JP4580539B2 - Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same - Google Patents

Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same Download PDF

Info

Publication number
JP4580539B2
JP4580539B2 JP2000338381A JP2000338381A JP4580539B2 JP 4580539 B2 JP4580539 B2 JP 4580539B2 JP 2000338381 A JP2000338381 A JP 2000338381A JP 2000338381 A JP2000338381 A JP 2000338381A JP 4580539 B2 JP4580539 B2 JP 4580539B2
Authority
JP
Japan
Prior art keywords
hydrodesulfurization
activity
coke
concentration
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000338381A
Other languages
Japanese (ja)
Other versions
JP2002146363A (en
Inventor
俊一 小出
詔吾 児玉
繁徳 佐久間
昭彦 松岡
勝 小野寺
義一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
Showa Shell Sekiyu KK
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK, Petroleum Energy Center PEC filed Critical Showa Shell Sekiyu KK
Priority to JP2000338381A priority Critical patent/JP4580539B2/en
Publication of JP2002146363A publication Critical patent/JP2002146363A/en
Application granted granted Critical
Publication of JP4580539B2 publication Critical patent/JP4580539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
石油留出油原料油から低硫黄分の軽油を製造する場合に、実際に水素化脱硫反応を行うことなく触媒として用いる化合物の水素化脱硫反応活性を予測する方法および得られた予測方法を用いた水素化脱硫装置の運転方法に関するものである。
【0002】
【従来技術】
触媒上のコーク堆積は、軽油留分の水素化脱硫反応における活性低下の主原因であるが、軽油増産のためには、コーク生成原因物質を多く含むと考えられる分解油や残さ油を高い混合比率で混合しなければならない。しかし、分解油や残さ油中のどのタイプの物質が触媒の活性低下に大きく寄与しているかは明らかになっていない。
【0003】
水素化脱硫触媒の活性低下速度式、活性低下を予測する方法は多数提案されている。例えば出井らの化学工学論文集,24,4(1998)、化学工学論文集,21,6(1995)においては水素化脱硫触媒の活性低下速度式や活性低下予測式が提案されている。
【0004】
しかしながら、これらの文献においては前述のとおり軽油(LGO)、減圧軽油(VGO)という上位概念で取扱う考え方であり、原料油の組成の影響による水素化脱硫活性の活性低下を予測するという考え方は全く開示されていない。
【0005】
一方、軽油の需要増への対応として、通常の軽油留分のみでは原料不足となるため、軽油留分に分解軽油(LCO)を混合する必要性が高まっているが、LCO中には、コーク生成の原因物質と考えられる多環芳香族化合物、硫黄化合物、窒素化合物などが多く含まれる。そのため、より早い触媒活性の低下が懸念され、混合割合を実装置での運転実績より高くできないのが現状である。運転期間に合わせた混合処理を計画するために、混合割合、原料油種の変化に対応できる活性低下予測方法が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、原料油である分解軽油や残さ油中に含まれるコーク生成原因物質を、分解軽油という上位概念ではなく、その下位概念、例えば、二環芳香族グループ、三環芳香族グループ、四環以上の芳香族グループ、難脱硫性硫黄化合物グループ、難脱硫性硫黄化合物以外の硫黄化合物、窒素化合物などに分け、これらグループの各濃度から、ある一定期間後の反応温度を推定できる活性低下予測式を導き、得られた活性低下予測式を用いて活性低下を予測し、運転期間、分解油、残さ油の混合比率の立案に役立つ予測方法および運転方法を解明する点にある。
【0007】
【課題を解決するための手段】
本発明の第一は、原料油中の各コーク生成原因物質グループ濃度と反応時間から、下記式(1)
〔数3〕
ln(k/k)=−(α+α+……+α)t ……(1)
(式中、kはt時間後の水素化脱硫反応速度定数、kは初期の水素化脱硫反応速度定数、α〜αは、各コーク生成原因物質グループのそれぞれの劣化定数、x〜xは原料油中の各コーク生成原因物質グループのそれぞれの濃度、tは反応時間である。)
で示される、活性低下予測式を用いて、水素化脱硫触媒の活性低下を予測する方法に関する。
【0008】
本発明の第二は、原料油中の各コーク生成原因物質グループ濃度、反応時間、水素分圧、原料油滞留時間から、下記式(2)
〔数4〕
ln(k/k)=−(α+α+……+α)×
(P/Pβγ(LHSV/LHSV)t ……(2)
(式中、 はt時間後の水素化脱硫反応速度定数、k は初期の水素化脱硫反応速度定数、α 〜α は、各コーク生成原因物質グループのそれぞれの劣化定数、x 〜x は原料油中の各コーク生成原因物質グループのそれぞれの濃度、tは反応時間、Pは水素分圧、Pは基準水素分圧、βは水素分圧の補正係数、γは液空間速度の補正係数、LHSVは液空間速度、LHSVは基準液空間速度である。)
で示される活性低下予測式を用いて、水素化脱硫触媒の活性低下を予測する方法に関する。
【0009】
本発明の第三は、請求項1または2記載の方法による予測した触媒活性の低下程度に基づき、水素化脱硫装置の運転期間と原料油組成を調整することを特徴とする水素化脱硫装置の運転方法に関する。
【0010】
前記各係数は、各原因物質グループの濃度が異なる原料を種々調整し、高圧流通反応装置を用いて強制的に触媒を劣化させ、活性低下の程度を劣化前後の水素化脱硫反応速度定数(以下、反応速度定数という)の比として定量化する。その反応速度定数の比と原因物質濃度より統計的手法を用いて算出するものである。
【0011】
混合軽油中のコーク生成原因物質が触媒の活性低下に及ぼす影響を定量化するために、高圧流通式反応装置を用いて、脱硫触媒の強制劣化および活性評価を実施した。強制劣化条件は、反応温度380℃、圧力1.96MPa、LHSV1h−1とした。活性評価は、軽油を原料として強制劣化の前後で行い、図1に示すように、ある反応温度での生成油の硫黄濃度により温度に対する反応速度定数のアレニウスプロットが得られた。図1より、生成油中の硫黄濃度が50ppmになる反応速度定数(lnk)を求め、強制劣化後のアレニウスプロットより、強制劣化前の50ppm到達温度での反応速度定数(lnk)を求めた。活性低下の程度は反応速度定数の比ln(k/k)として数値化(定量化)した後、ln(k/k)と強制劣化に用いた原料組成から各コーク生成原因物質のグループ濃度に基づく劣化定数を統計的手法により算出した。
【0012】
反応速度の研究は古くから行われており、多くの検討結果から純硫黄化合物の水素化脱硫反応は1次反応(理論反応)であるが、反応性の異なる様々な硫黄化合物が混在する石油留分の水素化脱硫反応における反応次数は見かけ上n次反応になることが知られており、反応速度定数kは反応次数n、生成物硫黄濃度S、原料油硫黄濃度S、液空間速度LHSVの関数として下式で表現される。
【数5】
=(1/n−1)〔(1/S n−1)−(1/S n−1)〕LHSV
一般的に反応次数は留分によって異なり、軽油では
【数6】

Figure 0004580539
と直線関係になることから、反応次数は1.5次であり、下記式(a)で表現される。
【数7】
Figure 0004580539
(k:反応速度定数、S、S、LHSVは前記と同一。)
そこで、強制劣化前の活性評価試験[条件:原料LGO 温度320℃、340℃、360℃ LHSV=1h−1 反応圧力5.88MPa]で得られた生成油中の硫黄濃度より各温度の反応速度定数kおよび生成油中の硫黄濃度が50ppmとなる反応速度定数kを式(a)より求める。
各温度の絶対温度の逆数(1/T)と対応するlnkの関係を図1に示すようにプロットし、最小二乗法により近似したlnk=A(1/T)+Bの式に、生成油中の硫黄濃度が50ppmになるlnkを代入し、温度(T)を求める。一方、強制劣化後の活性評価試験[条件:原料LGO 温度320℃、340℃、360℃ LHSV=1h−1 反応圧力5.88MPa]より得られた各温度での生成油中の硫黄濃度から、式(a)を用いて各温度での反応速度定数kを求める。
活性劣化後の各温度の絶対温度の逆数(1/T)とlnkとの関係を近似したlnk=A(1/T)+Bに、強制劣化前の活性試験で求めた生成油中の硫黄濃度が50ppmとした温度(T)を代入し、lnkを求める。
つぎに
(劣化後の活性試験により求めたlnk)−(劣化前の活性試験より求めたlnk)よりln(k/k
を求め、各原料が触媒の活性低下に与える影響を定量化する。各原料組成が触媒への活性低下に与える影響を定量化した値ln(k/k)と各原料組成を統計的手法の1つである多重回帰により活性低下予測式の劣化定数(α)を算出した。
【0013】
触媒の劣化程度はln(k/k)はt時間経過後の反応速度定数kの初期反応速度定数kに対する割合であることから、アレニウスの式によって反応温度の関数に変換でき下式になる。
【数8】
/k=exp{E/R〔(1/T)−(1/T)〕}
そのため触媒の活性低下を補償するための要求温度T(t時間後に初期生成物硫黄濃度と同等にするための温度)は、活性劣化式を上式に代入して、下記式により求めることができる。
【数9】
Figure 0004580539
(R:気体定数、E:活性化エネルギー、T:初期反応温度、lnk/k:触媒の劣化程度)
上の式を用いて原料組成から求めた劣化定数−(α+α+〜+α)と運転期間(t)を一年後、二年後と設定して、要求温度を算出する。
この予測した要求温度により運転方法が決められる。装置上限温度、例えば380℃と比較して、運転期間、触媒再生時期が設定されたり、反対に、装置上限温度を設定し、運転期間や、劣化定数すなわち原料組成を決定することもできる。
【0014】
本発明における原料油の組成については、単環芳香族、ナフタレン環芳香族、ナフタレン環以外の二環芳香族、三環芳香族、四環以上の芳香族化合物、の各成分濃度は高速液体クロマトグラフィー、ガスクロマトグラフィー、紫外分光高度法などにより濃度を算出し、難脱硫性硫黄化合物、難脱硫性硫黄化合物以外の硫黄化合物は、原子吸光検出器を備えたガスクロマトグラフィー、液体クロマトグラフィーなどにより濃度を算出し窒素化合物はミクロケルダール法、微量電量滴定、化学発光法により算出する。
【0015】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより何等限定されるものではない。
【0016】
実施例1
以下に活性低下予測式の算出およびその式を用いた実施例を示す。
LCO(分解軽油)を蒸留分離し、単環、2環、3環以上の芳香族化合物が濃縮された留分を直留軽油(LGO)に混合し、原料中の単環、2環、3環以上の芳香族化合物濃度が異なる原料を各試験(試験No.19B〜22B)にかけるよう調製した。各試験に用いた原料の組成を表1に示す。各原料について高圧流通式反応装置(触媒充填量20cc)にて活性評価[条件:原料LGO 温度320℃、340℃、360℃ LHSV=1h−1 反応圧力5.88MPa]、強制劣化[温度380℃ LHSV=1h−1 反応圧力1.96MPa 反応時間=216h]、活性評価[条件:原料LGO 温度320℃、340℃、360℃ LHSV=1h−1 反応圧力5.88MPa]を行い、活性評価での各温度の生成油中の硫黄濃度より反応速度定数の比ln(k/k)及び強制劣化時間216hで割ったln(k/k)/tを求めた。各原料の組成および各原料に対応した劣化程度ln(k/k)、時間あたりの劣化程度ln(k/k)/tを表1に示す。
【表1】
Figure 0004580539
【0017】
上記表1の各化合物グループ濃度と劣化前後の反応速度係数の比を反応時間で割った値ln(k/k)/tを多重回帰し、各化合物グループの劣化定数を求め、下記活性劣化式(b)を導出した。
【数10】
Figure 0004580539
この場合、1.46×10−5は、単環化合物の劣化定数αであり、1.33×10−4は2環化合物の劣化定数αであり、1.11×10−4は3環以上の芳香族化合物の劣化定数αである。
【0018】
実施例2
前記表1は、請求項1発明の実施結果の1例であるが、19B、19F、20A、19C、20C、22Bの原料組成を単環化合物、2環、ナフタレン以外の2環(2.5環)、3環化合物、4環以上化合物のグループに分け、各原料中の各化合物グループ濃度を測定した。結果を下記表2に示す。
【表2】
Figure 0004580539
【0019】
上記表2の各化合物グループ濃度と劣化前後の反応速度係数の比を反応時間で割った値ln(k/k)/tを多重回帰し、各化合物グループの劣化定数を求め、活性劣化式(c)を導出した。
【数11】
Figure 0004580539
この場合、3.40×10−5は、単環化合物の劣化定数α、7.98×10−5は2環化合物の劣化定数α、2.57×10−4は2.5環化合物の劣化定数α、2.11×10−4は3環化合物の劣化定数α、1.09×10−5は4環以上の芳香族化合物の劣化定数αを示す。
【0020】
表1、表2における試験19Bの原料組成と同じ原料を用いて反応圧力:1.96MPa、LHSV:1h−1の条件で運転した場合の要求温度Tを予測する。
Figure 0004580539
以上の値を〔数8〕に代入すると要求温度Tは、
【数12】
Figure 0004580539
19Bの原料を水素化脱硫反応させ、生成油中の硫黄濃度を50ppmまで脱硫する場合、216時間には、反応温度が342.7196℃から358.66℃に上昇すると予測できる。
【0021】
【発明の効果】
(1)本発明により、かなり精度の高い水素化脱硫触媒の活性低下を予測することができる。
(2)本発明により、水素化脱硫装置における水素化脱硫触媒が、時間の経過と共にどのように劣化してゆくかを予測し、そのデータを基にその触媒を用いた水素化脱硫装置の運転スケジュールを立案することができる。
【図面の簡単な説明】
【図1】活性評価で得られた生成油中の硫黄濃度から活性劣化の程度を表わすln(k/k)を求める方法を表わした図である。
【図2】各化合物(コーク生成原因物質グループ)の脱硫触媒の活性劣化に与える影響を調べるため、すなわち、請求項1の各化合物(コーク生成原因物質グループ)の劣化定数を求めるための活性評価、強制劣化方法およびそれらの条件を示す図である。[0001]
BACKGROUND OF THE INVENTION
When producing light oil of low sulfur content from petroleum distillate feedstock, use the method of predicting the hydrodesulfurization reaction activity of the compound used as a catalyst without actually performing the hydrodesulfurization reaction and use the obtained prediction method The present invention relates to a method for operating a conventional hydrodesulfurization apparatus.
[0002]
[Prior art]
Coke deposition on the catalyst is the main cause of decreased activity in the hydrodesulfurization reaction of diesel oil fractions, but in order to increase diesel oil production, a high mixture of cracked oil and residual oil, which are thought to contain a large amount of coke-causing substances, is used. Must be mixed in proportions. However, it has not been clarified which type of substance in cracked oil or residual oil greatly contributes to a decrease in the activity of the catalyst.
[0003]
A number of methods for predicting the decrease in activity and the decrease in activity of hydrodesulfurization catalysts have been proposed. For example, Idei et al. In Chemical Engineering Papers, 24, 4 (1998) and Chemical Engineering Papers, 21, 6 (1995), propose a hydrodesulfurization catalyst activity reduction rate formula and activity reduction prediction formula.
[0004]
However, in these documents, as described above, the idea is to deal with the superordinate concepts of light oil (LGO) and vacuum gas oil (VGO), and the idea of predicting the hydrodesulfurization activity decrease due to the influence of the composition of the feedstock is completely Not disclosed.
[0005]
On the other hand, as a response to the increase in demand for light oil, there is an increasing need to mix cracked light oil (LCO) into the light oil fraction because only the usual light oil fraction becomes a raw material shortage. It contains a large amount of polycyclic aromatic compounds, sulfur compounds, nitrogen compounds and the like that are considered to be the causative substances of formation. For this reason, there is a concern that the catalyst activity will decrease more quickly, and the current situation is that the mixing ratio cannot be made higher than the actual operation results of the actual apparatus. In order to plan the mixing process in accordance with the operation period, an activity decrease prediction method that can cope with changes in the mixing ratio and feedstock type is desired.
[0006]
[Problems to be solved by the invention]
The object of the present invention is not the coke generation causative substance contained in cracked light oil or residue oil as a raw material oil, but a lower concept such as cracked light oil, for example, a bicyclic aromatic group, a tricyclic aromatic group It can be divided into aromatic groups with four or more rings, non-desulfurizable sulfur compound groups, sulfur compounds other than non-desulfurizable sulfur compounds, nitrogen compounds, etc., and the activity that can estimate the reaction temperature after a certain period from each group concentration The purpose is to derive a decrease prediction formula, predict the decrease in activity using the obtained activity decrease prediction formula, and elucidate a prediction method and an operation method useful for planning the operation period, the mixing ratio of cracked oil and residual oil.
[0007]
[Means for Solving the Problems]
The first of the present invention is the following formula (1) from the concentration of each coke-causing substance group in the feedstock and the reaction time.
[Equation 3]
ln (k t / k 0 ) = − (α 1 x 1 + α 2 x 2 +... + α n x n ) t (1)
(Where k t is the hydrodesulfurization reaction rate constant after t hours, k 0 is the initial hydrodesulfurization reaction rate constant, α 1 to α n are the respective degradation constants of each coke generation causative substance group, x 1 ~x n each concentration of each coke causative agent group in the raw material oil, t is the reaction time.)
It is related with the method of estimating the activity fall of a hydrodesulfurization catalyst using the activity fall prediction formula shown by these.
[0008]
The second of the present invention is the following formula (2) from the concentration of each coke-causing substance group in the feedstock, the reaction time, the hydrogen partial pressure, and the feedstock residence time.
[Equation 4]
ln (k t / k 0 ) = − (α 1 x 1 + α 2 x 2 +... + α n x n ) ×
(P / P 0 ) β γ (LHSV / LHSV 0 ) t (2)
(Where k t is the hydrodesulfurization reaction rate constant after t hours, k 0 is the initial hydrodesulfurization reaction rate constant, α 1 to α n are the respective degradation constants of each coke generation cause substance group, x 1 ~x n each concentration of each coke causative agent group in the raw material oil, t is the reaction time, P is the hydrogen partial pressure, P 0 is the correction coefficient of a reference partial hydrogen pressure, beta hydrogen partial pressure, gamma is The liquid space velocity correction coefficient, LHSV is the liquid space velocity, and LHSV 0 is the reference liquid space velocity.)
It is related with the method of estimating the activity fall of a hydrodesulfurization catalyst using the activity fall prediction formula shown by these.
[0009]
According to a third aspect of the present invention, there is provided a hydrodesulfurization apparatus characterized by adjusting an operation period and a feed oil composition of the hydrodesulfurization apparatus based on a degree of decrease in catalytic activity predicted by the method according to claim 1 or 2. It relates to the driving method.
[0010]
Each coefficient is prepared by variously adjusting raw materials having different concentrations of each causative substance group, forcibly degrading the catalyst using a high-pressure flow reactor, and the degree of decrease in activity is a hydrodesulfurization reaction rate constant before and after degradation (hereinafter referred to as “degradation rate constant” ) The reaction rate constant) . It is calculated using a statistical method from the ratio of the reaction rate constant and the concentration of the causative substance.
[0011]
In order to quantify the effect of coke formation-causing substances in the mixed gas oil on the catalyst activity reduction, forced degradation and activity evaluation of the desulfurization catalyst were performed using a high-pressure flow reactor. The forced deterioration conditions were a reaction temperature of 380 ° C., a pressure of 1.96 MPa, and LHSV1h −1 . The activity was evaluated before and after forced deterioration using light oil as a raw material, and as shown in FIG. 1, an Arrhenius plot of the reaction rate constant against temperature was obtained according to the sulfur concentration of the product oil at a certain reaction temperature. From FIG. 1, the reaction rate constant (lnk 0 ) at which the sulfur concentration in the product oil becomes 50 ppm is obtained, and the reaction rate constant (lnk t ) at the temperature reached 50 ppm before forced deterioration is obtained from the Arrhenius plot after forced deterioration. It was. After the degree of activity decrease was specific ln (k t / k 0) as a numerical value of the rate constant (quantification), ln (k t / k 0) and the coke causative agent from the raw material composition used in the accelerated aging The degradation constant based on the group concentration was calculated by a statistical method.
[0012]
Research on the reaction rate has been conducted for a long time, and the hydrodesulfurization reaction of pure sulfur compounds is a primary reaction (theoretical reaction) based on the results of many studies. However, petroleum distillates containing various sulfur compounds with different reactivities. reaction order in partial hydrodesulfurization reaction is known to be apparently n-order reaction, the reaction rate constant k n is the reaction order n, product sulfur concentration S P, feedstock sulfur concentration S F, a liquid hourly space It is expressed by the following equation as a function of the speed LHSV.
[Equation 5]
k n = (1 / n−1) [(1 / SP n−1 ) − (1 / S F n−1 )] LHSV
In general, the reaction order varies depending on the fraction.
Figure 0004580539
Therefore, the reaction order is 1.5 and is expressed by the following formula (a).
[Expression 7]
Figure 0004580539
(K: Reaction rate constant, S P , S F , LHSV are the same as above.)
Therefore, the reaction rate at each temperature from the sulfur concentration in the product oil obtained in the activity evaluation test before forced deterioration [conditions: raw material LGO temperature 320 ° C., 340 ° C., 360 ° C. LHSV = 1 h −1 reaction pressure 5.88 MPa]. The reaction rate constant k 0 at which the constant k and the sulfur concentration in the product oil are 50 ppm is determined from the equation (a).
The relationship between the reciprocal (1 / T) of the absolute temperature of each temperature and the corresponding lnk is plotted as shown in FIG. 1, and the equation of lnk = A (1 / T) + B approximated by the least square method is added to the generated oil. Substituting lnk 0 at which the sulfur concentration of the water becomes 50 ppm, the temperature (T 0 ) is obtained. On the other hand, from the sulfur concentration in the product oil at each temperature obtained from the activity evaluation test after forced deterioration [conditions: raw material LGO temperature 320 ° C., 340 ° C., 360 ° C. LHSV = 1h −1 reaction pressure 5.88 MPa] The reaction rate constant k at each temperature is determined using equation (a).
The sulfur concentration in the product oil determined by the activity test before forced degradation to lnk = A (1 / T) + B, which approximates the relationship between the inverse of absolute temperature (1 / T) of each temperature after activation degradation and lnk Is substituted with the temperature (T 0 ) at which 50 ppm is determined, and lnk t is obtained.
Next, ln (k t / k 0 ) from (Ink t determined by the activity test after deterioration) − (Ink 0 determined from the activity test before deterioration)
And the effect of each raw material on the decrease in the activity of the catalyst is quantified. A value ln (k t / k 0 ) obtained by quantifying the influence of each raw material composition on the catalyst activity decrease, and the deterioration constant (α) of each raw material composition by multiple regression which is one of statistical methods. n ) was calculated.
[0013]
The deterioration degree of the catalyst is ln (k t / k 0 ), which is the ratio of the reaction rate constant k t after the elapse of time t to the initial reaction rate constant k 0 , and can be converted into a function of the reaction temperature by the Arrhenius equation. It becomes an expression.
[Equation 8]
k t / k 0 = exp {E / R [(1 / T t ) − (1 / T 0 )]}
Therefore, the required temperature T t (temperature for equalizing the initial product sulfur concentration after time t) to compensate for the decrease in the activity of the catalyst can be obtained by the following equation by substituting the activity deterioration equation into the above equation. it can.
[Equation 9]
Figure 0004580539
(R: gas constant, E: activation energy, T 0 : initial reaction temperature, lnk t / k 0 : degree of catalyst degradation)
Deterioration constants-(α 1 x 1 + α 2 x 2 + to + α n x n ) and operation period (t) determined from the raw material composition using the above formula are set as one year and two years later, and requested. Calculate the temperature.
The operation method is determined by the predicted required temperature. Compared to the upper limit temperature of the apparatus, for example, 380 ° C., the operation period and the catalyst regeneration timing can be set, and conversely, the upper limit temperature of the apparatus can be set to determine the operation period and the deterioration constant, that is, the raw material composition.
[0014]
Regarding the composition of the raw material oil in the present invention, the concentration of each component of monocyclic aromatic, naphthalene ring aromatic, bicyclic aromatic other than naphthalene ring, tricyclic aromatic, and tetracyclic or higher aromatic compounds is high performance liquid chromatography. Concentration is calculated by chromatography, gas chromatography, ultraviolet spectroscopic altitude method, etc., and sulfur compounds other than non-desulfurizable sulfur compounds and non-desulfurizable sulfur compounds are obtained by gas chromatography equipped with atomic absorption detector, liquid chromatography, etc. The concentration is calculated and the nitrogen compound is calculated by the micro Kjeldahl method, microcoulometric titration, or chemiluminescence method.
[0015]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0016]
Example 1
The calculation of the activity decrease prediction formula and examples using the formula are shown below.
LCO (decomposed light oil) is separated by distillation, and a fraction enriched with monocyclic, bicyclic, tricyclic or more aromatic compounds is mixed with straight-run gas oil (LGO), and the monocyclic, bicyclic, tricyclic, It prepared so that the raw material from which the aromatic compound density | concentration of a ring or more differs could be applied to each test (test No. 19B-22B). Table 1 shows the composition of the raw materials used in each test. Activity evaluation for each raw material in a high-pressure flow reactor (catalyst filling amount: 20 cc) [Conditions: Raw material LGO temperature 320 ° C., 340 ° C., 360 ° C. LHSV = 1h −1 reaction pressure 5.88 MPa], forced deterioration [temperature 380 ° C. LHSV = 1h −1 reaction pressure 1.96 MPa reaction time = 216 h], activity evaluation [conditions: raw material LGO temperature 320 ° C., 340 ° C., 360 ° C. LHSV = 1 h −1 reaction pressure 5.88 MPa] The ratio of reaction rate constants ln (k t / k 0 ) and ln (k t / k 0 ) / t divided by the forced deterioration time 216 h were determined from the sulfur concentration in the product oil at each temperature. Table 1 shows the composition of each raw material, the degree of deterioration ln (k t / k 0 ) corresponding to each raw material, and the degree of deterioration ln (k t / k 0 ) / t per time.
[Table 1]
Figure 0004580539
[0017]
Multiple regression of the value ln (k t / k 0 ) / t obtained by dividing the ratio of each compound group concentration in Table 1 above and the reaction rate coefficient before and after degradation by the reaction time to obtain the degradation constant of each compound group The deterioration formula (b) was derived.
[Expression 10]
Figure 0004580539
In this case, 1.46 × 10 −5 is the degradation constant α 1 of the monocyclic compound, 1.33 × 10 −4 is the degradation constant α 2 of the bicyclic compound, and 1.11 × 10 −4 is It is a deterioration constant α 3 of an aromatic compound having three or more rings.
[0018]
Example 2
Table 1 is an example of the results of the invention of claim 1, and the raw material composition of 19B, 19F, 20A, 19C, 20C, and 22B is changed to a monocyclic compound, two rings, and two rings other than naphthalene (2.5 Ring), tricyclic compounds, and groups of 4 or more rings were divided into groups, and the concentration of each compound group in each raw material was measured. The results are shown in Table 2 below.
[Table 2]
Figure 0004580539
[0019]
The value ln (k t / k 0 ) / t obtained by dividing the concentration of each compound group in Table 2 above and the reaction rate coefficient before and after degradation by the reaction time is subjected to multiple regression to determine the degradation constant of each compound group, and the activity degradation Formula (c) was derived.
[Expression 11]
Figure 0004580539
In this case, 3.40 × 10 −5 is a degradation constant α 1 of a monocyclic compound, 7.98 × 10 −5 is a degradation constant α 2 of a bicyclic compound, and 2.57 × 10 −4 is 2.5 rings. The degradation constants α 3 and 2.11 × 10 −4 of the compound are degradation constants α 4 and 1.09 × 10 −5 of the tricyclic compound, and the degradation constant α 5 of the aromatic compound having 4 or more rings.
[0020]
The required temperature T when operating under the conditions of reaction pressure: 1.96 MPa and LHSV: 1h −1 using the same raw material as the raw material composition of Test 19B in Tables 1 and 2 is predicted.
Figure 0004580539
When the above value is substituted into [Equation 8], the required temperature T t is
[Expression 12]
Figure 0004580539
When the raw material 19B is hydrodesulfurized and the sulfur concentration in the product oil is desulfurized to 50 ppm, the reaction temperature can be predicted to increase from 342.7196 ° C. to 358.66 ° C. in 216 hours.
[0021]
【The invention's effect】
(1) According to the present invention, it is possible to predict a decrease in the activity of the hydrodesulfurization catalyst with considerably high accuracy.
(2) According to the present invention, it is predicted how the hydrodesulfurization catalyst in the hydrodesulfurization apparatus will deteriorate with the passage of time, and the operation of the hydrodesulfurization apparatus using the catalyst is based on the data. You can make a schedule.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for obtaining ln (k t / k 0 ) representing the degree of activity deterioration from the sulfur concentration in a product oil obtained by activity evaluation.
FIG. 2 is an activity evaluation for examining the influence of each compound (coke generation cause substance group) on the activity deterioration of the desulfurization catalyst, that is, for determining the deterioration constant of each compound (coke formation cause substance group) according to claim 1; It is a figure which shows the forced degradation method and those conditions.

Claims (3)

原料油中の各コーク生成原因物質グループ濃度と反応時間から、下記式(1)
〔数1〕
ln(k/k)=−(α+α+……+α)t ……(1)
(式中、kはt時間後の水素化脱硫反応速度定数、kは初期の水素化脱硫反応速度定数、α〜αは、各コーク生成原因物質グループのそれぞれの劣化定数、x〜xは原料油中の各コーク生成原因物質グループのそれぞれの濃度、tは反応時間である。)
で示される、活性低下予測式を用いて、水素化脱硫触媒の活性低下を予測する方法。
From the concentration of each coke-causing substance group in the feedstock and the reaction time, the following formula (1)
[Equation 1]
ln (k t / k 0 ) = − (α 1 x 1 + α 2 x 2 +... + α n x n ) t (1)
(Where k t is the hydrodesulfurization reaction rate constant after t hours, k 0 is the initial hydrodesulfurization reaction rate constant, α 1 to α n are the respective degradation constants of each coke generation causative substance group, x 1 ~x n each concentration of each coke causative agent group in the raw material oil, t is the reaction time.)
The method of predicting the activity fall of a hydrodesulfurization catalyst using the activity fall prediction formula shown by these.
原料油中の各コーク生成原因物質グループ濃度、反応時間、水素分圧、原料油滞留時間から、下記式(2)
〔数2〕
ln(k/k)=−(α+α+……+α)×
(P/Pβγ(LHSV/LHSV)t ……(2)
(式中、 はt時間後の水素化脱硫反応速度定数、k は初期の水素化脱硫反応速度定数、α 〜α は、各コーク生成原因物質グループのそれぞれの劣化定数、x 〜x は原料油中の各コーク生成原因物質グループのそれぞれの濃度、tは反応時間、Pは水素分圧、Pは基準水素分圧、βは水素分圧の補正係数、γは液空間速度の補正係数、LHSVは液空間速度、LHSVは基準液空間速度である。)
で示される活性低下予測式を用いて、水素化脱硫触媒の活性低下を予測する方法。
From the concentration of each coke-causing substance group in the feedstock, reaction time, hydrogen partial pressure, and feedstock residence time, the following formula (2)
[Equation 2]
ln (k t / k 0 ) = − (α 1 x 1 + α 2 x 2 +... + α n x n ) ×
(P / P 0 ) β γ (LHSV / LHSV 0 ) t (2)
(Where k t is the hydrodesulfurization reaction rate constant after t hours, k 0 is the initial hydrodesulfurization reaction rate constant, α 1 to α n are the respective degradation constants of each coke generation cause substance group, x 1 ~x n each concentration of each coke causative agent group in the raw material oil, t is the reaction time, P is the hydrogen partial pressure, P 0 is the correction coefficient of a reference partial hydrogen pressure, beta hydrogen partial pressure, gamma is The liquid space velocity correction coefficient, LHSV is the liquid space velocity, and LHSV 0 is the reference liquid space velocity.)
The method of predicting the activity fall of a hydrodesulfurization catalyst using the activity fall prediction formula shown by these.
請求項1または2記載の方法による予測した触媒活性の低下程度に基づき、水素化脱硫装置の運転期間と原料油組成を調整することを特徴とする水素化脱硫装置の運転方法。  A hydrodesulfurization apparatus operating method, comprising adjusting the operation period and feedstock composition of the hydrodesulfurization apparatus based on the degree of decrease in catalyst activity predicted by the method according to claim 1 or 2.
JP2000338381A 2000-11-06 2000-11-06 Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same Expired - Fee Related JP4580539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000338381A JP4580539B2 (en) 2000-11-06 2000-11-06 Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000338381A JP4580539B2 (en) 2000-11-06 2000-11-06 Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same

Publications (2)

Publication Number Publication Date
JP2002146363A JP2002146363A (en) 2002-05-22
JP4580539B2 true JP4580539B2 (en) 2010-11-17

Family

ID=18813595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000338381A Expired - Fee Related JP4580539B2 (en) 2000-11-06 2000-11-06 Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same

Country Status (1)

Country Link
JP (1) JP4580539B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101081731B1 (en) 2009-02-11 2011-11-08 삼성토탈 주식회사 A method for estimating the deactivation of the catalysts used for manufacturing styrene
JP5912299B2 (en) * 2011-06-03 2016-04-27 Jxエネルギー株式会社 Production method of diesel oil fraction
JP6421442B2 (en) * 2014-04-24 2018-11-14 東ソー株式会社 Catalyst life prediction method and catalyst life analysis apparatus
JP6421443B2 (en) * 2014-04-24 2018-11-14 東ソー株式会社 Catalytic reaction production system with catalyst life analyzer
JP6492814B2 (en) * 2015-03-13 2019-04-03 東ソー株式会社 Catalytic reaction production system with catalyst life analyzer
JP2017066203A (en) * 2015-09-28 2017-04-06 Jxエネルギー株式会社 Method for predicting lifetime of catalyst and method for desulfurizing hydrocarbon oil
JP7102254B2 (en) * 2018-06-26 2022-07-19 コスモ石油株式会社 Systems and methods that provide catalyst information, catalyst life or operating conditions for desulfurization equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295889A (en) * 1995-04-26 1996-11-12 Mitsui Eng & Shipbuild Co Ltd Production of desulfurized light oil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000077127A1 (en) * 1999-06-11 2000-12-21 Japan Energy Corporation Purification treatment system, device for analyzing purification treatment, analytical method for purification treatment, and computer readable recording medium storing program for analyzing purification treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295889A (en) * 1995-04-26 1996-11-12 Mitsui Eng & Shipbuild Co Ltd Production of desulfurized light oil

Also Published As

Publication number Publication date
JP2002146363A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
US7462276B2 (en) Two stage hydrocracking process using beta zeolite for production of LPG and distillate hydrocarbons
KR102636426B1 (en) Catalytic cracking process with increased production of a gasoline having a low olefin content and a high octane number
Bearden et al. Novel catalyst and process to upgrade heavy oils
EP3334527B1 (en) Improved noble metal zeolite catalyst for second-stage hydrocracking to make middle distillate
JP4580539B2 (en) Method for predicting decrease in activity of hydrodesulfurization catalyst and method for operating hydrodesulfurization apparatus using the same
CN103102944A (en) Combined process of hydrotreatment and light fraction-conversion for residual oil
AU2015200973A1 (en) Improved noble metal zeolite catalyst for second-stage hydrocracking
WO2015088602A1 (en) Method for making a middle distillate
KR101612583B1 (en) Hydrocracking processes yielding a hydroisomerized product for lube base stocks
EA028397B1 (en) Process for producing a hydrotreating catalyst and use thereof in a process for producing a hydrocarbon oil
CN105623725B (en) A kind of group technology of heavy/Residual cracking
CN103102980A (en) Combined process for in-depth conversion of residual oil
EP1330505A1 (en) Method for producing diesel fuel by moderate pressure hydrocracking
CN103102982A (en) Combined process for conversion of residual oil
Yan Zeolite-based catalysts for hydrocracking
JP2002539277A (en) Flexible (flexible) production of very high quality base oils and possibly middle distillates
JP5480680B2 (en) Method for producing gasoline base material using highly aromatic hydrocarbon oil as raw material
KR20100014272A (en) Selective hydrocracking process using beta zeolite
JP2007269899A (en) Method for treating synthetic oil, hydrocarbon oil for improving agent of smoke point of kerosene and hydrocarbon oil for base material of diesel fuel
CN103789037B (en) Processing method for by-products of ethylene equipment
RU2718540C1 (en) Flexible hydrocracking of slurry hydrocracking products
CN112708462B (en) Combined process for treating heavy oil
KR102458858B1 (en) Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil
US20240173703A1 (en) Platinum-Palladium Bimetallic Hydrocracking Catalyst
CN111320167A (en) Combined process method for producing high-end graphite carbon material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees