JP4580360B2 - Evaluation method of work hardening characteristics of ferritic steel sheet - Google Patents

Evaluation method of work hardening characteristics of ferritic steel sheet Download PDF

Info

Publication number
JP4580360B2
JP4580360B2 JP2006089080A JP2006089080A JP4580360B2 JP 4580360 B2 JP4580360 B2 JP 4580360B2 JP 2006089080 A JP2006089080 A JP 2006089080A JP 2006089080 A JP2006089080 A JP 2006089080A JP 4580360 B2 JP4580360 B2 JP 4580360B2
Authority
JP
Japan
Prior art keywords
steel sheet
dislocation
cell structure
dislocation cell
ferritic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006089080A
Other languages
Japanese (ja)
Other versions
JP2007263738A (en
Inventor
陽一 池松
昌章 杉山
朗弘 上西
夏子 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006089080A priority Critical patent/JP4580360B2/en
Publication of JP2007263738A publication Critical patent/JP2007263738A/en
Application granted granted Critical
Publication of JP4580360B2 publication Critical patent/JP4580360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、フェライト鋼板の塑性変形後の変形組織からその鋼板が有する加工硬化特性を評価する方法に関するものである。   The present invention relates to a method for evaluating work hardening characteristics of a steel sheet from a deformed structure after plastic deformation of a ferritic steel sheet.

フェライト鋼板は、自動車のみならず、家電や建築資材として広範に利用されている。このフェライト鋼板の加工性は、その鋼板を使用して製造される製品や構造物を設計する上で、非常に重要な製品指標である。   Ferritic steel sheets are widely used not only for automobiles but also for home appliances and building materials. The workability of this ferritic steel sheet is a very important product index in designing products and structures manufactured using the steel sheet.

成形後のフェライト鋼板の加工状態は、鋼板の成形性の良否のみならず、使用する鋼板の材質や加工方法の最適化など、鋼板の成形性を検討する上で非常に重要な因子である。   The processing state of the ferritic steel sheet after forming is a very important factor in examining the formability of the steel sheet, such as not only whether the formability of the steel sheet is good but also optimization of the material and processing method of the steel sheet used.

これまで、フェライト鋼板の加工性は、一般的に、引張や圧縮試験などのいわゆる機械的な試験によって評価されてきた。特に、国内では、日本工業規格(JIS)などにより、試験方法も規格化されており、これらの試験を通じて、加工性を検討するうえで重要となる応力−歪み曲線を得ることができる。   Until now, the workability of ferritic steel sheets has been generally evaluated by so-called mechanical tests such as tensile and compression tests. In particular, in Japan, test methods are also standardized by Japanese Industrial Standards (JIS) and the like, and stress-strain curves that are important for studying workability can be obtained through these tests.

ところが、最近、開発されつつある高強度フェライト鋼板では、これらの機械的な試験だけでは予測できない加工性に関わる問題が顕在化するようになった。   However, recently, high strength ferritic steel sheets that are being developed have come to manifest problems related to workability that cannot be predicted by these mechanical tests alone.

例えば、自動車用の高強度フェライト鋼板では、その鋼板の高強度化に伴い、一様伸びの減少や、プレス加工時における成形性の不良問題など、同じ組織の鋼板でありながら、加工性に関わる特性が異なるという問題が顕在化してきた。   For example, high strength ferritic steel sheets for automobiles are related to workability even though they are steel sheets of the same structure, such as reduction of uniform elongation and problems of formability during press working as the strength of the steel sheets increases. The problem of different characteristics has become apparent.

例えば、従来から鋼板の加工性を検討するうえで、加工硬化特性は、非常に重要な指標であり、高強度フェライト鋼板に対しても、n値により鋼板の加工性を評価してきた。このn値は、応力−歪み曲線を基に、σ:真応力、ε:真歪み、F:硬化率とする場合に、σ=Fεの関係式により求められる鋼板の加工硬化特性を示す指数nである。 For example, when studying the workability of a steel sheet, work hardening characteristics are a very important index, and the workability of a steel sheet has been evaluated based on the n value even for high-strength ferritic steel sheets. This n value is an index indicating the work hardening characteristics of a steel sheet obtained from the relational expression of σ = Fε n when σ: true stress, ε: true strain, and F: hardening rate based on the stress-strain curve. n.

すなわち、n値は、加工における硬化の程度を示す材料特性値であり、この値が大きいほど、鋼板の成形限界が向上する。しかし、このn値は、引張強度が400MPa以下の比較的強度の小さいフェライト鋼板については、そのn値と、鋼板が有する加工硬化特性との間に比較的良い一致がみられていたが、400MPaを超える強度を有する高強度鋼板については、加工硬化特性との対応が必ずしも得られず、高強度鋼板の開発を進めるうえで大きな問題となっていた。   That is, the n value is a material characteristic value indicating the degree of hardening in processing, and the larger this value, the better the forming limit of the steel sheet. However, this n value has a relatively good agreement between the n value and the work-hardening properties of the steel plate for a ferrite steel plate having a relatively low tensile strength with a tensile strength of 400 MPa or less. For high-strength steel sheets having strengths exceeding 1, it is not always possible to achieve work hardening characteristics, which has been a major problem in the development of high-strength steel sheets.

上述のように、引張強度が400Mpa以上の高強度フェライト鋼板の加工硬化特性を評価するうえで、その特性を正確に評価する手法の開発が求められていた。   As described above, when evaluating the work hardening characteristics of a high strength ferritic steel sheet having a tensile strength of 400 Mpa or more, development of a method for accurately evaluating the characteristics has been required.

本発明は、上記従来技術の現状を踏まえ、引張強度が400Mpa以上の高強度フェライト鋼板について、その加工硬化特性を正確に評価することが可能な方法を提供することを目的とする。   An object of the present invention is to provide a method capable of accurately evaluating the work-hardening characteristics of a high-strength ferritic steel sheet having a tensile strength of 400 Mpa or more based on the current state of the prior art.

フェライト鋼板を成形加工するためには、ある一定以上の応力を負荷して、塑性変形させる必要がある。この塑性変形に伴い、フェライト結晶粒内には転位が形成され、歪みが導入されることとなる。塑性変形初期では、この転位は、粒内に広く分布するが、変形量が多くなると、転位は増殖するとともに、さらに転位同士が絡み合い堆積する。   In order to form a ferritic steel sheet, it is necessary to apply a certain stress or more to cause plastic deformation. With this plastic deformation, dislocations are formed in the ferrite crystal grains, and strain is introduced. In the early stage of plastic deformation, the dislocations are widely distributed in the grains, but when the amount of deformation increases, the dislocations proliferate and the dislocations are further entangled and deposited.

この転位同士の反応に伴い、フェライト結晶粒内に、転位が集積した領域と転位が殆んど存在しない領域が形成され、これは、一般に転位セル構造として理解されている。そして、この転位セル構造の形成が、鋼板のマクロな加工硬化挙動に関わる大きな支配要因のひとつとされていた。   Along with the reaction between the dislocations, a region where dislocations are accumulated and a region where almost no dislocations exist are formed in the ferrite crystal grains, and this is generally understood as a dislocation cell structure. The formation of the dislocation cell structure was regarded as one of the major controlling factors related to the macro work hardening behavior of the steel sheet.

本発明者を含む研究グループは、塑性変形後のフェライト鋼板のミクロ組織について鋭意研究を進めたところ、成形したフェライト鋼板内部のフェライト結晶粒に形成される転位セル構造は、方向性を有する転位セルが並んだ形態の転位セル構造となることが解った。   The research group including the present inventor has conducted earnest research on the microstructure of the ferrite steel sheet after plastic deformation, and the dislocation cell structure formed in the ferrite crystal grains inside the formed ferrite steel sheet is a dislocation cell having directionality. It has been found that a dislocation cell structure in a form in which is arranged.

さらに、これらの転位セル構造の形態と加工硬化特性について調査を進めたところ、塑性変形を受けた部位において観察される転位セル構造の中で、方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合と加工硬化特性、特に、一様伸びとの間に良い相関関係があることが解った。   Furthermore, investigations were made on the morphology and work hardening characteristics of these dislocation cell structures. From the dislocation cell structure in which dislocation cells having directionality are arranged among the dislocation cell structures observed at the site subjected to plastic deformation. It has been found that there is a good correlation between the abundance of ferrite crystal grains and work hardening characteristics, particularly uniform elongation.

すなわち、塑性変形を受けた部位において方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合が大きくなるほど、一様伸び特性が優れることが解った。さらに、その割合割合を算出することで、成形されたフェライト鋼板の一様伸びを、正確に評価する方法を発明するに至った。   That is, it has been found that the uniform elongation characteristics are more excellent as the proportion of ferrite crystal grains having a dislocation cell structure in which dislocation cells having directionality are arranged in a portion subjected to plastic deformation increases. Furthermore, by calculating the ratio, the inventors have invented a method for accurately evaluating the uniform elongation of the formed ferritic steel sheet.

本発明は、前述の知見に基づいて構成されており、その主旨とするところは、以下の通りである。   The present invention is configured based on the above-mentioned knowledge, and the main points thereof are as follows.

(1)成形されたフェライト鋼板の塑性変形を受けた部位において、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合を測定した後、該フェライト結晶粒の存在割合に基づいて、前記フェライト鋼板の加工硬化特性を評価することを特徴とするフェライト鋼板の加工硬化特性の評価方法。   (1) After measuring the abundance ratio of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same direction are arranged in a portion subjected to plastic deformation of the formed ferrite steel sheet, the abundance ratio of the ferrite crystal grains Based on the above, the work hardening characteristics of the ferritic steel sheet are evaluated.

(2)前記同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合を電子顕微鏡を用いた観察技術により測定することを特徴とする上記(1)に記載されたフェライト鋼板の加工硬化特性の評価方法。   (2) The ferrite described in (1) above, wherein the proportion of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same directionality are arranged is measured by an observation technique using an electron microscope. Evaluation method of work hardening characteristics of steel sheet.

本発明によれば、これまでに困難とされてきた、特に、引張強度が400MPa以上の高強度フェライト鋼板の加工硬化特性を正確に評価することが可能であり、本発明は、高強度フェライト鋼板の加工性向上のための技術開発における評価方法として寄与するところが大きいものである。   According to the present invention, it is possible to accurately evaluate the work-hardening characteristics of a high-strength ferritic steel sheet that has been considered difficult so far, in particular, a tensile strength of 400 MPa or more. This greatly contributes as an evaluation method in technology development for improving the workability of steel.

以下に、本発明の内容を詳細に説明する。まず、塑性変形に伴いフェライト結晶粒内に形成される転位セル構造について説明する。   The contents of the present invention will be described in detail below. First, a dislocation cell structure formed in a ferrite crystal grain with plastic deformation will be described.

図1に、成形されたフェライト鋼板内部で観察される典型的な転位セル構造を模式的に示す。図1中でフェライト結晶1の粒界2内に示した直線部分が転位セル壁3であり、塑性変形によって転位が高密度に堆積し壁状に存在する領域である。   FIG. 1 schematically shows a typical dislocation cell structure observed inside the formed ferritic steel sheet. In FIG. 1, the straight line portion shown in the grain boundary 2 of the ferrite crystal 1 is the dislocation cell wall 3, which is a region where dislocations are deposited with high density by plastic deformation and exist in a wall shape.

この転位セル壁3は、結晶面である{110}面、{112}面、又は、{123}面のうちひとつの結晶面に沿って存在することが多い。これら転位セル壁3が沿う結晶面は、透過電子顕微鏡で得られる電子回折図形を解析することにより、決定することが可能である。   This dislocation cell wall 3 often exists along one crystal plane of {110} plane, {112} plane, or {123} plane which is a crystal plane. The crystal plane along which these dislocation cell walls 3 are aligned can be determined by analyzing an electron diffraction pattern obtained with a transmission electron microscope.

本発明では、一対の転位セル壁で仕切られた領域を転位セルとし、図1に示すような直線状に観察される転位セル壁3からなるものを、特に、方向性を有する転位セルと定義する。   In the present invention, a region divided by a pair of dislocation cell walls is defined as a dislocation cell, and a dislocation cell wall 3 observed in a straight line as shown in FIG. 1 is defined as a dislocation cell having directionality. To do.

塑性変形に伴い、フェライト結晶粒内に転位セルが形成されるが、各フェライト結晶粒にかかる応力の方向とその粒が持つ結晶方位との関係、さらには、フェライト結晶1内で活動するすべり系などに関係して、フェライト結晶1内に形成される転位セル構造の形態が異なることが知られている。   With plastic deformation, dislocation cells are formed in the ferrite crystal grains. The relationship between the direction of stress applied to each ferrite crystal grain and the crystal orientation of the grain, and the slip system that is active in the ferrite crystal 1 It is known that the form of the dislocation cell structure formed in the ferrite crystal 1 is different.

但し、その詳細メカニズムは明らかとなっておらず、今後の研究が待たれるところである。   However, the detailed mechanism has not been clarified, and future research is awaited.

本発明者らの詳細な検討の結果、種々の転位セル構造の形態で、図1に示すような転位セル壁3が直線状である、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒4の存在割合は、鋼板の加工硬化特性を示す指標の中で、特に、一様伸びとの間に良い相関関係があることを確認した。   As a result of detailed investigations by the present inventors, from the dislocation cell structure in which dislocation cell walls 3 as shown in FIG. 1 are linear and dislocation cells having the same direction are arranged in various dislocation cell structure forms. It was confirmed that the abundance ratio of the ferrite grains 4 has a good correlation with the uniform elongation among the indexes indicating the work hardening characteristics of the steel sheet.

なお、転位セル構造の形態として、2種以上の異なる方向性を有する転位セルが並んだ転位セル構造5、又は、転位セル壁が曲線状などである方向性を有しない転位セルで構成された転位セル構造は、鋼板の一様伸びとの対応関係が乏しい。   In addition, as a form of the dislocation cell structure, the dislocation cell structure 5 in which dislocation cells having two or more different directions are arranged, or a dislocation cell having a direction in which the dislocation cell wall has a curved shape is formed. The dislocation cell structure has poor correspondence with the uniform elongation of the steel sheet.

本発明は、上記知見を基になされたものであり、成形されたフェライト鋼板の塑性変形を受けた部位において観察される転位セル構造の中で、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒4の存在割合を測定し、その存在割合から、このフェライト鋼板の一様伸びを評価することを特徴とする。   The present invention has been made on the basis of the above knowledge, and among the dislocation cell structures observed in the part of the formed ferritic steel sheet that has undergone plastic deformation, the dislocation cells are arranged with dislocation cells having the same direction. The present invention is characterized in that the existence ratio of the ferrite grains 4 having a structure is measured, and the uniform elongation of the ferrite steel sheet is evaluated from the existence ratio.

本発明の評価法によれば、成形されたフェライト鋼板の塑性変形を受けた部位において、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒4の存在割合が大きい場合に、そのフェライト鋼板の一様伸びも大きな値を示す。   According to the evaluation method of the present invention, when the proportion of ferrite grains 4 having a dislocation cell structure in which dislocation cells having the same direction are arranged is large in a portion subjected to plastic deformation of a formed ferritic steel sheet, The uniform elongation of the ferritic steel sheet also shows a large value.

成形されたフェライト鋼板の一様伸びを評価する際には、予め、既知の試験材の引張加工試験を行い、上記転位セル構造からなるフェライト粒4の存在割合と、この鋼板の一様伸びとの対応関係を求めておき、この関係を利用して、実際の鋼板を成形した後に、この鋼板の一様伸びを評価するのが好ましい。   When evaluating the uniform elongation of the formed ferritic steel sheet, a tensile test of a known test material is performed in advance, the abundance ratio of the ferrite grains 4 composed of the dislocation cell structure, and the uniform elongation of the steel sheet It is preferable to evaluate the uniform elongation of the steel plate after the actual steel plate is formed using this relationship.

この同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒4の存在割合の測定は、透過電子顕微鏡を用いる転位セル構造の観察により行うことができる。   Measurement of the abundance ratio of ferrite grains 4 having a dislocation cell structure in which dislocation cells having the same directionality are arranged can be performed by observing the dislocation cell structure using a transmission electron microscope.

この透過電子顕微鏡を用いて、成形したフェライト鋼板のミクロ組織における転位セル構造を観察する方法について説明する。   A method for observing the dislocation cell structure in the microstructure of the formed ferritic steel sheet using this transmission electron microscope will be described.

まず、厚み0.1μm以下の観察用の薄片試料を準備し、その薄片試料を透過電子顕微鏡の鏡筒内に装入し、薄片試料に電子線を照射する。透過電子顕微鏡法は、照射された電子線の中で、薄片試料中を透過した電子を利用して結像し、鋼板内部に形成された三次元のミクロ組織を二次元画像として投影、観察する手法である。   First, a thin sample for observation having a thickness of 0.1 μm or less is prepared, the thin sample is inserted into a lens barrel of a transmission electron microscope, and the thin sample is irradiated with an electron beam. Transmission electron microscopy uses an electron beam that has been transmitted through a thin sample in an irradiated electron beam to form an image, and the three-dimensional microstructure formed inside the steel sheet is projected and observed as a two-dimensional image. It is a technique.

まず、透過電子顕微鏡用の観察試料の作製方法について、図2を用いて説明する。   First, a method for producing an observation sample for a transmission electron microscope will be described with reference to FIG.

引張試験により引張方向9に塑性変形を受けた引張試験片6の中心部から、精密切断機などを用いて、適当なサイズ(L:10mm×W:10mm)を有する板状の微小試料片7を取り出す。   A plate-like micro sample piece 7 having an appropriate size (L: 10 mm × W: 10 mm) is used from the center of the tensile test piece 6 that has undergone plastic deformation in the tensile direction 9 by a tensile test using a precision cutting machine or the like. Take out.

次に、切断された微小試料片7から、エメリー紙などの研磨紙を用いる機械研磨により、微小試料片7の板厚中心1/2tの領域から、厚みT:100μm前後の試料片8を作製する。   Next, a sample piece 8 having a thickness T of about 100 μm is produced from the cut fine sample piece 7 by mechanical polishing using polishing paper such as emery paper from the region of the thickness center 1 / 2t of the fine sample piece 7. To do.

この箔状の試料片8から専用のパンチを用いて、直径D:3mmφのディスク状のサンプルを準備する。続いて、電解液を用いた電解研磨法又はイオンミリング法により、透過電子顕微鏡観察用の薄膜試料を作製する。   A disk-shaped sample having a diameter D of 3 mmφ is prepared from the foil-shaped sample piece 8 using a dedicated punch. Subsequently, a thin film sample for observation with a transmission electron microscope is prepared by an electrolytic polishing method using an electrolytic solution or an ion milling method.

次に、透過電子顕微鏡によりフェライト結晶粒内の転位セル構造を観察する方法について説明する。上記作製手順で準備した薄片試料を、透過電子顕微鏡専用の試料ホルダーの先端に固定し、顕微鏡本体の試料室に装入する。装入後、電子線を発生させ、薄膜試料に電子線を照射する。   Next, a method for observing the dislocation cell structure in the ferrite crystal grains with a transmission electron microscope will be described. The thin sample prepared in the above production procedure is fixed to the tip of a sample holder dedicated to a transmission electron microscope, and is loaded into the sample chamber of the microscope main body. After charging, an electron beam is generated and the thin film sample is irradiated with the electron beam.

観察室内の蛍光板上に投影された電子顕微鏡像を観察することより、フェライト結晶粒内の転位セル構造を観察する。転位セル構造において、転位セル壁の周辺は、フェライトの結晶構造が微視的に乱れた領域となる。このため、転位セル構造が存在する領域では、直進する電子線が散乱することとなり、顕微鏡に具備された対物絞りを用いて透過波のみを結像すれば、特に、転位セル壁は、黒いコントラストとして観察することができる。   By observing an electron microscope image projected on the fluorescent screen in the observation chamber, the dislocation cell structure in the ferrite crystal grains is observed. In the dislocation cell structure, the periphery of the dislocation cell wall is a region in which the crystal structure of ferrite is microscopically disturbed. For this reason, in the region where the dislocation cell structure exists, the electron beam traveling straight is scattered, and if only the transmitted wave is imaged using the objective aperture provided in the microscope, the dislocation cell wall has a black contrast. Can be observed.

必要に応じて、観察された転位セル構造を電子顕微鏡専用のフィルムへ撮影、又は、CCDカメラを用いてデジタル画像として保存する。なお、転位セル構造を観察する装置として、透過電子顕微鏡以外に、電子線を数nm程度のビーム径に絞って薄片試料に走査しながら顕微鏡像を観察する走査型透過電子顕微鏡を使用してもよい。   If necessary, the observed dislocation cell structure is photographed on a film dedicated to an electron microscope, or stored as a digital image using a CCD camera. As a device for observing the dislocation cell structure, in addition to the transmission electron microscope, a scanning transmission electron microscope that observes a microscopic image while scanning a thin piece sample with a beam diameter of about several nanometers can be used. Good.

転位セル構造の形態調査における像倍率は、観察を行うフェライト結晶粒のサイズを考慮し、5000〜20000倍の範囲が好ましい。転位セル構造の形態調査では、転位セル構造が観察されるフェライト結晶粒の粒数をカウントするとともに、一方向に並んだ転位セル構造が観察されるフェライト結晶粒の粒数をカウントし、その割合を算出すればよい。   The image magnification in the dislocation cell structure morphology investigation is preferably in the range of 5000 to 20000 times in consideration of the size of ferrite crystal grains to be observed. In the morphology investigation of the dislocation cell structure, the number of ferrite crystal grains in which the dislocation cell structure is observed is counted, and the number of ferrite crystal grains in which the dislocation cell structure aligned in one direction is counted, and the ratio May be calculated.

加工硬化特性を正確に評価する際の望ましい変形組織として、明瞭な転位セル構造が観察される必要がある。変形量が10%以上のフェライト鋼板では、変形組織が発達し、転位セル構造が観察されるが、変形量が10%未満では、フェライト結晶粒内にランダムに分布する転位が観察されるのみで、明瞭な方向性を有する転位セル構造は観察できない。   A clear dislocation cell structure needs to be observed as a desirable deformation structure in accurately evaluating work hardening characteristics. In a ferrite steel sheet with a deformation amount of 10% or more, a deformation structure develops and a dislocation cell structure is observed. However, when the deformation amount is less than 10%, only dislocations randomly distributed in the ferrite crystal grains are observed. A dislocation cell structure having a clear direction cannot be observed.

このため、変形組織から加工硬化特性を正確に評価するためには、評価する部位の変形量が10%以上であることが望ましい。   For this reason, in order to accurately evaluate the work hardening characteristics from the deformed tissue, it is desirable that the deformation amount of the part to be evaluated is 10% or more.

また、フェライト単相鋼板のみならず、フェライト結晶粒内に析出物や介在物を含む鋼板についても、今回発明した評価方法により、その加工硬化特性を評価できる。   Further, not only the ferrite single-phase steel sheet but also the steel sheet containing precipitates and inclusions in the ferrite crystal grains can be evaluated for work hardening characteristics by the evaluation method invented this time.

以下、本発明のフェライト鋼板の加工硬化特性の評価方法の一実施例について説明する。   Hereinafter, an example of a method for evaluating work hardening characteristics of a ferritic steel sheet according to the present invention will be described.

表1に示す機械的特性を有する各種フェライト鋼板から、JIS13号B型の圧延方向の引張試験片を準備した。さらに、これらの試験片について引張試験機を用いて、変形量30%の引張試験を実施した。公称相当歪み速度は、10-3/secである。 From various ferritic steel sheets having mechanical properties shown in Table 1, JIS No. 13 B type tensile test pieces in the rolling direction were prepared. Further, a tensile test with a deformation amount of 30% was performed on these test pieces using a tensile tester. The nominal equivalent strain rate is 10 −3 / sec.

次に、引張試験後の試料片から、変形組織観察のための薄片試料を作製した。図2は、その作製手順を示す模式図である。   Next, a thin sample for observing a deformed structure was prepared from the sample piece after the tensile test. FIG. 2 is a schematic diagram showing the manufacturing procedure.

まず、引張試験により引張方向9に塑性変形を受けた引張試験片6の中心部から精密切断機などを用いて、サイズL:10mm×W:10mmの板状の微小試料片7を切り出した。切断された微小試料片7をエメリー紙などの研磨紙を用いて機械研磨し、板厚中心1/2tの領域から厚みT:100μm前後の試料片8を作製した。   First, a plate-shaped minute sample piece 7 having a size L: 10 mm × W: 10 mm was cut out from the center of the tensile test piece 6 that was plastically deformed in the tensile direction 9 by a tensile test. The cut micro sample piece 7 was mechanically polished using polishing paper such as emery paper, and a sample piece 8 having a thickness T of about 100 μm from the region of the thickness center 1 / 2t was produced.

この箔状の試料片8から、専用のパンチを用いて、直径D:3mmφのディスク状のサンプルを準備した。続いて、過塩素酸5%−酢酸95%溶液を用いる電解研磨法により、透過電子顕微鏡観察用の薄片試料を作製した。   A disk-shaped sample having a diameter D of 3 mmφ was prepared from the foil-shaped sample piece 8 using a dedicated punch. Subsequently, a thin sample for observation with a transmission electron microscope was prepared by an electropolishing method using a 5% perchloric acid-95% acetic acid solution.

次に、上記の手順で作製を行った薄片試料を、加速電圧200kVの透過電子顕微鏡に装入し、フェライト結晶粒内に形成された転位セル構造の形態を、鋼板の板面方向から調査した。転位セル構造の形態調査における像倍率は、5000〜10000倍の範囲で実施した。また、対物絞りを用いた明視野法により、転位セル構造に対してコントラストを強調した条件下で像観察を行なった。   Next, the thin piece sample prepared according to the above procedure was inserted into a transmission electron microscope with an acceleration voltage of 200 kV, and the form of the dislocation cell structure formed in the ferrite crystal grains was investigated from the plate surface direction of the steel plate. . The image magnification in the form investigation of the dislocation cell structure was in the range of 5000 to 10,000 times. In addition, image observation was performed under a condition in which contrast was enhanced for the dislocation cell structure by a bright field method using an objective aperture.

図3は、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の典型的な透過電子顕微鏡写真を示す図である。   FIG. 3 is a diagram showing a typical transmission electron micrograph of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same directionality are arranged.

さらに、転位セル構造が観察されるフェライト結晶粒の粒数をカウントするとともに、同一方向性を有する転位セルが並んだ転位セル構造が観察されるフェライト結晶粒の粒数をカウントした。本実施例では、データの記録を目的に観察されたフェライト結晶粒内の転位セル構造を、透過電子顕微鏡に装着した専用のCCDカメラを用いてデジタル画像として、パーソナルコンピューターに適宜保存した。   Further, the number of ferrite crystal grains in which a dislocation cell structure was observed was counted, and the number of ferrite crystal grains in which a dislocation cell structure in which dislocation cells having the same direction were arranged was counted. In this example, the dislocation cell structure in the ferrite crystal grains observed for the purpose of data recording was appropriately stored in a personal computer as a digital image using a dedicated CCD camera attached to a transmission electron microscope.

以上の方法により、観察されるフェライト結晶粒の粒数に対する同一方向性を有する転位セル構造が観察されるフェライト結晶粒の粒数の割合を百分率で求めた。本実施例では、各種鋼板に対し、それぞれ100個以上のフェライト結晶粒について調査を行った。得られた調査結果を表2に示す。   By the above method, the ratio of the number of ferrite crystal grains in which the dislocation cell structure having the same directionality with respect to the number of ferrite crystal grains to be observed was observed was obtained as a percentage. In this example, 100 or more ferrite crystal grains were investigated for each steel sheet. The obtained survey results are shown in Table 2.

表2には、各鋼板の加工性として一様伸びの値及びn値も示した。さらに、表2をもとに、n値と一様伸びの関係及び同一方向性を有する転位セル構造からなるフェライト結晶粒の存在割合と一様伸びの関係を、それぞれプロットしたグラフを、図4(a)及び図4(b)に示す。これらのグラフには、回帰分析によって得られた回帰直線も併せて示した(図中の実線、参照)。   Table 2 also shows the uniform elongation value and the n value as the workability of each steel sheet. Further, based on Table 2, a graph plotting the relationship between the n value and the uniform elongation and the relationship between the proportion of ferrite crystal grains made of dislocation cell structures having the same direction and the uniform elongation, respectively, is shown in FIG. It is shown in (a) and FIG. These graphs also show the regression line obtained by the regression analysis (see solid line in the figure).

図4(a)から、引張強さが380MPaの比較的低強度の鋼板では、n値は、一様伸びと良く対応しているものの、引張強さが440MPaより大きな高強度鋼板では、両者に相関が見られないケースがみられる。なお、直線回帰から得られた相関係数Rは、0.949であった。   From FIG. 4 (a), in a relatively low strength steel plate with a tensile strength of 380 MPa, the n value corresponds well with uniform elongation, but in a high strength steel plate with a tensile strength greater than 440 MPa, There are cases where there is no correlation. The correlation coefficient R obtained from linear regression was 0.949.

一方、本発明法により、フェライト鋼板の変形組織の観察を通して得られた同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合は、一様伸びとも良く対応しており(図4(b)、参照)、相関係数Rも0.991と良い相関を示す結果が得られた。   On the other hand, according to the method of the present invention, the existence ratio of ferrite crystal grains composed of dislocation cell structures in which dislocation cells having the same direction obtained by observing deformation structures of ferritic steel sheets correspond well with uniform elongation. (See FIG. 4B.) The correlation coefficient R was 0.991, indicating a good correlation.

以上の結果から、本発明評価法、つまり、成形されたフェライト鋼板の塑性変形を受けた部位における同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合を基にした鋼板の一様伸びの評価方法は、特に、引張強度が400MPa以上の高強度フェライト鋼板の加工硬化特性を精度良く評価するために有効な方法であることは明らかである。   Based on the above results, the evaluation method of the present invention, that is, based on the existence ratio of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same direction in a portion subjected to plastic deformation of a formed ferritic steel sheet are arranged. It is clear that the method for evaluating the uniform elongation of a steel plate is an effective method for accurately evaluating the work hardening characteristics of a high strength ferritic steel plate having a tensile strength of 400 MPa or more.

前述したように、本発明によれば、引張強度が400MPa以上の高強度フェライト鋼板の加工硬化特性を正確に評価することができ、高強度フェライト鋼板の技術開発に寄与するところが大きい。したがって、本発明は、鋼板技術において、利用可能性が高いものである。   As described above, according to the present invention, work hardening characteristics of a high strength ferritic steel sheet having a tensile strength of 400 MPa or more can be accurately evaluated, which greatly contributes to technical development of the high strength ferritic steel sheet. Therefore, the present invention has high applicability in steel sheet technology.

フェライト鋼板で観察される転位セル構造を模式的に示す図である。It is a figure which shows typically the dislocation cell structure observed with a ferrite steel plate. 引張試験片から観察試料を作製する方法を模式的に示す図である。It is a figure which shows typically the method of producing an observation sample from a tensile test piece. 引張変形されたIF鋼板で観察される一方向に並んだ転位セル構造の典型的な透過電子顕微鏡写真を示す図である。It is a figure which shows the typical transmission electron micrograph of the dislocation cell structure arranged in one direction observed with the IF steel plate by which the tensile deformation was carried out. 一様伸びと他の指標との関係を示す図である。(a)は、n値と一様伸びの関係を示し、(b)は、一方向に並んだ転位セル構造の割合と一様伸びの関係を示す。It is a figure which shows the relationship between uniform elongation and another parameter | index. (A) shows the relationship between n value and uniform elongation, and (b) shows the relationship between the proportion of dislocation cell structures arranged in one direction and uniform elongation.

符号の説明Explanation of symbols

1 フェライト結晶
2 粒界
3 転位セル壁
4 同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒
5 2種以上の異なる方向性を有する転位セルが並んだ転位セル構造からなるフェライト粒
6 引張試験片
7 微小試料片
8 試料片
9 引張方向
10 観察方向
L 微小試験片の長さ
W 微小試験片の幅
T 機械研磨後の試料片の厚み
D ディスク状のサンプルの直径
DESCRIPTION OF SYMBOLS 1 Ferrite crystal 2 Grain boundary 3 Dislocation cell wall 4 Ferrite grain which consists of a dislocation cell structure in which dislocation cells having the same direction are arranged 5 Ferrite grain which has a dislocation cell structure in which dislocation cells having two or more different orientations are arranged 6 Tensile specimen 7 Micro specimen 8 specimen 9 Tensile direction 10 Observation direction L Length of micro specimen W Width of micro specimen T Thickness of specimen after mechanical polishing D Diameter of disk-shaped sample

Claims (2)

成形されたフェライト鋼板の塑性変形を受けた部位において、同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合を測定した後、該フェライト結晶粒の存在割合に基づいて、前記フェライト鋼板の加工硬化特性を評価することを特徴とするフェライト鋼板の加工硬化特性の評価方法。   After measuring the abundance of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same direction are arranged in a portion subjected to plastic deformation of the formed ferritic steel sheet, based on the abundance ratio of the ferrite crystal grains A method for evaluating the work hardening characteristics of a ferritic steel sheet, comprising evaluating the work hardening characteristics of the ferritic steel sheet. 前記同一方向性を有する転位セルが並んだ転位セル構造からなるフェライト結晶粒の存在割合を電子顕微鏡を用いた観察技術により測定することを特徴とする請求項1に記載されたフェライト鋼板の加工硬化特性の評価方法。   2. The work hardening of a ferritic steel sheet according to claim 1, wherein the proportion of ferrite crystal grains having a dislocation cell structure in which dislocation cells having the same directionality are arranged is measured by an observation technique using an electron microscope. Evaluation method of characteristics.
JP2006089080A 2006-03-28 2006-03-28 Evaluation method of work hardening characteristics of ferritic steel sheet Active JP4580360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089080A JP4580360B2 (en) 2006-03-28 2006-03-28 Evaluation method of work hardening characteristics of ferritic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089080A JP4580360B2 (en) 2006-03-28 2006-03-28 Evaluation method of work hardening characteristics of ferritic steel sheet

Publications (2)

Publication Number Publication Date
JP2007263738A JP2007263738A (en) 2007-10-11
JP4580360B2 true JP4580360B2 (en) 2010-11-10

Family

ID=38636877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089080A Active JP4580360B2 (en) 2006-03-28 2006-03-28 Evaluation method of work hardening characteristics of ferritic steel sheet

Country Status (1)

Country Link
JP (1) JP4580360B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091247A (en) * 1983-10-25 1985-05-22 Nippon Steel Corp Crystal azimuth analyzing method and its apparatus
JPH02268262A (en) * 1989-04-11 1990-11-01 Nippon Steel Corp Method and apparatus for analyzing crystal orientation
JP2001342544A (en) * 2000-02-18 2001-12-14 Kobe Steel Ltd Wire or rod steel suppressed arising of deformation resistance at room temperature and in area of working heat generation
JP2003014699A (en) * 2001-04-27 2003-01-15 Nippon Steel Corp Method and system for measuring voltage pulse width of barkfausen noise
JP2003014697A (en) * 2001-04-27 2003-01-15 Nippon Steel Corp Method for diagnosing material of ferromagnetic body and system for measuring voltage pulse width of barkhausen noise
JP2007263739A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Evaluation method of amount of distortion in local area of formed ferrite steel plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091247A (en) * 1983-10-25 1985-05-22 Nippon Steel Corp Crystal azimuth analyzing method and its apparatus
JPH02268262A (en) * 1989-04-11 1990-11-01 Nippon Steel Corp Method and apparatus for analyzing crystal orientation
JP2001342544A (en) * 2000-02-18 2001-12-14 Kobe Steel Ltd Wire or rod steel suppressed arising of deformation resistance at room temperature and in area of working heat generation
JP2003014699A (en) * 2001-04-27 2003-01-15 Nippon Steel Corp Method and system for measuring voltage pulse width of barkfausen noise
JP2003014697A (en) * 2001-04-27 2003-01-15 Nippon Steel Corp Method for diagnosing material of ferromagnetic body and system for measuring voltage pulse width of barkhausen noise
JP2007263739A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Evaluation method of amount of distortion in local area of formed ferrite steel plate

Also Published As

Publication number Publication date
JP2007263738A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
Banabic Formability of metallic materials: plastic anisotropy, formability testing, forming limits
Gu et al. Enhanced tensile ductility in an electrodeposited nanocrystalline Ni
Chen et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel
Li et al. Strengthening contributions of dislocations and twins in warm-rolled TWIP steels
Weidner et al. In-situ characterization of the microstructure evolution during cyclic deformation of novel cast TRIP steel
CN103649356B (en) Modal structure steel type with static state refinement and dynamic contract-enhanced
TW200920858A (en) Magnesium alloy plate material
JP5846555B2 (en) Nickel-free high-nitrogen stainless steel rolling / drawing method, nickel-free high-nitrogen stainless steel seamless tubule and method for producing the same
KR20090118404A (en) Manufacturing method of aluminum alloy having good dynamic deformation properties
Howard et al. The influence of microstructure on the cyclic deformation and damage of copper and an oxide dispersion strengthened steel studied via in-situ micro-beam bending
Schreijäg Microstructure and mechanical behavior of deep drawing DC04 steel at different length scales
JP4916746B2 (en) Evaluation method of strain in local region of formed ferritic steel sheet
Ochi et al. High cycle fatigue property and micro crack propagation behavior in extruded AZ31 magnesium alloys
Ohashi et al. Evaluation of r-value of steels using Vickers hardness test
Adachi et al. Development of fully automated serial-sectioning 3D microscope and topological approach to pearlite and dual-phase microstructure in steels
JP4580360B2 (en) Evaluation method of work hardening characteristics of ferritic steel sheet
CN103954487A (en) Method for preparing in-situ tensile sample for transmission electron microscope
Jiang et al. Mechanical strength of nanocrystalline/amorphous Al90Fe5Gd5 composites produced by rolling
Sebastiani et al. Focused ion beam and nanomechanical tests for high resolution surface characterisation: new resources for platinum group metals testing
Murty et al. Microstructural and micro-textural evolution during single pass high Z-large strain deformation of a 0.15 C steel
US10604823B2 (en) Forged titanium alloy material and method for producing same, and ultrasonic inspection method
JJ et al. Creep mechanisms in a fine-grained Al-5356 alloy at low stress and high temperature
Chang et al. Size effects in thin sheet metal forming
Höring et al. Characterization of reverted austenite during prolonged ageing of maraging steel CORRAX
JP2013011474A (en) EVALUATION METHOD OF FINE TISSUE STRUCTURE OF Mg-Li ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4580360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350