, as a method of manufacturing such a perpendicular magnetic recording medium, the magnetic layer is formed by RF magnetron sputtering using a composite target containing a ferromagnetic alloy and an oxide, and When the volume of the oxide contained is 20% or more and 35% or less of the total volume of the target, the oxide incorporated in the crystal grains having ferromagnetism can be reduced, and the oxide is contained in the magnetic layer. The amount of oxide mainly forming grain boundaries can be controlled within a preferred range.

このような媒体構成及び製造方法とすることで、容易に優れた垂直磁気記録媒体が得られることから、本発明の媒体を成膜するにあたっては基板加熱を行う必要がなくなり、製造プロセスの簡易化と低コスト化が図れると同時に、従来のAlやガラス基板以外にも、安価なプラスチックを基板として使用することも可能となる。   By adopting such a medium configuration and manufacturing method, an excellent perpendicular magnetic recording medium can be easily obtained. Therefore, it is not necessary to heat the substrate when forming the medium of the present invention, and the manufacturing process is simplified. At the same time, the cost can be reduced, and at the same time, it is possible to use an inexpensive plastic as the substrate in addition to the conventional Al or glass substrate.

以下、図面を参照して、本発明の好ましい形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の垂直磁気記録媒体の1の実施例の構造を説明するための断面模式図であり、垂直磁気記録媒体は非磁性基体1上に少なくとも非磁性下地層2、磁性層3及び保護膜4が順に形成された構造を有しており、さらにその上に液体潤滑剤層5が形成されている。なお、非磁性下地層2と非磁性基体1との間に、非磁性下地層2の結晶配向性や結晶粒径の制御の目的でシード層11を付与しても、本発明の効果は変わらず発揮される。さらには、非磁性下地層2と非磁性基体1との間に、一般に裏打層と呼ばれる、記録再生感度を向上させるための比較的厚い(数100nmの)軟磁性層を付与した場合でも、同様である。   FIG. 1 is a schematic cross-sectional view for explaining the structure of one embodiment of the perpendicular magnetic recording medium of the present invention. The perpendicular magnetic recording medium has at least a nonmagnetic underlayer 2 and a magnetic layer 3 on a nonmagnetic substrate 1. And a protective film 4 are formed in order, and a liquid lubricant layer 5 is further formed thereon. Even if the seed layer 11 is provided between the nonmagnetic underlayer 2 and the nonmagnetic substrate 1 for the purpose of controlling the crystal orientation and crystal grain size of the nonmagnetic underlayer 2, the effect of the present invention is not changed. It is demonstrated all the time. Further, even when a relatively thick (several hundred nm) soft magnetic layer for improving the recording / reproducing sensitivity, which is generally called a backing layer, is provided between the nonmagnetic underlayer 2 and the nonmagnetic substrate 1. It is.

非磁性基体1としては、通常の磁気記録媒体用に用いられる、NiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができるほか、基板加熱を必要としないことから、ポリカーボネート、ポリオレフィンやその他のプラスチック樹脂を射出成形することで作製した基板をも用いることができる。   As the nonmagnetic substrate 1, it is possible to use an Al alloy plated with NiP, tempered glass, crystallized glass, or the like used for a normal magnetic recording medium. Substrates produced by injection molding of polyolefin or other plastic resins can also be used.

非磁性下地層2は六方最密充填(hcp)の結晶構造を有する金属または合金であることが必要である。材料は特に限定されないが、その中でも、Ti,Re,Ru,Osのいずれかの金属、またはTi,Re,Ru,Osのうちの少なくとも一種を含む合金を用いることが、グラニュラー磁性層の結晶配向を好ましく制御するためには望ましい。膜厚も特に限定されるものではないが、5nm以上30nm程度以下であることが望ましい。   The nonmagnetic underlayer 2 needs to be a metal or alloy having a hexagonal close-packed (hcp) crystal structure. The material is not particularly limited, and among these, the use of a metal of any one of Ti, Re, Ru, and Os, or an alloy containing at least one of Ti, Re, Ru, and Os can cause the crystal orientation of the granular magnetic layer. It is desirable to control the above. The film thickness is not particularly limited, but is preferably about 5 nm to 30 nm.

また、この非磁性下地層2の結晶配向や粒径の制御の目的でシード層11を付与する場合には、シード層としては、面心立方(fcc)の結晶構造を有する金属または合金であることが望ましく、その中でも、Cu,Au,Pd,Pt,Irのいずれかの金属、またはCu,Au,Pd,Pt,Irのうちの少なくとも一種を含む合金、または、少なくともNiとFeを含む合金であることが望ましい。   When the seed layer 11 is provided for the purpose of controlling the crystal orientation and grain size of the nonmagnetic underlayer 2, the seed layer is a metal or alloy having a face-centered cubic (fcc) crystal structure. Among them, among them, any metal of Cu, Au, Pd, Pt, Ir, an alloy containing at least one of Cu, Au, Pd, Pt, Ir, or an alloy containing at least Ni and Fe It is desirable that

さらに保護膜4は、例えばカーボンを主体とする薄膜が用いられる。また液体潤滑剤層5は、例えばパーフルオロポリエーテル系の潤滑剤を用いることができる。   Further, for example, a thin film mainly composed of carbon is used as the protective film 4. The liquid lubricant layer 5 may be a perfluoropolyether lubricant, for example.

磁性層3は、強磁性を有する結晶粒とそれを取り巻く非磁性粒界からなり、かつその非磁性粒界が、金属の酸化物からなる、いわゆるグラニュラー磁性層である。強磁性を有する結晶粒は、少なくともCoとPtを含む合金が望ましい。また、CoPt合金にCrやTa,B,Cuなどを添加することも、磁気特性を制御し低ノイズ特性を得るために好適である。   The magnetic layer 3 is a so-called granular magnetic layer composed of crystal grains having ferromagnetism and nonmagnetic grain boundaries surrounding the crystal grains, and the nonmagnetic grain boundaries are composed of a metal oxide. The ferromagnetic crystal grains are preferably an alloy containing at least Co and Pt. Further, addition of Cr, Ta, B, Cu or the like to the CoPt alloy is also suitable for controlling magnetic characteristics and obtaining low noise characteristics.

強磁性を有する結晶粒は、結晶格子のうちのc軸が優先的に膜面に垂直に配向するような構造をとる必要がある。   The crystal grains having ferromagnetism must have a structure in which the c-axis of the crystal lattice is preferentially oriented perpendicular to the film surface.

ここで、酸化物を主体とする非磁性粒界の体積は、磁性層全体の体積の15%以上40%以下であることが必要である。15%以下の場合には、結晶粒と結晶粒との間に十分な粒界が存在できず、粒間の磁気的な相互作用を有効に低下することができないため、媒体ノイズの増加を招く。一方40%以上になると結晶粒の結晶配向性が劣化してしまう。   Here, the volume of the nonmagnetic grain boundary mainly composed of oxide needs to be 15% or more and 40% or less of the entire volume of the magnetic layer. In the case of 15% or less, a sufficient grain boundary cannot exist between the crystal grains, and the magnetic interaction between the grains cannot be effectively reduced, so that the medium noise increases. . On the other hand, when it is 40% or more, the crystal orientation of the crystal grains deteriorates.

なお、粒界を形成する酸化物は、物理化学的に安定であれば特に材料に制限はなく、Mg,Cr,Ti,ZrやSi等の酸化物を用いることができる。   Note that the oxide forming the grain boundary is not particularly limited as long as it is physically and chemically stable, and oxides such as Mg, Cr, Ti, Zr, and Si can be used.

さらに、磁性層3の膜厚は、5nm以上20nm以下であることが好適である。5nm以下では記録再生時に十分な信号が得られず、不適である。一方20nm以上では、結晶粒径が増大しやすいこと及び結晶配向が乱れやすいことから、望ましくない。   Furthermore, the thickness of the magnetic layer 3 is preferably 5 nm or more and 20 nm or less. If it is 5 nm or less, a sufficient signal cannot be obtained at the time of recording and reproduction, which is inappropriate. On the other hand, if it is 20 nm or more, it is not desirable because the crystal grain size tends to increase and the crystal orientation tends to be disturbed.

以上説明したとおりの層構成からなる、図1に示した磁気記録媒体の製造に関し、磁性層3の形成にあたっては、以下のような製造方法をとることが望ましい。   Regarding the manufacture of the magnetic recording medium shown in FIG. 1 having the layer structure as described above, it is desirable to take the following manufacturing method when forming the magnetic layer 3.

まず、磁性層の成膜にあたっては、強磁性を有する合金と酸化物とを含有する複合型ターゲットを用い、RFマグネトロンスパッタ法により行うことが好適である。このような作製方法をとることにより、酸化物を含まないターゲットを酸素含有雰囲気中で反応性スパッタした場合に比べ、結晶粒と非磁性粒界の分離が進み、好ましいグラニュラー構造をとることができる。   First, the magnetic layer is preferably formed by RF magnetron sputtering using a composite target containing a ferromagnetic alloy and an oxide. By adopting such a manufacturing method, the separation of crystal grains and non-magnetic grain boundaries can be advanced and a preferable granular structure can be obtained as compared with the case of reactive sputtering of an oxide-free target in an oxygen-containing atmosphere. .

さらに、使用する複合型ターゲットに含まれる酸化物の体積が、ターゲット全体の体積の20%以上35%以下とすることが、磁性層中に形成される非磁性粒界の体積を前述した適切な領域に制御するために必要である。   Further, the volume of the oxide contained in the composite target to be used is 20% or more and 35% or less of the total volume of the target. Necessary to control the area.

一方、本発明における垂直磁気記録媒体の製造にあたっては、従来の磁気記録媒体のような基板加熱工程を省略しても、優れた垂直磁気記録媒体を得る事が可能となり、製造工程の簡略化に伴う製造コストの低下をも図る事ができる。また、基板加熱が必要ないため、ポリカーボネートやポリオレフィン等のプラスチック樹脂を材料とした非磁性基体を用いることも可能である。   On the other hand, in the production of the perpendicular magnetic recording medium in the present invention, it is possible to obtain an excellent perpendicular magnetic recording medium even if the substrate heating step as in the conventional magnetic recording medium is omitted, which simplifies the production process. The accompanying manufacturing cost can also be reduced. Further, since there is no need to heat the substrate, it is possible to use a non-magnetic substrate made of a plastic resin such as polycarbonate or polyolefin.

以下に本発明の具体的な実施例について説明するが、これらの実施例は本発明を好適に説明するものであり、これらに限定することを意図するものでない。   Specific examples of the present invention will be described below, but these examples are illustrative of the present invention, and are not intended to limit the present invention.

[実施例1]
非磁性基体として射出成形されたポリカーボネート基板(3.5”ディスク形状)を用い、これを洗浄後スパッタ装置内に導入し、Arガス圧5mTorr下で、Ptからなるシード層5nmを形成後、膜厚を0〜20nmまで変更したRuからなる非磁性下地層をArガス圧5mTorr下で形成した。さらに引き続いて、SiOを含むCoCr10Pr15ターゲットを用い、RFマグネトロンスパッタ法によりArガス圧5mTorr下でグラニュラー磁性層20nmを形成、ついでカーボン保護層10nmを積層した後真空中から取り出し、その後液体潤滑剤1.5nmを塗布して、図1に示すような構成の磁気記録媒体を作製した。成膜に先立つ基板加熱は行っていない。
[Example 1]
A polycarbonate substrate (3.5 "disk shape) injection-molded as a non-magnetic substrate is used. After cleaning, this is introduced into a sputtering apparatus, and a seed layer of 5 nm of Pt is formed under an Ar gas pressure of 5 mTorr. A nonmagnetic underlayer made of Ru having a thickness changed from 0 to 20 nm was formed under an Ar gas pressure of 5 mTorr, and subsequently, a CoCr 10 Pr 15 target containing SiO 2 was used and an Ar gas pressure of 5 mTorr was formed by RF magnetron sputtering. A granular magnetic layer having a thickness of 20 nm was formed below, a carbon protective layer having a thickness of 10 nm was stacked, and then taken out from the vacuum. Thereafter, a liquid lubricant of 1.5 nm was applied to prepare a magnetic recording medium having a structure as shown in FIG. Substrate heating prior to film formation is not performed.

図2に、磁性層中の非磁性粒界の占める体積比に対する、膜面に垂直方向に磁場を印加しながら振動試料型磁力計により測定した保磁力Hの値の変化を示す。H値は磁性層中の非磁性粒界の占める体積比が15%以上40%以下の場合に3000Oe以上の高い値を示すことがわかる。 Figure 2 shows to volume ratio occupied by the non-magnetic grain boundaries of the magnetic layer, the change in the value of the coercive force H C as measured by a vibrating sample magnetometer while applying a magnetic field in the direction perpendicular to the film plane. It can be seen that the HC value shows a high value of 3000 Oe or more when the volume ratio of the nonmagnetic grain boundaries in the magnetic layer is 15% or more and 40% or less.

図3に、ターゲットに含まれるSiOの体積比と、磁性層中の非磁性粒界が占める体積比との関係を示す。ここで磁性層中の非磁性粒界が占める体積比は、透過型電子顕微鏡(TEM)による平面像から、結晶粒と粒界の占める面積をそれぞれ求めて算出した。図より、ターゲットに含まれるSiO量が体積比で20%以上35%以下の領域において、磁性層中の非磁性粒界が占める体積比が15%以上40%以下になることがわかる。 FIG. 3 shows the relationship between the volume ratio of SiO 2 contained in the target and the volume ratio occupied by nonmagnetic grain boundaries in the magnetic layer. Here, the volume ratio occupied by the nonmagnetic grain boundaries in the magnetic layer was calculated by obtaining the area occupied by the crystal grains and the grain boundaries from a planar image obtained by a transmission electron microscope (TEM). From the figure, it is understood that the volume ratio occupied by the nonmagnetic grain boundaries in the magnetic layer is 15% or more and 40% or less in the region where the amount of SiO 2 contained in the target is 20% or more and 35% or less.

[実施例2]
ターゲットに含まれるSiO量を25%に固定し、成膜された磁性層の膜厚を3〜50nmまで変化させた以外は実施例1と同様にして、図1に示すような構成の磁気記録媒体を作製した。
[Example 2]
The magnetic structure shown in FIG. 1 is the same as in Example 1 except that the amount of SiO 2 contained in the target is fixed at 25% and the film thickness of the formed magnetic layer is changed from 3 to 50 nm. A recording medium was produced.

図4に、図2に示したのと同様にして測定したH値の磁性層膜厚依存性を示す。H値は膜厚5nm以上20nm以下の領域で3000Oe以上の高い値を示している。理論に拘束されることを意図とするものでないが、5nmより薄い領域では熱擾乱の影響によりHcが低下したものと考えられ、一方20nmより厚い領域では、主に、磁性層中の結晶粒の結晶配向性が乱れることによってHが低下したものと考えられる。 FIG. 4 shows the dependence of the HC value measured in the same manner as shown in FIG. 2 on the thickness of the magnetic layer. H C value shows a high value of more than 3000Oe following areas 20nm or more thickness 5 nm. Although not intended to be bound by theory, it is considered that Hc is reduced due to the influence of thermal disturbance in the region thinner than 5 nm, while in the region thicker than 20 nm, mainly the crystal grains in the magnetic layer It is considered that HC was lowered due to disorder of crystal orientation.

本発明による垂直磁気記録媒体の1の実施例の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of one Example of the perpendicular magnetic recording medium by this invention. 磁性層中の非磁性粒界の占める体積比に対する、膜面に垂直方向に磁場を印加しながら振動試料型磁力計により測定した保磁力Hcの値の変化を示す図である。It is a figure which shows the change of the value of the coercive force Hc measured with the vibrating sample type magnetometer, applying a magnetic field to the film surface in the direction perpendicular | vertical with respect to the volume ratio which the nonmagnetic grain boundary in a magnetic layer occupies. ターゲットに含まれるSiOの体積比と、磁性層中の非磁性粒界が占める体積比との関係を示した図である。And SiO 2 volume ratio in the target is a diagram showing the relationship between the non-magnetic grain boundary occupied volume ratio of the magnetic layer. 図2に示したのと同様にして測定したHc値の磁性層膜厚依存性を示した図である。It is the figure which showed the magnetic layer film thickness dependence of the Hc value measured similarly to having shown in FIG.

符号の説明Explanation of symbols

1 非磁性基体
11 シード層
2 非磁性下地層
3 磁性層
4 保護層
5 液体潤滑層
1 Nonmagnetic Substrate 11 Seed Layer 2 Nonmagnetic Underlayer 3 Magnetic Layer 4 Protective Layer 5 Liquid Lubricating Layer

Claims (2)

非磁性基体上に少なくともシード層、非磁性下地層、磁性層、保護膜が順次積層されてなる垂直磁気記録媒体であって、前記シード層は、面心立方(fcc)の結晶構造を有する金属または合金であり、前記非磁性下地層が六方最密充填(hcp)の結晶構造を有する金属または合金であり、前記磁性層が強磁性を有する結晶粒とそれを取り巻く酸化物を主体とする非磁性粒界からなり、該強磁性を有する結晶粒が少なくともCoとPtを含む合金であり、該酸化物を主体とする非磁性粒界の体積が、磁性層全体の体積の15%以上40%以下であり、 前記磁性層の膜厚が5nm以上20nm以下であることを特徴とする垂直磁気記録媒体。 A perpendicular magnetic recording medium in which at least a seed layer, a nonmagnetic underlayer, a magnetic layer, and a protective film are sequentially laminated on a nonmagnetic substrate, wherein the seed layer is a metal having a face-centered cubic (fcc) crystal structure Or an alloy, wherein the non-magnetic underlayer is a metal or alloy having a hexagonal close-packed (hcp) crystal structure, and the magnetic layer is mainly composed of ferromagnetic crystal grains and oxides surrounding them. A crystal grain having a magnetic grain boundary, the crystal grains having ferromagnetism being an alloy containing at least Co and Pt, and the volume of the nonmagnetic grain boundary mainly composed of the oxide is 15% or more and 40% of the total volume of the magnetic layer. hereinafter der is, the perpendicular magnetic recording medium film thickness of the magnetic layer is characterized in der Rukoto than 20nm or less 5 nm. 前記非磁性基体が、プラスチック樹脂であることを特徴とする請求項1に記載の垂直磁気記録媒体。 The perpendicular magnetic recording medium according to claim 1, wherein the nonmagnetic substrate is a plastic resin.
JP2006190830A 2006-07-11 2006-07-11 Perpendicular magnetic recording medium Expired - Lifetime JP4583345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190830A JP4583345B2 (en) 2006-07-11 2006-07-11 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006190830A JP4583345B2 (en) 2006-07-11 2006-07-11 Perpendicular magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001374897A Division JP4582978B2 (en) 2001-12-07 2001-12-07 Method for manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2006277937A JP2006277937A (en) 2006-10-12
JP4583345B2 true JP4583345B2 (en) 2010-11-17

Family

ID=37212516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190830A Expired - Lifetime JP4583345B2 (en) 2006-07-11 2006-07-11 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4583345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849805B (en) * 2014-01-23 2019-06-18 富士电机株式会社 Perpendicular magnetic recording medium

Also Published As

Publication number Publication date
JP2006277937A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4582978B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US7799446B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof, magnetic recording apparatus
JP5397926B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP2003217107A (en) Magnetic recording medium
JP2005190517A (en) Perpendicular magnetic recording medium and magnetic storage device
KR20080079199A (en) Perpendicular magnetic recording medium and method of menufacturing the same
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP5412729B2 (en) Perpendicular magnetic recording medium
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP5105332B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2002190108A (en) Magnetic recording medium and its production method
US20090226606A1 (en) Manufacturing method of a perpendicular magnetic recording medium
JP2006120231A (en) Perpendicular magnetic recording medium
JP3637053B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20070207348A1 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
JP2008276859A (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing device
JP2006260633A (en) Magnetic recording medium and magnetic storage device
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
JP2003203330A (en) Magnetic recording medium
JP4583345B2 (en) Perpendicular magnetic recording medium
JP5345543B2 (en) Method for manufacturing perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term