JP4576671B2 - Sterilizer - Google Patents

Sterilizer Download PDF

Info

Publication number
JP4576671B2
JP4576671B2 JP2000179641A JP2000179641A JP4576671B2 JP 4576671 B2 JP4576671 B2 JP 4576671B2 JP 2000179641 A JP2000179641 A JP 2000179641A JP 2000179641 A JP2000179641 A JP 2000179641A JP 4576671 B2 JP4576671 B2 JP 4576671B2
Authority
JP
Japan
Prior art keywords
time
growth
detecting
bacteria
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000179641A
Other languages
Japanese (ja)
Other versions
JP2001353204A (en
Inventor
啓次郎 国本
朋秀 松本
岳見 桶田
一繁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000179641A priority Critical patent/JP4576671B2/en
Publication of JP2001353204A publication Critical patent/JP2001353204A/en
Application granted granted Critical
Publication of JP4576671B2 publication Critical patent/JP4576671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、厨房設備、台所、便器、洗面、風呂、洗濯機等の水まわりの細菌の増殖状態を予測して殺菌する殺菌装置に関するものである。
【0002】
【従来の技術】
従来より細菌の増殖を抑えるため便器へ定期的に殺菌水を供給する殺菌装置はあった(例えば、特開平10−88640号公報)。
【0003】
この殺菌装置は図5に示すように便器1に対して電解槽2で生成した殺菌水を適量供給する制御手段3と、予定時間経過又は予定時刻になると制御手段3を作動させるタイマー制御手段4と、予定時間経過又は予定時刻に殺菌水の供給状況を記憶する記憶手段5とを設けたため、殺菌水の供給が行われなかった場合、記憶内容に基づき何等かの対応を行うようにしている。これにより便器1内での細菌の繁殖を抑え、臭いや汚れを防止している。
【0004】
【発明が解決しようとする課題】
上記した従来の殺菌装置では、予定時刻に殺菌水を便器に供給するようにしているが、便器での細菌の繁殖は、細菌を取巻く環境に左右される。例えば気温や水温により便器温度が季節により大きく変わったり、また便器の先浄水の量により便器に付着する尿などの細菌の栄養物質の量や便器の濡れ状態が異なってくるなど、変化は一定しない。したがって、これら環境が変化しても細菌の繁殖を抑えようとすると、最も繁殖しやすい条件に合わせた殺菌水の供給条件となってしまい、殺菌水の塩素濃度を必要以上に高めたり、また殺菌水の供給頻度を多くする必要があった。このため、ランニングコストが高くなるだけでなく、殺菌水による排水の汚染も問題となってしまうなどの課題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、対象部位に殺菌処置をおこなう殺菌手段と、前記対象部位の細菌の増殖状態を予測する増殖予測手段と、前記増殖予測手段の予測結果に基づいて前記殺菌手段を制御する制御手段を有し、前記増殖予測手段は、対象部位の細菌の生息環境を検知する環境検知手段と、前記対象部位の時間と生息環境に基づく細菌の増殖特性を予め記憶する増殖記憶手段と、前記環境検知手段の検知環境と前記増殖記憶手段からの細菌増殖特性から所定細菌数に至る時間を求める時間設定手段より成り、前記環境検知手段は、対象部位の細菌の栄養物質量を検知する栄養物質検知手段から構成されているものである。
【0006】
本発明の要点は、増殖予測手段により対象部位の細菌の増殖状態を予測できるので、対象部位を殺菌してから次の殺菌のタイミング及び殺菌強度を適切に設定ことができる。また、細菌の生息環境に基づく増殖特性から殺菌時間を設定するので、細菌の生息環境変化に対応した殺菌ができる。また、細菌増殖における主要素である対象部位の栄養物質量に基づく増殖特性から殺菌時間を設定するので、対象部位の栄養物質量の変化に対応した精度のよい細菌増殖の予測ができるものである。
【0007】
【発明の実施の形態】
本発明の請求項1にかかる殺菌装置は、対象部位に殺菌処置をおこなう殺菌手段と、前記対象部位の細菌の増殖状態を予測する増殖予測手段と、前記増殖予測手段の予測結果に基づいて前記殺菌手段を制御する制御手段を有し、前記増殖予測手段は、対象部位の細菌の生息環境を検知する環境検知手段と、前記対象部位の時間と生息環境に基づく細菌の増殖特性を予め記憶する増殖記憶手段と、前記環境検知手段の検知環境と前記増殖記憶手段からの細菌増殖特性から所定細菌数に至る時間を求める時間設定手段より成り、前記環境検知手段は、対象部位の細菌の栄養物質量を検知する栄養物質検知手段から構成されている。
【0008】
そして、増殖予測手段により対象部位の細菌の増殖状態を予測できるので、対象部位を殺菌してから次の殺菌のタイミング及び殺菌強度を適切に設定ことができる。また、細菌の生息環境に基づく増殖特性から殺菌時間を設定するので、細菌の生息環境変化に対応した殺菌ができる。また、細菌増殖における主要素である対象部位の栄養物質量に基づく増殖特性から殺菌時間を設定するので、対象部位の栄養物質量の変化に対応した精度のよい細菌増殖の予測ができる。
【0009】
また、本発明の請求項にかかる殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段は、対象部位の使用頻度を検知する頻度検知手段と、対象部位の使用時間を検知する時間検知手段と、前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段から成っている。
【0010】
そして、台所・風呂・洗面などを対象部位とした場合に、その使用頻度や使用時間により対象部位に厨芥、石鹸、洗剤、垢などの菌の栄養物質が持ち込まれ蓄積することから、使用頻度や使用時間に応じて栄養物質量を推定することができる。
【0011】
また、本発明の請求項にかかる殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段は、対象部位の汚濁度合を検知する汚れ検知手段と、汚濁度合から栄養物質量を推定する推定手段から成っている。
【0012】
そして、対象部位を風呂水、排水や衛生設備機器の表面とすると、水の濁度や表面の汚れと細菌の栄養物質の量には高い相関があり、対象部位の汚濁度合から精度よく栄養物質量を推定することができる。
【0013】
また、本発明の請求項にかかる殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段は、対象部位の汚染物質を判定する汚染物質判定手段と、前記対象部位の汚染頻度を検知する頻度検知手段と、対象部位の汚染時間を検知する時間検知手段と、汚染物質判定手段と前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段から成っている。
【0014】
そして、対象部位を厨房設備とした場合に、そこに持ち込まれる栄養物質は、生野菜であったり、肉、魚、洗剤、厨芥など多種がある。汚染物質判定手段はこれらを利用者が特定し、特定された汚染物質と使用頻度や使用時間に応じて栄養物質量を推定するので、正確な推定が可能になる。
【0021】
【実施例】
(実施例1)
図1は本発明の実施例1を示す構成図である。図1において、10は殺菌の対象部位11に殺菌処置を行なう殺菌手段である。12は対象部位11に繁殖する細菌の増殖状態を予測する増殖予測手段である。13は増殖予測手段12の予測結果に基づいて殺菌手段10を制御する制御手段である。
【0022】
対象部位11は、一般家庭におけるトイレ・台所・風呂・洗面などの水回り設備の表面や配管・生ごみ入れ、業務用の厨房設備・トイレ・洗面所・公衆浴場・プール・下水設備などで、例えばトイレでは便器内外表面、排水トラップ部、水洗用タンクの水や内面、温水洗浄便座の温水タンク内や洗浄ノズル・便座面・便器との接触面、床面、手洗い用ボウル面などが対象となる。
【0023】
また、台所ではシンク内面、排水かご、排水トラップ、まな板・包丁などの調理具、ふきん・スポンジや生ごみ入れなどが対象になり、業務用の厨房設備では、肉や魚のどの食品や厨芥処理設備も対象部位となる。
【0024】
本実施例では台所の排水かごに限定して、ここに電解水を供給して細菌の増殖を抑え、臭いやぬめりを防止する殺菌装置とした。
【0025】
殺菌手段10は、塩素イオンを含んだ水を電気分解して電解水を生成する電解槽14と、対象部位11に電解水を供給する供給手段15と、電解槽14に塩素イオンを供給するための食塩水供給手段16より成っている。
【0026】
電解槽14は、陽極21と陰極22の一対の電極を対向して内設し、上部に出水口23、中央部に入水口24、下部に食塩水入口25がそれぞれ設けてある。
【0027】
供給手段15は、電解水の供給を制御する給水手段26と、電解水と水を任意の混合割合で混合する混合手段29とより成っている。
【0028】
給水手段26は水道と直結する給水路27に設けられ、電解槽14の入水口24に連通して、電解槽14内に給水供給可能に構成されている。なおこの給水手段26は電動の開閉弁で、定流量機能(図示せず)が設けてある。
【0029】
混合手段29は、出水路28により出水口23と連通し、電解槽14からの電解水を供給可能に接続している。30はバイパス路で、給水路27の給水手段26下流側の水を混合手段29へ連通するよう接続している。そして混合手段29は、出水路28の電解水とバイパス路30の水を任意の混合割合で混合させ、この混合水を電解水供給路31に吐出するよう配管されている。なお混合手段29は電動モータ(図示せず)により混合割合を可変する混合弁より成っている。
【0030】
34は両電極21、22に電圧を印可して水を電解するための直流電源である。
【0031】
食塩水供給手段16は、固形の状態で食塩36を充填した食塩タンク37と電解槽14の上流から分岐した給水管38を介して食塩水を供給する給水ポンプ39および給塩路40を有しており、飽和食塩水(食塩濃度26%)が電解槽14内で所定量供給される。
【0032】
増殖予測手段12は、対象部位11の細菌の生息環境を検知する環境検知手段41と、対象部位11の時間と生息環境に基づく細菌の増殖特性を予め記憶する増殖記憶手段42と、環境検知手段41の検知環境と増殖記憶手段42からの細菌増殖特性から所定細菌数に至る時間を求める時間設定手段43より成る。
【0033】
環境検知手段41は、対象部位11に設けた温度センサ44により温度を検知する温度検知手段45と、対象部位11に設けた水分センサ46により水分を検知する水分検知手段47と、対象部位11に設けた汚れ検知手段48から細菌の栄養物質量を検知する栄養物質検知手段49から成る。
【0034】
そして栄養物質検知手段49は、汚れ検知手段48であるフォトセンサ(図示せず)により排水かご11の裏面の光の反射光により汚れ度合いを検出し、この汚濁度合いから推定手段(図示せず)により、細菌の栄養物質量を推定する。推定手段はフォトセンサが検出する汚れ度合いと排水かご11に付着する有機物量の相関関係を予め求め、この相関を用いて栄養物質量を推定する。
【0035】
増殖記憶手段42は、電解水により排水かご11を殺菌し、その時点からの細菌数と経過時間の増殖特性を予め測定し求め、これを記憶させる。この時の増殖特性は排水かご11の温度と水分と有機物量の三者を因子とし、使用範囲内で水準を設定して求めたものを用いている。具体的には電解水により排水かご11を殺菌し、細菌数が死滅あるいは非増殖状態の時点から所定細菌数(例えば表面100cm当たり10レベル)に細菌数が増殖するまでの時間を実験的に求め、それを記憶させる。温度条件は、10℃未満、10〜20℃、20〜30℃、30℃以上の4水準、水分条件は、水分率が1%未満、1〜5%、5%以上の3水準、有機物量としてフォトセンサが検出する汚れ度合いを小、中、大の3水準として、ぞれぞれの因子の水準を組み合わせた(4×3×3)36パターンの条件における代表的な増殖時間を記憶している。
【0036】
時間設定手段43は、温度検知手段45、水分検知手段47、栄養物質検知手段49のそれぞれから排水かご11の温度、水分、栄養物質量を検知し、この環境条件における細菌増殖特性を増殖記憶手段42より呼び出し、所定細菌数に至る所用時間を求める。ここでは、増殖記憶手段42に記憶された36パターンの増殖時間の中から、検出した温度、水分、栄養物質量に適合する一つを呼びだして、これを所用時間とする。
【0037】
50は時間設定手段43の設定した時間を使用者に知らせるための報知手段で、LCD、LED、ブザー、スピーカ等により構成している。本引用例ではLCDにより次回殺菌開始までの時間を表示するようにしている。
【0038】
一般に細菌の増殖特性は図2に示すように遅滞期、対数増殖期、静止期、死滅期に分類される。対象部位11における殺菌を行なう場合重要なのは、遅滞期から対数増殖期に移行する時間である。この遅滞期は細菌にかかるストレスや栄養条件に大きく影響され、図のaからdのように変化する。図におけるaは気温が高い場合でdは低い場合を示す。実施例においては代表的な影響因子は温度、水分、排水かごに投入される栄養物質の種類や量、電解水の濃度や量、殺菌時間である。
【0039】
上記構成において次に本実施例の作用、動作について図1および図3のを用いて説明する。
【0040】
図3において60で運転を開始すると、61で環境条件入力を行なう。これは図1の環境検知手段41で検出する温度、水分、栄養物質量を検出するもので、それぞれ温度センサ44、水分センサ46、汚れ検知手段48(フォトセンサ)により排水かご11の環境状態を検出する。
【0041】
62は排水かご11の細菌が所定細菌数に至る所用時間を推定する増殖時間判定部で、61で求めた環境条件に適合する増殖時間を増殖記憶手段63より呼び出し求める。
【0042】
増殖記憶手段63は、図1の42で説明したように、温度条件の4水準、水分条件の3水準、汚れ度合いの3水準れぞれを組み合わせた36パターンの条件における代表的な増殖時間を記憶している。そして、増殖時間判定部62で環境条件入力から得られた温度と水分と汚れ度合いから一つの増殖時間を呼び出す。
【0043】
64では62で求められた増殖時間Tzから電解開始時間Tdを次の式(1)により演算する。
【0044】
Td=Tz−Ta−Tb (1)
ただし、Taは電解に必要な時間
Tbは余裕時間で増殖時間Tzの推定誤差分
このように電解開始時間Tdは増殖時間TzからTaとTbを差し引き電解時間を早めることにより、確実に細菌の増殖を抑えることができる。
【0045】
65は殺菌が開始されるまでの残り時間(現在時間−Tz−Tb)を報知手段50に表示する。
【0046】
66はスタートしてからの経過時間がTdを超えたかを判定し、超えていれば67に進み電解を開始し、超えていなければ61に戻る。
【0047】
67では食塩供給運転を行なう。ここでは図1に示す給水ポンプ39が動作して給水管38を経て食塩タンク37内に水が供給され、内部の飽和食塩水が電解槽14内に供給されて電解槽14底部に溜まる。
【0048】
次に68の電解運転では、直流電源34を作動させ、電極21、22間に電圧が印加され、電気分解が開始される。
【0049】
電気分解の開始直後は、電極21、22の大部分が水と接触しているため、水の電気分解が優先的に起こり、電極21、22間に水素と酸素ガスを発生する。これらのガスは水道水よりも軽いので、電解槽14の上部分に浮上する。このガスの移動により、電極21、22間に上方向への水の流れが発生する。そして、電解槽14底部に滞留している食塩水は、ガスの浮上により発生した水の流れにより電極21、22間に吸い上げられ、電解槽14内の水に拡散する。一般に塩素イオン濃度が高いほど次亜塩素酸などの塩素化合物(以下、次亜塩素酸と呼ぶ)の生成効率は高くなると言われており、下記の反応が起こりやすくなる。
【0050】
2Cl+2e→Cl
Cl+OH→HClO+Cl
Cl2+2OH→ClO+Cl+H
また、電気分解で次亜塩素酸を生成する場合、供給する食塩水の量が次亜塩素酸の生成効率に大きく影響を与える。すなわち、電解槽14への食塩水の供給量が多くなれば、生成効率は高まり、電解槽14での次亜塩素酸の生成濃度は高くなり、食塩水の供給量が少ないと、次亜塩素酸の生成濃度は低くなるので、飽和食塩水を給水ポンプ39で定量送るようにしている。
【0051】
さらに、電極21、22間に直流電源34から一定電流で一定時間の通電を行えば、毎回ほぼ同濃度の次亜塩素酸が生成できる。すなわち、電解水である次亜塩素酸の生成濃度は食塩の供給量と電極21、22への通電量により決定される。
【0052】
電解運転が終了すると69に移行する。ここでは給水手段26が開成され、電解槽14に水が供給され、電解槽14内の高濃度(例えば2000ppm)の電解水が出水路28より混合手段29に吐出される。一方バイパス路30からは水が混合手段29に供給され、ここで混合され希釈された電解水が電解水供給路31から取水される。
【0053】
70は、電解槽14内の次亜塩素酸の濃度を予測して、電解水供給路31からの濃度が所定値になるように混合手段29を制御する。
【0054】
電解槽内の次亜塩素酸の濃度予測は、電解水濃度減衰特性を予め実験的に求めておき、その特性より予測する。式(2)は特性例を示す。
【0055】
X=D−E・t−F・Σw (2)
ただし
X:次亜塩素酸濃度予測値
D:電解直後の次亜塩素酸初期濃度
E:経過時間の係数
t:電解終了時からの経過時間
F:給水量の係数
Σw:電解終了時からの給水量の積算値
なお次亜塩素酸初期濃度Dである電解水生成濃度は、前述したように食塩の供給量sと電極21、22への通電量qにより決定される。したがって、式(3)より求まる。
【0056】
D=G・s・q (3)
ただし
G:食塩供給量と通電量の係数(非線型 食塩供給量sの関数)
そして電解水の供給が終了すれば、71で殺菌運転を継続するかを判定する。ここでは制御手段13で設定された運転スイッチ(図示せず)のオン/オフ状態により判定する。終了する場合は、72に進み機器を停止させる。継続の場合は73で、タイマーをリセットし、増殖時間や次亜塩素酸濃度予測値などをクリアする。そして61へ戻る。
【0057】
以上のように本実施例によれば、排水かごにおける温度、水分、汚れ度合いに応じた細菌の増殖時間を求め、その増殖前に電解水により殺菌処理を行なうので、過剰な殺菌をすることがなく、手間をかけずに排水かごの細菌増殖が抑えられ、臭いやぬめりが発生しない。
【0058】
また、電解水の濃度変化を予測して所定濃度に希釈して使用するので一定濃度の電解水を大量に供給できる。
【0059】
本実施例において栄養物質検知手段は、汚れ検知手段により汚れ度合いを検出し、この汚濁度合いから推定手段により、細菌の栄養物質量を推定するようにしていた。これに代えて、次の構成でも同様に機能する。
【0060】
栄養物質検知手段は、対象部位11である排水かごに流れる水の有無より対象部位11の使用頻度を検知する頻度検知手段(図示せず)と、排水かごへ水が流れる時間から使用時間を検知する時間検知手段(図示せず)と、この頻度検知手段と時間検知手段の両者から栄養物質量を推定する推定手段(図示せず)から構成し、水の有無は水分検知手段47を用いる。一般家庭において台所仕事をする場合に食器や食材を洗ったりする場合に排水かごに制菌の栄養物質が流れ込むため、制菌の栄養物質量と流水の頻度および時間とに高い相関がある。推定手段はこの相関関係を数値化し栄養物質量を推定するようにしている。
【0061】
また、排水かごに流れ込む汚染物質を特定するため、野菜屑や肉魚や残飯などを指定するスイッチである汚染物質判定手段(図示せず)と、排水かごの汚染頻度を検知する頻度検知手段(図示せず)と、排水かごの汚染時間を検知する時間検知手段(図示せず)と、これら汚染物質判定手段と頻度検知手段と時間検知手段の情報から栄養物質量を推定する推定手段(図示せず)からなる構成にすると、汚染物質が特定できるのでより精度の高い細菌増殖の推定ができる。
【0062】
(実施例2)
実施例1の電解装置と同一構造のものは同一符号を付与し、説明を省略する。
【0063】
実施例1との違いは、図4の80の増殖記憶手段で、電解水により排水かごを殺菌し、その時点からの細菌数と経過時間の増殖特性を予め測定し求め、これを記憶させる。そして、この時の増殖特性は排水かごの温度と水分と有機物量の三者を因子とし、使用範囲内で水準を設定して求めたものを用いている点は実施例1と同じであるが、実施例1は電解水により排水かごを殺菌し、細菌数が死滅あるいは非増殖状態の時点から所定細菌数(例えば表面100cm当たり10レベル)に細菌数が増殖するまでの時間のみを実験的に求め、それを記憶させるのに対し、実施例2ではこれに加え、細菌が対数増殖期に入った時の増殖速度を記憶値に持っている点である。これは増殖時間と同じように温度条件は、10℃未満、10〜20℃、20〜30℃、30℃以上の4水準、水分条件は、水分率が1%未満、1〜5%、5%以上の3水準、有機物量としてフォトセンサが検出する汚れ度合いを小、中、大の3水準として、ぞれぞれの因子の水準を組み合わせた(4×3×3)36パターンの条件における代表的な増殖速度を記憶している。
【0064】
そして81では環境条件入力61から得られた温度と水分と汚れ度合いから一つの増殖速度を呼び出す。
【0065】
さらに82の混合手段制御では、81で設定された増殖速度に応じて電解水の希釈濃度を決定制御する。具体的には細菌の増殖速度が早い場合(例えば菌数が30分以内で倍増する)は電解水の濃度を濃く(例えば次亜塩素酸濃度500ppm)し、増殖速度が遅い場合(例えば菌数が3時間以上で倍増する)は電解水の濃度を薄く(例えば50ppm)する。そして、増殖速度がその間(例えば菌数が30分から3時間で倍増する)であれば電解水濃度をその中間(例えば300ppm)とする。
【0066】
細菌にとって環境条件がよくなると増殖速度が上がってくる。この状態は一般に殺菌が効きにくい条件である。したがって、この実施例では活性の高い細菌には、より殺菌強度を高めた電解水用いることで、確実に殺菌し、活性の低い細菌には、殺菌強度の低い電解水を用いることで、排水や設備等への影響を低減させている。
【0067】
なお、本実施例では電解水を希釈して電解水の殺菌強度を変更しているが、電解の電力すなわち電極への電流値、通電時間を変更してもよいし、給水ポンプ39の操作量を変更して電解槽14への食塩水の供給量を調整してもよい。また電解水の供給量や供給時間を変更してもよい。
【0068】
上記実施例1および2における増殖予測手段は、増殖記憶手段で、電解水により排水かごを殺菌し、その時点からの細菌数と経過時間の増殖特性を予め測定し求め、これを記憶させるように構成している。この増殖特性を温度、水分、汚れ度合いの関数として数式化し、この数式を用いて細菌増殖を予測するようにしてもよい。
【0069】
【発明の効果】
以上の説明から明らかなように、本発明の請求項1に係る殺菌装置によれば、対象部位に殺菌処置をおこなう殺菌手段と、前記対象部位の細菌の増殖状態を予測する増殖予測手段と、前記増殖予測手段の予測結果に基づいて前記殺菌手段を制御する制御手段を有し、前記増殖予測手段は、対象部位の細菌の生息環境を検知する環境検知手段と、前記対象部位の時間と生息環境に基づく細菌の増殖特性を予め記憶する増殖記憶手段と、前記環境検知手段の検知環境と前記増殖記憶手段からの細菌増殖特性から所定細菌数に至る時間を求める時間設定手段より成り、前記環境検知手段は、対象部位の細菌の栄養物質量を検知する栄養物質検知手段から構成されているため、増殖予測手段により対象部位の細菌の増殖状態を予測できるので、対象部位を殺菌してから次の殺菌のタイミング及び殺菌強度を適切に設定ことができる。また、細菌の生息環境に基づく増殖特性から殺菌時間を設定するので、細菌の生息環境変化に対応した殺菌ができる。また、細菌増殖における主要素である対象部位の栄養物質量に基づく増殖特性から殺菌時間を設定するので、対象部位の栄養物質量の変化に対応した精度のよい細菌増殖の予測ができる。
【0070】
本発明の請求項に係る殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段によれば、対象部位の使用頻度を検知する頻度検知手段と、前記検知手段の使用時間を検知する時間検知手段と、前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段から成っている。したがって、台所・風呂・洗面などを対象部位とした場合に、その使用頻度や使用時間により対象部位に厨芥、石鹸、洗剤、垢などの菌の栄養物質が持ち込まれ蓄積することから、使用頻度や使用時間に応じて栄養物質量を推定することができる。
【0071】
本発明の請求項に係る殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段によれば、対象部位の汚濁度合を検知する汚れ検知手段と、汚濁度合から栄養物質量を推定する推定手段から成っているので、対象部位を風呂水、排水や衛生設備機器の表面とすると、水の濁度や表面の汚れと細菌の栄養物質の量には高い相関があり、対象部位の汚濁度合から精度よく栄養物質量を推定することができる。
【0072】
本発明の請求項に係る殺菌装置の増殖予測手段における環境検知手段の栄養物質検知手段によれば、対象部位の汚染物質を判定する汚染物質判定手段と、前記対象部位の汚染頻度を検知する頻度検知手段と、前記検知手段の汚染時間を検知する時間検知手段と、汚染物質判定手段と前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段から成っているので、対象部位を厨房設備とした場合に、そこに持ち込まれる栄養物質は、生野菜であったり、肉、魚、洗剤、厨芥など多種がある。汚染物質判定手段はこれらを利用者が特定し、特定された汚染物質と使用頻度や使用時間に応じて栄養物質量を推定するので、正確な推定が可能になる。
【図面の簡単な説明】
【図1】 本発明の実施例1を示す殺菌装置の模式図
【図2】 本発明の実施例1、2を示す細菌増殖特性図
【図3】 本発明の実施例1を示す殺菌装置のフローチャート
【図4】 本発明の実施例2を示す殺菌装置のフローチャート
【図5】 従来例を示す電解装置の模式図
【符号の説明】
10 殺菌手段
11 対象部位
12 増殖予測手段
13 制御手段
14 電解槽
21、22 電極
41 環境検知手段
42 増殖記憶手段
43 時間設定手段
45 温度検知手段
47 水分検知手段
49 栄養物質検知手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sterilizing apparatus that predicts and sterilizes the growth state of bacteria around water such as kitchen facilities, kitchens, toilets, toilets, baths, and washing machines.
[0002]
[Prior art]
Conventionally, there has been a sterilization apparatus that periodically supplies sterilized water to a toilet in order to suppress the growth of bacteria (for example, JP-A-10-88640).
[0003]
As shown in FIG. 5, the sterilizer includes a control means 3 for supplying an appropriate amount of sterilized water generated in the electrolytic cell 2 to the toilet 1, and a timer control means 4 for operating the control means 3 when a scheduled time elapses or reaches a scheduled time. And the storage means 5 for storing the sterilizing water supply status at the scheduled time lapse or scheduled time, when the sterilizing water is not supplied, some measures are taken based on the stored contents. . This suppresses the growth of bacteria in the toilet 1 and prevents odors and dirt.
[0004]
[Problems to be solved by the invention]
In the conventional sterilization apparatus described above, sterilizing water is supplied to the toilet at a scheduled time, but the propagation of bacteria in the toilet depends on the environment surrounding the bacteria. For example, the temperature of the toilet bowl varies greatly depending on the season depending on the temperature and water temperature, and the amount of urine and other nutrients attached to the toilet bowl and the wetness of the toilet bowl vary depending on the amount of pre-purified water in the toilet bowl. . Therefore, if you try to suppress the growth of bacteria even if these environments change, it will be the supply condition of sterilizing water that matches the conditions that are most likely to propagate, increasing the chlorine concentration of the sterilizing water more than necessary, or sterilizing. It was necessary to increase the frequency of water supply. For this reason, there is a problem that not only the running cost becomes high, but also contamination of waste water by sterilizing water becomes a problem.
[0005]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems, and includes a sterilization unit that performs sterilization treatment on a target site, a growth prediction unit that predicts a bacterial growth state of the target site, and a prediction result of the growth prediction unit. Control means for controlling the sterilization means based on , the growth prediction means is an environment detection means for detecting the habitat environment of the bacteria of the target site, the bacterial growth characteristics based on the time and habitat environment of the target site And a time setting means for obtaining a time required to reach a predetermined number of bacteria from a bacterial growth characteristic from the growth storage means and the environment detection means It is comprised from the nutrient substance detection means which detects the amount of nutrient substances of bacteria .
[0006]
The main point of the present invention is that the growth state of the bacteria at the target site can be predicted by the growth prediction means, so that the timing and sterilization intensity of the next sterilization can be appropriately set after the target site is sterilized. In addition, since the sterilization time is set based on the growth characteristics based on the bacterial habitat, sterilization corresponding to changes in the bacterial habitat can be performed. In addition, since the sterilization time is set from the growth characteristics based on the amount of nutrient substance in the target site, which is the main element in bacterial growth, it is possible to accurately predict bacterial growth corresponding to changes in the amount of nutrient substance in the target site. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The sterilization apparatus according to claim 1 of the present invention is based on a sterilization unit that performs sterilization treatment on a target site, a growth prediction unit that predicts a bacterial growth state of the target site, and a prediction result of the growth prediction unit. Control means for controlling the sterilization means, the growth prediction means, the environment detection means for detecting the habitat environment of the bacteria of the target site, and the bacteria growth characteristics based on the time and habitat environment of the target site in advance And a time setting means for obtaining a time required to reach a predetermined number of bacteria from a bacterial growth characteristic from the growth storage means and a detection environment of the environment detection means, and the environment detection means comprises a nutrient substance of bacteria at the target site. It consists of nutrient substance detection means for detecting the amount.
[0008]
And since the growth state of the bacteria of the target part can be predicted by the growth prediction means, the timing and the sterilization strength of the next sterilization can be appropriately set after the target part is sterilized. In addition, since the sterilization time is set based on the growth characteristics based on the bacterial habitat, sterilization corresponding to changes in the bacterial habitat can be performed. In addition, since the sterilization time is set from the growth characteristics based on the amount of nutrient substance at the target site, which is the main element in bacterial growth, it is possible to accurately predict bacterial growth corresponding to the change in the amount of nutrient substance at the target site.
[0009]
Moreover, the nutrient substance detection means of the environment detection means in the growth prediction means of the sterilization apparatus according to claim 2 of the present invention includes a frequency detection means for detecting the usage frequency of the target part and a time detection for detecting the usage time of the target part. And estimation means for estimating the amount of nutrient substance from at least one of the frequency detection means and the time detection means.
[0010]
And if the target part is a kitchen, bath, or bathroom, the nutrients such as sputum, soap, detergent, and dirt are brought into the target part depending on the frequency of use and time of use. The amount of nutrients can be estimated according to the usage time.
[0011]
Further, the nutrient substance detection means of the environment detection means in the growth prediction means of the sterilization apparatus according to claim 3 of the present invention is a soil detection means for detecting the degree of contamination of the target part, and an estimation for estimating the amount of nutrient substance from the degree of contamination. Consists of means.
[0012]
And if the target part is the surface of bath water, drainage or sanitary equipment, the turbidity of the water, the dirt on the surface and the amount of bacterial nutrients are highly correlated. The amount can be estimated.
[0013]
Moreover, the nutrient substance detection means of the environment detection means in the growth prediction means of the sterilization apparatus according to claim 4 of the present invention detects the contamination determination means for determining the contamination of the target part, and the contamination frequency of the target part. The frequency detection means, the time detection means for detecting the contamination time of the target part, and the estimation means for estimating the amount of nutrient substance from at least one of the contaminant detection means, the frequency detection means and the time detection means.
[0014]
When the target site is a kitchen facility, there are various kinds of nutrients brought into the kitchen, such as raw vegetables, meat, fish, detergents, and salmon. The pollutant determining means identifies these by the user and estimates the amount of nutrients according to the specified pollutant and the usage frequency and usage time, so accurate estimation is possible.
[0021]
【Example】
Example 1
FIG. 1 is a block diagram showing Embodiment 1 of the present invention. In FIG. 1, reference numeral 10 denotes a sterilization means for performing a sterilization treatment on the target portion 11 to be sterilized. Reference numeral 12 denotes growth prediction means for predicting the growth state of the bacteria that propagate in the target site 11. Reference numeral 13 denotes a control means for controlling the sterilization means 10 based on the prediction result of the growth prediction means 12.
[0022]
The target area 11 is the surface of plumbing equipment such as toilets, kitchens, baths, and washbasins in general households, plumbing, garbage storage, commercial kitchen facilities, toilets, washrooms, public baths, pools, sewage equipment, etc. For example, in the toilet, the inside and outside surfaces of the toilet bowl, drain traps, flushing tank water and inside surfaces, warm water flush toilet seats, flush nozzles, toilet seats, toilet contact surfaces, floors, handwashing bowls, etc. Become.
[0023]
In the kitchen, the inner surface of the sink, drainage basket, drainage trap, cooking utensils such as cutting boards and kitchen knives, dishcloths / sponges and kitchenware can be used. Is also the target site.
[0024]
In this embodiment, the sterilizing apparatus is limited to a kitchen drainage basket and supplies electrolyzed water to suppress the growth of bacteria and prevent odors and slimes.
[0025]
The sterilizing means 10 electrolyzes water containing chlorine ions to generate electrolytic water, supply means 15 for supplying electrolytic water to the target site 11, and supply chlorine ions to the electrolytic tank 14 The saline solution supplying means 16 is provided.
[0026]
The electrolytic cell 14 is provided with a pair of electrodes of an anode 21 and a cathode 22 facing each other, and has a water outlet 23 at the top, a water inlet 24 at the center, and a saline inlet 25 at the bottom.
[0027]
The supply unit 15 includes a water supply unit 26 that controls the supply of the electrolyzed water and a mixing unit 29 that mixes the electrolyzed water and water at an arbitrary mixing ratio.
[0028]
The water supply means 26 is provided in a water supply passage 27 directly connected to the water supply, and is configured to communicate with the water inlet 24 of the electrolytic cell 14 so that water can be supplied into the electrolytic cell 14. The water supply means 26 is an electric on-off valve and is provided with a constant flow rate function (not shown).
[0029]
The mixing means 29 communicates with the water outlet 23 through the water outlet 28 and is connected so that electrolytic water from the electrolytic cell 14 can be supplied. A bypass 30 is connected so that water downstream of the water supply means 26 in the water supply path 27 is communicated with the mixing means 29. The mixing means 29 is piped so as to mix the electrolyzed water in the outlet channel 28 and the water in the bypass channel 30 at an arbitrary mixing ratio and discharge the mixed water to the electrolyzed water supply channel 31. The mixing means 29 is composed of a mixing valve whose mixing ratio is changed by an electric motor (not shown).
[0030]
Reference numeral 34 denotes a DC power source for applying a voltage to both electrodes 21 and 22 to electrolyze water.
[0031]
The salt water supply means 16 includes a salt water tank 37 filled with salt 36 in a solid state and a water supply pump 39 and a salt water supply path 40 for supplying salt water through a water supply pipe 38 branched from the upstream of the electrolytic cell 14. A predetermined amount of saturated saline (salt concentration 26%) is supplied in the electrolytic cell 14.
[0032]
The growth prediction means 12 includes an environment detection means 41 for detecting the habitat environment of bacteria in the target part 11, a growth storage means 42 for preliminarily storing the growth characteristics of bacteria based on the time and habitat environment of the target part 11, and the environment detection means. It comprises time setting means 43 for obtaining the time required to reach a predetermined number of bacteria from 41 detection environments and bacterial growth characteristics from the growth storage means 42.
[0033]
The environment detection unit 41 includes a temperature detection unit 45 that detects a temperature using a temperature sensor 44 provided in the target site 11, a moisture detection unit 47 that detects moisture using a moisture sensor 46 provided in the target site 11, and a target site 11. It comprises a nutrient substance detection means 49 for detecting the amount of nutrient substances of bacteria from the provided dirt detection means 48.
[0034]
The nutrient substance detection means 49 detects the degree of dirt from the reflected light of the back surface of the drainage basket 11 by a photo sensor (not shown) as the dirt detection means 48, and estimates means (not shown) from the degree of contamination. To estimate the amount of bacterial nutrients. Estimating means previously obtained correlation between the amount of organic substances adhering to the dirt degree and drainage cage 11 for detecting photosensor, it estimates the nutrients amount have use this correlation.
[0035]
The growth storage means 42 sterilizes the drainage basket 11 with electrolyzed water, measures and obtains the number of bacteria from that time and the growth characteristics of the elapsed time in advance, and stores them. The growth characteristics at this time are obtained by setting the level within the range of use with the three factors of the temperature, moisture and the amount of organic matter of the drainage basket 11 as factors. Specifically, the drainage basket 11 is sterilized with electrolyzed water, and the time until the number of bacteria grows to a predetermined number (for example, 10 3 levels per surface 100 cm 2 ) from the time when the number of bacteria dies or is not proliferated is experimentally determined. Ask for and remember it. Temperature conditions are less than 10 ° C., 10 to 20 ° C., 20 to 30 ° C., 4 levels of 30 ° C. or more, and moisture conditions are moisture levels of less than 1%, 1 to 5%, 3 levels of 5% or more, amount of organic matter Assuming that the degree of contamination detected by the photosensor is three levels of small, medium, and large, the typical growth time is stored under the condition of (4 × 3 × 3) 36 patterns in which the levels of each factor are combined. ing.
[0036]
The time setting means 43 detects the temperature, moisture, and nutrient substance amount of the drainage basket 11 from each of the temperature detection means 45, the moisture detection means 47, and the nutrient substance detection means 49, and reproduces the bacterial growth characteristics in this environmental condition as a proliferation storage means. 42, the required time to reach a predetermined number of bacteria is obtained. Here, one of the 36 patterns of growth times stored in the growth storage means 42 that matches the detected temperature, moisture, and amount of nutrient substance is called and used as the required time.
[0037]
Reference numeral 50 denotes an informing means for informing the user of the time set by the time setting means 43, which comprises an LCD, LED, buzzer, speaker, and the like. In this example, the time until the next sterilization start is displayed on the LCD.
[0038]
In general, the growth characteristics of bacteria are classified into a lag phase, a logarithmic growth phase, a stationary phase, and a death phase, as shown in FIG. What is important when performing sterilization in the target region 11 is the time required to shift from the lag phase to the logarithmic growth phase. This lag phase is greatly affected by the stress and nutritional conditions on the bacteria, and changes from a to d in the figure. In the drawing, a indicates a case where the temperature is high and d indicates a low case. In the embodiment, typical influential factors are temperature, moisture, the type and amount of nutrients put into the drainage basket, the concentration and amount of electrolyzed water, and the sterilization time.
[0039]
Next, the operation and operation of this embodiment in the above configuration will be described with reference to FIGS.
[0040]
In FIG. 3, when the operation is started at 60, an environmental condition is input at 61. This is to detect the temperature, moisture, and nutrient substance amount detected by the environment detection means 41 in FIG. 1, and the environmental condition of the drainage basket 11 is detected by the temperature sensor 44, moisture sensor 46, and dirt detection means 48 (photo sensor), respectively. To detect.
[0041]
A growth time determination unit 62 estimates the time required for the bacteria in the drainage basket 11 to reach the predetermined number of bacteria, and calls the growth storage unit 63 for a growth time suitable for the environmental conditions determined in 61.
[0042]
Growth storage unit 63, as described in 42 of Figure 1, four levels of temperature conditions, three levels of moisture conditions, typical growth time under the conditions of 36 patterns that combine three levels their respective stains degree Is remembered. Then, the growth time determination unit 62 calls one growth time from the temperature, moisture and the degree of contamination obtained from the environmental condition input.
[0043]
In 64, the electrolysis start time Td is calculated from the growth time Tz obtained in 62 by the following equation (1).
[0044]
Td = Tz-Ta-Tb (1)
However, Ta is the time required for electrolysis. Tb is a marginal time and is the estimated error of the growth time Tz. Thus, the electrolysis start time Td is obtained by subtracting Ta and Tb from the growth time Tz, thereby speeding up the electrolysis time. Can be suppressed.
[0045]
65 displays on the notification means 50 the remaining time until the sterilization is started (current time-Tz-Tb).
[0046]
66 determines whether the elapsed time from the start has exceeded Td. If it has exceeded, the process proceeds to 67 to start electrolysis, and if not, the process returns to 61.
[0047]
In 67, salt supply operation is performed. Here, the water supply pump 39 shown in FIG. 1 is operated to supply water into the salt tank 37 through the water supply pipe 38, and the internal saturated saline is supplied into the electrolytic cell 14 and collected at the bottom of the electrolytic cell 14.
[0048]
Next, in the electrolytic operation 68, the DC power source 34 is operated, a voltage is applied between the electrodes 21 and 22, and electrolysis is started.
[0049]
Immediately after the start of electrolysis, since most of the electrodes 21 and 22 are in contact with water, electrolysis of water occurs preferentially, and hydrogen and oxygen gas are generated between the electrodes 21 and 22. Since these gases are lighter than tap water, they float on the upper part of the electrolytic cell 14. This gas movement causes an upward flow of water between the electrodes 21 and 22. Then, the salt water staying at the bottom of the electrolytic cell 14 is sucked up between the electrodes 21 and 22 by the flow of water generated by the gas floating, and diffuses into the water in the electrolytic cell 14. In general, it is said that the higher the chlorine ion concentration, the higher the production efficiency of chlorine compounds such as hypochlorous acid (hereinafter referred to as hypochlorous acid), and the following reactions are likely to occur.
[0050]
2Cl + 2e → Cl 2
Cl 2 + OH → HClO + Cl
Cl2 + 2OH → ClO + Cl + H 2 O
In addition, when hypochlorous acid is generated by electrolysis, the amount of saline solution supplied greatly affects the generation efficiency of hypochlorous acid. That is, if the amount of salt water supplied to the electrolytic cell 14 increases, the generation efficiency increases, the concentration of hypochlorous acid generated in the electrolytic cell 14 increases, and if the amount of saline supplied is small, hypochlorous acid. Since the acid production concentration is lowered, the saturated saline solution is sent in a fixed amount by the feed water pump 39.
[0051]
Furthermore, if the DC power supply 34 is energized for a certain period of time with a constant current between the electrodes 21 and 22, hypochlorous acid having substantially the same concentration can be generated each time. That is, the production concentration of hypochlorous acid as electrolyzed water is determined by the supply amount of sodium chloride and the energization amounts to the electrodes 21 and 22.
[0052]
When the electrolysis operation is completed, the routine proceeds to 69. Here, the water supply means 26 is opened, water is supplied to the electrolytic cell 14, and high concentration (for example, 2000 ppm) electrolytic water in the electrolytic cell 14 is discharged from the outlet channel 28 to the mixing unit 29. On the other hand, water is supplied from the bypass passage 30 to the mixing means 29, and the mixed and diluted electrolytic water is taken from the electrolytic water supply passage 31.
[0053]
70 predicts the concentration of hypochlorous acid in the electrolytic cell 14 and controls the mixing means 29 so that the concentration from the electrolyzed water supply path 31 becomes a predetermined value.
[0054]
For the concentration prediction of hypochlorous acid in the electrolytic cell, an electrolytic water concentration attenuation characteristic is experimentally obtained in advance and is predicted from the characteristic. Equation (2) shows a characteristic example.
[0055]
X = DE−t−F · Σw (2)
However, X: Hypochlorous acid concentration predicted value D: Hypochlorous acid initial concentration immediately after electrolysis E: Coefficient of elapsed time t: Elapsed time from the end of electrolysis F: Coefficient of water supply Σw: Water supply from the end of electrolysis Accumulated value of amount The electrolyzed water generation concentration which is the hypochlorous acid initial concentration D is determined by the supply amount s of salt and the energization amount q to the electrodes 21 and 22 as described above. Therefore, it is obtained from equation (3).
[0056]
D = G · s · q (3)
However, G: coefficient of salt supply amount and energization amount (function of non-linear salt supply amount s)
When the supply of the electrolyzed water is completed, it is determined at 71 whether the sterilization operation is continued. Here, the determination is made based on the on / off state of an operation switch (not shown) set by the control means 13. When the process ends, the process proceeds to 72 to stop the device. In the case of continuing, at 73, the timer is reset, and the growth time, hypochlorous acid concentration predicted value, etc. are cleared. And it returns to 61.
[0057]
As described above, according to the present embodiment, the bacterial growth time corresponding to the temperature, moisture, and degree of dirt in the drainage basket is obtained, and sterilization is performed with electrolytic water before the growth, so that excessive sterilization can be performed. In addition, the bacterial growth of the drainage basket can be suppressed without much trouble, and no odor or slime will occur.
[0058]
In addition, since the concentration change of the electrolyzed water is predicted and diluted to a predetermined concentration, it is possible to supply a large amount of electrolyzed water having a constant concentration.
[0059]
In this embodiment, the nutrient substance detection means detects the degree of contamination by the dirt detection means, and estimates the amount of nutrient substance of bacteria by the estimation means from the degree of contamination. Instead, the following configuration functions similarly.
[0060]
The nutrient substance detection means detects the usage time from the frequency detection means (not shown) for detecting the usage frequency of the target part 11 from the presence or absence of water flowing in the drainage basket as the target part 11 and the time when the water flows into the drainage basket. Time detection means (not shown), and estimation means (not shown) for estimating the amount of nutrient substances from both the frequency detection means and the time detection means, and the presence or absence of water uses the moisture detection means 47. There is a high correlation between the amount of antibacterial nutrients and the frequency and time of running water because the antibacterial nutrients flow into the drainage basket when washing dishes and foods when working in the kitchen at a general household. The estimation means quantifies this correlation and estimates the amount of nutrients.
[0061]
In addition, in order to identify pollutants that flow into the drainage basket, a pollutant determination means (not shown) that is a switch for designating vegetable scraps, meat fish, leftover food, etc., and a frequency detection means for detecting the pollution frequency of the drainage basket (figure Not shown), time detection means (not shown) for detecting the drainage basket contamination time, and estimation means (not shown) for estimating the amount of nutrient substance from the information of these contaminant determination means, frequency detection means and time detection means In this case, the pollutant can be identified, so that the bacterial growth can be estimated with higher accuracy.
[0062]
(Example 2)
Components having the same structure as the electrolysis apparatus of Example 1 are given the same reference numerals, and description thereof is omitted.
[0063]
The difference from Example 1 is that the growth storage means 80 in FIG. 4 sterilizes the drainage basket with electrolyzed water, and measures and obtains the growth characteristics of the number of bacteria and the elapsed time from that time in advance and stores them. The growth characteristics at this time are the same as in Example 1 except that the three factors of drainage basket temperature, moisture and the amount of organic matter are used as factors, and the level determined within the range of use is used. In Example 1, the drainage basket is sterilized with electrolyzed water, and only the time until the number of bacteria grows to a predetermined number of bacteria (for example, 10 3 levels per surface 100 cm 2 ) from the time when the number of bacteria dies or is not proliferated is tested. In addition to this, in Example 2, it is the point which has the growth rate when bacteria enter into the logarithmic growth phase in the memory value. As with the growth time, the temperature condition is less than 10 ° C., 10-20 ° C., 20-30 ° C., 30 ° C. or higher, and the moisture condition is less than 1%, 1-5%, 5% % Of 3% or more, the degree of contamination detected by the photosensor as the amount of organic matter, 3 levels of small, medium and large, combined with the level of each factor (4 × 3 × 3) in 36 pattern conditions It remembers typical growth rates.
[0064]
In 81, one growth rate is called from the temperature, moisture, and degree of contamination obtained from the environmental condition input 61.
[0065]
In 82 mixing means control, the dilution concentration of the electrolyzed water is determined and controlled according to the growth rate set in 81. Specifically, when the growth rate of bacteria is fast (for example, the number of bacteria doubles within 30 minutes), the concentration of electrolyzed water is increased (for example, hypochlorous acid concentration 500 ppm), and the growth rate is slow (for example, the number of bacteria). Is doubled after 3 hours), the concentration of electrolyzed water is reduced (for example, 50 ppm). If the growth rate is in the meantime (for example, the number of bacteria doubles in 30 minutes to 3 hours), the electrolyzed water concentration is set to the middle (for example, 300 ppm).
[0066]
The growth rate of bacteria increases as environmental conditions improve. This state is generally a condition in which sterilization is not effective. Therefore, in this embodiment, the highly active bacteria are surely sterilized by using electrolyzed water having a higher sterilizing strength, and the bacteria having low activity are sterilized by using electrolyzed water having a low sterilizing strength. The impact on equipment is reduced.
[0067]
In this embodiment, the sterilization strength of the electrolyzed water is changed by diluting the electrolyzed water. However, the electrolysis power, that is, the current value to the electrode and the energizing time may be changed, and the operation amount of the water supply pump 39 may be changed. May be adjusted to adjust the amount of saline solution supplied to the electrolytic cell 14. Moreover, you may change the supply amount and supply time of electrolyzed water.
[0068]
The growth predicting means in Examples 1 and 2 is a growth storage means for sterilizing a drainage basket with electrolyzed water, and measuring and obtaining in advance the growth characteristics of the number of bacteria and the elapsed time from that point, and storing them. It is composed. This growth characteristic may be formulated as a function of temperature, moisture, and degree of soiling, and bacterial growth may be predicted using this formula.
[0069]
【The invention's effect】
As is clear from the above description, according to the sterilization apparatus according to claim 1 of the present invention, sterilization means for performing sterilization treatment on the target site, growth prediction means for predicting the growth state of bacteria in the target site, Control means for controlling the sterilization means based on the prediction result of the growth prediction means, the growth prediction means, environmental detection means for detecting the habitat environment of bacteria in the target site, time and inhabiting of the target site Proliferation storage means for preliminarily storing the growth characteristics of bacteria based on the environment, and a time setting means for determining a time from the detection environment of the environment detection means and the bacteria growth characteristics from the growth storage means to a predetermined number of bacteria. sensing means, because it is composed of a nutritional substance detection means for detecting the nutrients of the target portion bacteria, it is possible to predict the proliferative status of the target site bacterial by growth predicting means, the target portion Timing and sterilizing intensity of subsequent sterilization after sterilization can be appropriately set. In addition, since the sterilization time is set based on the growth characteristics based on the bacterial habitat, sterilization corresponding to changes in the bacterial habitat can be performed. In addition, since the sterilization time is set from the growth characteristics based on the amount of nutrient substance at the target site, which is the main element in bacterial growth, it is possible to accurately predict bacterial growth corresponding to the change in the amount of nutrient substance at the target site.
[0070]
According to the nutrient substance detection means of the environment detection means in the growth prediction means of the sterilization apparatus according to claim 2 of the present invention, the frequency detection means for detecting the usage frequency of the target part, and the time for detecting the usage time of the detection means It comprises a detection means and an estimation means for estimating the amount of nutrient substance from at least one of the frequency detection means and the time detection means. Therefore, when kitchens, baths, and bathrooms are targeted, the nutrients such as sputum, soap, detergent, and dirt are brought in and accumulated in the target depending on the frequency and usage time. The amount of nutrients can be estimated according to the usage time.
[0071]
According to the nutrient substance detection means of the environment detection means in the growth prediction means of the sterilization apparatus according to claim 3 of the present invention, the contamination detection means for detecting the pollution degree of the target part, and the estimation for estimating the amount of the nutrient substance from the pollution degree Therefore, if the target area is the surface of bath water, drainage or sanitary equipment, the turbidity of the water, the contamination on the surface, and the amount of bacterial nutrients are highly correlated. Can accurately estimate the amount of nutrients.
[0072]
According to the nutrient substance detecting means of the environment detecting means in the growth predicting means of the sterilization apparatus according to claim 4 of the present invention, the contaminant determining means for determining the pollutant of the target part and the contamination frequency of the target part are detected. The frequency detection means, the time detection means for detecting the contamination time of the detection means, and the estimation means for estimating the amount of nutrient substance from at least one of the contaminant detection means, the frequency detection means and the time detection means. Therefore, when the target site is a kitchen facility, there are various kinds of nutrients brought into the kitchen, such as raw vegetables, meat, fish, detergents, and salmon. The pollutant determining means identifies these by the user and estimates the amount of nutrients according to the specified pollutant and the usage frequency and usage time, so accurate estimation is possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a sterilizer showing Example 1 of the present invention. FIG. 2 is a bacterial growth characteristic diagram showing Examples 1 and 2 of the present invention. Flowchart [FIG. 4] Flow chart of sterilization apparatus showing Embodiment 2 of the present invention [FIG. 5] Schematic diagram of an electrolysis apparatus showing a conventional example [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sterilization means 11 Target part 12 Growth prediction means 13 Control means 14 Electrolyzer 21 and 22 Electrode 41 Environment detection means 42 Growth memory means 43 Time setting means 45 Temperature detection means 47 Moisture detection means 49 Nutrient substance detection means

Claims (4)

対象部位に殺菌処置をおこなう殺菌手段と、前記対象部位の細菌の増殖状態を予測する増殖予測手段と、前記増殖予測手段の予測結果に基づいて前記殺菌手段を制御する制御手段を有し、
前記増殖予測手段は、対象部位の細菌の生息環境を検知する環境検知手段と、前記対象部位の時間と生息環境に基づく細菌の増殖特性を予め記憶する増殖記憶手段と、前記環境検知手段の検知環境と前記増殖記憶手段からの細菌増殖特性から所定細菌数に至る時間を求める時間設定手段より成り、
前記環境検知手段は、対象部位の細菌の栄養物質量を検知する栄養物質検知手段から成る殺菌装置。
Sterilization means for performing sterilization treatment on the target site, growth prediction means for predicting the growth state of bacteria in the target site, and control means for controlling the sterilization means based on the prediction result of the growth prediction means,
The growth prediction means includes an environment detection means for detecting a habitat environment of bacteria in the target part, a growth storage means for preliminarily storing the growth characteristics of the bacteria based on the time and the habitat environment of the target part, and detection of the environment detection means It comprises time setting means for determining the time to reach a predetermined number of bacteria from the environment and bacterial growth characteristics from the growth storage means,
The environment detection means is a sterilizer comprising nutrient substance detection means for detecting the amount of nutrient substances of bacteria in the target site.
栄養物質検知手段は、対象部位の使用頻度を検知する頻度検知手段と、対象部位の使用時間を検知する時間検知手段と、前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段からなる請求項1記載の殺菌装置。  The nutrient substance detecting means detects the amount of nutrient substance from at least one of the frequency detecting means for detecting the usage frequency of the target part, the time detecting means for detecting the usage time of the target part, and the frequency detecting means and the time detecting means. 2. The sterilizer according to claim 1, comprising estimator for estimating. 栄養物質検知手段は、対象部位の汚濁度合いを検知する汚れ検知手段と、汚濁度合いから栄養物質量を推定する推定手段からなる請求項1記載の殺菌装置。  The sterilizing apparatus according to claim 1, wherein the nutrient substance detection means includes a dirt detection means for detecting the degree of contamination of the target part, and an estimation means for estimating the amount of the nutrient substance from the degree of contamination. 栄養物質検知手段は、対象部位の汚染物質を判定する汚染物質判定手段と、前記対象部位の汚染頻度を検知する頻度検知手段と、対象部位の汚染時間を検知する時間検知手段と、汚染物質判定手段と前記頻度検知手段と時間検知手段の少なくとも一つからから栄養物質量を推定する推定手段からなる請求項1記載の殺菌装置。  The nutrient substance detecting means includes a contaminant determining means for determining a contaminant in the target part, a frequency detecting means for detecting the contamination frequency of the target part, a time detecting means for detecting the contamination time of the target part, and a contaminant determination 2. The sterilizing apparatus according to claim 1, further comprising an estimating means for estimating the amount of nutrient substance from at least one of a means, the frequency detecting means, and a time detecting means.
JP2000179641A 2000-06-15 2000-06-15 Sterilizer Expired - Fee Related JP4576671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000179641A JP4576671B2 (en) 2000-06-15 2000-06-15 Sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000179641A JP4576671B2 (en) 2000-06-15 2000-06-15 Sterilizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010161352A Division JP2010269157A (en) 2010-07-16 2010-07-16 Sterilizer

Publications (2)

Publication Number Publication Date
JP2001353204A JP2001353204A (en) 2001-12-25
JP4576671B2 true JP4576671B2 (en) 2010-11-10

Family

ID=18680872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000179641A Expired - Fee Related JP4576671B2 (en) 2000-06-15 2000-06-15 Sterilizer

Country Status (1)

Country Link
JP (1) JP4576671B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469534B2 (en) * 2010-05-24 2014-04-16 株式会社ハーマン Bathroom cleaning equipment
EP2583223A4 (en) * 2010-06-15 2016-04-06 Ardent Mills Llc Transport scheduling for low microbial bulk products
JP6120126B2 (en) * 2012-09-19 2017-04-26 オージー技研株式会社 Bathing equipment
WO2020130180A1 (en) * 2018-12-19 2020-06-25 엘지전자 주식회사 Laundry treatment apparatus and operating method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327974A (en) * 2000-05-23 2001-11-27 Toshiba Corp Apparatus for sterilizing chlorine-resistant microorganisms

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3994618B2 (en) * 2000-03-30 2007-10-24 三菱電機株式会社 Hand dryer and sterilization method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327974A (en) * 2000-05-23 2001-11-27 Toshiba Corp Apparatus for sterilizing chlorine-resistant microorganisms

Also Published As

Publication number Publication date
JP2001353204A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US10533311B2 (en) Toilet bowl water sterilization device and method therefor
JP2010269157A (en) Sterilizer
JP3480173B2 (en) Toilet bowl unit with sterilizing water supply function
JP2005524512A (en) Self-contained, self-powered electrolyzer for improved performance in automatic dishwashing
WO1995032922A1 (en) Electrolysis apparatus and electrolysis method for chloride ion-containing flowing water
CN109609291A (en) A kind of pipeline bad smell removal detergent effervescent tablet and preparation method thereof
KR20120108887A (en) Sterilizer system with ozone
JP2012082615A (en) Sanitary washing device
JP4525137B2 (en) Urinal washing device
JP4576671B2 (en) Sterilizer
JP6804032B2 (en) Urinal device
JP2001090145A (en) Sterilizing device for closet and sterilizing method for closet
KR20100060411A (en) Urinal having a disinfection function
JP6582323B2 (en) Cleaning device and cleaning method
JPH10328668A (en) Electrolytic water or sterilized water supply device
EP4150168A1 (en) Plumbing fixture sanitising system
JP2002316153A (en) Electrolytic apparatus
JP2002316158A (en) Electrolytic apparatus
JP3832329B2 (en) Toilet bowl cleaning system
JP2000027263A (en) Sanitary washing machine
KR20090070853A (en) Dish washer having apparatus for sterilizing remain-water and control method thereof
CN216156728U (en) Cleaning and sterilizing device for intelligent closestool
JP2001234578A (en) Toilet stool washing system
JP2000355966A (en) Sterilizing device for toilet stool
JPH11106791A (en) Toilet washing method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees