JP4579380B2 - Imaging device and lens device - Google Patents

Imaging device and lens device Download PDF

Info

Publication number
JP4579380B2
JP4579380B2 JP2000202620A JP2000202620A JP4579380B2 JP 4579380 B2 JP4579380 B2 JP 4579380B2 JP 2000202620 A JP2000202620 A JP 2000202620A JP 2000202620 A JP2000202620 A JP 2000202620A JP 4579380 B2 JP4579380 B2 JP 4579380B2
Authority
JP
Japan
Prior art keywords
imaging
test chart
lens
optical system
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000202620A
Other languages
Japanese (ja)
Other versions
JP2002027309A5 (en
JP2002027309A (en
Inventor
宏爾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000202620A priority Critical patent/JP4579380B2/en
Priority to US09/898,857 priority patent/US6985177B2/en
Publication of JP2002027309A publication Critical patent/JP2002027309A/en
Priority to US11/064,195 priority patent/US7679645B2/en
Publication of JP2002027309A5 publication Critical patent/JP2002027309A5/ja
Application granted granted Critical
Publication of JP4579380B2 publication Critical patent/JP4579380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、撮像光学系及び光電変換素子等の撮像手段を備えた電子的な撮像システムに関する。
【0002】
【従来の技術】
図7に従来の撮像システムの代表的な構成図を示し、これに基づいて概略の動作説明を行う。
この撮像システムにおいては、画角を調整する焦点距離調節光学系L1、このL1の動きに応じた補正光学系L2、手ブレ補正用のシフト光学系L3、入射光量の調節を行う絞り機構(Iris)、ピント調節を行うための焦点位置調節光学系L4を有する撮像光学系8により、被写体像が撮像素子1上に結像される。
この撮像素子1により被写体像が電気信号に光電変換され、ビデオカメラ信号処理手段3にてカラー映像信号に処理される。このカラー映像信号が出力されると共に、主に輝度情報が露出制御(AE)手段4と焦点調節(AF)手段2に供給され、各々の制御信号を生成する(特開平3−159377号公報参照)。
【0003】
AE手段4は、撮像素子1の画面毎の蓄積時間(いわゆるシャッタースピード)と絞り機構を制御し、AF手段2は焦点位置調節光学系L4を制御する。
【0004】
ブレ検出手段7は、加速度センサー等からなり、手ブレ状態の検出を行う。シフト光学系駆動手段(AS/IS)は、シフト光学系L3を駆動してブレを低減する。
【0005】
画角調節(ズーム)手段5は、ユーザーの必要に応じて撮像画角調節用の操作指示信号が入力され、不図示のメモリより電子カムカーブを読み出し、光学系L1,L2,L4を連動させながら制御を行う。
【0006】
【発明が解決しようとする課題】
上述したように、近年では撮像システムの小型化の急速な進展に伴い、多機能・高性能な撮像システムが小型にて実現できる反面、撮像素子の取り付けに極めて高い精度が要求されるようになっている。
【0007】
例えば、図8に示すように、部品の製造精度や製造工程での取り付け誤差等により撮像光学系8の光軸と撮像素子1との成す角度θが垂直から傾くことがある(水平方向にも同様の取り付け誤差が生じる。)。この場合、システム構成の小型化が進むほど、角度θを許容範囲内に納めることが難しくなり、現在要請される小型化に見合う高精度に角度調整を行うことが極めて困難となっている現況にある。
【0008】
そこで本発明は、前記課題に鑑みてなされたものであり、簡素な構成で撮像手段の撮像光学系との相対的位置を所定許容範囲内に容易且つ正確に自動調整することを可能とし、装置構成の更なる小型化に十分対応できる撮像システム及びその制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の撮像装置は、テストチャートが設けられたパネルと、前記パネルを移動させる駆動手段と、前記パネルのテストチャートを照明する照明手段とを有するレンズ装置を装着可能な撮像装置であって、前記レンズ装置の撮像光学系からの入射光を光電変換処理する撮像手段と、レンズ装置の装着を検知すると初期化指示を前記装着されたレンズ装置に送信することでワイド側へレンズを設定するとともに前記パネルのテストチャートを撮影光路内にセットさせて、前記照明手段により照明されたことを受信することで、前記撮像手段によって光電変換処理されたテストチャート像に基づいて当該撮像手段をX軸方向及びY軸方向に回転させることで、前記撮像手段と前記撮像光学系との相対的な位置調整をし、当該位置調整後に前記装着されたレンズ装置に初期化終了指示を送信することで前記装着されたレンズ装置のテストチャートを格納させて前記照明手段の照明を終了させる制御手段とを有する。
本発明の撮像装置の一態様では、撮像動作に先立って、前記撮像手段の位置調整を行う調整手段を備え、前記調整手段は、水平方向及び垂直方向の各周波数成分を有するパターンを照射し、当該パターンを前記撮像光学系を介して前記撮像手段に結像させるパターン照射手段と、前記撮像手段を水平方向及び垂直方向にそれぞれ位置調整駆動する駆動手段とを備え、水平方向及び垂直方向の前記各周波数成分がそれぞれ最大となるように、水平及び垂直を各々回転軸とした前記撮像手段の位置調整を行う。
本発明の撮像装置の一態様では、前記撮像手段の前に、水平方向及び垂直方向について独立に光路長を調節する光学部材を備え、前記光学部材の位置調整により撮像信号の高周波成分を最適化する。
本発明のレンズ装置は、撮像光学系を備え、当該撮像光学系からの入射光を光電変換処理する撮像手段を有する撮像装置に装着可能なレンズ装置であって、テストチャートが設けられたパネルと、前記パネルを移動させる駆動手段と、前記パネルのテストチャートを照明する照明手段と、当該レンズ装置の装着を検知に基づいて前記撮像装置から送信されてくる初期化指示に基づいて、ワイド側へレンズを設定するとともに前記パネルのテストチャートを撮影光路内にセットし、前記照明手段により当該テストチャートが照明されたことを前記撮像装置に送信することで、前記撮像装置の撮像手段によって光電変換処理されたテストチャート像に基づいて当該撮像手段をX軸方向及びY軸方向に回転させて、前記撮像手段と前記撮像光学系との相対的な位置調整をし、当該位置調整後に前記撮像装置から送信されてくる初期化終了指示を受信することで前記テストチャートを格納して前記照明手段の照明を終了させる制御手段とを有する。
【0017】
【発明の実施の形態】
以下、本発明を適用した好適な諸実施形態について図面を参照しながら詳細に説明する。
【0018】
(第1の実施形態)
図1は、本実施形態の撮像システムの全体構成を示す概略図である。
この撮像システムにおいて、1はCCDやCMOS等の光電変換素子からなる撮像素子、8は画角を調整する焦点距離調節光学系L1、このL1の動きに応じた補正光学系L2、手ブレ補正用のシフト光学系L3、入射光量の調節を行う絞り機構(Iris)、ピント調節を行うための焦点位置調節光学系L4を有する撮像光学系である。
【0019】
更に、2は焦点位置調節光学系L4を制御する焦点調節(AF)手段、3は撮像素子1からの撮像信号を受けて画像出力するための信号処理手段、4は撮像素子1の画面毎の蓄積時間(いわゆるシャッタースピード)と絞り機構を制御する露出制御(AE)手段、5はユーザーの必要に応じて撮像画角調節用の操作指示信号が入力され、不図示のメモリより電子カムカーブを読み出し、光学系L1,L2を連動させながら制御を行う画角調節(ズーム)手段である。
【0020】
更に、7は加速度センサー等からなり、手ブレ状態の検出を行うブレ検出手段、6はブレ検出手段7からの信号を受けてシフト光学系L3を駆動してブレを低減するシフト光学系駆動手段(AS/IS)である。
【0021】
更に、13はテストチャートが設けられたパネル、10はパネル13を移動させる駆動手段、14は発光手段15の制御を受けてパネル13のテストチャートを照明する白色又は多色LED等の照明手段、12,11はそれぞれX軸(水平)方向、Y軸(垂直)方向に撮像素子1を位置調整制御するための駆動手段であり、これらパネル13、駆動手段10、照明手段14、発光手段15、駆動手段11,12から初期調整手段が構成される。
【0022】
前記テストチャートは、パターン間隔が広く、周波数分の低いものから、パターン間隔の狭い周波数成分の高いものまで様々な周波数成分を含むものであり、証明光源も、波長の長い赤系と波長の短い青系のものまで、複数の波長を適宜選択可能としている。白色光源でも構わない。
【0023】
そして、AF手段2、駆動手段10、及び発光手段15の各制御がシステム制御手段9により行われる。
【0024】
本実施形態の撮像システムの特徴は、光学系8とその各種パラメータを各処理手段(AF手段2,AE手段4,AS/IS6,ズーム手段5,Iris)からの各制御データによる定常的な制御を開始するに先立って、初期調整手段により撮像素子1の光学系8に対する相対的位置(角度)の初期調整を行うことにある。
【0025】
図2は、角度調節の基本的な概念を示す概略図である。
角度調節は、撮像画面に対してX軸,Y軸方向について行う必要がある。撮像光学系8により形成される有効像を含む有効像円内において、内接する最大の長方形の撮像領域がエリアAであり、2軸の調節作業を考慮したケラレのない安全領域がエリアBである。ここでは、X軸,Y軸の各々に対して、撮像光学系8の光軸と撮像素子1との成す角度θ(θx,θy)を調節した有効撮像領域をエリアBとして撮像信号を生成し、出力する。
【0026】
以下、本実施形態の初期調整について説明する。
先ず、システム制御手段9から初期調整を行う旨の指示が出されると、これを受けて駆動手段10がパネル13を移動させる。このパネル13は撮像光学系8の前面に位置し、設計によってはレンズ保護バリアとの兼用も可能である。このように、極めて近距離にテストパターンを設ける場合には、システム制御手段9が画角調整手段5に対して至近撮影が可能なように、ワイド端への移動指示を出す。
【0027】
このパネル13には、テストチャートとしてX軸及びY軸方向の周波数成分を持つ二次元パターンが描いてあり、パネル駆動タイミングに合せて発光制御手段15が照明手段14を発光させる。この照明光を二次元パターンが受けて撮像光学系8により撮像素子1上に結像し、その二次元パターンの周波数成分を後段の処理手段であるAF手段2及びAE手段3にて分析し、補正調整する。
【0028】
ビデオカメラ信号処理手段3によりカラー映像信号として出力し、主に輝度信号情報のうちの高周波成分をAF手段2にて用い、X軸及びY軸に関する高周波成分の値に応じて駆動手段11,12を制御し、この高周波成分の画面内積分値が最大になるように調節する。
【0029】
図3にX軸,Y軸の二方向に対する画面内積分値調節の概念を示す。
ここでは、いわゆるTV信号を用いた山登り制御を、X軸とY軸に対して行い、画面全体としての最適化を実行する。
【0030】
例えば、Y軸を任意の値に固定し、先ず、X軸方向の高周波成分が最高値に成るように山登り制御を行う。次に、X軸の頂点にX軸値を固定した状態にてY軸成分の山登り制御を実行し、この時のX軸上の頂点値と、Y軸上の頂点値(X1,Y1)を各々記憶しておく。
この後に、定常的なカメラ制御を実行し、撮像を行う。
【0031】
更に、所定条件下或いは定期的に先の調整を実行し、頂点値(X1,Y1)よりも値が低下しないように相対精度を維持するようにしても良い。
【0032】
上記の調整手順を、図4に調整フローチャートとして示し、各ステップ(S1〜S8)毎の簡単な処理の説明を行う。
【0033】
先ず、システム制御手段9からの調整開始指示(条件)を駆動手段10が検知すると(S0)、画角調整手段をワイド端へ移動するように支持を出し、至近での撮影を可能とする(S1)。レンズカバーを閉じ(S2)、発光制御手段15により照明手段14を駆動してパネル13のテストチャートを照明(チャート照明)し、撮像素子1によりテストチャートを撮像する(S3)。続いて、X軸方向に対する撮像素子1の位置調整のための前記山登り制御を実行し(S4)、Y軸方向に対する撮像素子1の位置調整のための前記山登り制御を実行する(S5)。両軸の調整が終了すると(S6)、レンズカバーを開け(S7)、同時にチャート照明を消灯する(S8)。
以上により初期調整が終了し、定常的な撮像を開始できる。
【0034】
以上説明したように、本実施形態の撮像システムによれば、簡素な構成で撮像素子1の撮像光学系8との相対的位置を所定許容範囲内に容易且つ正確に自動調整することが可能となり、装置構成の更なる小型化にも十分対応することができる。
【0035】
また、撮像光学系8のレンズ前面にテストチャートを設けたことで、レンズバリヤーと共用することも可能となり、初期調整作業の完全自動化が実現する。
【0036】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。この撮像システムは、第1の実施形態と同様に初期調整を行うものであるが、撮像光学系8が交換自在とされている点で相違する。なお、第1の実施形態と同様の構成部材等については同符号を記して説明を省略する。
【0037】
図5は、本実施形態の撮像システムの全体構成を示す概略図である。
この撮像システムは、大きく分けて、レンズ部とカメラ部に二分されており、各々にマイコンからなるシステム制御手段16,18を備えており、これらの間でデータ通信が実行される。
【0038】
ここで、撮像光学系8により被写体像が撮像素子1上に結像され、この撮像素子1により光電変換され、ビデオカメラ信号処理手段3にてカラー映像信号に処理される。処理された映像信号は出力されると共に、主に輝度情報がAE手段4とAF手段2に供給され、各々の制御信号を生成してシステム制御手段18に入力される。AE手段4及びAF手段2からの制御データは、システム制御手段18からレンズ部側のシステム制御手段16に伝送され、Iris及び焦点位置調節光学系L4を制御する。また、AE手段4は撮像素子1の画面毎の蓄積時間も必要に応じて制御する。
【0039】
手ブレ状態の検出はレンズ部側において、加速度センサー等のブレ検出手段7にて検知し、シフト光学系駆動手段(AS/lS)により光学系L3を駆動し、ブレを低減する。
【0040】
更に、操作者の必要に応じて撮像画角調節用の操作指示信号がシステム制御手段18に入力されると、レンズ部側のシステム制御手段16に伝送し、レンズ部側に備えた不図示のメモリより電子カムカーブを読み出し、光学系L1,L2を連動させながら制御を行う。
【0041】
本実施形態における初期調整手順を、図6に調整フローチャートとして示し、各ステップ(S1〜S10)毎の簡単な処理の説明を行う。
ここでは、レンズ部側のシステム制御手段16とカメラ部側のシステム制御手段18間におけるデータ通信の手順の一例を示す。
【0042】
先ず、レンズ装着を検知すると(S0)、システム制御手段18が初期処理の開始を指示するコマンドデータを送信する(S1)。続いて、このコマンドデータを受けたレンズ部側では、画角調整をワイド端に設定(S2)し、駆動手段10によりパネル13のテストチャートを光路内にセットし(S3)、テストチャートを照明手段14により照明する(S4)。続いて、X軸方向に対する撮像素子1の位置調整のための前記山登り制御を実行し(S5)、Y軸方向に対する撮像素子1の位置調整のための前記山登り制御を実行する(S6)。調整が完了しない場合は、再度S5に戻り、終了の際は(S7)、初期終了指示をレンズ部側のシステム制御手段16に送信する(S8)。レンズ部側ではテストチャートを格納し(S9)、チャート用の照明手段15を消灯して(S10)、通常撮影を行えるような状態に設定する。
【0043】
以上説明したように、本実施形態の撮像システムによれば、第1の実施形態の奏する諸効果に加え、レンズ交換方式の撮像システムにおいても、調整作業に関するデータを、カメラ部側のシステム制御手段18とレンズ部側のシステム制御手段16との間にて通信可能とすることにより、如何なる特性を持った撮像光学系を取り付けた場合でも、相対位置を最適化できるので、一部にボケた部分を残したような不適切な撮像画面を排除でき、良好な撮像が可能となる。
【0044】
なお、上述の実施形態の他に、光電変換素子の前に、X軸,Y軸独立に光路長を調節するための光学部材を設け、この光学部材の2軸位置調整により撮像信号の高周波成分を最適化しても良い。
【0045】
【発明の効果】
本発明によれば、簡素な構成で撮像手段の撮像光学系との相対的位置を所定許容範囲内に容易且つ正確に自動調整することが可能となり、装置構成の更なる小型化にも十分対応することができる。
【0046】
また、所定条件下(例えば、電源オン時、温度変化時等)、或いは定期的(例えば、所定時間間隔)に、前述の調整を行なうことにより、連続使用中に像の片ボケ発生の防止や、経年変化(劣化)にも対応でき、常に良好な状態にて撮像を行なうことが可能となる。
【図面の簡単な説明】
【図1】第1の実施形態の撮像システムの全体構成を示す概略図である。
【図2】角度調節の基本的な概念を示す概略図である。
【図3】X軸,Y軸の二方向に対する画面内積分値調節の概念を示す概略図である。
【図4】初期調整を示すフローチャートである。
【図5】第2の実施形態の撮像システムの全体構成を示す概略図である。
【図6】初期調整を示すフローチャートである。
【図7】従来の撮像システムの全体構成を示す概略図である。
【図8】撮像光学系の光軸と撮像素子との成す角の変動を示す概念図である。
【符号の説明】
1 撮像素子
2 焦点調節(AF)手段
3 信号処理手段
4 露出制御(AE)手段
5 画角調節(ズーム)手段
6 シフト光学系駆動手段(AS/IS)
7 ブレ検出手段
8 撮像光学系
9,16,18 システム制御手段
10,11,12 駆動手段
13 パネル
14 照明手段
15 発光手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic imaging system including imaging means such as an imaging optical system and a photoelectric conversion element.
[0002]
[Prior art]
FIG. 7 shows a typical configuration diagram of a conventional imaging system, and an outline of the operation will be described based on this.
In this imaging system, a focal length adjustment optical system L1 for adjusting the angle of view, a correction optical system L2 corresponding to the movement of the L1, a shift optical system L3 for camera shake correction, and a diaphragm mechanism (Iris) for adjusting the amount of incident light. ), The subject image is formed on the image sensor 1 by the image pickup optical system 8 having the focus position adjustment optical system L4 for adjusting the focus.
The image of the subject is photoelectrically converted into an electrical signal by the imaging device 1 and processed into a color video signal by the video camera signal processing means 3. The color video signal is output, and luminance information is mainly supplied to the exposure control (AE) means 4 and the focus adjustment (AF) means 2 to generate respective control signals (see Japanese Patent Laid-Open No. 3-159377). ).
[0003]
The AE unit 4 controls the accumulation time (so-called shutter speed) and the aperture mechanism for each screen of the image sensor 1, and the AF unit 2 controls the focal position adjusting optical system L4.
[0004]
The shake detection unit 7 includes an acceleration sensor or the like, and detects a camera shake state. The shift optical system driving means (AS / IS) drives the shift optical system L3 to reduce blur.
[0005]
The angle-of-view adjusting (zoom) means 5 receives an operation instruction signal for adjusting the angle of view of imaging as required by the user, reads an electronic cam curve from a memory (not shown), and interlocks the optical systems L1, L2, and L4. Take control.
[0006]
[Problems to be solved by the invention]
As described above, with the rapid progress of downsizing of imaging systems in recent years, multifunctional and high-performance imaging systems can be realized in a small size, but on the other hand, extremely high accuracy is required for mounting of imaging devices. ing.
[0007]
For example, as shown in FIG. 8, the angle θ formed by the optical axis of the imaging optical system 8 and the imaging device 1 may be inclined from the vertical (also in the horizontal direction) due to the manufacturing accuracy of parts, mounting errors in the manufacturing process, and the like. A similar mounting error occurs.) In this case, the smaller the system configuration is, the more difficult it is to keep the angle θ within the allowable range, and it is very difficult to adjust the angle with high accuracy to meet the currently required miniaturization. is there.
[0008]
Therefore, the present invention has been made in view of the above-described problems, and can easily and accurately automatically adjust the relative position of the imaging unit with the imaging optical system within a predetermined allowable range with a simple configuration. An object of the present invention is to provide an imaging system that can sufficiently cope with further downsizing of the configuration and a control method thereof.
[0009]
[Means for Solving the Problems]
The imaging apparatus of the present invention is an imaging apparatus capable of mounting a lens device having a panel provided with a test chart, a driving unit for moving the panel, and an illumination unit for illuminating the test chart of the panel, An imaging unit that performs photoelectric conversion processing on incident light from the imaging optical system of the lens device, and a lens setting to the wide side by transmitting an initialization instruction to the mounted lens device when detecting the mounting of the lens device By setting the test chart of the panel in the photographing optical path and receiving the fact that it has been illuminated by the illuminating means, the imaging means is moved in the X-axis direction based on the test chart image photoelectrically converted by the imaging means. And adjusting the relative position between the imaging means and the imaging optical system by rotating in the Y-axis direction, and the mounting after the position adjustment. And a control means to terminate the illumination of the illumination means by storing the test chart of the mounted lens unit by transmitting lens device initialization completion indication to the.
In one aspect of the imaging apparatus of the present invention, the imaging device includes an adjustment unit that adjusts the position of the imaging unit prior to the imaging operation, and the adjustment unit irradiates a pattern having frequency components in the horizontal direction and the vertical direction, Pattern irradiating means for forming an image of the pattern on the imaging means via the imaging optical system, and driving means for adjusting the position of the imaging means in the horizontal direction and the vertical direction, respectively. The position of the imaging means is adjusted with the horizontal and vertical axes as rotational axes so that each frequency component becomes maximum.
In one aspect of the imaging apparatus of the present invention, an optical member that adjusts the optical path length independently in the horizontal direction and the vertical direction is provided in front of the imaging means, and the high-frequency component of the imaging signal is optimized by adjusting the position of the optical member. To do.
A lens apparatus of the present invention is a lens apparatus that includes an imaging optical system and that can be attached to an imaging apparatus having an imaging unit that performs photoelectric conversion processing on incident light from the imaging optical system, and a panel provided with a test chart; , A driving means for moving the panel, an illuminating means for illuminating the test chart of the panel, and a wide side based on an initialization instruction transmitted from the imaging device based on detection of attachment of the lens device The lens is set and the test chart of the panel is set in the photographing optical path, and the fact that the test chart is illuminated by the illuminating means is transmitted to the imaging apparatus, whereby the photoelectric conversion process is performed by the imaging means of the imaging apparatus. The imaging unit is rotated in the X-axis direction and the Y-axis direction based on the test chart image, and the imaging unit, the imaging optical system, The relative position adjustment, and control means for terminating the illumination of the illumination means to store the test chart by receiving the initialization completion instruction sent from the image pickup device after the position adjustment.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments to which the present invention is applied will be described in detail with reference to the drawings.
[0018]
(First embodiment)
FIG. 1 is a schematic diagram showing the overall configuration of the imaging system of the present embodiment.
In this imaging system, reference numeral 1 denotes an imaging element composed of a photoelectric conversion element such as a CCD or CMOS, 8 denotes a focal length adjustment optical system L1 for adjusting the angle of view, a correction optical system L2 corresponding to the movement of this L1, and a camera shake correction purpose. Imaging optical system having a shift optical system L3, an aperture mechanism (Iris) for adjusting the amount of incident light, and a focus position adjusting optical system L4 for adjusting the focus.
[0019]
Further, 2 is a focus adjustment (AF) means for controlling the focus position adjusting optical system L4, 3 is a signal processing means for receiving an image pickup signal from the image pickup device 1 and outputting an image, and 4 is for each screen of the image pickup device 1. Exposure control (AE) means 5 for controlling the accumulation time (so-called shutter speed) and aperture mechanism, 5 receives an operation instruction signal for adjusting the angle of view of the image as required by the user, and reads an electronic cam curve from a memory (not shown). These are angle-of-view adjustment (zoom) means for performing control while interlocking the optical systems L1 and L2.
[0020]
Further, 7 includes an acceleration sensor and the like, and shake detection means for detecting a camera shake state. 6 receives a signal from the shake detection means 7 and drives the shift optical system L3 to reduce blur. (AS / IS).
[0021]
Further, 13 is a panel provided with a test chart, 10 is a driving means for moving the panel 13, 14 is an illumination means such as a white or multi-color LED that illuminates the test chart of the panel 13 under the control of the light emitting means 15, Reference numerals 12 and 11 denote driving means for adjusting the position of the image sensor 1 in the X-axis (horizontal) direction and the Y-axis (vertical) direction. The panel 13, the driving means 10, the illumination means 14, the light-emitting means 15, The drive means 11 and 12 constitute an initial adjustment means.
[0022]
The test chart includes a variety of frequency components from a wide pattern interval and a low frequency component to a high frequency component with a narrow pattern interval, and the proof light source also has a long red wavelength and a short wavelength. A plurality of wavelengths can be appropriately selected up to blue ones. A white light source may be used.
[0023]
Each control of the AF unit 2, the driving unit 10, and the light emitting unit 15 is performed by the system control unit 9.
[0024]
The imaging system of the present embodiment is characterized in that the optical system 8 and its various parameters are constantly controlled by control data from each processing means (AF means 2, AE means 4, AS / IS 6, zoom means 5, Iris). Before starting, the initial adjustment means performs initial adjustment of the relative position (angle) of the image sensor 1 with respect to the optical system 8.
[0025]
FIG. 2 is a schematic diagram showing the basic concept of angle adjustment.
The angle adjustment needs to be performed with respect to the imaging screen in the X-axis and Y-axis directions. In the effective image circle including the effective image formed by the imaging optical system 8, the inscribed maximum rectangular imaging area is the area A, and the vignetting-free safety area considering the biaxial adjustment work is the area B. . Here, for each of the X axis and the Y axis, an imaging signal is generated with an effective imaging area in which an angle θ (θx, θy) formed by the optical axis of the imaging optical system 8 and the imaging element 1 is adjusted as an area B. ,Output.
[0026]
Hereinafter, the initial adjustment of the present embodiment will be described.
First, when an instruction to perform initial adjustment is issued from the system control means 9, the driving means 10 moves the panel 13 in response to the instruction. The panel 13 is located in front of the imaging optical system 8 and can also be used as a lens protection barrier depending on the design. As described above, when the test pattern is provided at an extremely short distance, the system control unit 9 instructs the field angle adjustment unit 5 to move to the wide end so that close-up shooting can be performed.
[0027]
On this panel 13, a two-dimensional pattern having frequency components in the X-axis and Y-axis directions is drawn as a test chart, and the light emission control means 15 causes the illumination means 14 to emit light in accordance with the panel drive timing. The illumination light is received by the two-dimensional pattern and imaged on the image sensor 1 by the imaging optical system 8, and the frequency component of the two-dimensional pattern is analyzed by the AF means 2 and the AE means 3 which are subsequent processing means, Adjust the correction.
[0028]
The video camera signal processing means 3 outputs it as a color video signal, and mainly uses the high frequency component of the luminance signal information in the AF means 2, and the driving means 11, 12 according to the values of the high frequency components for the X axis and Y axis And adjust so that the integral value in the screen of this high-frequency component becomes maximum.
[0029]
FIG. 3 shows the concept of adjustment of the integral value in the screen with respect to the two directions of the X axis and the Y axis.
Here, hill-climbing control using a so-called TV signal is performed on the X axis and the Y axis, and optimization of the entire screen is executed.
[0030]
For example, the Y-axis is fixed to an arbitrary value, and first, hill climbing control is performed so that the high-frequency component in the X-axis direction becomes the maximum value. Next, hill-climbing control of the Y-axis component is executed with the X-axis value fixed at the X-axis vertex, and the vertex value on the X-axis and the vertex value (X1, Y1) on the Y-axis at this time are Remember each one.
Thereafter, steady camera control is executed to perform imaging.
[0031]
Further, the relative adjustment may be maintained so that the value is not lowered below the vertex value (X1, Y1) by performing the previous adjustment under a predetermined condition or periodically.
[0032]
The above adjustment procedure is shown in FIG. 4 as an adjustment flowchart, and simple processing for each step (S1 to S8) will be described.
[0033]
First, when the drive means 10 detects an adjustment start instruction (condition) from the system control means 9 (S0), the support is provided so as to move the angle of view adjustment means to the wide end, thereby enabling photographing at close range ( S1). The lens cover is closed (S2), the illumination control unit 15 drives the illumination unit 14 to illuminate the test chart of the panel 13 (chart illumination), and the image sensor 1 images the test chart (S3). Subsequently, the hill-climbing control for adjusting the position of the image sensor 1 with respect to the X-axis direction is executed (S4), and the hill-climbing control for adjusting the position of the image sensor 1 with respect to the Y-axis direction is executed (S5). When the adjustment of both axes is completed (S6), the lens cover is opened (S7), and the chart illumination is turned off at the same time (S8).
The initial adjustment is thus completed, and steady imaging can be started.
[0034]
As described above, according to the imaging system of this embodiment, it is possible to easily and accurately automatically adjust the relative position of the imaging device 1 with the imaging optical system 8 within a predetermined allowable range with a simple configuration. Therefore, it is possible to sufficiently cope with further downsizing of the device configuration.
[0035]
Further, by providing a test chart on the front surface of the lens of the imaging optical system 8, it can be shared with the lens barrier, and the initial adjustment work can be fully automated.
[0036]
(Second Embodiment)
Next, a second embodiment of the present invention will be described. This imaging system performs initial adjustment as in the first embodiment, but differs in that the imaging optical system 8 is replaceable. In addition, about the structural member etc. similar to 1st Embodiment, the same code | symbol is described and description is abbreviate | omitted.
[0037]
FIG. 5 is a schematic diagram showing the overall configuration of the imaging system of the present embodiment.
This imaging system is roughly divided into a lens part and a camera part, and each has system control means 16 and 18 each comprising a microcomputer, and data communication is executed between them.
[0038]
Here, a subject image is formed on the image pickup device 1 by the image pickup optical system 8, photoelectrically converted by the image pickup device 1, and processed into a color video signal by the video camera signal processing means 3. The processed video signal is output, and luminance information is mainly supplied to the AE unit 4 and the AF unit 2 to generate respective control signals and input to the system control unit 18. Control data from the AE unit 4 and the AF unit 2 is transmitted from the system control unit 18 to the system control unit 16 on the lens unit side, and controls the Iris and focus position adjusting optical system L4. The AE unit 4 also controls the accumulation time for each screen of the image sensor 1 as necessary.
[0039]
The camera shake state is detected by the shake detection means 7 such as an acceleration sensor on the lens side, and the optical system L3 is driven by the shift optical system drive means (AS / lS) to reduce the shake.
[0040]
Further, when an operation instruction signal for adjusting the imaging angle of view is input to the system control unit 18 as required by the operator, it is transmitted to the system control unit 16 on the lens unit side and is not shown provided on the lens unit side. The electronic cam curve is read from the memory, and control is performed while interlocking the optical systems L1 and L2.
[0041]
The initial adjustment procedure in the present embodiment is shown as an adjustment flowchart in FIG. 6, and a simple process for each step (S1 to S10) will be described.
Here, an example of a data communication procedure between the system control unit 16 on the lens unit side and the system control unit 18 on the camera unit side is shown.
[0042]
First, when lens mounting is detected (S0), the system control means 18 transmits command data instructing the start of initial processing (S1). Subsequently, on the lens unit side receiving this command data, the angle of view adjustment is set to the wide end (S2), the test chart of the panel 13 is set in the optical path by the driving means 10 (S3), and the test chart is illuminated. Illuminate by means 14 (S4). Subsequently, the hill-climbing control for adjusting the position of the image sensor 1 with respect to the X-axis direction is executed (S5), and the hill-climbing control for adjusting the position of the image sensor 1 with respect to the Y-axis direction is executed (S6). If the adjustment is not completed, the process returns to S5 again. When the adjustment is completed (S7), an initial termination instruction is transmitted to the system control means 16 on the lens unit side (S8). On the lens side, the test chart is stored (S9), the chart illumination means 15 is turned off (S10), and the state is set so that normal photographing can be performed.
[0043]
As described above, according to the imaging system of the present embodiment, in addition to the effects exhibited by the first embodiment, in the imaging system of the lens exchange system, the data related to the adjustment work is also transmitted to the system control means on the camera unit side. By enabling communication between the lens 18 and the system control unit 16 on the lens unit side, the relative position can be optimized even when an imaging optical system having any characteristics is attached. Thus, an inappropriate imaging screen that leaves the image can be eliminated, and favorable imaging can be performed.
[0044]
In addition to the above-described embodiment, an optical member for adjusting the optical path length independently of the X-axis and the Y-axis is provided in front of the photoelectric conversion element, and the high-frequency component of the imaging signal is obtained by adjusting the biaxial position of this optical member. May be optimized.
[0045]
【The invention's effect】
According to the present invention, it is possible to easily and accurately automatically adjust the relative position of the image pickup means with the image pickup optical system within a predetermined allowable range with a simple configuration, and sufficiently cope with further downsizing of the device configuration. can do.
[0046]
Further, by performing the above-described adjustment under a predetermined condition (for example, when the power is turned on or when the temperature is changed) or periodically (for example, at a predetermined time interval), Therefore, it is possible to cope with aging (deterioration) and always perform imaging in a good state.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an overall configuration of an imaging system according to a first embodiment.
FIG. 2 is a schematic diagram showing a basic concept of angle adjustment.
FIG. 3 is a schematic diagram showing a concept of in-screen integral value adjustment in two directions of an X axis and a Y axis.
FIG. 4 is a flowchart showing initial adjustment.
FIG. 5 is a schematic diagram illustrating an overall configuration of an imaging system according to a second embodiment.
FIG. 6 is a flowchart showing initial adjustment.
FIG. 7 is a schematic diagram illustrating an overall configuration of a conventional imaging system.
FIG. 8 is a conceptual diagram illustrating a change in an angle formed by an optical axis of an imaging optical system and an imaging element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Image pick-up element 2 Focus adjustment (AF) means 3 Signal processing means 4 Exposure control (AE) means 5 Field angle adjustment (zoom) means 6 Shift optical system drive means (AS / IS)
7 Shake detection means 8 Imaging optical system 9, 16, 18 System control means 10, 11, 12 Drive means 13 Panel 14 Illumination means 15 Light emission means

Claims (4)

テストチャートが設けられたパネルと、前記パネルを移動させる駆動手段と、前記パネルのテストチャートを照明する照明手段とを有するレンズ装置を装着可能な撮像装置であって、
前記レンズ装置の撮像光学系からの入射光を光電変換処理する撮像手段と、
レンズ装置の装着を検知すると初期化指示を前記装着されたレンズ装置に送信することでワイド側へレンズを設定するとともに前記パネルのテストチャートを撮影光路内にセットさせて、前記照明手段により照明されたことを受信することで、前記撮像手段によって光電変換処理されたテストチャート像に基づいて当該撮像手段をX軸方向及びY軸方向に回転させることで、前記撮像手段と前記撮像光学系との相対的な位置調整をし、当該位置調整後に前記装着されたレンズ装置に初期化終了指示を送信することで前記装着されたレンズ装置のテストチャートを格納させて前記照明手段の照明を終了させる制御手段と
を有することを特徴とする撮像装置。
An imaging apparatus capable of mounting a lens device having a panel provided with a test chart, a driving means for moving the panel, and an illumination means for illuminating the test chart of the panel,
Imaging means for performing photoelectric conversion processing on incident light from the imaging optical system of the lens device ;
When the lens device is detected to be mounted, an initialization instruction is transmitted to the mounted lens device to set the lens to the wide side, and the test chart of the panel is set in the photographing optical path, and is illuminated by the illumination means. Is received, the image pickup means and the image pickup optical system are Control that performs relative position adjustment, transmits an initialization end instruction to the mounted lens apparatus after the position adjustment, stores a test chart of the mounted lens apparatus, and ends illumination of the illumination unit Means and
An imaging device comprising:
撮像動作に先立って、前記撮像手段の位置調整を行う調整手段を備え、
前記調整手段は、
水平方向及び垂直方向の各周波数成分を有するパターンを照射し、当該パターンを前記撮像光学系を介して前記撮像手段に結像させるパターン照射手段と、
前記撮像手段を水平方向及び垂直方向にそれぞれ位置調整駆動する駆動手段とを備え、
水平方向及び垂直方向の前記各周波数成分がそれぞれ最大となるように、水平及び垂直を各々回転軸とした前記撮像手段の位置調整を行うことを特徴とする請求項1に記載の撮像装置。
Prior to the imaging operation, comprising an adjusting means for adjusting the position of the imaging means,
The adjusting means includes
Pattern irradiating means for irradiating a pattern having frequency components in the horizontal direction and the vertical direction, and imaging the pattern on the imaging means via the imaging optical system;
Driving means for adjusting the position of the imaging means in the horizontal direction and the vertical direction, respectively.
The image pickup apparatus according to claim 1, wherein the position of the image pickup unit is adjusted with the horizontal and vertical axes as rotation axes so that the frequency components in the horizontal direction and the vertical direction are maximized.
前記撮像手段の前に、水平方向及び垂直方向について独立に光路長を調節する光学部材を備え、
前記光学部材の位置調整により撮像信号の高周波成分を最適化することを特徴とする請求項1に記載の撮像装置。
Before the imaging means, comprising an optical member that adjusts the optical path length independently in the horizontal and vertical directions,
The imaging apparatus according to claim 1, wherein a high-frequency component of an imaging signal is optimized by adjusting a position of the optical member.
撮像光学系を備え、当該撮像光学系からの入射光を光電変換処理する撮像手段を有する撮像装置に装着可能なレンズ装置であって、A lens apparatus that includes an imaging optical system and that can be attached to an imaging apparatus having an imaging unit that photoelectrically converts incident light from the imaging optical system,
テストチャートが設けられたパネルと、A panel with a test chart;
前記パネルを移動させる駆動手段と、Driving means for moving the panel;
前記パネルのテストチャートを照明する照明手段と、Illumination means for illuminating the test chart of the panel;
当該レンズ装置の装着を検知に基づいて前記撮像装置から送信されてくる初期化指示に基づいて、ワイド側へレンズを設定するとともに前記パネルのテストチャートを撮影光路内にセットし、前記照明手段により当該テストチャートが照明されたことを前記撮像装置に送信することで、前記撮像装置の撮像手段によって光電変換処理されたテストチャート像に基づいて当該撮像手段をX軸方向及びY軸方向に回転させて、前記撮像手段と前記撮像光学系との相対的な位置調整をし、当該位置調整後に前記撮像装置から送信されてくる初期化終了指示を受信することで前記テストチャートを格納して前記照明手段の照明を終了させる制御手段とBased on the initialization instruction transmitted from the imaging device based on detection of the mounting of the lens device, the lens is set to the wide side and the test chart of the panel is set in the imaging optical path, and the illumination means By transmitting that the test chart is illuminated to the imaging device, the imaging unit is rotated in the X-axis direction and the Y-axis direction based on the test chart image photoelectrically converted by the imaging unit of the imaging device. And adjusting the relative position between the imaging means and the imaging optical system, and receiving the initialization end instruction transmitted from the imaging device after the position adjustment, storing the test chart to store the illumination Control means for terminating illumination of the means;
を有することを特徴とするレンズ装置。A lens device comprising:
JP2000202620A 2000-07-04 2000-07-04 Imaging device and lens device Expired - Fee Related JP4579380B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000202620A JP4579380B2 (en) 2000-07-04 2000-07-04 Imaging device and lens device
US09/898,857 US6985177B2 (en) 2000-07-04 2001-07-03 Image sensing system and its control method
US11/064,195 US7679645B2 (en) 2000-07-04 2005-02-22 Image sensing system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202620A JP4579380B2 (en) 2000-07-04 2000-07-04 Imaging device and lens device

Publications (3)

Publication Number Publication Date
JP2002027309A JP2002027309A (en) 2002-01-25
JP2002027309A5 JP2002027309A5 (en) 2007-08-16
JP4579380B2 true JP4579380B2 (en) 2010-11-10

Family

ID=18700117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202620A Expired - Fee Related JP4579380B2 (en) 2000-07-04 2000-07-04 Imaging device and lens device

Country Status (1)

Country Link
JP (1) JP4579380B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317616A1 (en) * 2003-04-11 2004-10-21 Carl Zeiss Jena Gmbh Adjustment and mounting arrangement for optical elements used in optical imagers for image projection systems
JP3875659B2 (en) 2003-07-25 2007-01-31 株式会社東芝 Camera device and robot device
JP2008211894A (en) * 2007-02-26 2008-09-11 Olympus Imaging Corp Driver and imaging apparatus
JP5572024B2 (en) * 2010-07-27 2014-08-13 キヤノン株式会社 Lens device
JP5937821B2 (en) * 2011-12-27 2016-06-22 株式会社トプコン Surveying instrument
JP5914763B2 (en) 2013-08-01 2016-05-18 富士フイルム株式会社 Imaging module, electronic device, and manufacturing method of imaging module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288686A (en) * 1985-06-17 1986-12-18 Sony Corp Flapping quantity measuring method for solid-state image pickup element
JPS62252279A (en) * 1986-04-25 1987-11-04 Hitachi Denshi Ltd Television camera device
JPH03259668A (en) * 1990-03-09 1991-11-19 Canon Inc Test pattern projecting device
JPH04196878A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Automatic swing device for video camera

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308554A (en) * 1992-04-30 1993-11-19 Olympus Optical Co Ltd Displacement detector for solid-state image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288686A (en) * 1985-06-17 1986-12-18 Sony Corp Flapping quantity measuring method for solid-state image pickup element
JPS62252279A (en) * 1986-04-25 1987-11-04 Hitachi Denshi Ltd Television camera device
JPH03259668A (en) * 1990-03-09 1991-11-19 Canon Inc Test pattern projecting device
JPH04196878A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Automatic swing device for video camera

Also Published As

Publication number Publication date
JP2002027309A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US7414648B2 (en) Camera and camera system capable of changing gain value and exposure time
US8063944B2 (en) Imaging apparatus
EP1447709B1 (en) Digital single lens reflex camera with a movable half mirror and fast phase-difference autofocus
JP4478599B2 (en) Imaging device
JP3634232B2 (en) Digital still camera
JP4874668B2 (en) Autofocus unit and camera
WO2009104390A1 (en) Imaging device
US20020080242A1 (en) Image sensing system and its control method
US20060055788A1 (en) Image capturing apparatus, and method of setting flash synchronization speed
JP2005221602A (en) Image pickup device
US7071973B1 (en) Digital camera having multiple image taking modes
JP4310309B2 (en) Optical device and method for controlling optical device
US5619260A (en) Still video camera performing white-balance and auto-focus adjustment concurrently
KR100211531B1 (en) Electronic still camera
JP4579380B2 (en) Imaging device and lens device
JP2002354336A (en) Lens device and digital camera system
JP2001141982A (en) Automatic focusing device for electronic camera
JP3632677B2 (en) Electronic camera
JP6398250B2 (en) Focus detection device
JP5796388B2 (en) Focus detection apparatus and imaging apparatus
JP7481925B2 (en) Image blur correction control device, method, program, and storage medium
US5339173A (en) Imaging apparatus having object plate and variably positionable image sensor
JP4865275B2 (en) Focus detection apparatus and imaging apparatus
EP0552961B1 (en) Sequence of different automatic camera controls
JP2001141983A (en) Automatic focusing device for electronic camera

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees