JP4578401B2 - Method for producing immobilized antibody - Google Patents

Method for producing immobilized antibody Download PDF

Info

Publication number
JP4578401B2
JP4578401B2 JP2005373838A JP2005373838A JP4578401B2 JP 4578401 B2 JP4578401 B2 JP 4578401B2 JP 2005373838 A JP2005373838 A JP 2005373838A JP 2005373838 A JP2005373838 A JP 2005373838A JP 4578401 B2 JP4578401 B2 JP 4578401B2
Authority
JP
Japan
Prior art keywords
antibody
sugar chain
antigen
tris
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005373838A
Other languages
Japanese (ja)
Other versions
JP2007178142A (en
Inventor
文緒 宇梶
尚広 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUYMA DENTAL CORPORATION
Tokuyama Corp
Original Assignee
TOKUYMA DENTAL CORPORATION
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUYMA DENTAL CORPORATION, Tokuyama Corp filed Critical TOKUYMA DENTAL CORPORATION
Priority to JP2005373838A priority Critical patent/JP4578401B2/en
Publication of JP2007178142A publication Critical patent/JP2007178142A/en
Application granted granted Critical
Publication of JP4578401B2 publication Critical patent/JP4578401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、免疫学的測定法に使用する固定化抗体の製造方法に関する。   The present invention relates to a method for producing an immobilized antibody for use in an immunological assay.

医学検査や食品検査、または環境測定において微生物検査は重要な検査項目となっている。   Microbiological testing is an important test item in medical testing, food testing, and environmental measurement.

口腔内には多種多様な微生物が存在しており、これらの微生物の中に感染症を引き起こす微生物が存在する場合があることが知られている。例えば、齲蝕、歯周病の発生には齲蝕関連菌や歯周病関連菌が強く関与していることが知られている。近年、従来の感染症とは関係ないと思われていた疾患、例えば、心臓病、胃潰瘍、癌等の発症にも口腔内に存在する微生物が関与している場合があることが明らかとなり、口腔内の微生物検査は歯科領域のみならず、医科領域においても重要になっている。   A wide variety of microorganisms exist in the oral cavity, and it is known that microorganisms that cause infections may exist among these microorganisms. For example, it is known that caries-related bacteria and periodontal disease-related bacteria are strongly involved in the occurrence of caries and periodontal disease. In recent years, it has been clarified that microorganisms present in the oral cavity may be involved in the development of diseases that have not been related to conventional infectious diseases, such as heart disease, gastric ulcer, cancer, etc. The microbiological examination is important not only in the dental field but also in the medical field.

被検体液中の微生物の測定は、従来培養法によって実施されており、結果が判明するまで長時間かかるという問題があったが、免疫学的測定方法が開発され検査時間が大幅に短縮された。免疫学的測定方法は微生物が有する特異的な抗原に対する抗体を利用して該微生物を高感度に検出するという方法である(非特許文献1)。   The measurement of microorganisms in the sample liquid has been performed by the conventional culture method, and there was a problem that it took a long time until the result became clear, but the immunological measurement method was developed, and the test time was greatly shortened. . The immunological measurement method is a method of detecting a microorganism with high sensitivity using an antibody against a specific antigen possessed by the microorganism (Non-patent Document 1).

微生物から抗原を抽出し調製した抗原抽出液を免疫学的方法で測定することで、検出感度を更に高めることが可能である。その理由として、1)抗原が可溶化され低分子となるので、抗原抗体反応が進行しやすくなる、2)エピトープが露出する、等のことが考えられている。微生物抗原の抽出方法としては、界面活性剤処理、酵素処理、熱処理等多種多様な方法が実用化されているが、糖鎖抗原の抽出方法に適した方法として亜硝酸抽出法(非特許文献2)が知られている。該方法は、特に、A群レンサ球菌、口腔内レンサ球菌等ストレプトコッカス属に属する微生物の糖鎖抗原の抽出に有効である。該方法は亜硝酸水溶液を糖鎖に反応させ、糖鎖を切断し菌体から遊離させるという方法であり、一般的な亜硝酸抽出法は、亜硝酸塩水溶液(多くの場合は亜硝酸ナトリウム)と酸溶液(酢酸、塩酸、硝酸等)を混合することで亜硝酸を発生させ、微生物と亜硝酸を十分な時間反応させることにより実施される。   Detection sensitivity can be further enhanced by measuring an antigen extract prepared by extracting an antigen from a microorganism by an immunological method. The reasons for this are considered to be 1) the antigen is solubilized and becomes a low molecule, so that the antigen-antibody reaction is likely to proceed, and 2) the epitope is exposed. As a method for extracting a microbial antigen, various methods such as a surfactant treatment, an enzyme treatment, and a heat treatment have been put into practical use, and a nitrite extraction method (Non-patent Document 2) is suitable as a method for extracting a sugar chain antigen. )It has been known. This method is particularly effective for extracting sugar chain antigens of microorganisms belonging to the genus Streptococcus such as group A streptococci and oral streptococci. The method is a method in which an aqueous nitrite solution is reacted with a sugar chain, the sugar chain is cleaved and released from the cells, and a general nitrite extraction method includes an aqueous nitrite solution (in many cases sodium nitrite) and Nitrous acid is generated by mixing an acid solution (acetic acid, hydrochloric acid, nitric acid, etc.), and the microorganism is reacted with nitrous acid for a sufficient time.

上記のようにして調製した糖鎖抗原抽出液中の糖鎖抗原量の測定に使用される免疫学的方法は、通常、抗体を不溶性の固定化用担体に固定化して得られる固定化抗体を使用して、抗原を検出する方法がとられる。固定化抗体は、一般的に、抗体が緩衝液等の水溶液に溶解している抗体溶液と固定化用担体を一定時間接触させることにより、抗体を該不溶性担体に結合させることにより製造される。被検体液中の抗原量の測定時に、抗原以外の物質の固定化用担体への非特異的な吸着が生じると、測定時のバックグラウンドが上昇するために正確な測定ができなくなるので、抗体を固定化用担体に結合させた後、さらにウシ血清アルブミン(以下BSAと略す場合がある)、カゼイン、ゼラチン、スキムミルク等のタンパク質でブロッキングすることが一般的に実施されている。   The immunological method used to measure the amount of glycan antigen in the glycan antigen extract prepared as described above is generally an immobilized antibody obtained by immobilizing an antibody on an insoluble immobilization carrier. Used to detect antigens. In general, an immobilized antibody is produced by bringing an antibody solution in which an antibody is dissolved in an aqueous solution such as a buffer solution into contact with an immobilization carrier for a certain period of time, thereby allowing the antibody to bind to the insoluble carrier. When nonspecific adsorption of substances other than antigen to the carrier for immobilization occurs during measurement of the amount of antigen in the sample liquid, the background at the time of measurement increases, making accurate measurement impossible. Is generally bound to a carrier for immobilization and then blocked with a protein such as bovine serum albumin (hereinafter sometimes abbreviated as BSA), casein, gelatin, skim milk or the like.

しかし、抗体を固定化した担体を上述したようにタンパク質でブロッキングしても、非特異的反応が完全に除去できない、または、非特異的反応の除去はできるが、測定の感度が低下してしまうという問題があり、従来のタンパク質によるブロッキングでは、満足できる結果が得られない場合があった。   However, even if the antibody-immobilized carrier is blocked with a protein as described above, the nonspecific reaction cannot be completely removed or the nonspecific reaction can be removed, but the sensitivity of the measurement is reduced. However, there are cases where satisfactory results cannot be obtained by blocking with conventional proteins.

タンパク質の代わりにアラニン、バリン等の非極性アミノ酸で凝集反応粒子(固定化抗体)をブロッキングする方法が提案されている(特許文献1)。該方法を採用することで、血清中の抗トレポネーマ・パリダム抗体量の測定、大便懸濁液中のヘモグロビン量の測定、血清中の抗成人T細胞白血病ウイルス抗体量の測定に際し、タンパク質によるブロッキング法に比べて、感度を低下させることなく非特異的反応を抑制できることが開示されているが、後述するが、本発明者等の検討により、微生物から亜硝酸抽出法により抽出した糖鎖抗原を測定対象とした場合には、効果が不十分であることが明らかとなった。   A method of blocking agglutination reaction particles (immobilized antibody) with nonpolar amino acids such as alanine and valine instead of protein has been proposed (Patent Document 1). By adopting this method, a protein blocking method is used to measure the amount of anti-treponema / paridum antibody in serum, the amount of hemoglobin in stool suspension, and the amount of anti-adult T cell leukemia virus antibody in serum. It is disclosed that non-specific reactions can be suppressed without lowering the sensitivity compared to the above, but as will be described later, glycan antigens extracted from microorganisms by the nitrite extraction method are measured by the present inventors. It became clear that the effect was insufficient when targeted.

日本生化学会編集,新生化学実験講座12 分子免疫学III 抗原・抗体・捕体,東京化学同人,1992年Edited by The Biochemical Society of Japan, Laboratory for Neonatal Chemistry 12 Molecular Immunology III Antigens / Antibodies / Captures, Tokyo Chemical Dojin, 1992 武井勉,阪大歯学誌,35巻,93−109頁,1990年Takei Tsutomu, Osaka University Dental Journal, 35, 93-109, 1990 特開平5−288750号公報JP-A-5-288750

本発明は上記事情に鑑みなされたものであり、亜硝酸抽出法により抽出された糖鎖抗原の免疫学的測定に使用する固定化抗体の製造方法であって、免疫学的測定法の感度を下げることなく、非特異的反応を十分に抑えることが可能な固定化抗体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a method for producing an immobilized antibody used for immunological measurement of a sugar chain antigen extracted by a nitrous acid extraction method, and the sensitivity of the immunological measurement method is improved. It is an object of the present invention to provide a method for producing an immobilized antibody that can sufficiently suppress a non-specific reaction without lowering.

本発明者等は上記課題を解決するために、鋭意検討してきた。その結果、固定化用担体に抗体を接触させる際に、トリス(ヒドロキシメチル)アミノメタンと非極性アミノ酸を共存させることにより調製した固定化抗体を使用して、亜硝酸抽出法により抽出した糖鎖抗原を測定すると、感度、特異性ともに満足できる結果が得られることを見出した。そして更に検討を進め、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, the sugar chain extracted by the nitrite extraction method using the immobilized antibody prepared by coexisting tris (hydroxymethyl) aminomethane and a nonpolar amino acid when contacting the antibody with the immobilization carrier. When antigen was measured, it was found that satisfactory results were obtained in both sensitivity and specificity. Further studies have been made and the present invention has been completed.

即ち、本発明は糖鎖抗原を微生物より亜硝酸抽出法によって抽出した糖鎖抗原抽出液中の糖鎖抗原量を免疫学的方法により測定するに際して使用する固定化抗体の製造方法であって、トリス(ヒドロキシメチル)アミノメタンと非極性アミノ酸の共存下に、上記糖鎖抗原に対応した抗体と固定化用担体とを接触させることを特徴とする、固定化抗体の製造方法である。   That is, the present invention is a method for producing an immobilized antibody for use in measuring the amount of a sugar chain antigen in a sugar chain antigen extract obtained by extracting a sugar chain antigen from a microorganism by a nitrite extraction method by an immunological method, A method for producing an immobilized antibody, comprising contacting an antibody corresponding to the sugar chain antigen with an immobilization carrier in the presence of tris (hydroxymethyl) aminomethane and a nonpolar amino acid.

本発明の固定化抗体の製造方法により調製した固定化抗体を使用することで、亜硝酸抽出法により抽出された糖鎖抗原を、感度良く、且つ正確に測定することが可能になった。   By using the immobilized antibody prepared by the method for producing an immobilized antibody of the present invention, the sugar chain antigen extracted by the nitrite extraction method can be measured with high sensitivity and accuracy.

本発明の固定化抗体製造方法では、トリス(ヒドロキシメチル)アミノメタン(以下トリスと略す場合がある)と非極性アミノ酸の共存下に、後述する測定対象の糖鎖抗原に対応する抗体と固定化用担体とを接触させる。   In the method for producing an immobilized antibody of the present invention, an antibody corresponding to a sugar chain antigen to be measured, which will be described later, is immobilized in the presence of tris (hydroxymethyl) aminomethane (hereinafter sometimes abbreviated as tris) and a nonpolar amino acid. Contact with the carrier.

本発明で使用できる上記抗体としては、ポリクローナル抗体、モノクローナル抗体、そして、該抗体の部分分解物(Fab、Fab’、Fab’2等)、および該抗体の活性フラグメント(抗体の抗原認識部位)が存在する部分構造等も含まれる。抗体のグロブリンクラスは限定されず、現在知られているどのようなグロブリンクラスのものも含まれる。   Examples of the antibody that can be used in the present invention include a polyclonal antibody, a monoclonal antibody, a partial degradation product (Fab, Fab ′, Fab′2, etc.) of the antibody, and an active fragment (antigen recognition site of the antibody) of the antibody. Existing partial structures and the like are also included. The globulin class of the antibody is not limited and includes any globulin class currently known.

固定化用担体としては、形状は、例えば、膜、粒子、プレート、試験管等の従来公知のものが特に制限なく使用できる。材質は、例えば、ニトロセルロース、PVDF、ラテックス、ゼラチン、金属コロイド、ポリスチレン、ポリプロピレン、ポリカーボネート等の従来公知のものが何ら制限なく使用できる。   As the carrier for immobilization, conventionally known ones such as membranes, particles, plates, test tubes and the like can be used without particular limitation. For example, conventionally known materials such as nitrocellulose, PVDF, latex, gelatin, metal colloid, polystyrene, polypropylene, and polycarbonate can be used without any limitation.

本発明では、抗体と固定化用担体とを接触させ、抗体を固定化用担体へ結合させる反応をトリスと非極性アミノ酸の共存下で行う。これにより、得られた固定化抗体は、亜硝酸抽出法により抽出された糖鎖抗原を、感度良く、且つ正確に測定することが可能になる。その理由は定かではないが、上記トリスと非極性アミノ酸とが互いに作用しあって、そのブロッキング効果を大きく高めているものと推察される。   In the present invention, the reaction in which the antibody and the immobilization carrier are brought into contact with each other and the antibody is bound to the immobilization carrier is performed in the presence of Tris and a nonpolar amino acid. As a result, the obtained immobilized antibody can accurately and accurately measure the sugar chain antigen extracted by the nitrite extraction method. The reason for this is not clear, but it is presumed that the above-described Tris and the nonpolar amino acid interact with each other to greatly enhance the blocking effect.

本発明で使用するトリスの好適な濃度を例示すると、5〜30mMである。   When the suitable density | concentration of the tris used by this invention is illustrated, it is 5-30 mM.

本発明において非極性アミノ酸とは、非極性側鎖を有する公知のアミノ酸が制限なく使用できるが、一般には、α−アミノ酸に属するものが好ましく、特に、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、トリプトファン、メチオニンから選ばれるたんぱく質を構成する非極性アミノ酸が好ましい。これら非極性アミノ酸の好適な濃度を例示すると、5〜50mM、更に好適には5〜30mMである。これら非極性アミノ酸は単独で用いても、複数を組合わせて用いても良い。複数の非極性アミノ酸を組合わせる場合には、合計のアミノ酸濃度が5〜30mMになるようにする。   In the present invention, as the nonpolar amino acid, a known amino acid having a nonpolar side chain can be used without limitation, but in general, those belonging to α-amino acid are preferable, and glycine, alanine, valine, leucine, isoleucine, proline are particularly preferable. Nonpolar amino acids constituting a protein selected from phenylalanine, tryptophan, and methionine are preferred. A suitable concentration of these nonpolar amino acids is 5 to 50 mM, more preferably 5 to 30 mM. These nonpolar amino acids may be used alone or in combination. When combining a plurality of nonpolar amino acids, the total amino acid concentration is set to 5 to 30 mM.

トリスと非極性アミノ酸を共存させることにより、トリス、または非極性アミノ酸単独で使用した場合より低濃度で非特異的反応の抑制効果(バックブラウンドの低下)が得られる。トリス、または非極性アミノ酸単独でも非特異的反応抑制効果は得られるが、両成分を共存させる場合より高濃度にする必要があり、この場合、非特異的反応の抑制と同時に感度低下が観察される場合がある。   By allowing Tris and a nonpolar amino acid to coexist, an inhibitory effect on a nonspecific reaction (reduction in background) can be obtained at a lower concentration than when Tris or a nonpolar amino acid alone is used. Tris or a non-polar amino acid alone can provide a non-specific reaction inhibitory effect, but it must be at a higher concentration than when both components coexist. In this case, a decrease in sensitivity is observed simultaneously with the suppression of the non-specific reaction. There is a case.

抗体と固定化用担体とを接触させる方法は、例えば、抗体が溶解した液体(抗体溶液)に、トリスと非極性アミノ酸を上記の好適な濃度になるように添加し、固定化用担体と一定時間接触させることにより実施できる。固定化抗体製造時の溶液のpHは一定の範囲内に(例えば、pH4〜9)保つことが好ましく、この目的のために、緩衝液中で抗体と固体化用担体とを接触させることが好ましい。緩衝液としては、例えば、リン酸緩衝液、GOODの緩衝液、炭酸緩衝液等が使用できる。具体的な抗体と固定化用担体を接触させる方法として、例えば、抗体及びトリスと非極性アミノ酸を含む抗体溶液(抗体濃度0.001〜5mg/ml)を調製し、該抗体溶液と固定化用担体を4〜56℃にて、2分以上接触させる、という方法を示すことができる。別の方法として、トリス、または非極性アミノ酸により緩衝液(例えばトリス塩酸緩衝液)を作製し、トリス、非極性アミノ酸以外の緩衝成分を含まない抗体溶液を作製し固定化抗体を製造することもできる。   The method of bringing the antibody into contact with the immobilization carrier is, for example, adding Tris and a non-polar amino acid to the above-mentioned suitable concentration in a liquid (antibody solution) in which the antibody is dissolved, and fixing the immobilization carrier to a certain amount. It can be carried out by contact for a period of time. The pH of the solution during the production of the immobilized antibody is preferably kept within a certain range (for example, pH 4 to 9). For this purpose, it is preferable to contact the antibody and the solidifying carrier in a buffer solution. . As the buffer solution, for example, a phosphate buffer solution, a GOOD buffer solution, a carbonate buffer solution or the like can be used. As a specific method for bringing an antibody into contact with an immobilization carrier, for example, an antibody solution (antibody concentration 0.001 to 5 mg / ml) containing an antibody, Tris and a non-polar amino acid is prepared, and the antibody solution and immobilization carrier are used. The method of contacting a support | carrier at 4-56 degreeC for 2 minutes or more can be shown. As another method, a buffer solution (for example, Tris hydrochloride buffer) is prepared with Tris or nonpolar amino acid, and an antibody solution containing no buffer components other than Tris and nonpolar amino acid is prepared to produce an immobilized antibody. it can.

抗体と固定化用担体とを接触させる際に、抗体の保存安定性等の観点から、上記の緩衝成分、トリス、非極性アミノ酸以外にも、界面活性剤、糖類、塩を混在させることもできる。界面活性剤としては、例えば、トリトンX−100、ツイーン20等が、糖類としては、例えば、グルコース、スクロース等が、塩としては、例えば、塩化ナトリウム、塩化カリウム等が、それぞれ好適に利用できる。また、通常ブロッキング剤として有効な濃度以下の希薄な濃度で(例えば0.5%以下)でタンパク質を混在させることもできる。抗体によっては、特定のタンパク質を混在させることで保存安定性が極めて向上する場合があり、このような場合には低濃度でのタンパク質の添加は有効である。   When the antibody is brought into contact with the immobilization carrier, surfactants, saccharides, and salts can be mixed in addition to the above buffer components, Tris, and nonpolar amino acids from the viewpoint of storage stability of the antibody. . As the surfactant, for example, Triton X-100, Tween 20 and the like can be suitably used, and as the saccharide, for example, glucose and sucrose can be suitably used, and as the salt, for example, sodium chloride and potassium chloride can be suitably used. In addition, proteins can be mixed at a dilute concentration (e.g., 0.5% or less) that is usually less than the concentration effective as a blocking agent. Depending on the antibody, the storage stability may be greatly improved by mixing a specific protein. In such a case, addition of a protein at a low concentration is effective.

上記のように作製した固定化抗体は、リン酸緩衝液等により1回以上洗浄することが好ましい。   The immobilized antibody prepared as described above is preferably washed once or more with a phosphate buffer or the like.

このようにして製造した固定化抗体を使用して免疫学的測定法により微生物より亜硝酸抽出法によって抽出した糖鎖抗原抽出液中の糖鎖抗原量を測定する。   The amount of the glycan antigen in the glycan antigen extract extracted from the microorganism by the nitrite extraction method is measured by an immunoassay using the immobilized antibody thus prepared.

本発明において微生物とは、細菌、リケッチア属(Rickettsiae)、クラミジア属(Chlamydia)、マイコプラズマ属(Mycoplasma)および単細胞真核生物を指す。これら微生物を含む被検体液を例示すると、微生物の培養液、微生物の懸濁液、食品およびその懸濁液、咽頭ぬぐい液、唾液、血漿、血清、尿等の体液、或いは歯垢の懸濁液等が挙げられる。口腔内に存在する微生物を測定するためには、唾液、歯垢、またはその混合物を含んでなる被検体液中を使用することが特に好適である。   In the present invention, microorganisms refer to bacteria, Rickettsiae, Chlamydia, Mycoplasma, and unicellular eukaryotes. Examples of specimen fluids containing these microorganisms include microorganism culture solutions, microorganism suspensions, foods and suspensions thereof, throat swabs, body fluids such as saliva, plasma, serum, urine, and plaque suspensions. Liquid and the like. In order to measure microorganisms present in the oral cavity, it is particularly preferable to use a sample fluid containing saliva, plaque, or a mixture thereof.

唾液、歯垢またはその混合物を含んでなる被検体液中に含まれる感染症を引き起こす微生物を例示すると、齲蝕関連菌、歯周病関連菌、上気道感染起因菌、日和見感染菌等が挙げられる。それぞれについて具体例を表示すると、齲蝕関連菌としては、ストレプトコッカス・ミュータンス(Streptococcus mutans)、ストレプトコッカス・ソブリヌス(Streptococcus sobrinus)等のミュータンスレンサ球菌に属する細菌、ラクトバチルス属(Lactobacillus)に属する細菌、アクチノミセス属(Actinomyces)に属する細菌が、歯周病関連菌としては、ポルフィロモナス・ジンジバリス(Porphyromonas gingivalis)、アクチノバチルス・アクチノミセテムコミタンス(Actinobatillus actinomycetemcomitans)、バクテロイデス・フォルシザス(Bacteroides forsythus)、トレポネマ・デンチコラ(Treponema denticola)、プレボテラ・インターメディア(Prevotella intermedia)、プレボテラ・ニグレッセンス(Prevotella nigrescens)等が、上気道感染起因菌としては、A群レンサ球菌(Group A Streptococcus)、マイコプラズマ・ニューモニエ(Micoplasma pneumoniae)、クラミジア・ニューモニエ(Chlamidia pneumoniae)等が、日和見感染菌としては、カンジダ菌(Candida sp.)黄色ブドウ球菌(Staphylococcus aureus)緑膿菌(Pseudomonas aeruginosa)等が挙げられる。   Examples of microorganisms that cause infections contained in a sample fluid containing saliva, dental plaque, or a mixture thereof include caries-related bacteria, periodontal disease-related bacteria, upper respiratory tract infection-causing bacteria, and opportunistic infections. . When specific examples are displayed for each, the caries-related bacteria include Streptococcus mutans, Streptococcus sobrinus, and other bacteria belonging to mutans streptococci, Lactobacillus, Bacteria belonging to the genus Actinomyces include porphyromonas gingivalis, actinomycetemcomitomitus Bacterium, and actinomycetem bacterium bacterium. ), Treponema denticola, Prevotella intermedia, Prevotella nigrescens, etc., and the upper respiratory tract-causing bacteria, A group of Streptococcus (Gr. (Micoplasma pneumoniae), Chlamydia pneumoniae, etc., and Candida sp., Staphylococcus aureus, and Pseudomonas (Pseudomonas) are examples of opportunistic infections.

亜硝酸抽出法は公知の方法に従って実施すればよく、例えば、亜硝酸塩水溶液と酸水溶液を混合することで亜硝酸を発生させ、該亜硝酸水溶液中に糖鎖抗原を抽出するという方法により実施できる。亜硝酸塩水溶液としては、例えば、0.2〜8Mの亜硝酸ナトリウム、亜硝酸カリウム等が、酸水溶液としては、0.5〜4Mの酢酸、硝酸、塩酸、クエン酸等が使用できる。亜硝酸抽出法の具体的な方法として、微生物を含む懸濁液を遠心分離して上清を廃棄し、沈殿に上記のような亜硝酸塩水溶液と酸水溶液を、それぞれ0.005〜0.5ml添加し、15〜50℃で1〜10分放置することで反応を行わせる、という方法を例示できる。   The nitrite extraction method may be carried out according to a known method, for example, by generating nitrous acid by mixing an aqueous nitrite solution and an aqueous acid solution, and extracting a sugar chain antigen in the aqueous nitrite solution. . As the nitrite aqueous solution, for example, 0.2 to 8M sodium nitrite and potassium nitrite can be used, and as the acid aqueous solution, 0.5 to 4M acetic acid, nitric acid, hydrochloric acid, citric acid and the like can be used. As a specific method of the nitrite extraction method, the suspension containing the microorganisms is centrifuged and the supernatant is discarded, and 0.005 to 0.5 ml of the nitrite aqueous solution and the acid aqueous solution as described above are respectively added to the precipitate. The method of making it react by adding and leaving to stand at 15-50 degreeC for 1 to 10 minutes can be illustrated.

または、上記の亜硝酸塩水溶液と酸水溶液を予め混合して、0.2〜4Mの亜硝酸塩と0.5〜4Mの酸が含まれる亜硝酸水溶液を調製し、該亜硝酸水溶液を微生物を含む沈殿に0.01〜1ml添加し、15〜50℃で1〜10分放置することで亜硝酸抽出を実施することもできる。   Alternatively, the nitrite aqueous solution and the acid aqueous solution are mixed in advance to prepare a nitrite aqueous solution containing 0.2 to 4 M nitrite and 0.5 to 4 M acid, and the nitrite aqueous solution contains microorganisms. Nitrous acid extraction can also be carried out by adding 0.01 to 1 ml to the precipitate and leaving it at 15 to 50 ° C. for 1 to 10 minutes.

反応後の糖鎖抗原抽出液は、強酸性であり、そのままでは免疫学的測定法に使用できないので、例えば1〜3M水酸化ナトリウム、0.5〜2Mトリス、0.5〜1M炭酸水素ナトリウム等の塩基性水溶液を添加し抽出液のpHを7.0〜8.5に調整するのが好ましい。   Since the sugar chain antigen extract after the reaction is strongly acidic and cannot be used as it is in an immunological assay, for example, 1 to 3 M sodium hydroxide, 0.5 to 2 M Tris, 0.5 to 1 M sodium bicarbonate It is preferable to adjust the pH of the extract to 7.0 to 8.5 by adding a basic aqueous solution such as

このようにして製造した糖鎖抗原抽出液中の糖鎖抗原を測定する免疫学的測定法の具体的手法は、免疫凝集法、光学免疫測定方法、標識免疫測定方法、およびこれらの組合わせ等の従来公知の方法が制限無く採用出来る。   Specific methods of immunological measurement methods for measuring sugar chain antigens in the sugar chain antigen extract thus produced include immunoagglutination, optical immunoassay, labeled immunoassay, and combinations thereof. Any conventionally known method can be used without limitation.

以下、これら免疫学的測定方法について説明する。   Hereinafter, these immunological measurement methods will be described.

[免疫凝集法]
該方法は、抗原抗体反応に基づく不溶性担体の凝集反応を利用して、糖鎖抗原抽出液中の抗原を検出、定量する方法である。半定量的方法としてはラテックス凝集法、マイクロタイター法等が、定量的測定方法としてはラテックス定量法等がある。
[Immunoagglutination]
This method is a method for detecting and quantifying an antigen in a sugar chain antigen extract using an agglutination reaction of an insoluble carrier based on an antigen-antibody reaction. Semi-quantitative methods include latex agglutination and microtiter methods, and quantitative measurement methods include latex quantification and the like.

例えば、ラテックス凝集法を利用して糖鎖抗原抽出液中の抗原量を免疫学的に測定する場合には、ラテックスビーズに微生物の糖鎖抗原と結合する抗体(以下単に抗体ともいう)を固定化した抗体感作粒子からなる測定試薬を作製後、該測定試薬と糖鎖抗原抽出液を混合し、抗原抗体反応後における感作粒子の凝集の度合を、目視、或いは光学的測定方法等により検出することで測定することが出来る。   For example, when the amount of antigen in a sugar chain antigen extract is immunologically measured using the latex agglutination method, an antibody that binds to a microorganism sugar chain antigen (hereinafter also simply referred to as an antibody) is immobilized on latex beads. After preparing a measurement reagent composed of sensitized antibody-sensitized particles, the measurement reagent and a sugar chain antigen extract are mixed, and the degree of aggregation of the sensitized particles after the antigen-antibody reaction is visually or optically measured. It can be measured by detecting.

[光学免疫測定方法]
該方法は、抗体と糖鎖抗原抽出液とを接触させて抗原抗体反応を行った場合に、抗原抗体反応の結果生じる凝集物の濁度の変化を検出する方法、又は抗体を固定化した薄層(以下、抗体層ともいう。)に糖鎖抗原抽出液を接触させ、抗原抗体反応の結果生じる抗体層の屈折率の変化を透過光や表面プラズモン波等の変化として検出する方法等、抗原抗体反応の有無を光学的に検出する方法のことである。
[Optical immunoassay method]
This method is a method for detecting a change in turbidity of an aggregate resulting from an antigen-antibody reaction when an antigen-antibody reaction is carried out by contacting an antibody and a sugar chain antigen extract, or a thin antibody on which an antibody is immobilized. A method in which a sugar chain antigen extract is brought into contact with a layer (hereinafter also referred to as an antibody layer), and a change in the refractive index of the antibody layer resulting from an antigen-antibody reaction is detected as a change in transmitted light, surface plasmon wave, etc. It is a method for optically detecting the presence or absence of an antibody reaction.

[標識免疫測定方法]
該方法は、抗体に放射性物質、酵素、各種色素類、コロイド類、各種粒子等の各種標識物質を結合させて得た標識抗体を含む測定試薬と、糖鎖抗原抽出液とを接触させて抗原抗体反応を行った後に、糖鎖抗原抽出液中の抗原に結合した標識物質の量、すなわち標識物質に由来する放射活性、酵素活性、蛍光強度、着色等を測定することによって、糖鎖抗原抽出液中の抗原を検出、定量する方法である。
[Labeled immunoassay]
The method comprises contacting an antigen with a measurement reagent containing a labeled antibody obtained by binding various labeled substances such as radioactive substances, enzymes, various dyes, colloids, and various particles to an antibody, and a sugar chain antigen extract. After performing the antibody reaction, the amount of the labeling substance bound to the antigen in the sugar chain antigen extract, ie, the radioactivity, enzyme activity, fluorescence intensity, coloring, etc. derived from the labeling substance is measured to extract the sugar chain antigen. This is a method for detecting and quantifying an antigen in a liquid.

該方法では、例えば抗体を固定化した不溶性担体(粒子、メンブレン、イムノプレート等)からなる測定試薬と糖鎖抗原抽出液とを接触させて抗原抗体反応を行った後に、抗体を標識物質で標識した標識抗体を含む別の測定試薬を接触させて更に抗原抗体反応を行った後に、標識物質の量を測定することによって、又は糖鎖抗原抽出液と標識物質で標識した糖鎖抗原とを混合し、抗体を固定化した不溶性担体からなる測定試薬に接触させて抗原抗体反応を行った後に、抗体に結合した標識物質の量を測定することによって糖鎖抗原抽出液中の抗原を検出、定量することができる。   In this method, for example, an antigen-antibody reaction is performed by contacting a measurement reagent comprising an insoluble carrier (particle, membrane, immunoplate, etc.) on which an antibody is immobilized with a sugar chain antigen extract, and then the antibody is labeled with a labeling substance. After further antigen-antibody reaction by contacting with another measurement reagent containing the labeled antibody, the amount of the labeled substance is measured, or the sugar chain antigen extract and the sugar chain antigen labeled with the labeled substance are mixed After the antigen-antibody reaction by contacting with a measurement reagent consisting of an insoluble carrier with immobilized antibody, the antigen in the sugar chain antigen extract is detected and quantified by measuring the amount of the labeled substance bound to the antibody. can do.

標識物質としては、放射性物質として放射性ヨード、放射性炭素等が、酵素としてペルオキシダーゼ、アルカリホスファターゼ、ガラクトシダーゼ等が、各種色素類として、フルオレセインイソチオシアネート、テトラメチルローダミン等の蛍光色素類が、コロイドとして金コロイド、炭素コロイド等が、各種粒子としては着色ラテックス粒子等が使用出来る。なお、酵素標識を行う場合は、チオール基とマレイミド基、アミノ基とアルデヒド基等の共有結合により直接標識する、或いはビオチン−アビジン複合体を介し標識する等の方法が使用可能である。また、標識酵素としてアルカリホスファターゼ及びパーオキシダーゼを使用し、さらに前者の酵素の場合にはジオキセタン誘導体等の化学発光物質を、また後者の酵素の場合にはルミノール誘導体等の化学発光物質を酵素の基質として使用した場合には、該基質の発光を検出することも出来る。   Labeling substances include radioactive iodine, radioactive carbon, etc. as radioactive substances, peroxidase, alkaline phosphatase, galactosidase, etc. as enzymes, various dyes, fluorescent dyes such as fluorescein isothiocyanate, tetramethylrhodamine, etc., colloidal gold colloid Carbon colloids and the like, and various latex particles can be colored latex particles. When enzyme labeling is performed, a method such as direct labeling by a covalent bond such as a thiol group and a maleimide group, an amino group and an aldehyde group, or a labeling via a biotin-avidin complex can be used. In addition, alkaline phosphatase and peroxidase are used as labeling enzymes, and in the case of the former enzyme, a chemiluminescent substance such as a dioxetane derivative, and in the case of the latter enzyme, a chemiluminescent substance such as a luminol derivative is used as the enzyme substrate. When used as, the luminescence of the substrate can also be detected.

これら各種標識免疫測定方法における操作、手順等は一般に採用されているそれらと特に異ならず、公知の非競合法や競合法、サンドイッチ法等に準じることが出来る。また、抗体と共に、上記の各標識物質で標識した二次抗体、プロテインA等の抗体に結合可能な物質を使用して糖鎖抗原の検出・定量に用いることもできる。   The operations, procedures and the like in these various labeled immunoassay methods are not particularly different from those generally employed, and can be applied to known non-competitive methods, competitive methods, sandwich methods, and the like. In addition to the antibody, a secondary antibody labeled with each of the labeling substances described above, a substance capable of binding to an antibody such as protein A, and the like can also be used for detection and quantification of a sugar chain antigen.

該標識免疫測定方法では、用いる標識に応じて従来使用されている方法が特に限定無く使用できるが、中でも放射性物質を標識として使用する放射免疫測定方法、酵素を標識として使用する酵素免疫測定方法、色素、特に蛍光色素を標識として利用する蛍光免疫測定方法、酵素の基質としての化学発光物質を標識として利用する化学発光免疫測定方法等は定量性が高いので、高精度の定量測定を行なう場合にはこれら測定方法を採用するのが好適である。また、コロイドまたは各種粒子を標識として使用するフロースルー免疫測定方法、免疫クロマト法、並びにラテックス凝集法は、操作が簡便であるという特徴がある。   In the labeled immunoassay method, a conventionally used method can be used without particular limitation depending on the label to be used. Among them, a radioimmunoassay method using a radioactive substance as a label, an enzyme immunoassay method using an enzyme as a label, Fluorescent immunoassay methods that use dyes, especially fluorescent dyes as labels, and chemiluminescent immunoassay methods that use chemiluminescent substances as labels for enzymes as labels are highly quantitative, so when performing highly accurate quantitative measurements It is preferable to adopt these measurement methods. In addition, the flow-through immunoassay method, immunochromatography method, and latex agglutination method using colloids or various particles as labels are characterized by simple operation.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by a following example.

製造例1[ストレプトコッカス・ミュータンスに対する精製ポリクローナル抗体の作製]
(1)[菌体試料懸濁液の調製]
ブレインハートインフュージョン(以下「BHI」と略すこともある)(DIFCO社)3.7gを100mlの純水に溶解後、オートクレーブ処理し、BHI液体培地を調製した。BHI液体培地2ml中でIngbritt(ストレプトコッカス・ミュータンス、血清型c)を37℃、5時間、嫌気条件下(N:H:CO=80:10:10)で培養した後、培養液を4000g、5分遠心処理し、上清の培地成分を除去し菌体沈殿を回収した。
Production Example 1 [Preparation of purified polyclonal antibody against Streptococcus mutans]
(1) [Preparation of cell sample suspension]
Brain Heart Infusion (hereinafter sometimes abbreviated as “BHI”) (DIFCO) (3.7 g) was dissolved in 100 ml of pure water and then autoclaved to prepare a BHI liquid medium. After culturing Ingbritt (Streptococcus mutans, serotype c) in 2 ml of BHI liquid medium under anaerobic conditions (N 2 : H 2 : CO 2 = 80: 10: 10) at 37 ° C. for 5 hours, the culture solution Was centrifuged at 4000 g for 5 minutes, the medium components in the supernatant were removed, and the cell pellets were collected.

次いで、沈殿物を5mlのリン酸生理食塩緩衝液(pH7.4)(以下PBSと略すこともある)に懸濁し、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。その後得られた菌体沈殿をPBSに懸濁し、A600=1.0に調整しIngbritt菌体試料懸濁液とした。なお、該菌体試料懸濁液を超音波処理後、適宜希釈した後にBHI培地プレート上に添加し、生じたコロニー数を計数し菌体試料懸濁液の希釈倍率を乗じることで該菌体試料懸濁液の菌体濃度を求めたところ、約1×10個/mlであった。 Subsequently, the precipitate was suspended in 5 ml of phosphate physiological saline buffer (pH 7.4) (hereinafter sometimes abbreviated as PBS), and the same centrifugation operation was performed three times to wash the precipitate. Thereafter, the obtained bacterial cell precipitate was suspended in PBS, adjusted to A 600 = 1.0, and used as an Ingbritt cell sample suspension. In addition, after ultrasonically treating the bacterial cell sample suspension, it is appropriately diluted and then added to a BHI medium plate, and the number of colonies produced is counted and multiplied by the dilution factor of the bacterial cell sample suspension. The bacterial cell concentration of the sample suspension was determined to be about 1 × 10 9 cells / ml.

(2)〔ストレプトコッカス・ミュータンスに対する抗血清の作製〕
免疫は以下のように実施した。即ち、第1週は0.5mlのIngbritt菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第2週は1.0mlの該菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第3週は2.0mlの該菌体試料懸濁液を、5日連続で5回ウサギに対し耳介静脈注射した。第4週は第3週と同様に免疫した。力価の上昇をスライドグラスを利用した菌体の凝集反応の程度により確認後、最終免疫より1週間後に、定法に従い採血しストレプトコッカス・ミュータンスに対する抗血清を得た。
(2) [Preparation of antiserum against Streptococcus mutans]
Immunization was performed as follows. That is, in the first week, 0.5 ml of Ingbritt cell sample suspension was injected into the auricular vein to the rabbit 5 times for 5 consecutive days. In the second week, 1.0 ml of the bacterial cell sample suspension was injected into the auricular vein into the rabbit 5 times for 5 consecutive days. In the third week, 2.0 ml of the cell sample suspension was injected into the ear vein of the rabbit 5 times for 5 consecutive days. The fourth week was immunized as in the third week. After confirming the increase in titer by the degree of agglutination reaction of the bacterial cells using a slide glass, blood was collected according to a standard method one week after the final immunization to obtain an antiserum against Streptococcus mutans.

(3)〔ストレプトコッカス・ミュータンスに対するポリクローナル抗体の精製〕
オートクレーブ処理したBHI液体培地1L中でIngbrittを37℃、12時間、嫌気条件下で培養した。培養液を4000g、5分遠心処理し、上清の培地成分を除去し菌体沈殿を回収した。次いで、沈殿物を100mlのPBSに懸濁させて、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。
(3) [Purification of polyclonal antibody against Streptococcus mutans]
Ingbritt was cultured at 37 ° C. for 12 hours under anaerobic conditions in 1 L of autoclaved BHI liquid medium. The culture solution was centrifuged at 4000 g for 5 minutes to remove the culture medium component of the supernatant and collect the bacterial cell precipitate. Next, the precipitate was suspended in 100 ml of PBS and subjected to the same centrifugation three times to wash the precipitate.

Ingbritt菌体を洗浄した後、0.1M トリス塩酸緩衝液(pH8.0)に懸濁しA600=15に調整した。ここにプロナーゼ(和光純薬社)を5mg/mlとなるように添加し、37℃で1時間保温した。反応終了後、遠心分離し菌体沈殿を回収した。次いで、沈殿物を20mlのPBSに懸濁して、同様の遠心分離をする操作を3回行い、沈殿物を洗浄した。次いで20mlの0.1M グリシン塩酸緩衝液(pH2.0)で3回洗浄し、更に20mlのPBSで3回洗浄し、プロテアーゼ処理菌体懸濁液(A600=12.5)を調製した。 The Ingbritt cells were washed, suspended in 0.1 M Tris-HCl buffer (pH 8.0), and adjusted to A 600 = 15. Pronase (Wako Pure Chemical Industries, Ltd.) was added to this so that it might become 5 mg / ml, and it heat-retained at 37 degreeC for 1 hour. After completion of the reaction, the mixture was centrifuged to collect the cell precipitate. Subsequently, the precipitate was suspended in 20 ml of PBS and subjected to the same centrifugation three times to wash the precipitate. Subsequently, it was washed 3 times with 20 ml of 0.1 M glycine hydrochloride buffer (pH 2.0), and further washed 3 times with 20 ml of PBS to prepare a protease-treated cell suspension (A 600 = 12.5).

次いで、該プロテアーゼ処理菌体懸濁液と(2)で調製した抗血清0.5mlとを混合し、4℃、60分反応させた。混合液を4000g、5分遠心分離し、菌体を回収した。この菌体を10mlのPBSに懸濁し、同様の遠心分離をする操作を3回行い洗浄した。   Next, the protease-treated cell suspension and 0.5 ml of the antiserum prepared in (2) were mixed and reacted at 4 ° C. for 60 minutes. The mixed solution was centrifuged at 4000 g for 5 minutes to recover the cells. The cells were suspended in 10 ml of PBS and washed by performing the same centrifugation operation three times.

次いで、0.5mlの0.1M グリシン塩酸緩衝液(pH2.0)に菌体を懸濁し、吸着した抗体を溶出し、遠心分離により上清を回収し、1Mトリス−塩酸(pH9.0)を添加しpH7.4に調整した。同様の溶出操作を4回行い、各画分のタンパク質量を280nmの吸光度により測定した。   Next, the cells are suspended in 0.5 ml of 0.1 M glycine hydrochloride buffer (pH 2.0), the adsorbed antibody is eluted, the supernatant is recovered by centrifugation, and 1 M Tris-HCl (pH 9.0) is collected. Was added to adjust the pH to 7.4. The same elution operation was performed 4 times, and the protein amount of each fraction was measured by absorbance at 280 nm.

次いで、あらかじめPBSで平衡化した1mlのプロテインA−セファロース(アマシャムファルマシアバイオテク社)を充填したカラムに上記溶出液を添加し、5ml洗浄後、5mlの0.1Mグリシン−塩酸緩衝液(pH3.0)にて溶出し、直ちに1Mトリス−塩酸(pH9.0)を添加しpH7.4に調整した。IgGの溶出画分は、A280を測定することで確認した。IgG画分を回収し、0.01Mリン酸緩衝液に対して透析を行った(4℃、3日)。 Next, the eluate was added to a column packed with 1 ml of Protein A-Sepharose (Amersham Pharmacia Biotech) previously equilibrated with PBS, washed 5 ml, and then 5 ml of 0.1 M glycine-hydrochloric acid buffer (pH 3.0). 1M Tris-hydrochloric acid (pH 9.0) was immediately added to adjust to pH 7.4. The eluted fraction of IgG was confirmed by measuring A280 . The IgG fraction was collected and dialyzed against 0.01 M phosphate buffer (4 ° C., 3 days).

以上により、抗血清(0.5ml)をプロテアーゼ処理菌体により精製したポリクローナル抗体を約1mg得た。   As described above, about 1 mg of a polyclonal antibody obtained by purifying antiserum (0.5 ml) with protease-treated cells was obtained.

実施例1[トリスとグリシンを共存させて製造した抗体固定化ラテックス粒子によるストレプトコッカス・ミュータンスの測定]
製造例1で調製した抗ストレプトコッカス・ミュータンス抗体を使用し、トリスとグリシンを含む10mMリン酸緩衝液からなる抗体溶液(抗体濃度0.1mg/ml)を調製した。抗体溶液中のトリスとグリシンの濃度を表1に示す。次いで、この抗体溶液(1ml)に0.5%のポリスチレンラテックス粒子(JSR社)1mlを加え、室温で1時間放置した。次いで、遠心分離により抗体の結合したラテックス粒子を単離し、0.05Mの塩化ナトリウムを含む0.01Mリン酸緩衝液(以下緩衝液Aとよぶ場合がある)で1回洗浄し、抗体固定化ラテックス粒子が0.5%となるように緩衝液Aで懸濁した。
Example 1 [Measurement of Streptococcus mutans by antibody-immobilized latex particles produced by coexistence of Tris and glycine]
Using the anti-Streptococcus mutans antibody prepared in Production Example 1, an antibody solution (antibody concentration 0.1 mg / ml) consisting of 10 mM phosphate buffer containing Tris and glycine was prepared. Table 1 shows the concentrations of Tris and glycine in the antibody solution. Next, 1 ml of 0.5% polystyrene latex particles (JSR) was added to this antibody solution (1 ml) and left at room temperature for 1 hour. The antibody-bound latex particles are then isolated by centrifugation and washed once with 0.01 M phosphate buffer (hereinafter sometimes referred to as buffer A) containing 0.05 M sodium chloride to immobilize the antibody. It was suspended in buffer A so that the latex particles were 0.5%.

製造例1(1)で培養したIngbrittを緩衝液Aに懸濁し、10〜10CFU/mlの菌液を調製し、被検体液とした。被検体液(0.5ml)を10,000rpmで5分間遠心分離し、上清を除去した。沈殿に0.02mlの2M 酢酸溶液と0.02mlの1M 亜硝酸ナトリウム塩水溶液を添加し良く混合後、室温で10分間放置した。0.09mlの1M トリス(pH未調製)を添加し、糖鎖抗原抽出液を調製した。糖鎖抗原液に等量の抗体固定化ラテックス懸濁液を添加、混合し、室温で30分放置後、ラテックス粒子の凝集を目視で観察した。結果を表1に示す。 Ingbritt cultured in Production Example 1 (1) was suspended in buffer A to prepare a 10 7 to 10 5 CFU / ml bacterial solution, which was used as a sample solution. The sample liquid (0.5 ml) was centrifuged at 10,000 rpm for 5 minutes, and the supernatant was removed. To the precipitate, 0.02 ml of 2M acetic acid solution and 0.02 ml of 1M sodium nitrite aqueous solution were added and mixed well, and then allowed to stand at room temperature for 10 minutes. 0.09 ml of 1M Tris (pH not prepared) was added to prepare a sugar chain antigen extract. An equal amount of the antibody-immobilized latex suspension was added to the sugar chain antigen solution, mixed, and allowed to stand at room temperature for 30 minutes, and then the aggregation of latex particles was visually observed. The results are shown in Table 1.

Figure 0004578401
Figure 0004578401

抗体と固定化用担体とを接触させる際にトリスとグリシンを共存させると、感度を低下させることなく非特異的反応を抑えることができることが分かった。トリス濃度は5〜30mMが適していた。グリシン濃度は5〜50mMの範囲で10CFU/mlのミュータンス菌を検出可能であったが、5〜30mMのほうが10CFU/mlの凝集の度合いは強かった。トリス単独の場合は100mM、グリシン単独の場合は500mMで非特異的反応抑制効果がみられたが、同時に測定感度も低下していた。 It was found that when Tris and glycine were allowed to coexist when the antibody was brought into contact with the immobilization carrier, nonspecific reaction could be suppressed without reducing sensitivity. A tris concentration of 5-30 mM was suitable. 10 5 CFU / ml of mutans bacteria could be detected in the glycine concentration range of 5-50 mM, but the degree of aggregation of 10 6 CFU / ml was stronger at 5-30 mM. In the case of Tris alone, a nonspecific reaction inhibitory effect was observed at 100 mM and in the case of glycine alone at 500 mM, but at the same time, the measurement sensitivity was also lowered.

比較例1[タンパク質によるブロッキング処理を行った抗体固定化ラテックス粒子によるストレプトコッカス・ミュータンスの測定]
0.01Mリン酸緩衝液に製造例1で調製した抗ストレプトコッカス・ミュータンス抗体を0.1mg/mlとなるように懸濁した。次いで、この抗体溶液(1ml)に0.5%のポリスチレンラテックス粒子(JSR社)1mlを加え、室温で1時間放置した。次いで2mlの2%BSA溶液を添加し、室温で1時間放置し、抗体固定化ラテックス粒子を調製した。抗体固定化ラテックス粒子の洗浄、Ingbritt菌体からの亜硝酸抽出法による糖鎖抗原の抽出、ラテックス凝集法による測定は実施例1と同様に実施した。結果を表1に示す。BSAでブロッキングを行うと、感度が低下した。
Comparative Example 1 [Measurement of Streptococcus mutans with antibody-immobilized latex particles subjected to blocking treatment with protein]
The anti-Streptococcus mutans antibody prepared in Production Example 1 was suspended in 0.01 M phosphate buffer so as to be 0.1 mg / ml. Next, 1 ml of 0.5% polystyrene latex particles (JSR) was added to this antibody solution (1 ml) and left at room temperature for 1 hour. Next, 2 ml of 2% BSA solution was added and allowed to stand at room temperature for 1 hour to prepare antibody-immobilized latex particles. The washing of the antibody-immobilized latex particles, the extraction of sugar chain antigens by the nitrous acid extraction method from Ingbritt cells, and the measurement by the latex agglutination method were carried out in the same manner as in Example 1. The results are shown in Table 1. When blocking with BSA, the sensitivity decreased.

実施例2[グリシン以外の非極性アミノ酸とトリスを共存させて製造した抗体固定化ラテックス粒子によるストレプトコッカス・ミュータンスの測定]
10mMトリス共存下でグリシンの代わりに表2に示す非極性アミノ酸を使用した以外は実施例1と同様の方法によりストレプトコッカス・ミュータンスの測定を行った。結果を表2に示す。
Example 2 [Measurement of Streptococcus mutans by antibody-immobilized latex particles produced by coexisting non-polar amino acids other than glycine and Tris]
Streptococcus mutans was measured in the same manner as in Example 1 except that the nonpolar amino acids shown in Table 2 were used instead of glycine in the presence of 10 mM Tris. The results are shown in Table 2.

Figure 0004578401
Figure 0004578401

グリシン以外の非極性アミノ酸もグリシンと同様の効果が認められた。しかし、検出下限は全てのアミノ酸で10CFU/mlであったが、凝集反応の強さはグリシンよりやや弱くなっていた。
Nonpolar amino acids other than glycine showed the same effect as glycine. However, although the lower limit of detection was 10 5 CFU / ml for all amino acids, the strength of the agglutination reaction was slightly weaker than that of glycine.

Claims (2)

糖鎖抗原を微生物より亜硝酸抽出法によって抽出した糖鎖抗原抽出液中の糖鎖抗原量を免疫学的方法により測定するに際して使用する固定化抗体の製造方法であって、トリス(ヒドロキシメチル)アミノメタンと非極性アミノ酸の共存下に、上記糖鎖抗原に対応した抗体と固定化用担体とを接触させることを特徴とする、固定化抗体の製造方法。   A method for producing an immobilized antibody for use in measuring the amount of a sugar chain antigen in a sugar chain antigen extract obtained by extracting a sugar chain antigen from a microorganism by a nitrous acid extraction method by an immunological method, comprising tris (hydroxymethyl) A method for producing an immobilized antibody, comprising contacting an antibody corresponding to the sugar chain antigen with an immobilization carrier in the presence of aminomethane and a nonpolar amino acid. 非極性アミノ酸がグリシンであることを特徴とする請求項1記載の固定化抗体の製造方法。
The method for producing an immobilized antibody according to claim 1, wherein the nonpolar amino acid is glycine.
JP2005373838A 2005-12-27 2005-12-27 Method for producing immobilized antibody Active JP4578401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373838A JP4578401B2 (en) 2005-12-27 2005-12-27 Method for producing immobilized antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373838A JP4578401B2 (en) 2005-12-27 2005-12-27 Method for producing immobilized antibody

Publications (2)

Publication Number Publication Date
JP2007178142A JP2007178142A (en) 2007-07-12
JP4578401B2 true JP4578401B2 (en) 2010-11-10

Family

ID=38303498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373838A Active JP4578401B2 (en) 2005-12-27 2005-12-27 Method for producing immobilized antibody

Country Status (1)

Country Link
JP (1) JP4578401B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047871A (en) * 2009-08-28 2011-03-10 Fancl Corp Blocking agent
JP2011047872A (en) * 2009-08-28 2011-03-10 Fancl Corp Blocking agent
JP2011047873A (en) * 2009-08-28 2011-03-10 Fancl Corp Blocking agent
WO2017010574A1 (en) 2015-07-16 2017-01-19 田中貴金属工業株式会社 Immunoassay and immunochromatographic kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288750A (en) * 1992-04-10 1993-11-02 Tokuyama Soda Co Ltd Manufacture of immunologically agglutinated particles
JP2000321279A (en) * 1999-05-12 2000-11-24 Mitsubishi Chemicals Corp Immunoreagent and kit for immunoassay
JP2004233127A (en) * 2003-01-29 2004-08-19 Tokuyama Corp Immunological measurement method and immunochromatography measurement kit
JP2005291780A (en) * 2004-03-31 2005-10-20 Denka Seiken Co Ltd Medium composition for preparing specimen floated solution subjected to immunoassay

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288750A (en) * 1992-04-10 1993-11-02 Tokuyama Soda Co Ltd Manufacture of immunologically agglutinated particles
JP2000321279A (en) * 1999-05-12 2000-11-24 Mitsubishi Chemicals Corp Immunoreagent and kit for immunoassay
JP2004233127A (en) * 2003-01-29 2004-08-19 Tokuyama Corp Immunological measurement method and immunochromatography measurement kit
JP2005291780A (en) * 2004-03-31 2005-10-20 Denka Seiken Co Ltd Medium composition for preparing specimen floated solution subjected to immunoassay

Also Published As

Publication number Publication date
JP2007178142A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
WO2010058860A1 (en) Measurement method and measurement reagent for c-reactive protein in sample
US6916626B1 (en) Detection of Candida
JPH05264553A (en) Antigen prepared for detecting helicobacter pyroly
JPS61502417A (en) Polyclonal antibodies, manufacturing method and uses
US20100273177A1 (en) Methods and Devices for Testing Saliva
JPS63222265A (en) Non-immunochemical bond of lipopolysaccharide and sandwich assay thereof
EP0311492B1 (en) Kit and immunoassay method applicable to whole cells
JP4578401B2 (en) Method for producing immobilized antibody
EP2261666B1 (en) Method for detection of pneumococcus
JP4268358B2 (en) Antibody and immunological assay
JP2003215126A (en) Method for extracting microbe antigen
JP2004233127A (en) Immunological measurement method and immunochromatography measurement kit
JP2008026161A (en) Preparing method of immobilized antibody
JP2004251807A (en) Endotoxin measuring sensor, measuring method, diagnostic method, manufacturing method and sensor reproducing method
JP7216949B1 (en) Immunoassay method for protein with isoelectric point of 9.5 or higher, specimen diluent used therefor, and immunochromatography kit
JPH04231872A (en) Use or protein containing heme as stabilizing agent for enzyme-label immunity reagent
RU2478970C1 (en) Method for immunofluorescent detection of protective antigen of anthrax agent
WO2001081927A1 (en) Method of detecting streptococcus sobrinus and antibody therefor
JPS60186759A (en) Chromogen carrier immunoassay
JP2004189665A (en) Anti-c reactive protein antibody, biosensor using the same antibody, method for preparing the same antibody and method for measuring immunity by using the same antibody
JP2561134B2 (en) Monoclonal antibody-derived substance used for elimination / suppression of non-specific reaction in immunoassay, production method thereof and use thereof
JP4524446B2 (en) Glycolipid antigen activator and activation method, and method and reagent kit for measuring anti-glycolipid antibody in a sample
JP2017036917A (en) Method of detecting helicobacter pylori
JP3341629B2 (en) Diagnostic reagent for Helicobacter pylori eradication therapy
JP4491572B2 (en) Reagents and methods for measuring substances to be measured in samples by enzyme immunoassay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4578401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160903

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250