JP4580747B2 - Measuring method for plastic zone dimensions - Google Patents
Measuring method for plastic zone dimensions Download PDFInfo
- Publication number
- JP4580747B2 JP4580747B2 JP2004361739A JP2004361739A JP4580747B2 JP 4580747 B2 JP4580747 B2 JP 4580747B2 JP 2004361739 A JP2004361739 A JP 2004361739A JP 2004361739 A JP2004361739 A JP 2004361739A JP 4580747 B2 JP4580747 B2 JP 4580747B2
- Authority
- JP
- Japan
- Prior art keywords
- plastic
- plastic zone
- temperature
- measurement object
- max
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Radiation Pyrometers (AREA)
Description
本発明は、部材の応力集中箇所に生じた塑性域の寸法を推定する塑性域寸法測定方法に関するものである。 The present invention relates to a plastic region size measuring method for estimating a size of a plastic region generated at a stress concentration portion of a member.
自動車の車体フレーム等に見られるように、近年の構造物には軽量化を目的として積極的に薄鋼板が用いられるようになっている。ところで、これらの構造物に発生する破損は、薄鋼板に加工された切欠き部等に応力が集中した結果によるものが多く、そのため、応力集中部の強度を評価することが重要となる。 As seen in car body frames and the like, thin steel plates are actively used in recent structures for the purpose of weight reduction. By the way, the damage generated in these structures is often caused by the result of stress concentration in the notch or the like processed into a thin steel plate. Therefore, it is important to evaluate the strength of the stress concentration portion.
応力集中部には局所的に塑性変形が発生している可能性があり、局所塑性部の強度を推定するパラメータとして塑性域寸法がある。しかしながら、既に組み立てられた構造物について塑性域寸法を例えばひずみゲージを用いて検出することは実質的に不可能なことが多い。 There is a possibility that plastic deformation is locally generated in the stress concentration portion, and there is a plastic region dimension as a parameter for estimating the strength of the local plastic portion. However, it is often virtually impossible to detect the plastic zone size of a structure already assembled using, for example, a strain gauge.
そこで近年では、部材が変形するときに生じるひずみエネルギが、塑性変形域において大部分熱エネルギに変換されることに着目し、赤外線カメラを用いた塑性域寸法測定方法が提案されている(例えば、非特許文献1参照)。
しかしながら、塑性変形で部材に発生した熱は材料の熱伝導特性により塑性域外へ伝達されてしまうため、温度上昇の挙動を正確に調べるためには部材の温度を測定するだけでは足らず、熱伝導特性を検討することが不可欠である。 However, since the heat generated in the member due to plastic deformation is transferred to the outside of the plastic region due to the heat conduction characteristics of the material, it is not only necessary to measure the temperature of the member to accurately investigate the behavior of the temperature rise. It is essential to consider.
これまでに塑性変形による発熱挙動を調べた例はいくつか報告されているが、FEM(有限要素法)等の計算によって温度を推定するに留まっており、発熱・伝熱特性を含めて系統的に塑性域寸法と温度上昇との関係を調べたものはない。また、赤外線カメラで測定された温度から塑性域を推定するには繁雑な解析が必要となる。 There have been several reports on the investigation of heat generation behavior due to plastic deformation so far, but only the temperature is estimated by calculation such as FEM (finite element method), and systematic including heat generation and heat transfer characteristics has been reported. None of the studies investigated the relationship between the plastic zone size and temperature rise. Moreover, complicated analysis is required to estimate the plastic region from the temperature measured by the infrared camera.
さらに、塑性変形の影響を調べるために、部材に対して一方向から引張荷重を加えることが一般的に行われているが、組み立てられた部材のほとんどが繰り返し負荷の条件下で試験(または操業)が行われていることからすれば、これ以外の新たな荷重を別に加えることは極力避けるべきである。 Furthermore, in order to investigate the effects of plastic deformation, it is common practice to apply a tensile load to a member from one direction, but most of the assembled members are tested (or operated) under repeated load conditions. ) Should be avoided as much as possible by adding other new loads.
本発明は以上のような従来の塑性域寸法測定方法における課題を考慮してなされたものであり、簡単な方法で部材の応力集中部に生じた塑性域寸法を測定することができる塑性域寸法測定方法を提供するものである。 The present invention has been made in consideration of the problems in the conventional method for measuring a plastic region dimension as described above, and a plastic region dimension capable of measuring a plastic region dimension generated in a stress concentration portion of a member by a simple method. A measurement method is provided.
本発明は、繰り返し荷重が加えられる測定対象物の、塑性変形によって生じる塑性域寸法を測定する塑性域寸法測定方法において、繰り返し荷重が加えられた測定対象物の温度変動を赤外線センサによって検出し、発熱と吸熱が繰り返される温度変動の平均温度θmを求め、この平均温度θmと測定対象物の初期温度θ0との差(θm−θ0)の最大値を最大温度上昇量tmaxとして求め、温度変動に影響を与える測定対象物固有の強度・伝熱パラメータを既知数pとするとき、
上記塑性域寸法sを下記式
塑性域寸法s1.7=α1・C・tmax/p
ただし、Cは塑性域寸法推定値のバラツキの中心を規定する定数、α1は塑性域寸法の許容誤差を考慮した補正係数
により求める塑性域寸法測定方法である。
The present invention is a plastic area size measurement method for measuring a plastic area dimension caused by plastic deformation of a measurement object to which a repeated load is applied, and detects a temperature variation of the measurement object to which a repeated load is applied by an infrared sensor, An average temperature θ m of temperature fluctuations in which heat generation and endotherm are repeated is obtained, and the maximum value of the difference (θ m −θ 0 ) between the average temperature θ m and the initial temperature θ 0 of the measurement object is determined as the maximum temperature increase t max. When the strength / heat transfer parameter specific to the measurement object affecting the temperature fluctuation is a known number p,
The plastic zone size s is expressed by the following formula: Plastic zone size s 1.7 = α 1 · C · t max / p
However, C is a constant that defines the center of variation in the estimated plastic zone size, and α 1 is a plastic zone size measuring method that is determined by a correction factor that takes into account the allowable error in the plastic zone size.
本発明において、塑性域寸法とは、例えば、き裂状欠陥の先端に生じた塑性域において、き裂進行方向の最大長さを意味する。 In the present invention, the plastic zone dimension means, for example, the maximum length in the crack progressing direction in a plastic zone generated at the tip of a crack-like defect.
本発明において、上記強度・伝熱パラメータpとして、(降伏応力2/縦弾性係数)・〔(密度・比熱・負荷周波数)/熱伝導率〕を与えることにより、塑性域寸法を測定することができる。 In the present invention, by giving (yield stress 2 / longitudinal elastic modulus) · [(density / specific heat / load frequency) / thermal conductivity] as the strength / heat transfer parameter p, the size of the plastic zone can be measured. it can.
本発明は、繰り返し荷重が加えられる測定対象物の、塑性変形によって生じる塑性域寸法を測定する塑性域寸法測定方法において、繰り返し荷重が加えられた測定対象物の温度変動を赤外線センサによって検出し、発熱と吸熱が繰り返される温度変動の平均温度θmを求め、この平均温度θmと測定対象物の初期温度θ0との差(θm−θ0)の最大値を最大温度上昇量tmaxとして求め、測定対象物が鉄系金属、アルミ系金属、あるいはチタン系金属のいずれかであって、
上記塑性域寸法sを下記式
塑性域寸法s1.7=α2・F・tmax・熱伝導率/(降伏応力2・負荷周波数)
ただし、Fは各金属に応じた定数、α2は塑性域寸法の許容誤差を考慮した補正係数
により求める塑性域寸法測定方法である。
The present invention is a plastic area size measurement method for measuring a plastic area dimension caused by plastic deformation of a measurement object to which a repeated load is applied. An average temperature θ m of temperature fluctuations in which heat generation and endotherm are repeated is obtained, and the maximum value of the difference (θ m −θ 0 ) between the average temperature θ m and the initial temperature θ 0 of the measurement object is determined as the maximum temperature increase t max. The object to be measured is either iron-based metal, aluminum-based metal, or titanium-based metal,
The plastic zone size s is expressed by the following formula: Plastic zone size s 1.7 = α 2 · F · t max · Thermal conductivity / (Yield stress 2 · Load frequency)
However, F is a constant corresponding to each metal, and α 2 is a plastic area dimension measurement method obtained by a correction coefficient considering an allowable error of the plastic area dimension.
本発明によれば、簡単な方法で測定対象物における塑性変形部分の塑性域寸法を推定することができる。 According to the present invention, it is possible to estimate the plastic zone size of the plastic deformation portion in the measurement object by a simple method.
以下、図面に示した実施の形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings.
図1は、応力が集中するモデルとして、き裂状欠陥を持つ部材を示したものである。 FIG. 1 shows a member having a crack-like defect as a model in which stress is concentrated.
同図において、1は薄板状の部材(測定対象物)であり、2はその部材1に存在するき裂状欠陥である。
In the figure,
この部材1に対し繰り返し負荷(矢印AおよびB方向の互いに反対向きの引張荷重)を加えた場合のき裂状欠陥2の先端について温度調査対象部分(測定部)3を設定し、赤外線カメラを用いて温度変動を測定した。なお、き裂状欠陥2は矢印AおよびB方向に負荷が加わった場合に最も破壊の危険性が高くなる設定である。
A temperature investigation target part (measurement part) 3 is set for the tip of the crack-
図2は測定結果を模式的に示したものであり、同図(a)は部材1に塑性変形がない場合の温度変化を比較例として示したものであり、同図(b)は部材1に塑性変形が生じた場合の温度変動を示している。
FIG. 2 schematically shows the measurement results. FIG. 2A shows a temperature change when the
両図において、部材1は塑性変形してもしなくても発熱および吸熱による温度変動が発生するが、塑性変形しない場合には、図2(a)に示されるように初期状態と同一の平均温度θ0を境として温度が変動する。
In both figures, the
一方、塑性変形が発生した場合は、繰り返し負荷が作用した場合に発熱のみが発生するため平均温度は初期温度θ0から次第に上昇し、ある温度θmで飽和する。 On the other hand, when plastic deformation occurs, only heat generation occurs when a repeated load is applied, so the average temperature gradually increases from the initial temperature θ 0 and saturates at a certain temperature θ m .
本発明は、この十分に飽和した時点(最大値)での温度上昇量tmaxを用いて塑性域寸法sを測定するとともに、以下に示す各種因子の影響を考慮したものである。
(1) 各種因子の影響
き裂状欠陥2の先端に塑性変形が発生した場合に、上記した通り平均温度が上昇するが、その温度上昇の挙動には以下の影響が含まれると考えられる。
a)幾何学的な塑性域寸法の影響、b)材料の強度の影響、およびc)伝熱特性の影響である。
In the present invention, the plastic zone dimension s is measured using the temperature rise t max at the time when it is sufficiently saturated (maximum value), and the influence of various factors described below is taken into consideration.
(1) Effects of various factors When plastic deformation occurs at the tip of the crack-
a) the influence of the geometric plastic zone size, b) the influence of the material strength, and c) the influence of the heat transfer properties.
次に上記各影響について検討する。 Next, consider each of the above effects.
a) 幾何学的な塑性域寸法の影響
材料の発熱特性・伝熱特性が全く同条件である場合、塑性域寸法が大きければ大きい方がき裂先端の発熱量が増大し、温度上昇が大きくなると考えられる。この影響を調べるため、まず強度・伝熱特性を全く同条件とし、塑性域寸法のみを変化させた場合の影響を調べる。
a) Influence of geometric plastic zone size When the exothermic characteristics and heat transfer characteristics of the material are exactly the same, the larger the plastic zone size, the greater the amount of heat generated at the crack tip and the greater the temperature rise. Conceivable. In order to investigate this influence, first, the strength and heat transfer characteristics are made the same conditions, and the influence when only the plastic zone size is changed is examined.
塑性変形による発熱量は塑性域寸法の面積に比例すると考えられる。塑性域の形状が負荷条件の変化に従い相似形に変化すると、塑性域の面積は塑性域寸法の二乗に比例する。しかしながら塑性域の形状は複雑であり必ずしも相似形に変化すると限らないことから、便宜上、塑性域の面積は塑性域寸法のA乗に比例するものと仮定する。 The amount of heat generated by plastic deformation is considered to be proportional to the area of the plastic zone. When the shape of the plastic zone changes to a similar shape as the load condition changes, the area of the plastic zone is proportional to the square of the plastic zone size. However, since the shape of the plastic zone is complicated and does not necessarily change to a similar shape, it is assumed for the sake of convenience that the area of the plastic zone is proportional to the A-th power of the plastic zone size.
b) 材料の強度の影響
塑性変形が生じた場合、材料の強度によって発熱量が異なると考えられる。その影響を調べるため、次に、伝熱特性および塑性域寸法を同一とし、材質のみ変化させた場合の温度変化への影響を調べる。
b) Effect of material strength When plastic deformation occurs, the amount of heat generated is considered to vary depending on the strength of the material. In order to investigate the influence, next, the heat transfer characteristic and the plastic region size are made the same, and the influence on the temperature change when only the material is changed is examined.
一般に、塑性変形による発熱量はその塑性仕事に比例し、き裂状欠陥の先端の塑性仕事はき裂先端のパラメータであるJ積分に対応すると考えられる。J積分は塑性域が過大でない限り(応力拡大係数)2/(縦弾性係数)に比例する。すなわち、発熱量∝応力拡大係数2/縦弾性係数となる。 In general, the amount of heat generated by plastic deformation is proportional to the plastic work, and the plastic work at the tip of a crack-like defect is considered to correspond to the J integral, which is a parameter at the crack tip. The J-integral is proportional to (stress intensity factor) 2 / (longitudinal elastic modulus) unless the plastic region is excessive. That is, the calorific value∝stress intensity factor 2 / longitudinal elastic modulus.
一方、塑性域は(応力拡大係数)2/(降伏応力)2に比例する。すなわち、塑性域∝応力拡大係数2/降伏応力2となる。 On the other hand, the plastic zone is proportional to (stress intensity factor) 2 / (yield stress) 2 . That is, the plastic region ∝ stress intensity factor 2 / yield stress 2 is obtained.
以上の関係より、発熱量と塑性域の関係は以下のように表される。
発熱量∝(降伏応力2/縦弾性係数)×塑性域寸法s ……(1)
ここで、塑性域寸法sが一定であると仮定すると、温度上昇量は(降伏応力2/縦弾性係数)に比例すると単純化される。
From the above relationship, the relationship between the calorific value and the plastic zone is expressed as follows.
Calorific value ∝ (yield stress 2 / longitudinal elastic modulus) x plastic area size s (1)
Here, assuming that the plastic zone dimension s is constant, the temperature rise is simplified to be proportional to (yield stress 2 / longitudinal elastic modulus).
c) 伝熱特性の影響
塑性変形による発熱量が同一であっても、材料の伝熱特性が異なると、発生する温度の挙動も異なることになる。この影響を調べるために、さらに次に、塑性域寸法s、材料の強度を同一とし、材料の伝熱特性を変化させた場合の影響を調べる。
c) Influence of heat transfer characteristics Even if the amount of heat generated by plastic deformation is the same, if the heat transfer characteristics of the material are different, the behavior of the generated temperature will also be different. In order to investigate this influence, next, the influence when changing the heat transfer characteristic of the material with the same plastic zone size s and the strength of the material is examined.
既に発表されている文献によれば、繰り返し負荷の加わる物体が局所的に発熱した場合、その温度上昇量はフーリエ数に依存する。フーリエ数は(熱伝導率)/(密度・比熱・負荷周波数)に比例する無次元数であり、フーリエ数が小さいほど温度上昇量は大きくなり、この逆に、フーリエ数が大きいほど温度上昇量は小さくなる。 According to literature already published, when an object to which a load is repeatedly applied generates heat locally, the amount of temperature rise depends on the Fourier number. The Fourier number is a dimensionless number proportional to (thermal conductivity) / (density / specific heat / load frequency). The smaller the Fourier number, the larger the temperature rise, and vice versa. Becomes smaller.
これにより、局所発熱による温度上昇はフーリエ数に反比例すると考えられ、また、(密度・比熱・負荷周波数)/(熱伝導率)に比例すると考えることもできる。 Thus, the temperature rise due to local heat generation is considered to be inversely proportional to the Fourier number, and can also be considered to be proportional to (density / specific heat / load frequency) / (thermal conductivity).
(2) 解析による各種影響の検証
上述したa)〜c)の影響を調べるため解析的検討を行った。解析では図1に示した解析モデルに対し、強制的に繰り返し変位を与えることによりき裂先端を塑性変形させ、塑性域寸法sおよび温度上昇を調べた。
(2) Verification of various effects by analysis An analytical study was conducted to examine the effects of a) to c) described above. In the analysis, the crack tip was plastically deformed by forcibly applying repeated displacement to the analytical model shown in FIG. 1, and the plastic zone size s and the temperature increase were examined.
なお、塑性変形による発熱としては塑性仕事の90%が熱に変換されるとされていることから、本解析でも塑性仕事から発熱量への変換率を90%と設定した。 In addition, since 90% of the plastic work is converted into heat as heat generation due to plastic deformation, in this analysis, the conversion rate from the plastic work to the heat generation amount was set to 90%.
また、本実施形態における解析では荷重比(最小荷重/最大荷重)を0とし、引張片振り条件とした。実際の部材、構造物には引張り・圧縮両振り条件下であることが多いが、き裂状欠陥2がある場合には圧縮時については応力集中が発生せず実質的に欠陥のない状態とみなすことができるため、引張り片振り条件下のみで検討して問題がないからである。
In the analysis in the present embodiment, the load ratio (minimum load / maximum load) was set to 0, and the tension piece swinging condition was set. Actual members and structures are often under both tensile and compression conditions, but if there are crack-
以下の説明では温度上昇量としてき裂状欠陥先端の最大温度上昇量を用いる。 In the following description, the maximum temperature rise at the tip of a crack-like defect is used as the temperature rise.
(2−a) 塑性域寸法の影響
塑性域寸法以外の条件を同一としていくつかの塑性域寸法の条件について解析を行った。その解析条件および温度条件を表1に示す。
(2-a) Influence of plastic zone dimensions Several conditions of plastic zone dimensions were analyzed with the same conditions except for the plastic zone dimensions. The analysis conditions and temperature conditions are shown in Table 1.
また、最大温度上昇量の変化を図3に示す。同図において横軸は塑性域寸法s(mm)を示し、縦軸は最大温度上昇量tmax(K)を示している。 Moreover, the change of the maximum temperature rise amount is shown in FIG. In the figure, the horizontal axis represents the plastic zone dimension s (mm), and the vertical axis represents the maximum temperature rise t max (K).
表1の塑性域寸法に対応する最大温度上昇量をグラフ上にプロットし各プロットを曲線で結べば、最大温度上昇量tmaxと塑性域寸法sは比例することが分かり、最大温度上昇量は0.03×塑性域寸法s1.7によって求められる。従って、先に便宜上、塑性域寸法のA乗と仮定したAは1.7と決めることができる。 If the maximum temperature rise corresponding to the plastic zone size in Table 1 is plotted on a graph and each plot is connected by a curve, it can be seen that the maximum temperature rise t max and the plastic zone size s are proportional, and the maximum temperature rise is It is determined by 0.03 × plastic zone size s 1.7 . Therefore, for the sake of convenience, A that is assumed to be the A-th power of the plastic zone dimension can be determined to be 1.7.
(2−b) 材料の強度の影響
降伏応力および縦弾性係数以外の条件を同一として、降伏応力および縦弾性係数をいくつかの条件に設定し、温度上昇量との関係を求めた。その条件および結果を表2に示す。
(2-b) Effect of material strength The conditions other than the yield stress and the longitudinal elastic modulus were the same, the yield stress and the longitudinal elastic modulus were set to several conditions, and the relationship with the temperature rise was obtained. The conditions and results are shown in Table 2.
また、この条件で最大温度上昇量tmaxの変化を図4に示す。同図において横軸は降伏応力2/縦弾性係数(MPa)を示し、縦軸は最大温度上昇量tmax(K)を示している。同図に示される通り、最大温度上昇量tmaxは降伏応力2/縦弾性係数に比例することがわかる。 Further, FIG. 4 shows a change in the maximum temperature increase t max under these conditions. In the figure, the horizontal axis represents the yield stress 2 / longitudinal elastic modulus (MPa), and the vertical axis represents the maximum temperature rise t max (K). As shown in the figure, the maximum temperature rise t max is proportional to the yield stress 2 / longitudinal elastic modulus.
(2−c) 伝熱特性の影響
塑性域寸法および材料の発熱特性を同一として伝熱特性をいくつかの条件に設定し温度上昇量との関係を求めた。その条件および結果を表3に示す。
(2-c) Effect of heat transfer characteristics The heat transfer characteristics were set to several conditions with the same plastic zone size and heat generation characteristics of the material, and the relationship with the temperature rise was obtained. The conditions and results are shown in Table 3.
また、この条件で最大温度上昇量tmaxの変化を図5に示す。同図において横軸は密度・比熱・周波数/熱伝導率を示し、縦軸は最大温度上昇量tmax(K)を示している。同図に示される通り、最大温度上昇量tmaxは密度・比熱・周波数/熱伝導率に比例することがわかる。 In addition, FIG. 5 shows the change in the maximum temperature increase t max under these conditions. In the figure, the horizontal axis indicates density, specific heat, frequency / thermal conductivity, and the vertical axis indicates the maximum temperature rise t max (K). As shown in the figure, the maximum temperature rise t max is proportional to the density, specific heat, frequency / thermal conductivity.
(2-d) 最大温度上昇量の定式化
以上の影響因子を検討した結果より、最大温度上昇量tmaxは3影響因子を掛け合わせることによって下記のように表される。
最大温度上昇量tmax=B・塑性域寸法s1.7・(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率) ……(2)
ただし、定数Bは掛け合わせた各因子の値と最大温度上昇量とを1:1に対応させるために定めたものである。
(2-d) Formulation of Maximum Temperature Rise From the results of examining the above influencing factors, the maximum temperature rise t max is expressed as follows by multiplying 3 influencing factors.
Maximum temperature rise t max = B · Plastic zone size s 1.7 · (Yield stress 2 / Longitudinal elastic modulus) · (Density, specific heat, frequency / thermal conductivity) …… (2)
However, the constant B is determined so that the value of each factor multiplied and the maximum temperature rise amount correspond to 1: 1.
すべての解析結果について最大温度上昇量tmaxと塑性域寸法s1.7・(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)との関係を図6に示す。同図において横軸は塑性域寸法s1.7・(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)を示し、縦軸は最大温度上昇量tmax(K)を示している。同図に示される通り、最大温度上昇量tmaxは横軸値に比例することがわかる。 FIG. 6 shows the relationship between the maximum temperature rise t max and the plastic zone size s 1.7 · (yield stress 2 / longitudinal elastic modulus) · (density / specific heat / frequency / thermal conductivity) for all analysis results. In this figure, the horizontal axis shows the plastic zone size s 1.7 · (yield stress 2 / longitudinal elastic modulus) · (density, specific heat, frequency / thermal conductivity), and the vertical axis shows the maximum temperature rise t max (K). ing. As shown in the figure, it can be seen that the maximum temperature increase t max is proportional to the horizontal axis value.
(2-e) 塑性域寸法推定式
上述した定式化より塑性域寸法は下記のように求められる。
塑性域寸法s1.7=C・最大温度上昇量tmax/〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕 ……(3)
なお、このときの定数Cは27であり、塑性域寸法推定値のバラツキの中心を規定している。
(2-e) Plastic zone size estimation formula The plastic zone size is obtained as follows from the above-mentioned formulation.
Plastic zone dimension s 1.7 = C · Maximum temperature rise t max / [(Yield stress 2 / Longitudinal elastic modulus) · (Density, specific heat, frequency / thermal conductivity)] …… (3)
Note that the constant C at this time is 27, which defines the center of variation in the estimated plastic region size.
また、式(3)の右辺の〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕は部材1の塑性変形部位の温度変動に影響を与える強度・伝熱パラメータpとみなすことができる。
In addition, [(yield stress 2 / longitudinal elastic modulus) · (density / specific heat / frequency / thermal conductivity)] on the right side of Equation (3) is the strength / heat transfer that affects the temperature variation of the plastic deformation part of
次に、すべての解析結果に対し、塑性域寸法s1.7と最大温度上昇量tmax/〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕との関係を図7に示す。同図において横軸は最大温度上昇量tmax/〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕を示し、縦軸は塑性域寸法s1.7を示している。同図に示される通り、塑性域寸法s1.7は横軸値に比例することがわかる。 Next, for all the analysis results, the relationship between the plastic zone size s 1.7 and the maximum temperature rise t max / [(yield stress 2 / longitudinal elastic modulus) · (density, specific heat, frequency / thermal conductivity)] As shown in FIG. In the figure, the horizontal axis indicates the maximum temperature rise t max / [(yield stress 2 / longitudinal elastic modulus) · (density, specific heat, frequency / thermal conductivity)], and the vertical axis indicates the plastic zone size s 1.7. Yes. As shown in the figure, it can be seen that the plastic zone size s 1.7 is proportional to the horizontal axis value.
(2-f) バラツキの考慮
解析結果は前述の推定式(3)でよく表されているもののバラツキが生じている。ここでは、強度評価において許容されるバラツキ量について検討し、解析結果の検証を行った。
(2-f) Consideration of variation Although the analysis result is well expressed by the estimation equation (3), there is variation. Here, the amount of variation allowed in the strength evaluation was examined, and the analysis results were verified.
き裂進展の緒特性を解明したり、き裂欠陥の存在を予め想定した場合の残留寿命を評価する目的で、き裂欠陥を有する試験片についてき裂進展試験が行われている。 For the purpose of elucidating the characteristics of crack propagation and evaluating the remaining life when the existence of crack defects is assumed in advance, a crack growth test is performed on a specimen having crack defects.
代表的なき裂進展試験では荷重振幅、平均荷重を一定にし、繰り返し数Nのときのき裂長さaが測定される。 In a typical crack growth test, the load amplitude and the average load are made constant, and the crack length a when the number of repetitions is N is measured.
き裂進展速度da/dNは1回の応力繰り返しで進展するき裂長さを意味し、通常、応力拡大係数幅ΔKに対して示される。 The crack growth rate da / dN means the crack length that propagates by one stress repetition, and is usually shown with respect to the stress intensity factor width ΔK.
き裂が進展しなくなる下限と上限を除く中間領域は安定な、き裂進展速度を示す領域であり、通常、下記に示すParis−Erdoganの式で表される。
da/dN=A(ΔK)n ……(4)
ここに、A,nは材料定数でありnの値は、金属では2〜7程度の値がよく用いられる。
The intermediate region excluding the lower limit and the upper limit where the crack does not propagate is a stable region showing the crack growth rate, and is usually represented by the following Paris-Erdogan equation.
da / dN = A (ΔK) n (4)
Here, A and n are material constants, and the value of n is often about 2 to 7 for metals.
そこで、推定された塑性域をき裂進展に対する強度評価に適用するにあたり、塑性域を上記応力拡大係数幅ΔKに変換し、き裂進展速度から寿命を予測する。 Therefore, in applying the estimated plastic zone to strength evaluation for crack growth, the plastic zone is converted into the stress intensity factor width ΔK, and the life is predicted from the crack growth rate.
また、ΔKとき裂進展速度の関係を示すグラフは横軸および縦軸がそれぞれ対数スケールで表され、き裂進展速度については2倍〜1/2倍(倍・半分)までは誤差と考えられている。 The graph showing the relationship between ΔK and crack growth rate is expressed in logarithmic scales on the horizontal and vertical axes, and the crack growth rate is considered to be an error up to 2 to 1/2 times (double or half). ing.
倍・半分のき裂進展速度の許容誤差は、ΔKに変換すると(n=7)、±10%の許容誤差である。 When converted to ΔK (n = 7), the allowable error of the double / half crack growth rate is ± 10%.
また、塑性域寸法はK値の2乗に比例することから、±10%のΔKの許容誤差は約±20%の塑性域寸法の許容誤差となる。これを許容誤差を考慮した補正係数をα1とし、図示すると図8に示す通りになる。 Further, since the plastic zone size is proportional to the square of the K value, the tolerance of ± 10% ΔK becomes the tolerance of the plastic zone size of about ± 20%. A correction coefficient taking this tolerance into account is α 1 , which is shown in FIG.
同図から、解析結果のバラツキは許容誤範囲内であることが確認できる。また、塑性域を推定する場合には、同図に示したバラツキW内で推定すればよく、上限(図中特性L参照)の値を採用することにより最も安全側に評価することができる。 From this figure, it can be confirmed that the variation in the analysis results is within the allowable error range. Further, when the plastic region is estimated, it may be estimated within the variation W shown in the figure, and it can be evaluated most safely by adopting the value of the upper limit (see the characteristic L in the figure).
ここで、上記補正係数α1と、塑性域寸法推定値のバラツキの中心を規定する定数Cとを考慮した定数をDとする。 Here, let D be a constant that takes into account the correction coefficient α 1 and a constant C that defines the center of variation in the estimated plastic zone size.
特性Lは下記式によって表される。
塑性域寸法s1.7=D・最大温度上昇量tmax/〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕 ……(5)
なお、このときの定数Dは32である。
The characteristic L is represented by the following formula.
Plastic zone size s 1.7 = D ・ Maximum temperature rise t max / [(yield stress 2 / longitudinal elastic modulus) ・ (density, specific heat, frequency / thermal conductivity)] ...... (5)
The constant D at this time is 32.
(2-g) 材質による推定式の提案
構造物、部品に使用される材料としては、鋼、アルミ合金、チタン合金等が挙げられるが、それぞれの材料毎では縦弾性係数、密度、比熱はほぼ同じ値となる。例えば、使用される材料が鋼であれば強度レベルが変化しても上記特性はほとんど変わらない。従って、この特性を利用することにより、各材料毎の推定式を作成することができる。
(2-g) Proposal of estimation formula based on material The materials used for structures and parts include steel, aluminum alloy, titanium alloy, etc., but the modulus of elasticity, density, and specific heat are almost the same for each material. It becomes the same value. For example, if the material used is steel, the above characteristics hardly change even if the strength level changes. Therefore, an estimation formula for each material can be created by utilizing this characteristic.
下記表4は各材料毎の縦弾性係数、密度、比熱の代表値を示したものである。 Table 4 below shows representative values of the longitudinal elastic modulus, density, and specific heat for each material.
これらの数値を基に各材料の推定式は以下のように表される。
鋼(鉄系金属、鉄および鉄基合金を含む)の場合
塑性域寸法s1.7 =57.4×106・D・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数)=1837×106・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数)…(6)
アルミ合金(アルミ系金属、アルミ及びアルミ基合金を含む)の場合
塑性域寸法s1.7 =28.2×106・D・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数)=902×106・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数)……(7)
チタン合金(チタン系金属、チタン及びチタン基合金を含む)
塑性域寸法s1.7 =40.2×106・D・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数)=1286×106・最大温度上昇量tmax・熱伝導率/(降伏応力2・周波数) …(8)
Based on these numerical values, the estimation formula of each material is expressed as follows.
For steel (including ferrous metals, iron and iron-base alloys) Plastic zone size s 1.7 = 57.4 × 10 6 · D · Maximum temperature rise t max · Thermal conductivity / (yield stress 2 · frequency) = 1837 × 10 6 · Maximum temperature rise t max · Thermal conductivity / (Yield stress 2 · Frequency) (6)
For aluminum alloys (including aluminum-based metals, aluminum and aluminum-based alloys) Plastic zone size s 1.7 = 28.2 × 10 6 · D · Maximum temperature rise t max · Thermal conductivity / (yield stress 2 · frequency) = 902 × 10 6・ Maximum temperature rise t max・ Thermal conductivity / (Yield stress 2・ Frequency) …… (7)
Titanium alloys (including titanium-based metals, titanium, and titanium-based alloys)
Plastic zone size s 1.7 = 40.2 × 10 6 · D · Maximum temperature rise t max · Thermal conductivity / (Yield stress 2 · Frequency) = 1286 × 10 6 · Maximum temperature rise t max · Thermal conductivity / (Yield (Stress 2 / Frequency)… (8)
ただし、材料定数F(例えば1837×106)は上記代表値を中心にばらつくことから、補正係数α2を推定式右辺に掛け合わせることにより、そのバラツキを考慮に入れることができる。例えば各定数が±10%程度のバラツキを持つと考えると、±30%のバラツキを考慮に入れ、推定式の計算結果を補正する必要がある。 However, since the material constant F (for example, 1837 × 10 6 ) varies around the representative value, the variation can be taken into account by multiplying the correction coefficient α 2 by the right side of the estimation equation. For example, assuming that each constant has a variation of about ± 10%, it is necessary to correct the calculation result of the estimation formula in consideration of the variation of ± 30%.
(2-h) 実測による推定式の検証
実際にき裂状欠陥を含む試験片に繰り返し負荷を加え、欠陥先端の温度上昇を赤外線カメラで捉え、最大温度上昇を測定した。
(2-h) Verification of the estimation formula by actual measurement The test piece containing crack-like defects was repeatedly loaded, and the temperature rise at the tip of the defect was captured with an infrared camera, and the maximum temperature rise was measured.
図9は繰り返し負荷が加えられる薄板状の試験片4を示したものであり、5はその試験片4の縁部に形成されたき裂状欠陥、AおよびBは引張り方向を示し、Eは欠陥部周辺を示している。また、図10は赤外線カメラで捉えられた欠陥部周辺Eの温度分布である。
FIG. 9 shows a thin plate-
測定結果を下記表5に示す。なお、塑性域寸法は図9に示した試験片4に対してFEM解析を行うことにより求めた。
The measurement results are shown in Table 5 below. In addition, the plastic area dimension was calculated | required by performing FEM analysis with respect to the
塑性域寸法s1.7と最大温度上昇量tmax/〔(降伏応力2/縦弾性係数)・(密度・比熱・周波数/熱伝導率)〕の関係を図11中、×印で示す。 The relationship between the plastic zone dimension s 1.7 and the maximum temperature rise t max / [(yield stress 2 / longitudinal elastic modulus) · (density, specific heat, frequency / thermal conductivity)] is indicated by x in FIG.
同図からわかるように、×印の数値はバラツキWの範囲内に収まっており、上述した定式化が実証された。 As can be seen from the figure, the numerical value of x is within the range of the variation W, and the above-described formulation was verified.
図11のグラフにおいて、線Tの傾きは定数Cを表し、線Uの傾きは定数Dを表している。 In the graph of FIG. 11, the slope of the line T represents the constant C, and the slope of the line U represents the constant D.
(2-i) 本実施形態による塑性域寸法を最も大きく、すなわち安全側に推定する線(図11中、線Uで示される)を用いることにより、最大温度上昇量から塑性域寸法を推定することができる。 (2-i) The plastic zone size according to the present embodiment is the largest, that is, the plastic zone size is estimated from the maximum temperature rise by using a line (indicated by a line U in FIG. 11) that is estimated on the safe side. be able to.
ただし、赤外線カメラの解像度には限界があることから、あるレベル以下の温度変動を読み取ることは困難である。 However, since the resolution of the infrared camera is limited, it is difficult to read temperature fluctuations below a certain level.
そこで、上記図10中に示す矢印Hに沿った温度分布を図12に示すグラフにした。 Therefore, the temperature distribution along the arrow H shown in FIG. 10 is shown in the graph shown in FIG.
同図のグラフに示されるように、塑性変形による温度挙動に加え、ノイズに起因する温度挙動も見られる。そのノイズによる温度変化はおよび0.01℃と見られ、塑性変形により0.01℃以下の温度上昇があってもノイズに埋もれて検出しにくくなり測定精度が低下する。 As shown in the graph of the figure, in addition to the temperature behavior due to plastic deformation, the temperature behavior due to noise is also seen. The temperature change due to the noise is considered to be 0.01 ° C., and even if there is a temperature rise of 0.01 ° C. or less due to plastic deformation, it is buried in the noise and becomes difficult to detect, and the measurement accuracy decreases.
逆に言えば、本推定線によれば0.01℃以上の温度上昇に対してはより高い測定精度で推定することが可能となる。 In other words, according to this estimation line, it is possible to estimate with a higher measurement accuracy for a temperature rise of 0.01 ° C. or more.
1 き裂状欠陥を持つ部材
2 き裂状欠陥
3 温度調査対象部
4 試験片
5 き裂状欠陥
E 欠陥先端
1 Cracked
Claims (3)
繰り返し荷重が加えられた上記測定対象物の温度変動を赤外線センサによって検出し、
発熱と吸熱が繰り返される温度変動の平均温度θmを求め、
この平均温度θmと上記測定対象物の初期温度θ0との差(θm−θ0)の最大値を最大温度上昇量tmaxとして求め、上記温度変動に影響を与える上記測定対象物固有の強度・伝熱パラメータを既知数pとするとき、
上記塑性域寸法sを下記式
塑性域寸法s1.7=α1・C・tmax/p
ただし、Cは塑性域寸法推定値のバラツキの中心を規定する定数、α1は塑性域寸法の許容誤差を考慮した補正係数
により求めることを特徴とする塑性域寸法測定方法。 In a plastic area dimension measuring method for measuring a plastic area dimension caused by plastic deformation of a measurement object to which a repeated load is applied,
The infrared sensor detects temperature fluctuations of the measurement object to which repeated loads are applied,
Find the average temperature θ m of temperature fluctuations where heat generation and heat absorption are repeated,
The maximum value of the difference (θ m −θ 0 ) between the average temperature θ m and the initial temperature θ 0 of the measurement object is obtained as the maximum temperature increase t max , and is unique to the measurement object that affects the temperature fluctuation. When the strength and heat transfer parameters of a known number p,
The plastic zone size s is expressed by the following formula: Plastic zone size s 1.7 = α 1 · C · t max / p
However, C is a constant that defines the center of variation in the estimated size of the plastic zone, and α 1 is obtained by a correction factor that takes into account the allowable error of the plastic zone size.
繰り返し荷重が加えられた上記測定対象物の温度変動を赤外線センサによって検出し、
発熱と吸熱が繰り返される温度変動の平均温度θmを求め、
この平均温度θmと上記測定対象物の初期温度θ0との差(θm−θ0)の最大値を最大温度上昇量tmaxとして求め、
上記測定対象物が鉄系金属、アルミ系金属、あるいはチタン系金属のいずれかであって、
上記塑性域寸法sを下記式
塑性域寸法s1.7=α2・F・tmax・熱伝導率/(降伏応力2・負荷周波数)
ただし、Fは各金属に応じた定数、α2は塑性域寸法の許容誤差を考慮した補正係数
により求めることを特徴とする塑性域寸法測定方法。 In a plastic area dimension measuring method for measuring a plastic area dimension caused by plastic deformation of a measurement object to which a repeated load is applied,
The infrared sensor detects temperature fluctuations of the measurement object to which repeated loads are applied,
Find the average temperature θ m of temperature fluctuations where heat generation and heat absorption are repeated,
The maximum value of the difference (θ m −θ 0 ) between the average temperature θ m and the initial temperature θ 0 of the measurement object is determined as the maximum temperature increase t max ,
The measurement object is one of an iron metal, an aluminum metal, or a titanium metal,
The plastic zone size s is expressed by the following formula: Plastic zone size s 1.7 = α 2 · F · t max · Thermal conductivity / (Yield stress 2 · Load frequency)
Where F is a constant corresponding to each metal, and α 2 is obtained by a correction factor that takes into account the allowable error of the plastic zone size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004361739A JP4580747B2 (en) | 2004-12-14 | 2004-12-14 | Measuring method for plastic zone dimensions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004361739A JP4580747B2 (en) | 2004-12-14 | 2004-12-14 | Measuring method for plastic zone dimensions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006170719A JP2006170719A (en) | 2006-06-29 |
JP4580747B2 true JP4580747B2 (en) | 2010-11-17 |
Family
ID=36671648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004361739A Expired - Fee Related JP4580747B2 (en) | 2004-12-14 | 2004-12-14 | Measuring method for plastic zone dimensions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4580747B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109891209A (en) * | 2016-10-26 | 2019-06-14 | 杰富意钢铁株式会社 | The intensity estimating method of sintering processes molded product |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4523858B2 (en) * | 2005-02-28 | 2010-08-11 | 株式会社神戸製鋼所 | Plastic zone size estimation method |
JP5710997B2 (en) * | 2011-02-04 | 2015-04-30 | パナソニック株式会社 | Fatigue limit identification system and fatigue limit identification method |
CN116297679B (en) * | 2022-12-22 | 2024-05-14 | 上海尚实航空发动机股份有限公司 | Aircraft monitoring method, device, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190909A (en) * | 1993-12-24 | 1995-07-28 | Jeol Ltd | Infrared stress image system |
JPH08334445A (en) * | 1995-06-08 | 1996-12-17 | Mitsubishi Heavy Ind Ltd | Wps effect monitor method for crack part |
JP2006029963A (en) * | 2004-07-15 | 2006-02-02 | Takahide Sakagami | Method and device for measuring degree of thermal influence by plastic deformation |
JP2006234732A (en) * | 2005-02-28 | 2006-09-07 | Kobe Steel Ltd | Method for estimating dimension of plastic region |
-
2004
- 2004-12-14 JP JP2004361739A patent/JP4580747B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07190909A (en) * | 1993-12-24 | 1995-07-28 | Jeol Ltd | Infrared stress image system |
JPH08334445A (en) * | 1995-06-08 | 1996-12-17 | Mitsubishi Heavy Ind Ltd | Wps effect monitor method for crack part |
JP2006029963A (en) * | 2004-07-15 | 2006-02-02 | Takahide Sakagami | Method and device for measuring degree of thermal influence by plastic deformation |
JP2006234732A (en) * | 2005-02-28 | 2006-09-07 | Kobe Steel Ltd | Method for estimating dimension of plastic region |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109891209A (en) * | 2016-10-26 | 2019-06-14 | 杰富意钢铁株式会社 | The intensity estimating method of sintering processes molded product |
CN109891209B (en) * | 2016-10-26 | 2021-06-22 | 杰富意钢铁株式会社 | Method for estimating strength of sintered molded article |
Also Published As
Publication number | Publication date |
---|---|
JP2006170719A (en) | 2006-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fatemi et al. | Application of bi-linear log–log S–N model to strain-controlled fatigue data of aluminum alloys and its effect on life predictions | |
Wang et al. | The assessment of residual stresses in welded high strength steel box sections | |
Leitão et al. | Determination of local constitutive properties of aluminium friction stir welds using digital image correlation | |
Tateishi et al. | A prediction model for extremely low cycle fatigue strength of structural steel | |
Nip et al. | Extremely low cycle fatigue tests on structural carbon steel and stainless steel | |
Anawa et al. | Control of welding residual stress for dissimilar laser welded materials | |
Chapetti et al. | Fatigue behavior prediction of welded joints by using an integrated fracture mechanics approach | |
Bandara et al. | Full range S–N curves for fatigue life evaluation of steels using hardness measurements | |
Ghahremani et al. | Fatigue testing and analysis of peened highway bridge welds under in-service variable amplitude loading conditions | |
Abu-Nabah et al. | High-frequency eddy current conductivity spectroscopy for residual stress profiling in surface-treated nickel-base superalloys | |
JP2014071053A (en) | Creep damage assessment method and creep damage assessment system for high-temperature members | |
Kainuma et al. | A fatigue strength evaluation method for load-carrying fillet welded cruciform joints | |
Zhang et al. | Investigation of fatigue damage to welded joints under variable amplitude loading spectra | |
JP6308171B2 (en) | Evaluation method of brittle fracture propagation stop performance of thick steel plate | |
Ren et al. | Strain distribution and fatigue life estimation for steel plate weld joint low cycle fatigue based on DIC | |
Horn et al. | An engineering assessment methodology for non-sharp defects in steel structures–Part II: Procedure validation and constraint analysis | |
Moćko et al. | An influence of cyclic loading on the form of constitutive relationship for DP500 steel | |
Cruces et al. | Study of the biaxial fatigue behaviour and overloads on S355 low carbon steel | |
Wang et al. | Low-cycle fatigue life prediction of spot welds based on hardness distribution and finite element analysis | |
Ranjan et al. | Testing and fracture mechanics analysis of strength effects on the fatigue behavior of HFMI-treated welds | |
Negru et al. | Lifetime prediction in medium-cycle fatigue regime of notched specimens | |
JP4580747B2 (en) | Measuring method for plastic zone dimensions | |
Shiratsuchi et al. | Fatigue life prediction for 9% Ni steel butt welded joints | |
Wang et al. | Fatigue life prediction based on natural frequency changes for spot welds under random loading | |
Collin | Thermo-mechanical fatigue of castiron for engine applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100830 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130903 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4580747 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |