JP4577835B2 - Analysis method of heat flow in heat storage tanks - Google Patents

Analysis method of heat flow in heat storage tanks Download PDF

Info

Publication number
JP4577835B2
JP4577835B2 JP2005116074A JP2005116074A JP4577835B2 JP 4577835 B2 JP4577835 B2 JP 4577835B2 JP 2005116074 A JP2005116074 A JP 2005116074A JP 2005116074 A JP2005116074 A JP 2005116074A JP 4577835 B2 JP4577835 B2 JP 4577835B2
Authority
JP
Japan
Prior art keywords
heat storage
storage tank
analysis
heat
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005116074A
Other languages
Japanese (ja)
Other versions
JP2006293849A (en
Inventor
康男 服部
譲 江口
伸和 田中
泰英 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Tokyo Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005116074A priority Critical patent/JP4577835B2/en
Publication of JP2006293849A publication Critical patent/JP2006293849A/en
Application granted granted Critical
Publication of JP4577835B2 publication Critical patent/JP4577835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、蓄熱槽群の熱流動の解析方法に関する。さらに詳述すると、本発明は、蓄熱槽単体の熱流動解析を逐次行うことにより蓄熱槽群全体の熱流動解析を行う蓄熱槽群の熱流動の解析方法に関する。   The present invention relates to a method for analyzing heat flow in a heat storage tank group. More specifically, the present invention relates to a method for analyzing heat flow of a heat storage tank group that performs heat flow analysis of the entire heat storage tank group by sequentially performing heat flow analysis of a single heat storage tank.

従来の複数の蓄熱槽が連通管で連結されている蓄熱槽群(蓄熱システムとも呼ばれる)を対象とした数値解析手法として、蓄熱槽群全体を一体として同時に解析する手法が知られている(非特許文献1)。この手法は、蓄熱槽群を構成する全ての蓄熱槽及び蓄熱槽間の連通管を対象として解析格子を生成して数値解析を行うものである。   As a numerical analysis method for a heat storage tank group (also referred to as a heat storage system) in which a plurality of conventional heat storage tanks are connected by a communication pipe, a technique for simultaneously analyzing the entire heat storage tank group as one is known (non- Patent Document 1). In this method, all the heat storage tanks constituting the heat storage tank group and the communication pipes between the heat storage tanks are generated and numerical analysis is performed by generating an analysis grid.

また、非特許文献1のような従来の蓄熱槽群の数値解析手法では、蓄熱槽間の連通管を解析格子を構成する格子子として組み込むに際し、連通管の物理特性等が必要とされる。そこで、複数の蓄熱槽を模擬した模型を用いた実験を行い、実験により得られた評価式若しくは実験結果に基づく蓄熱槽群全体を対象とした数値解析で得られた連通管部の解析結果を利用して、連通管を解析格子の格子子として組み込んでいる。   In addition, in the conventional numerical analysis method for the heat storage tank group as in Non-Patent Document 1, when the communication pipe between the heat storage tanks is incorporated as a lattice constituting the analysis grid, the physical characteristics of the communication pipe are required. Therefore, an experiment using a model simulating a plurality of heat storage tanks was performed, and the analysis results of the communication pipe section obtained by numerical analysis for the entire heat storage tank group based on the evaluation formula obtained by the experiment or the experimental results were obtained. The communication pipe is incorporated as a lattice of the analysis grid.

殷耀晨,伊藤幸広:「水蓄熱槽設計における数値解析手法の応用」,日本建築学会大会学術講演梗概集,pp.1051-1052,1998年9月Tsuji, Yukihiro Ito: “Application of numerical analysis methods in water heat storage tank design”, Abstracts of Annual Conference of Architectural Institute of Japan, pp.1051-1052, September 1998

しかしながら、非特許文献1の数値解析手法によると、蓄熱槽群を構成する全ての蓄熱槽及び蓄熱槽間の連通管を対象として解析格子を生成して数値解析を行うため、蓄熱槽群を構成する蓄熱槽の数が増えるに従って格子子の数が多くなると共に複雑な配置となり、解析格子の生成に多くのノウハウが必要となる。このため、汎用性があるとは言い難い。   However, according to the numerical analysis method of Non-Patent Document 1, all the heat storage tanks constituting the heat storage tank group and the communication pipes between the heat storage tanks are generated to generate an analysis grid and perform numerical analysis. As the number of heat storage tanks increases, the number of lattices increases and the arrangement becomes complicated, and a lot of know-how is required to generate an analysis lattice. For this reason, it is hard to say that it is versatile.

また、蓄熱槽群を構成する各蓄熱槽毎の熱流動解析及び隣接する蓄熱槽に対して連通管を通してなされる連通管部毎の作用の解析を蓄熱槽群全体を一体として同時に行うため、解析格子の格子子の数に対応した自由度の行列を解くことが必要となる。そのため、蓄熱槽群を構成する蓄熱槽の数が増えるに従って解くべき行列の自由度が増加し、それに伴って、電子計算機を用いて解析する場合の計算時間及び電子計算機の性能や記憶容量等の必要とされる計算資源が増大する。   In addition, the analysis of the heat flow analysis for each heat storage tank constituting the heat storage tank group and the analysis of the action of each communication pipe portion made through the communication pipe to the adjacent heat storage tank are performed as a whole simultaneously. It is necessary to solve a matrix of degrees of freedom corresponding to the number of lattice elements of the lattice. Therefore, as the number of heat storage tanks constituting the heat storage tank group increases, the degree of freedom of the matrix to be solved increases, and accordingly, the calculation time when analyzing using the electronic computer, the performance and storage capacity of the electronic computer, etc. More computational resources are required.

さらに、複数の蓄熱槽を模擬した模型を用いた実験により得られた評価式若しくは実験結果に基づく蓄熱槽群全体を対象とした数値解析で得られた連通管部の解析結果を利用して、連通管を解析格子の格子子として組み込むため、模型実験が必要であり、コストアップの一因となっている。   Furthermore, using the analysis result of the communication pipe part obtained by numerical analysis for the whole heat storage tank group based on the evaluation formula obtained by the experiment using the model simulating multiple heat storage tanks or the experiment result, In order to incorporate the communication pipe as a lattice element of the analysis grid, a model experiment is necessary, which contributes to an increase in cost.

さらにまた、複数の蓄熱槽が連結されている蓄熱槽群内の熱流動挙動には未だ不明な点が多く残されており、現象を適確に表現し得るモデルが完成しているとは言えない。また、従来のモデル化は、現象をより細かく捉えるようにしたり、多くの実験結果を活用するようにしたり等することで精緻化を図ることに主眼が置かれたものであり、結果としてモデルを複雑にすると共に解析に手間がかかるものとなっている。   Furthermore, there are still many unclear points in the heat flow behavior in the heat storage tank group in which multiple heat storage tanks are connected, and it can be said that a model that can accurately express the phenomenon has been completed. Absent. In addition, the conventional modeling focuses on refinement by capturing the phenomenon in more detail and utilizing many experimental results, and as a result, the model is It is complicated and time-consuming to analyze.

そこで、本発明は、汎用性があり、蓄熱槽群内の熱流動挙動の詳細を少ない計算資源でも短時間に把握することが可能な蓄熱槽群の熱流動の解析方法を提供することを目的とする。   Therefore, the present invention has an object to provide a method for analyzing heat flow of a heat storage tank group that is versatile and can grasp the details of the heat flow behavior in the heat storage tank group in a short time even with a small amount of calculation resources. And

かかる目的を達成するため、本願発明者らは解析モデルの簡略化と計算負荷の軽減について鋭意検討を重ねた結果、これまでの実験や解析の結果に基づいて、蓄熱槽群内の熱流動が放物型方程式の特性を有し、下流方向への空間発展と時間進行により熱流動現象が再現できることを知見するに至った。本発明の蓄熱槽群の熱流動の解析方法は係る知見に基づくものであって、複数の蓄熱槽が連通管で順次接続されて流体が通過可能とされた蓄熱槽群を対象として、蓄熱槽群内の流体の流れに関して上流側の蓄熱槽についての熱流動解析の結果得られる連通管部の流体温度及び流量並びに圧力損失を解析条件として与えた上流側の蓄熱槽と連通管で連結している下流側の蓄熱槽についての蓄熱槽単体の熱流動解析を行い、下流側の蓄熱槽についての熱流動解析の結果を新たな上流側の蓄熱槽についての熱流動解析の結果とし下流側の蓄熱槽と連通管で連結している更に下流側の蓄熱槽についての蓄熱槽単体の熱流動解析を行うことを最も上流側の蓄熱槽から最も下流側の蓄熱槽に順に逐次行うことにより蓄熱槽群全体の熱流動解析を行うようにしている。   In order to achieve this object, the inventors of the present application have made extensive studies on simplification of the analysis model and reduction of the calculation load. As a result, based on the results of previous experiments and analysis, It has the characteristics of a parabolic equation, and has come to know that the heat flow phenomenon can be reproduced by the space development and time progress in the downstream direction. The analysis method of heat flow of the heat storage tank group of the present invention is based on such knowledge, and the heat storage tank is intended for the heat storage tank group in which a plurality of heat storage tanks are sequentially connected by a communication pipe and fluid can pass through. The flow of fluid in the group is connected to the upstream heat storage tank, which is obtained as a result of the analysis of the heat flow analysis of the upstream heat storage tank, and the connection pipe is connected to the upstream heat storage tank. The heat storage analysis of the heat storage tank for the downstream heat storage tank is performed, and the result of the heat flow analysis for the downstream heat storage tank is used as the result of the heat flow analysis for the new heat storage tank. The heat storage tank group is obtained by sequentially performing the heat flow analysis of the heat storage tank alone for the further downstream heat storage tank connected to the tank through the communication pipe from the most upstream heat storage tank to the most downstream heat storage tank in order. To do the overall heat flow analysis To have.

この蓄熱槽群の熱流動の解析方法は、複数連なる蓄熱槽及び連通管の全てを一体として同時に解析するのではなく、流体温度及び流量等の物理量はほぼ一方向に伝播することを利用し、蓄熱槽群を構成する各蓄熱槽を単体として解析する。また、蓄熱槽間の連通管自体は解析格子の対象とならない。したがって、蓄熱槽及び蓄熱槽間の連通管の全てを一体とした解析格子を生成することなく各蓄熱槽単体を対象とした解析を行うため、蓄熱槽群全体を対象とした複雑な解析格子生成のノウハウが必要とされず汎用性が高い。ここで、複数の蓄熱槽が連通管で連結されている蓄熱槽群において、連通管に対し、流体が蓄熱槽群の流入口から流入して蓄熱槽群の流出口から流出するまでの蓄熱槽群内の流体の流れの上流側にある蓄熱槽を上流側の蓄熱槽と呼び、流体の流れの下流側にある蓄熱槽を下流側の蓄熱槽と呼ぶ。   The heat flow analysis method of this heat storage tank group does not analyze all the heat storage tanks and communication pipes as a single unit at the same time, but utilizes the fact that physical quantities such as fluid temperature and flow rate propagate in almost one direction, Each heat storage tank constituting the heat storage tank group is analyzed as a single unit. Further, the communication pipe itself between the heat storage tanks is not a target of the analysis grid. Therefore, in order to perform analysis for each heat storage tank alone without generating an analysis grid that integrates all of the heat storage tanks and the communication pipes between the heat storage tanks, complex analysis grid generation for the entire heat storage tank group No need for know-how, so versatility is high. Here, in the heat storage tank group in which a plurality of heat storage tanks are connected by a communication pipe, the heat storage tank until the fluid flows into the communication pipe from the inlet of the heat storage tank group and flows out of the outlet of the heat storage tank group A heat storage tank on the upstream side of the fluid flow in the group is called an upstream heat storage tank, and a heat storage tank on the downstream side of the fluid flow is called a downstream heat storage tank.

また、隣接する上流側の蓄熱槽についての熱流動解析の結果を用いて下流側の蓄熱槽についての熱流動の解析を蓄熱槽単体として行い、この解析結果を新たな上流側の蓄熱槽についての熱流動の解析結果として更に下流側の蓄熱槽についての熱流動の解析を蓄熱槽単体として行うというように、蓄熱槽単体の解析を上流側の蓄熱槽から下流側の蓄熱槽に対して逐次的に行う。このように、各蓄熱槽毎に蓄熱槽単体の解析を逐次行うようにすることで、蓄熱槽群全体を一体として同時に解析する場合と比べ、解くべき行列の自由度を小さくすることができる。これにより、蓄熱槽群内の熱流動挙動の解析を、電子計算機の性能や記憶容量等について少ない計算資源でも短時間に処理することが可能である。さらにまた、熱流動が定常化するまでステップを積み重ねて各蓄熱槽毎の熱流動解析を繰り返し行う場合には、隣接する上流側の蓄熱槽についての解析結果を用い、各蓄熱槽毎の解析は独立したものとして処理することができる。そのため、各蓄熱槽毎の解析を並列に処理することが可能で、計算時間を短縮することができる。   In addition, the heat flow analysis for the downstream heat storage tank is performed as a single heat storage tank using the results of the heat flow analysis for the adjacent upstream heat storage tank, and this analysis result is obtained for the new upstream heat storage tank. The analysis of the thermal storage tank is performed sequentially from the upstream thermal storage tank to the downstream thermal storage tank so that the thermal flow analysis of the downstream thermal storage tank is performed as a single thermal storage tank. To do. Thus, by performing the analysis of the heat storage tank alone for each heat storage tank, the degree of freedom of the matrix to be solved can be reduced as compared with the case where the entire heat storage tank group is analyzed simultaneously. As a result, the analysis of the heat flow behavior in the heat storage tank group can be processed in a short time even with a small amount of calculation resources such as the performance and storage capacity of the electronic computer. Furthermore, when the heat flow analysis is repeated for each heat storage tank by repeating the steps until the heat flow becomes steady, the analysis result for each heat storage tank is used using the analysis result for the adjacent upstream heat storage tank. It can be treated as independent. Therefore, the analysis for each heat storage tank can be processed in parallel, and the calculation time can be shortened.

また、蓄熱槽間の連通管自体は解析格子の対象とならないため、従来必要とされていた連通管部についての、複数の蓄熱槽を模擬した模型を用いた実験により得られる評価式若しくは実験結果に基づいた蓄熱槽群全体を対象とした数値解析で得られる解析結果は必要とされない。そのため、模型実験を行うコストを抑えると共に蓄熱槽群の熱流動解析とは別に解析を行う手間を省くことができる。   In addition, since the communication pipe itself between the heat storage tanks is not subject to the analysis grid, an evaluation formula or experimental result obtained by an experiment using a model simulating a plurality of heat storage tanks for the communication pipe part that was conventionally required The analysis result obtained by the numerical analysis for the whole heat storage tank group based on is not required. Therefore, it is possible to reduce the cost of performing the model experiment and save the labor of performing the analysis separately from the heat flow analysis of the heat storage tank group.

以上説明したように、本発明の蓄熱槽群の熱流動の解析方法によれば、蓄熱槽群を構成する蓄熱槽及び蓄熱槽間の連通管の全てを一体とした解析格子を生成することなく各蓄熱槽単体を対象とした解析を行うため、蓄熱槽群全体を対象とした複雑な解析格子生成のノウハウが必要とされず汎用性が高い。また、各蓄熱槽毎に蓄熱槽単体の解析を逐次行うようにすることで、蓄熱槽群全体を一体として同時に解析する場合と比べ、解くべき行列の自由度を小さくすることができ、蓄熱槽群内の熱流動挙動の解析を、電子計算機の性能や記憶容量等について少ない計算資源でも短時間に処理することが可能である。さらにまた、各蓄熱槽毎の解析を並列に処理することが可能で、計算時間を短縮することができる。   As described above, according to the thermal flow analysis method of the heat storage tank group of the present invention, without generating an analysis grid that integrates all of the heat storage tanks constituting the heat storage tank group and the communication pipes between the heat storage tanks. Since the analysis for each heat storage tank is performed, know-how for generating a complex analysis grid for the entire heat storage tank group is not required, and the versatility is high. In addition, by performing the analysis of the heat storage tank alone for each heat storage tank, the degree of freedom of the matrix to be solved can be reduced compared to the case where the entire heat storage tank group is analyzed simultaneously, and the heat storage tank It is possible to analyze the heat flow behavior within the group in a short time even with a small amount of computing resources such as the performance and storage capacity of the computer. Furthermore, the analysis for each heat storage tank can be processed in parallel, and the calculation time can be shortened.

また、本発明の蓄熱槽群の熱流動の解析方法によれば、蓄熱槽間の連通管自体は解析格子の対象とならないため、従来必要とされていた連通管部についての、複数の蓄熱槽を模擬した模型を用いた実験により得られる評価式若しくは実験結果に基づいた蓄熱槽群全体を対象とした数値解析で得られる解析結果は必要とされない。そのため、模型実験を行うコストを抑えると共に蓄熱槽群の熱流動解析とは別に解析を行う手間を省くことができる。   Further, according to the heat flow analysis method of the heat storage tank group of the present invention, the communication pipe itself between the heat storage tanks is not the target of the analysis grid, and therefore, a plurality of heat storage tanks for the communication pipe portion that has been conventionally required The analysis result obtained by the numerical analysis for the entire heat storage tank group based on the evaluation formula obtained by the experiment using the model simulating the model or the experiment result is not required. Therefore, it is possible to reduce the cost of performing the model experiment and save the labor of performing the analysis separately from the heat flow analysis of the heat storage tank group.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。なお、本実施形態では、熱流動解析を行う蓄熱槽群として、図3に示すように、第1槽から第N槽(N≧2)までのN個の蓄熱槽12が連通管14で連結された水を蓄積する蓄熱槽群10を例に挙げて説明する。また、連通管14に対し、蓄熱槽群10の流入口13から流入して流出口15から流出するまでの流体の流れ16の上流側にある蓄熱槽12を上流側の蓄熱槽12と呼び、下流側にある蓄熱槽12を下流側の蓄熱槽12と呼ぶ。具体的には例えば、第1槽と第2槽との関係では、第1槽が上流側の蓄熱槽12となり、第2槽が下流側の蓄熱槽12となる。なお、最も上流側にあって蓄熱槽群10の流入口13を有する蓄熱槽12を第1槽とし、この第1槽から下流側に向かって順番に蓄熱槽12に番号を付与している。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings. In this embodiment, as shown in FIG. 3, N heat storage tanks 12 from the first tank to the Nth tank (N ≧ 2) are connected by a communication pipe 14 as a heat storage tank group for performing heat flow analysis. The heat storage tank group 10 that accumulates the generated water will be described as an example. Further, the heat storage tank 12 on the upstream side of the fluid flow 16 from the inlet 13 of the heat storage tank group 10 to the outlet 15 of the communication pipe 14 is referred to as the upstream heat storage tank 12. The heat storage tank 12 on the downstream side is referred to as a downstream heat storage tank 12. Specifically, for example, in the relationship between the first tank and the second tank, the first tank is the upstream heat storage tank 12, and the second tank is the downstream heat storage tank 12. In addition, the thermal storage tank 12 which is in the most upstream side and has the inflow port 13 of the thermal storage tank group 10 is made into the 1st tank, and the number is provided to the thermal storage tank 12 in order toward this downstream from this 1st tank.

図1に、本発明の蓄熱槽群10の熱流動の解析方法の一実施形態のフローチャートを示す。本実施形態の蓄熱槽群10の熱流動の解析方法は、蓄熱槽群10内の流体の流れ16に関して上流側の蓄熱槽12についての熱流動解析の結果得られる連通管14での流体温度及び流量並びに圧力損失を解析条件として与えた上流側の蓄熱槽12と連通管14で連結している下流側の蓄熱槽12についての蓄熱槽12単体の熱流動解析を行い、下流側の蓄熱槽12についての熱流動解析の結果を新たな上流側の蓄熱槽12についての熱流動解析の結果とし下流側の蓄熱槽12と連通管14で連結している更に下流側の蓄熱槽12についての蓄熱槽12単体の熱流動解析を行うことを最も上流側の蓄熱槽12である第1槽から最も下流側の蓄熱槽12である第N槽に順に逐次行うことにより蓄熱槽群10全体の熱流動解析を行うようにしている。   In FIG. 1, the flowchart of one Embodiment of the analysis method of the heat flow of the thermal storage tank group 10 of this invention is shown. The heat flow analysis method of the heat storage tank group 10 of the present embodiment is based on the fluid temperature in the communication pipe 14 obtained as a result of the heat flow analysis on the upstream heat storage tank 12 with respect to the fluid flow 16 in the heat storage tank group 10 and The heat storage tank 12 alone is analyzed for the heat flow of the downstream heat storage tank 12 connected to the upstream heat storage tank 12 through the communication pipe 14 with the flow rate and pressure loss as analysis conditions, and the downstream heat storage tank 12 is analyzed. As a result of the heat flow analysis for the new upstream heat storage tank 12, the heat storage tank for the downstream heat storage tank 12 connected to the downstream heat storage tank 12 through the communication pipe 14. The heat flow analysis of the heat storage tank group 10 as a whole is performed by sequentially performing the heat flow analysis of 12 units in order from the first tank which is the most upstream heat storage tank 12 to the Nth tank which is the most downstream heat storage tank 12. Like to do

ここで、本発明の蓄熱槽群10の熱流動の解析方法は、上流側の蓄熱槽12から流出する流体の温度及び流量と、この上流側の蓄熱槽12と連通管14で連結している下流側の蓄熱槽12に流入する流体の温度及び流量は等しいことを前提としている(図2参照)。   Here, the analysis method of the heat flow of the heat storage tank group 10 of the present invention is connected to the temperature and flow rate of the fluid flowing out from the upstream heat storage tank 12 and the upstream heat storage tank 12 through the communication pipe 14. It is assumed that the temperature and flow rate of the fluid flowing into the downstream heat storage tank 12 are equal (see FIG. 2).

本実施形態の蓄熱槽群10の熱流動の解析方法は、時刻tを0(ゼロ)とした上で(S1)、まず、初期状態として各蓄熱槽12に蓄えられている水の温度及び水量を各蓄熱槽12毎の初期条件として設定する(S2)。各蓄熱槽12毎の水温は、各蓄熱槽12毎に測定されている水温を用いる。また、部分的に水温が測定されていない蓄熱槽12がある場合には、例えば、水温が測定されている蓄熱槽12については測定温度を用い、水温が測定されていない蓄熱槽12については水温が測定されている蓄熱槽12の測定温度を用いて直線補完等することにより設定する。   The heat flow analysis method of the heat storage tank group 10 of the present embodiment sets the time t to 0 (zero) (S1), and first, the temperature and amount of water stored in each heat storage tank 12 as an initial state. Is set as an initial condition for each heat storage tank 12 (S2). As the water temperature for each heat storage tank 12, the water temperature measured for each heat storage tank 12 is used. Moreover, when there exists the thermal storage tank 12 in which the water temperature is not partially measured, for example, the measured temperature is used for the thermal storage tank 12 in which the water temperature is measured, and the water temperature in the thermal storage tank 12 in which the water temperature is not measured. Is set by performing linear interpolation or the like using the measured temperature of the heat storage tank 12 in which is measured.

各蓄熱槽12毎の水量は、各蓄熱槽12毎の内部寸法(仕様値)と水位から算出する。なお、蓄熱槽群10の運転を開始する前の状態では、全ての蓄熱槽12の水位は一様である。   The amount of water for each heat storage tank 12 is calculated from the internal dimensions (specification values) and the water level for each heat storage tank 12. In addition, in the state before starting the operation | movement of the thermal storage tank group 10, the water level of all the thermal storage tanks 12 is uniform.

次に、蓄熱槽群10の運転の開始に伴って形成される各蓄熱槽12毎の水位を計算する(S3)。各蓄熱槽12毎の水位は、蓄熱槽群10の運転パターンにより設定される流入口13から供給される水の温度及び流量、並びにS2で求めた各蓄熱槽12毎の水の温度及び水量、更に上流側の蓄熱槽12との間の連通管14での圧力損失と下流側の蓄熱槽12との間の連通管14での圧力損失を基に計算する。この連通管14での圧力損失等を基に水位を計算する方法自体は一般的であるので、詳細についてはここでは省略する。なお、連通管14での圧力損失は、設計用のハンドブック(例えば、日本流体力学会(編) 流体力学ハンドブック等)に整理されている抵抗係数及び連通管14の内径(仕様値)に基づき、圧力損失評価式を用いて算出可能である。また、最も下流側の第N槽の水位の計算においては下流側の連通管14での圧力損失の代わりに流出口15での圧力損失を用いる。   Next, the water level for each heat storage tank 12 formed with the start of operation of the heat storage tank group 10 is calculated (S3). The water level for each heat storage tank 12 is the temperature and flow rate of water supplied from the inlet 13 set by the operation pattern of the heat storage tank group 10, and the temperature and amount of water for each heat storage tank 12 determined in S2. Furthermore, the calculation is performed based on the pressure loss in the communication pipe 14 between the upstream heat storage tank 12 and the pressure loss in the communication pipe 14 between the downstream heat storage tank 12. Since the method of calculating the water level based on the pressure loss in the communication pipe 14 is general, the details are omitted here. In addition, the pressure loss in the communication pipe 14 is based on the resistance coefficient arranged in the design handbook (for example, the Fluid Dynamics Handbook, etc.) and the inner diameter (specification value) of the communication pipe 14. It can be calculated using a pressure loss evaluation formula. Further, in the calculation of the water level of the most downstream N-th tank, the pressure loss at the outlet 15 is used instead of the pressure loss at the downstream communication pipe 14.

S2とS3の処理は、一つの蓄熱槽群10の一つの運転パターンに対して1回だけ行い、運転パターンが途中で変更される場合にはその都度行う。一方、時刻tに1を加えて単位時間だけ経過させる処理(S4)及びS5以降の処理については、蓄熱槽群10全体の熱流動解析が終了するまで、必要な処理を必要な回数だけ繰り返して行う。ここで、蓄熱槽群10の運転パターンが変更されない間は、一定の温度及び流量の水が蓄熱槽群10の流入口13から継続して供給される。   The processing of S2 and S3 is performed only once for one operation pattern of one heat storage tank group 10, and is performed each time the operation pattern is changed in the middle. On the other hand, about the process (S4) which adds 1 to the time t, and makes the unit time pass, the required process is repeated as many times as necessary until the heat flow analysis of the entire heat storage tank group 10 is completed. Do. Here, while the operation pattern of the heat storage tank group 10 is not changed, water having a constant temperature and flow rate is continuously supplied from the inlet 13 of the heat storage tank group 10.

なお、単位時間は、解析対象の蓄熱槽群10を構成する蓄熱槽12の大きさや蓄熱槽群10の運転パターン等に基づいて設定する。例えば、蓄熱槽12が小さく且つ蓄熱槽群10の運転パターンの切り替えのスパンが短い場合には短時間とし、蓄熱槽12が大きく且つ蓄熱槽群10の運転パターンの切り替えのスパンが長い場合には長時間とする。具体的には例えば、1分から10分程度の範囲で設定可能であるが、特にこれに限定されるものではなく、これより短くても、またこれより長くても良い。   The unit time is set based on the size of the heat storage tank 12 constituting the heat storage tank group 10 to be analyzed, the operation pattern of the heat storage tank group 10, and the like. For example, when the heat storage tank 12 is small and the operation pattern switching span of the heat storage tank group 10 is short, the time is short. When the heat storage tank 12 is large and the operation pattern switching span of the heat storage tank group 10 is long, the span is short. Long time. Specifically, for example, it can be set in the range of about 1 minute to 10 minutes, but is not particularly limited to this, and may be shorter or longer.

続いて、蓄熱槽群10全体の熱流動解析が終了するまで繰り返し行う処理について説明する。まず、時刻tに1を加え、即ち前記の単位時間分だけ推移させ、その時刻を新たな時刻tとする(S4)。   Then, the process performed repeatedly until the heat flow analysis of the whole heat storage tank group 10 is complete | finished is demonstrated. First, 1 is added to time t, that is, the time is changed by the unit time, and the time is set as a new time t (S4).

蓄熱槽群10の流入口13から第1槽に流入させる水の温度及び流量を設定する(S5)。これは、蓄熱槽群10の運転パターンに基づいて設定する。   The temperature and flow rate of water flowing into the first tank from the inlet 13 of the heat storage tank group 10 are set (S5). This is set based on the operation pattern of the heat storage tank group 10.

次に、第1槽が既に定常状態であるか否かを判断し(S6)、未だ定常状態でなければ(S6;NO)、第1槽を対象とした蓄熱槽12内の熱流動解析を行う(S7)。一方、既に定常状態であれば(S6;YES)、第2槽以降の熱流動解析のステップ(S10〜S18)に移る。   Next, it is determined whether or not the first tank is already in a steady state (S6). If it is not yet in a steady state (S6; NO), the heat flow analysis in the heat storage tank 12 for the first tank is performed. Perform (S7). On the other hand, if it is already in a steady state (S6; YES), the process proceeds to steps (S10 to S18) of heat flow analysis after the second tank.

第1槽を対象とした蓄熱槽12内の熱流動解析(S7)は、時刻t=1又は運転パターンが変更された場合においては、S2及びS3で求めた蓄熱槽12内の水の温度及び水量並びに水位に対し、S5で設定した第1槽に流入させる水の温度及び流量、更に第2槽との間の連通管14での圧力損失を解析条件として行う。また、時刻t≧2(即ち、t=1から一単位時間分若しくはそれ以上の単位時間が経過した時刻。また、運転パターンが変更されない場合)においては、時刻t=t−1(即ち、現在時刻から一単位時間分だけ前の時刻)の蓄熱槽12内の水の温度及び水量並びに水位に対し、S5で設定した時刻t=tに第1槽に流入させる水の温度及び流量、更に第2槽との間の連通管14での圧力損失を解析条件として行う。   In the heat flow analysis (S7) in the heat storage tank 12 for the first tank, when the time t = 1 or the operation pattern is changed, the temperature of the water in the heat storage tank 12 obtained in S2 and S3 and With respect to the amount of water and the water level, the temperature and flow rate of the water flowing into the first tank set in S5, and the pressure loss in the communication pipe 14 between the second tank and the second tank are analyzed. Further, at time t ≧ 2 (that is, the time when one unit time or more unit time has elapsed since t = 1, and when the operation pattern is not changed), the time t = t−1 (that is, the current time). The temperature and flow rate of water flowing into the first tank at the time t = t set in S5 with respect to the temperature and amount of water in the heat storage tank 12 and the water level (time one unit time before the time) The pressure loss in the communication pipe 14 between the two tanks is performed as an analysis condition.

S7の熱流動解析の結果を基に、第1槽が定常状態になっているか否かを判断し(S8)、定常状態になっていれば(S8;YES)、第1槽の計算を終了し(S9)、第2槽以降の熱流動解析のステップ(S10〜S18)に移る。一方、定常状態になっていなければ(S8;NO)、そのまま第2槽以降の熱流動解析のステップ(S10〜S18)に移る。   Based on the result of the heat flow analysis in S7, it is determined whether or not the first tank is in a steady state (S8). If the first tank is in a steady state (S8; YES), the calculation of the first tank is completed. (S9), and the process proceeds to steps (S10 to S18) of heat flow analysis after the second tank. On the other hand, if not in a steady state (S8; NO), the process proceeds to the steps (S10 to S18) of the thermal flow analysis after the second tank as it is.

なお、定常状態になっているか否かは、例えば、時刻t=tの解析の結果と時刻t=t−1の解析結果に差違が無いか否かにより判断する。例えば、時刻t=t−1で第1槽の連通管14から流出した水の温度と時刻t=tで流出する水の温度の変化量が0.1%以下である場合には定常状態になっていると判断する。しかしながら、定常状態になっているか否かの判断指標及びその判断水準はこれに限定されるものではなく、例えば、水の温度の変化量の判断水準を0.1%より大きくしたり小さくしたりしても良い。   Whether or not it is in a steady state is determined, for example, by whether or not there is a difference between the analysis result at time t = t and the analysis result at time t = t−1. For example, when the change amount of the temperature of the water flowing out from the communication pipe 14 of the first tank at the time t = t−1 and the temperature of the water flowing out at the time t = t is 0.1% or less, the steady state is reached. Judge that it is. However, the determination index for determining whether or not it is in a steady state and its determination level are not limited to this. For example, the determination level of the amount of change in the temperature of the water is made larger or smaller than 0.1%. You may do it.

続いて、第2槽以降の熱流動解析について説明する。第n槽(n≧2)の熱流動解析については、まず、第n槽が既に定常状態であるか否かを判断し(S12)、未だ定常状態でなければ(S12;NO)、第n槽に流入する水の温度及び流量を設定する(S13)。一方、既に定常状態であれば(S12;YES)、n=n+1とした上で(S11)、即ち隣接する下流側の蓄熱槽12に対象を移した上でS12以降の手順を繰り返す。   Then, the heat flow analysis after the 2nd tank is explained. For heat flow analysis of the nth tank (n ≧ 2), first, it is determined whether or not the nth tank is already in a steady state (S12). If it is not yet in a steady state (S12; NO), the nth tank The temperature and flow rate of the water flowing into the tank are set (S13). On the other hand, if already in a steady state (S12; YES), after setting n = n + 1 (S11), that is, after moving the target to the adjacent downstream heat storage tank 12, the procedure from S12 is repeated.

時刻t=tの第n槽の熱流動解析を行う際の解析条件としての、時刻t=tに連通管14から第n槽に流入する水の温度及び流量として、第n槽に隣接する上流側の蓄熱槽12である第n−1槽の時刻t=tの熱流動解析の結果得られる連通管14から流出する水の温度及び流量を与える(S13)。   The temperature and flow rate of water flowing into the nth tank from the communication pipe 14 at the time t = t as the analysis condition for performing the heat flow analysis of the nth tank at the time t = t is the upstream adjacent to the nth tank. The temperature and flow rate of the water flowing out from the communication pipe 14 obtained as a result of the thermal flow analysis at time t = t of the (n-1) th tank which is the side heat storage tank 12 are given (S13).

第n槽を対象とした蓄熱槽12内の熱流動解析は(S14)、時刻t=t−1の蓄熱槽12内の水の温度及び水量並びに水位に対し、S13で設定した時刻t=tに連通管14から第n槽に流入する水の温度及び流量、更に第n+1槽との間の連通管14での圧力損失を解析条件として行う。なお、最も下流側の蓄熱槽12である第N槽の熱流動解析においては、第n+1槽との間の連通管14での圧力損失の代わりに流出口15での圧力損失を用いる。   The heat flow analysis in the heat storage tank 12 for the nth tank is (S14), the time t = t set in S13 with respect to the temperature, water amount and water level of the water in the heat storage tank 12 at time t = t−1. In addition, the temperature and flow rate of the water flowing into the nth tank from the communication pipe 14 and the pressure loss in the communication pipe 14 between the n + 1th tank are used as analysis conditions. In the thermal flow analysis of the Nth tank, which is the most downstream heat storage tank 12, the pressure loss at the outlet 15 is used instead of the pressure loss at the communication pipe 14 with the (n + 1) th tank.

S14の熱流動解析の結果を基に、第n槽が定常状態になっているか否かを判断し(S15)、定常状態になっていれば(S15;YES)、第n槽の計算を終了し(S17)、第n+1槽があるか否かの判断のステップ(S18)に移る。   Based on the result of the heat flow analysis of S14, it is determined whether or not the nth tank is in a steady state (S15). If it is in a steady state (S15; YES), the calculation of the nth tank is finished. (S17), the process proceeds to step (S18) for determining whether or not there is an (n + 1) th tank.

一方、第n槽が定常状態になっていなければ(S15;NO)、第n+1槽があるか否かを判断し(S16)、第n+1槽がある場合には(S16;YES)、n=n+1とした(S11)上でS12以降の手順を繰り返す。一方、第n+1槽がない場合には(S16;NO)、t=t+1とした(S4)上でS5以降の手順を繰り返す。   On the other hand, if the nth tank is not in a steady state (S15; NO), it is determined whether there is an (n + 1) th tank (S16). If there is an (n + 1) th tank (S16; YES), n = The procedure after S12 is repeated on (S11) which is set to n + 1. On the other hand, if there is no n + 1th tank (S16; NO), t = t + 1 is set (S4), and the procedure after S5 is repeated.

また、第n槽の計算が終了後(S17)、第n+1槽があるか否かを判断し(S18)、第n+1槽がある場合には(S18;YES)、n=n+1とした(S11)上でS12以降の手順を繰り返す。一方、第n+1槽がない場合には(S18;NO)、蓄熱槽群10全体の熱流動解析を終了する(S19)。   After the calculation of the nth tank is completed (S17), it is determined whether there is an (n + 1) th tank (S18). If there is an (n + 1) th tank (S18; YES), n = n + 1 is set (S11). ) Repeat the procedure from S12 onward. On the other hand, when there is no (n + 1) th tank (S18; NO), the heat flow analysis of the entire heat storage tank group 10 is terminated (S19).

以上のように、時刻tでの第n槽の計算結果を使って、時刻tでの第n+1槽の計算をするようにすることにより、時刻tの第n+1槽の計算中に時刻t+1の第n槽の計算を並行して行うことができるため(図2参照)、計算時間を短縮することができる。   As described above, by calculating the n + 1th tank at the time t using the calculation result of the nth tank at the time t, the calculation at the time t + 1 is performed during the calculation of the n + 1th tank at the time t. Since n tanks can be calculated in parallel (see FIG. 2), the calculation time can be shortened.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention.

例えば、本実施形態では蓄熱槽群10を構成する蓄熱槽12全てが定常状態になるまで蓄熱槽12単体の熱流動解析を繰り返し行うようにしたが、一定時間経過後の蓄熱槽群10の状態を評価したい場合には、一定時間の経過に対応する分だけ時刻tを推移させて熱流動解析を行えば良い。   For example, in this embodiment, the heat flow analysis of the heat storage tank 12 alone is repeatedly performed until all the heat storage tanks 12 constituting the heat storage tank group 10 are in a steady state, but the state of the heat storage tank group 10 after a certain time has elapsed. When it is desired to evaluate the thermal flow analysis, the time t is shifted by an amount corresponding to the passage of a predetermined time.

本発明の蓄熱槽群の熱流動の解析方法の一実施形態を示すフローチャートである。It is a flowchart which shows one Embodiment of the analysis method of the heat flow of the thermal storage tank group of this invention. 分割逐次処理の概念図である。It is a conceptual diagram of a division | segmentation sequential process. 本実施形態の蓄熱槽群の熱流動の解析方法が対象とする蓄熱槽群の概要図である。It is a schematic diagram of the heat storage tank group which the analysis method of the heat flow of the heat storage tank group of this embodiment makes object.

符号の説明Explanation of symbols

10 蓄熱槽群
12 蓄熱槽
14 連通管
16 流体の流れ
10 heat storage tank group 12 heat storage tank 14 communication pipe 16 fluid flow

Claims (1)

複数の蓄熱槽が連通管で順次接続されて流体が通過可能とされた蓄熱槽群を対象として、前記蓄熱槽群内の前記流体の流れに関して上流側の蓄熱槽についての熱流動解析の結果得られる連通管部の流体温度及び流量並びに圧力損失を解析条件として与えた前記上流側の蓄熱槽と連通管で連結している下流側の蓄熱槽についての蓄熱槽単体の熱流動解析を行い、該下流側の蓄熱槽についての熱流動解析の結果を新たな上流側の蓄熱槽についての熱流動解析の結果とし該下流側の蓄熱槽と連通管で連結している更に下流側の蓄熱槽についての蓄熱槽単体の熱流動解析を行うことを最も上流側の蓄熱槽から最も下流側の蓄熱槽に順に逐次行うことにより前記蓄熱槽群全体の熱流動解析を行うことを特徴とする蓄熱槽群の熱流動の解析方法。   Obtained as a result of heat flow analysis on the upstream heat storage tank with respect to the flow of the fluid in the heat storage tank group, targeting a heat storage tank group in which a plurality of heat storage tanks are sequentially connected by a communication pipe and fluid can pass through. Heat flow analysis of a single heat storage tank with respect to the downstream heat storage tank connected with the upstream heat storage tank and the communication pipe given the fluid temperature and flow rate and pressure loss of the communication pipe section as an analysis condition, The result of the heat flow analysis for the downstream heat storage tank is the result of the heat flow analysis for the new upstream heat storage tank, and the further downstream heat storage tank connected to the downstream heat storage tank through a communication pipe Heat storage analysis of the entire heat storage tank group is performed by sequentially performing heat flow analysis of the heat storage tank alone from the most upstream heat storage tank to the most downstream heat storage tank in order. Analysis method of heat flow.
JP2005116074A 2005-04-13 2005-04-13 Analysis method of heat flow in heat storage tanks Expired - Fee Related JP4577835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005116074A JP4577835B2 (en) 2005-04-13 2005-04-13 Analysis method of heat flow in heat storage tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005116074A JP4577835B2 (en) 2005-04-13 2005-04-13 Analysis method of heat flow in heat storage tanks

Publications (2)

Publication Number Publication Date
JP2006293849A JP2006293849A (en) 2006-10-26
JP4577835B2 true JP4577835B2 (en) 2010-11-10

Family

ID=37414335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005116074A Expired - Fee Related JP4577835B2 (en) 2005-04-13 2005-04-13 Analysis method of heat flow in heat storage tanks

Country Status (1)

Country Link
JP (1) JP4577835B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340570A (en) * 1992-06-09 1993-12-21 Shimizu Corp Designing method of air-conditioning system equipped with heat accumulating tank
JP2001004414A (en) * 1999-06-17 2001-01-12 Japan Nuclear Cycle Development Inst States Of Projects One-dimensional plant model non-stationary fluid evaluating method and evaluating system, and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340570A (en) * 1992-06-09 1993-12-21 Shimizu Corp Designing method of air-conditioning system equipped with heat accumulating tank
JP2001004414A (en) * 1999-06-17 2001-01-12 Japan Nuclear Cycle Development Inst States Of Projects One-dimensional plant model non-stationary fluid evaluating method and evaluating system, and storage medium

Also Published As

Publication number Publication date
JP2006293849A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
Alizadeh et al. Ensemble of surrogates and cross-validation for rapid and accurate predictions using small data sets
Mohammadipoor et al. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields
CN111081400A (en) Machine learning-based rod bundle sub-channel thermal hydraulic characteristic prediction method
CN115079592A (en) Pipe network simulation method for thermodynamic system of ship nuclear power device
JP4577835B2 (en) Analysis method of heat flow in heat storage tanks
CN107808021B (en) CFD-based fluid device resistance calculation method
KR100957066B1 (en) Method of nuclear reactor core analysis using characteristic of porous media
CN114692322A (en) Method, device and equipment for monitoring scaling of storage and heavy oil heat exchanger
JP2000090950A (en) Cooling performance prediction device and method therefor
CN116305851A (en) Method, device and computer equipment for determining critical heat flux density relation
CN114396728B (en) Heating control method of electric water heater and establishing method of effective energy consumption prediction model
CN115563824A (en) Method for predicting performance of dual-phase material composite tube based on machine learning
CN114491378A (en) Steam turbine backpressure calculation method based on iteration method and electronic device
CN112182771B (en) Data processing method based on numerical simulation, storage medium and electronic device
Uren et al. State space model extraction of thermohydraulic systems–Part I: A linear graph approach
CN110659446A (en) Convolution operation control method, device, medium and program product
CN113821975A (en) Fuel cell performance attenuation prediction method and system
Valero et al. Concurrent blade aerodynamic-aeroelastic design optimization with re-scaled response surface
Liu et al. Hull Form Multi-Objective Optimization for a Container Ship with Neumann-Michell Theory and Approximation Model
CN111460548A (en) Normal-state roller compacted concrete gravity dam combined damming safety assessment method
CN113705034B (en) Simulation result processing method and device
Annabattula et al. Sizing of coolant passages in an ic engine using a design of experiments approach
Yeranee et al. Design of a serpentine cooling channel under turbulent flow using density-based topology optimization
Jin et al. Unified Domain Knowledge Informed Machine Learning Model for CHF Prediction
CN116467947B (en) Prediction method of micro heat pipe structure and technological parameters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees