JP4575036B2 - Gas generant composition - Google Patents

Gas generant composition Download PDF

Info

Publication number
JP4575036B2
JP4575036B2 JP2004167940A JP2004167940A JP4575036B2 JP 4575036 B2 JP4575036 B2 JP 4575036B2 JP 2004167940 A JP2004167940 A JP 2004167940A JP 2004167940 A JP2004167940 A JP 2004167940A JP 4575036 B2 JP4575036 B2 JP 4575036B2
Authority
JP
Japan
Prior art keywords
gas
nitrate
binder
generant composition
air bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004167940A
Other languages
Japanese (ja)
Other versions
JP2005343767A (en
Inventor
昇吾 富山
浩一 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2004167940A priority Critical patent/JP4575036B2/en
Priority to US11/144,604 priority patent/US20060042730A1/en
Publication of JP2005343767A publication Critical patent/JP2005343767A/en
Application granted granted Critical
Publication of JP4575036B2 publication Critical patent/JP4575036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)

Description

本発明は、エアバッグ用ガス発生器に使用するガス発生剤に関する。   The present invention relates to a gas generating agent used for a gas generator for an air bag.

エアバッグ用ガス発生器に使用されるガス発生剤は、一般には燃料、酸化剤、バインダー、各種添加剤からなっている。   A gas generating agent used for a gas generator for an air bag is generally composed of a fuel, an oxidant, a binder, and various additives.

従来、バインダーとしては、成型性が良いことから、水溶性セルロース系バインダー(デンプン、カルボキシメチルセルロース、グアガム等)、ポリビニルアルコールが多く使用されているが、燃料や酸化剤も水溶性のものが殆どであるため、それらが混合段階で溶解し、乾燥後に再結晶化して、所望の粒度が維持できず、設計どおりの燃焼性能が得られないという問題がある。   Conventionally, water-soluble cellulose binders (starch, carboxymethyl cellulose, guar gum, etc.) and polyvinyl alcohol are often used as binders because of their good moldability, but most of the fuels and oxidants are water-soluble. Therefore, there is a problem that they are dissolved in the mixing stage, recrystallized after drying, the desired particle size cannot be maintained, and the designed combustion performance cannot be obtained.

また、ガス発生剤のバインダーとしてセルロース系ポリマー(デンプン、カルボキシメチルセルロース、グアガム、セルロースアセテートブチレート等)を使用するとき、これらのセルロース系ポリマーは、燃料として汎用されている硝酸アンモニウムと組み合わせると、ガス発生剤の耐熱性を大きく低下させるという問題がある。   In addition, when cellulosic polymers (starch, carboxymethyl cellulose, guar gum, cellulose acetate butyrate, etc.) are used as a binder for the gas generating agent, these cellulosic polymers generate gas when combined with ammonium nitrate, which is widely used as a fuel. There is a problem of greatly reducing the heat resistance of the agent.

更に、有機溶剤系のバインダーとして、それ自体の燃焼性能が優れているHTPB(Hydroxyl Terminated Polybutadiene)やGAP(Glycidyl Azide Polymer)も知られているが、毒性があること、多量の有機溶剤の除去及び回収工程が必要であることから製造コストが高くなることの面で問題がある。
WO98/9927 USP5,997,666 WO98/23558 特開平11−217289 特表平9−501388
Furthermore, HTPB (Hydroxyl Terminated Polybutadiene) and GAP (Glycidyl Azide Polymer), which are excellent in their own combustion performance, are also known as organic solvent-based binders. Since a recovery process is required, there is a problem in that the manufacturing cost is increased.
WO98 / 9927 USP 5,997,666 WO98 / 23558 JP-A-11-217289 Special table hei 9-501388

特許文献1のガス発生剤組成物は、バインダーとしてセルロースアセテートブチレートを用いており、特許文献2のガス発生剤組成物は、バインダーとしてポリビニルアルコールを用いており、特許文献3のガス発生剤組成物は、バインダーとしてHTPB及びGAPを用いており、それぞれ上記した従来技術における問題を有している。   The gas generant composition of Patent Document 1 uses cellulose acetate butyrate as a binder, the gas generant composition of Patent Document 2 uses polyvinyl alcohol as a binder, and the gas generant composition of Patent Document 3. The product uses HTPB and GAP as binders, and each has problems in the above-described prior art.

特許文献4には、二次爆薬及びバインダーシステムを含む推進剤を用いたハイブリッドインフレータが開示されている。この推進剤は、ガスの燃焼温度を高めることと、燃焼初期にハイブリッドガス発生器のバーストディスクを破る機能を実現するための組成である。従って、共存する高圧ガス中の所定量の酸素により、推進剤の初期燃焼後の気化段階で燃焼されて、はじめてインフレータ排ガスとして許容可能なクリーン化を実現できるものであるから、推進剤単独の燃焼だけでは燃焼ガスのクリーン化は得られない。   Patent Document 4 discloses a hybrid inflator using a propellant including a secondary explosive and a binder system. This propellant has a composition for increasing the gas combustion temperature and realizing the function of breaking the burst disk of the hybrid gas generator in the early stage of combustion. Therefore, the combustion of propellant alone can only be achieved as an inflator exhaust gas by burning in the vaporization stage after the initial combustion of the propellant with a predetermined amount of oxygen in the coexisting high-pressure gas. It is not possible to clean the combustion gas by itself.

特許文献5には、高エネルギーバインダーを含む推進薬配合物のバインダーとしてポリカプロラクタムも例示されているが、当該推進薬配合物のような用途では、特に高度な排ガスクリーン化が必要では無く、その目的に基づいた組成としていないため、開示されている高エネルギーバインダー、ジニトロアミド塩酸化剤、反応性金属、多官能性化合物の組合せでは、燃焼ガスを高度にクリーン化することは困難である。   Patent Document 5 also exemplifies polycaprolactam as a binder of a propellant formulation containing a high energy binder. However, in applications such as the propellant formulation, a particularly advanced exhaust gas cleaning is not necessary. Since the composition is not based on the purpose, it is difficult to highly clean the combustion gas with the combination of the disclosed high energy binder, dinitroamide oxidizer, reactive metal, and polyfunctional compound.

本発明は、設計どおりの燃焼性能を得ることができ、硝酸アンモニウムとも反応せず、更にスラグ形成能が高く、噴出ミスト(ガス発生剤中の金属成分を意味する)量を低減でき、燃焼ガスをクリーン化できるガス発生剤を提供することを課題とする。   The present invention can obtain the combustion performance as designed, does not react with ammonium nitrate, has a high slag forming ability, can reduce the amount of jetted mist (meaning a metal component in the gas generating agent), and can reduce the combustion gas. It is an object to provide a gas generating agent that can be cleaned.

本発明は、課題の解決手段として、燃料、酸化剤、バインダーを含有しており、前記バインダーがポリラクトン系化合物から選ばれる1種又は2種以上のものである、燃焼後の排出ガス分析結果でアンモニア、二酸化窒素の濃度が実質的に0ppmとなるガス発生剤組成物を提供する。   As a means for solving the problem, the present invention includes a fuel, an oxidant, and a binder, and the binder is one or more selected from polylactone compounds. Provided is a gas generant composition in which the concentrations of ammonia and nitrogen dioxide are substantially 0 ppm.

本発明において、「燃焼後の排出ガス分析結果でアンモニア、二酸化窒素の濃度が実質的に0ppmとなる」とは、ガス検知管による測定結果が0〜Xppmの範囲内であるということである。ここでXは、ガス検知管の誤差範囲の上限値を指す。   In the present invention, “the concentration of ammonia and nitrogen dioxide is substantially 0 ppm as a result of exhaust gas analysis after combustion” means that the measurement result by the gas detector tube is in the range of 0 to X ppm. Here, X indicates the upper limit value of the error range of the gas detector tube.

本発明のガス発生剤組成物は、燃料、酸化剤及びバインダーとしてのポリラクトン系化合物を混合する際、少量の有機溶媒を添加混合するか、又は無溶媒で熱溶融させたポリラクトン系化合物を添加混合し、更に成型できるため、燃料及び酸化剤の粒度を所望の粒度に維持することができるので、所望の燃焼速度を得ることができる。   The gas generant composition of the present invention, when mixing a fuel, an oxidant and a polylactone compound as a binder, a small amount of an organic solvent is added or mixed, or a polylactone compound which is heat-melted without a solvent is added and mixed. In addition, since it can be further molded, the particle sizes of the fuel and the oxidant can be maintained at the desired particle sizes, so that a desired burning rate can be obtained.

本発明のガス発生剤組成物は、バインダーとしてのポリラクトン系化合物を含んでいるため、NO、NO、NH、COの発生量が低減化され、燃焼ガスがクリーンになるほか、スラグ形成能が高いことから、噴出するミスト量を低減できる。 Since the gas generant composition of the present invention contains a polylactone compound as a binder, the generation amount of NO 2 , NO, NH 3 , CO is reduced, the combustion gas becomes clean, and the slag forming ability Therefore, the amount of mist ejected can be reduced.

本発明のガス発生剤組成物は、バインダーとしてのポリラクトン系化合物が燃料として汎用される硝酸アンモニウムと反応しないので、硝酸アンモニウムと併用した場合でも、得られた組成物の耐熱性が損なわれる等の問題が生じない。   In the gas generant composition of the present invention, since the polylactone compound as a binder does not react with ammonium nitrate which is widely used as a fuel, even when used in combination with ammonium nitrate, the heat resistance of the obtained composition is impaired. Does not occur.

本発明のガス発生剤組成物は、燃料、酸化剤、及びバインダーとしてポリラクトン系化合物から選ばれる1種又は2種以上のものを含有するものであり、バインダーとしてポリラクトン系化合物を用いることに特徴を有するものである。   The gas generant composition of the present invention contains one or more selected from a polylactone compound as a fuel, an oxidant, and a binder, and is characterized by using a polylactone compound as a binder. It is what you have.

ポリラクトン系化合物は、アセトン、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、イソホロン、セロソルブアセテート、ソルベッソ100(エクソンモービル社)及びトリクレン等の有機溶媒に溶解させることができ、更に無溶媒で熱溶融させることもできるため、非水系にてガス発生剤組成物を製造することができる。このため、製造段階において水を使用したときのように、水溶性の燃料や酸化剤が水に溶解し、再結晶することで粒度が変化するという問題が生じることがなく、所望の粒度を維持することができるため、設計通りの燃焼性能(燃焼速度)を得ることができる。なお、燃焼速度は、実施例に記載の方法により求めるものであるが、経験的に判断できるため、予め燃焼速度をほぼ所望値(設計値)に設定することができる。   Polylactone compounds can be dissolved in organic solvents such as acetone, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, isophorone, cellosolve acetate, Solvesso 100 (ExxonMobil Corp.) and trichlene. Since it can also be thermally melted with a solvent, the gas generant composition can be produced in a non-aqueous system. For this reason, the problem of changing the particle size due to dissolution of water-soluble fuel and oxidizer in water and recrystallization, as in the case of using water in the manufacturing stage, is maintained, and the desired particle size is maintained. Therefore, the designed combustion performance (burning rate) can be obtained. The combustion speed is obtained by the method described in the embodiment, but can be determined empirically, so that the combustion speed can be set to a substantially desired value (design value) in advance.

ポリラクトン系化合物としては、ε−カプロラクトン(例えば、ダイセル化学工業(株)より販売されている商品名「プラクセルM」を使用できる)、2−メチル及び4−メチル、又は4,4’−ジメチル等のメチル化(ε−カプロラクトン)、δ−バレロラクトン、メチル化(δ−バレロラクトン)、β−プロピオラクトン等から選ばれるモノマーを用いて得られたものを挙げることができ、これらのうち、ε−カプロラクトンを用いて得られるポリε−カプロラクトンが好ましい。   Examples of polylactone compounds include ε-caprolactone (for example, trade name “Placcel M” sold by Daicel Chemical Industries, Ltd.), 2-methyl and 4-methyl, or 4,4′-dimethyl. And those obtained using a monomer selected from methylation (ε-caprolactone), δ-valerolactone, methylation (δ-valerolactone), β-propiolactone, and the like, Polyε-caprolactone obtained using ε-caprolactone is preferred.

これらのモノマーは、単独で用いても、複数の種類のモノマーを共重合して用いてもよいし、ポリオールもしくはポリカルボン酸成分等の他のモノマーと共重合してもよいし、ポリラクトン系化合物とその他のポリマー化合物とのアロイでもよい。   These monomers may be used alone, or may be used by copolymerizing a plurality of types of monomers, may be copolymerized with other monomers such as polyol or polycarboxylic acid component, or polylactone compounds. And other polymer compounds may be used.

他のモノマーとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール等のポリオール類、グリセリン、ポリグリセリン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール等のポリオール類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、クエン酸、リンゴ酸、酒石酸、グルカル酸等のジカルボン酸類が好ましい。   Other monomers include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, and other polyols, glycerin, polyglycerin, triglycerin, and the like. Polyols such as methylolpropane, polytrimethylolpropane, pentaerythritol, polypentaerythritol, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, citric acid, malic acid, tartaric acid, glucaric acid Dicarboxylic acids such as are preferred.

ポリマーアロイとして混合し得るその他のポリマー化合物としては、ポリアクリル系化合物、ポリアセタール、ユリア樹脂、メラミン樹脂、ケトン樹脂等を挙げることができる。   Examples of other polymer compounds that can be mixed as the polymer alloy include polyacrylic compounds, polyacetals, urea resins, melamine resins, and ketone resins.

ポリε−カプロラクトンは、公知の方法、例えば、特開昭62−246927号公報の3頁左上欄に記載の方法により製造できる。   Polyε-caprolactone can be produced by a known method, for example, the method described in the upper left column of page 3 of JP-A No. 62-246927.

ポリラクトン系化合物は、重量平均分子量が100〜100,000の範囲が好ましく、より好ましくは500〜90,000 、更に好ましくは1000〜80,000である。なお、重量平均分子量は、なお、重量平均分子量は、GPCにより標準PMMA換算により求めたものである。   The polylactone compound preferably has a weight average molecular weight in the range of 100 to 100,000, more preferably 500 to 90,000, still more preferably 1000 to 80,000. The weight average molecular weight is obtained by GPC by standard PMMA conversion.

ポリ−ε−カプロラクトン系化合物としては、ダイセル化学工業(株)製の商品名「プラクセル205」(重量平均分子量530)、商品名「プラクセル208」(重量平均分子量830)、商品名「プラクセル210」(重量平均分子量1000)、商品名「プラクセル212」(重量平均分子量1250)、商品名「プラクセル220」(重量平均分子量2000)、商品名「プラクセル230」(重量平均分子量3000)、商品名「プラクセル240」(重量平均分子量4000)、商品名「プラクセルHIP」(重量平均分子量10,000)、商品名「プラクセルH5」(重量平均分子量50,000)、商品名プラクセルH7(重量平均分子量70,000以上)等を使用することができる。   Examples of the poly-ε-caprolactone compound include trade name “Placcel 205” (weight average molecular weight 530), trade name “Placcel 208” (weight average molecular weight 830), and trade name “Placcel 210” manufactured by Daicel Chemical Industries, Ltd. (Weight average molecular weight 1000), trade name “Placcel 212” (weight average molecular weight 1250), trade name “Placcel 220” (weight average molecular weight 2000), trade name “Placcel 230” (weight average molecular weight 3000), trade name “Placcel” 240 "(weight average molecular weight 4000), trade name" Placcel HIP "(weight average molecular weight 10,000), trade name" Placcel H5 "(weight average molecular weight 50,000), trade name Plaxel H7 (weight average molecular weight 70,000) Etc.) can be used.

なお、本発明の課題を解決し、本発明の効果が得られる範囲であれば、他のバインダーを併用することもできるが、その場合でも、バインダー中のポリラクトン系化合物の含有量が、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上であるが、バインダーとして実質的にポリラクトン系化合物のみを使用すること(但し、この場合でも、不純物として、又は効果に全く影響を与えない程度のごく少量の他のバインダーを含むことは許容される。)が特に好ましい。   In addition, as long as the problem of the present invention is solved and the effects of the present invention are obtained, other binders can be used in combination, but even in that case, the content of the polylactone compound in the binder is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more. However, substantially only a polylactone compound is used as a binder. It is particularly preferred to include very small amounts of other binders that do not have any effect.

燃料は特に制限されず、公知のガス発生剤に使用されているものを挙げることができるが、それらの中でも含窒素有機化合物が好ましい。   The fuel is not particularly limited, and examples thereof include those used in known gas generating agents. Among them, nitrogen-containing organic compounds are preferable.

含窒素化合物としては、硝酸グアニジン、ニトログアニジン、5−アミノテトラゾール、ジシアンジアミド、アゾジカルボンアミド、硝酸アンモニウム、メラミン、グリシンから選ばれる1種又は2種以上のものを使用することができる。その他、ジ又はトリアミノグアニジン硝酸塩、炭酸グアニジン、及びニトロアミノグアニジン硝酸塩、ビテトラゾールジアンモニウム塩等のビテトラゾール誘導体、4−アミノトリアゾール等のトリアゾール誘導体、トリヒドラジノトリアジン等のトリアジン誘導体、オキサミド、シュウ酸アンモニウム、ヒドラゾジカルボンアミド等も使用することができる。   As the nitrogen-containing compound, one or more compounds selected from guanidine nitrate, nitroguanidine, 5-aminotetrazole, dicyandiamide, azodicarbonamide, ammonium nitrate, melamine, and glycine can be used. In addition, di- or triaminoguanidine nitrate, guanidine carbonate, nitroaminoguanidine nitrate, bitetazole derivatives such as bitetazole diammonium salt, triazole derivatives such as 4-aminotriazole, triazine derivatives such as trihydrazinotriazine, oxamide, shu Ammonium acid, hydrazodicarbonamide and the like can also be used.

これらの中でも硝酸グアニジン、ニトログアニジン、5−アミノテトラゾール、ジシアンジアミド及び硝酸アンモニウムが好ましい。   Among these, guanidine nitrate, nitroguanidine, 5-aminotetrazole, dicyandiamide and ammonium nitrate are preferable.

酸化剤は特に制限されず、公知のガス発生剤に使用されているものを挙げることができるが、それらの中でも無機酸化剤が好ましい。   The oxidizing agent is not particularly limited, and examples thereof include those used for known gas generating agents. Among them, inorganic oxidizing agents are preferable.

無機酸化剤としては、塩基性硝酸銅、硝酸ナトリウム、硝酸カリウム、硝酸ストロンチウム、過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸ストロンチウムから選ばれる1種又は2種以上のものを使用することができる。これらの中でも塩基性硝酸銅、硝酸カリウム、硝酸ストロンチウム及び過塩素酸カリウムが好ましい。   As the inorganic oxidizing agent, one or more selected from basic copper nitrate, sodium nitrate, potassium nitrate, strontium nitrate, sodium perchlorate, potassium perchlorate, and strontium perchlorate can be used. . Among these, basic copper nitrate, potassium nitrate, strontium nitrate and potassium perchlorate are preferable.

本発明のガス発生剤組成物には、必要に応じて、公知のガス発生剤に配合される各種添加剤を配合することができる。添加剤としては、酸化銅、酸化鉄、酸化亜鉛、酸化コバルト、酸化マンガン、酸化モリブデン、酸化ニッケル、酸化ビスマス、シリカ、アルミナ等の金属酸化物;炭酸コバルト、炭酸カルシウム、塩基性炭酸亜鉛、塩基性炭酸銅等の金属炭酸塩又は塩基性金属炭酸塩;酸性白土、カオリン、タルク、ベントナイト、ケイソウ土、ヒドロタルサイト等の金属酸化物又は水酸化物の複合化合物;ケイ酸ナトリウム、マイカモリブデン酸塩、モリブデン酸コバルト、モリブデン酸アンモニウム等の金属酸塩;二硫化モリブデン、ステアリン酸カルシウム、窒化ケイ素、炭化ケイ素から選ばれる1種又は2種以上を用いることができる。   In the gas generant composition of the present invention, various additives blended with known gas generants can be blended as necessary. Additives include metal oxides such as copper oxide, iron oxide, zinc oxide, cobalt oxide, manganese oxide, molybdenum oxide, nickel oxide, bismuth oxide, silica, and alumina; cobalt carbonate, calcium carbonate, basic zinc carbonate, base Metal carbonates such as basic copper carbonate or basic metal carbonates; complex compounds of metal oxides or hydroxides such as acid clay, kaolin, talc, bentonite, diatomaceous earth, hydrotalcite; sodium silicate, mycamolybdic acid Metal salts such as salts, cobalt molybdate, and ammonium molybdate; one or more selected from molybdenum disulfide, calcium stearate, silicon nitride, and silicon carbide can be used.

本発明のガス発生剤組成物における各成分の含有割合は、以下の範囲から選択することができる。   The content ratio of each component in the gas generant composition of the present invention can be selected from the following ranges.

燃料は、組成物中において、好ましくは5〜80質量%、より好ましくは10〜70質量%、更に好ましくは20〜60質量%である。   The fuel is preferably 5 to 80% by mass, more preferably 10 to 70% by mass, and still more preferably 20 to 60% by mass in the composition.

酸化剤は、組成物中において、好ましくは10〜90質量%、より好ましくは20〜80質量%、更に好ましくは30〜60質量%である。   In the composition, the oxidizing agent is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 60% by mass.

バインダーとしてのポリラクトン系化合物は、本発明の課題を解決し、本発明の効果を得るために、組成物中において、好ましくは0.1〜30質量%、より好ましくは0.5〜20質量%、更に好ましくは3〜10質量%である。   In order to solve the problems of the present invention and obtain the effects of the present invention, the polylactone compound as a binder is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass in the composition. More preferably, it is 3 to 10% by mass.

その他、必要に応じて添加剤を配合するときは、添加剤の種類により異なるが、燃料、酸化剤、バインダーの合計100質量部に対して0.01〜20質量部配合することができる。   In addition, when an additive is blended as necessary, it may be blended in an amount of 0.01 to 20 parts by mass with respect to a total of 100 parts by mass of the fuel, the oxidant, and the binder.

本発明のガス発生剤組成物は、ディスク状、円柱状、単孔円柱状、多孔円柱状又はペレット状等の所望の成型体にすることができる。   The gas generant composition of the present invention can be formed into a desired molded body such as a disk, a column, a single-hole column, a porous column, or a pellet.

本発明のガス発生剤組成物はバインダーとしてポリラクトン系化合物を使用しているため、実施例に記載のとおり、各成分は非水系にて混合し、成型することができる。成型法としては、押出成型する方法(単孔円柱状、多孔円柱状の成型体)又は打錠機等を用いて圧縮成型する方法(ペレット状の成型体)を適用できるほか、特開2001−342091号公報に記載された方法も適用できる。   Since the gas generant composition of the present invention uses a polylactone compound as a binder, each component can be mixed and molded in a non-aqueous system as described in the Examples. As a molding method, an extrusion molding method (single-hole columnar or porous columnar molded body) or a compression molding method using a tableting machine (pellet-shaped molded body) can be applied. The method described in Japanese Patent No. 342091 can also be applied.

本発明のガス発生剤組成物は、例えば、各種乗り物の運転席のエアバック用インフレータ(ガス発生器)、助手席のエアバック用インフレータ、サイドエアバック用インフレータ、インフレータブルカーテン用インフレータ、ニーボルスター用インフレータ、インフレータブルシートベルト用インフレータ、チューブラーシステム用インフレータ、プリテンショナー用インフレータに適用できる。   The gas generating composition of the present invention includes, for example, an air bag inflator (gas generator) for a driver's seat of various vehicles, an air bag inflator, a side air bag inflator, an inflatable curtain inflator, and a knee bolster. The present invention can be applied to inflators, inflators for inflatable seat belts, inflators for tubular systems, and inflators for pretensioners.

本発明のガス発生剤組成物は、インフレータ(ガス発生器)用のガス発生剤組成物として使用することができるほか、雷管やスクイブのエネルギーをガス発生剤組成物に伝えるためのエンハンサ剤(又はブースター)等と呼ばれる着火剤として使用することもできる。   The gas generant composition of the present invention can be used as a gas generant composition for an inflator (gas generator), and an enhancer agent (or an agent for transmitting energy of a detonator or a squib to the gas generant composition (or It can also be used as an igniter called a booster.

実施例及び比較例における測定方法を示す。なお、以下において、「部」は「質量部」の意味する。   The measuring method in an Example and a comparative example is shown. In the following, “part” means “part by mass”.

(1)円柱状ストランドの調製法
実施例及び比較例の組成物(成型用の混合粉。表1のとおり、実施例1〜3、比較例2は非水系。)の粉体を所定の金型の臼側に充填し、杵側端面より油圧ポンプで圧力14.7MPaにて5秒間圧縮保持させた後取り出し、外径9.55mm、長さ12.70mmの円柱状ストランドに成型した。この円柱状成型体の側面にエポキシ樹脂系化学反応形接着剤コニシ株式会社製「ボンドクイック30」を塗布後、110℃で16時間、熱硬化させ、側面から着火せず、端面のみから着火燃焼する(単面移動燃焼する)ようにしたものをサンプルとした。
(1) Preparation method of cylindrical strands Powders of compositions of Examples and Comparative Examples (mixed powder for molding. Examples 1 to 3 and Comparative Example 2 are non-aqueous as shown in Table 1) are given gold. The mold was filled into the mortar side, compressed from the end face on the heel side with a hydraulic pump at a pressure of 14.7 MPa for 5 seconds, taken out, and molded into a cylindrical strand having an outer diameter of 9.55 mm and a length of 12.70 mm. After applying “Bond Quick 30” manufactured by Konishi Co., Ltd., an epoxy resin-based chemical reaction adhesive on the side of this cylindrical molded body, it is cured at 110 ° C. for 16 hours, and does not ignite from the side, but ignites and burns only from the end surface. Samples that were made to perform (single-surface moving combustion) were used.

(2)燃焼速度の測定方法
サンプルとなる円柱状ストランドを内容積1LのSUS製密閉ボンブ内に設置して、ボンブ内を完全に窒素置換しながら、7MPaにまで加圧安定させた。その後、ストランド端面に接触させたニクロム線に所定の電流を流し、その溶断エネルギーにより着火、燃焼させた。ボンブ内の経時圧力挙動は、記録計のチャートにて確認し、燃焼開始から圧力上昇ピークまでの経過時間をチャートの目盛りから確認し、燃焼前のストランド長さをこの経過時間で除して算出した数値を燃焼速度とした。
(2) Measuring method of burning rate The cylindrical strand used as a sample was installed in a 1 L SUS sealed bomb, and the pressure was stabilized to 7 MPa while completely replacing the inside of the bomb with nitrogen. After that, a predetermined current was passed through the nichrome wire brought into contact with the end face of the strand, and ignition and combustion were performed by the fusing energy. The time-dependent pressure behavior in the bomb is confirmed on the chart of the recorder, the elapsed time from the start of combustion to the pressure rise peak is confirmed from the scale on the chart, and the strand length before combustion is divided by this elapsed time. The calculated value was taken as the burning rate.

(3)ガス濃度の測定方法
サンプルとなる円柱状ストランド(質量2.00g)を内容積1LのSUS製密閉ボンブ内に設置して、ボンブ内を完全に窒素置換しながら、7MPaにまで加圧安定させた。その後、ストランド端面に接触させたニクロム線に所定の電流を流し、その溶断エネルギーにより着火、燃焼させた。60秒間待機し、ボンブ内のガスが均一になってから、所定の栓付きテドラーバッグの開栓部をボンブガス排出部に連結し、ボンブ内の燃焼ガスを移入させることでサンプリングし、ガステック株式会社製探知器GV-100Sを用いてガステック気体検知管(NO及びNO検知用:No,10、NH検知用:No,3L、CO検知用:No,1L)により、NO、NO、NH、CO濃度を測定した。
(3) Gas concentration measurement method Cylindrical strand (mass 2.00 g) as a sample is placed in a 1 L SUS sealed bomb and pressurized to 7 MPa while the bomb is completely purged with nitrogen. Stabilized. After that, a predetermined current was passed through the nichrome wire brought into contact with the end face of the strand, and ignition and combustion were performed by the fusing energy. After waiting 60 seconds and the gas in the bomb becomes uniform, connect the opening part of the tedlar bag with a predetermined stopper to the bomb gas discharge part and sample by transferring the combustion gas in the bomb. By using a gas detector gas detector tube (for NO 2 and NO detection: No. 10, for NH 3 detection: No, 3L, for CO detection: No, 1L) using a detector GV-100S, NO 2 , NO, NH 3 and CO concentrations were measured.

(4)回収残渣質量
上記の「(3)ガス濃度の測定法」試験の終了後、ボンブの内部状態を目視で観察する共に、内部の残渣を回収し、110℃で16時間乾燥させた後の質量を測定した。
(4) Mass of recovered residue After completion of the above “(3) Gas concentration measurement method” test, the internal state of the bomb was visually observed and the internal residue was recovered and dried at 110 ° C. for 16 hours. The mass of was measured.

(5)質量減少率
サンプルとなる円柱状ストランド(質量2.00g)を、110℃で400時間、恒温槽で放置した後、次式から求める。
質量減少率(%)=(試験前質量−試験後質量)×100/試験前質量。
(5) Mass reduction rate The columnar strand (mass 2.00 g) used as a sample is left to stand at 110 degreeC for 400 hours in a thermostat, Then, it calculates | requires from following Formula.
Mass reduction rate (%) = (mass before test−mass after test) × 100 / mass before test.

(6)GPCによる重量平均分子量
標準PMMA換算により求めた。カラムとして昭和電工(株)製のShodex GPC HFIP-800P,HFIP-805P,HFIP-804P,HFIP-803Pを用い、検出器として島津製作所製のRID-6Aを用い、溶離液としてHFIPを用い、カラム温度50℃、流速1.0ml/minにて測定した。
(6) Weight average molecular weight by GPC It calculated | required by standard PMMA conversion. Showa Denko Co., Ltd. Shodex GPC HFIP-800P, HFIP-805P, HFIP-804P, HFIP-803P was used as the column, Shimadzu RID-6A was used as the detector, and HFIP was used as the eluent. The measurement was performed at a temperature of 50 ° C. and a flow rate of 1.0 ml / min.

実施例1
硝酸グアニジン42.44部、硝酸アンモニウム30.76部、過塩素酸カリウム21.80部を300μmの網目のSUS製篩に2回擦り通して粒を揃え、混合して混合粉を得た。
Example 1
42.44 parts of guanidine nitrate, 30.76 parts of ammonium nitrate, and 21.80 parts of potassium perchlorate were rubbed twice through a SUS sieve having a mesh size of 300 μm to prepare particles, which were mixed to obtain a mixed powder.

ポリラクトン系化合物として、ダイセル化学工業(株)製の商品名「プラクセル240」(重量平均分子量4000)5部を、アセトン40部と混合し、60℃に加温しながら溶解させたものを、上記混合粉95部に添加し、十分に混合した。その後、110℃で1時間乾燥させて本発明の組成物を得た後、更に上記の方法により円柱状ストランドに成型した。測定結果を表1に示す。   As a polylactone compound, a product name “Placcel 240” (weight average molecular weight 4000) 5 parts manufactured by Daicel Chemical Industries, Ltd. was mixed with 40 parts of acetone and dissolved while heating at 60 ° C. Added to 95 parts of the mixed powder and mixed well. Then, after drying at 110 degreeC for 1 hour and obtaining the composition of this invention, it shape | molded into the cylindrical strand further by said method. The measurement results are shown in Table 1.

実施例2
硝酸グアニジン51.35部、過塩素酸カリウム43.65部、ポリラクトン系化合物として、ダイセル化学工業(株)製の商品名「プラクセルHIP」(重量平均分子量10,000)5部を用い、実施例1と同様にして本発明の組成物を得た後、更に上記の方法により円柱状ストランドに成型した。測定結果を表1に示す。
Example 2
Example using 51.35 parts of guanidine nitrate, 43.65 parts of potassium perchlorate, and 5 parts of the trade name “Placcel HIP” (weight average molecular weight 10,000) manufactured by Daicel Chemical Industries, Ltd. as a polylactone compound. After obtaining the composition of the present invention in the same manner as in No. 1, it was further molded into a cylindrical strand by the above method. The measurement results are shown in Table 1.

実施例3
硝酸グアニジン42.44部、過塩素酸カリウム21.80部を300μmの網目のSUS製篩に2回擦り通して粒を揃え、混合して混合粉を得た。
Example 3
42.44 parts of guanidine nitrate and 21.80 parts of potassium perchlorate were rubbed twice through a SUS sieve having a mesh size of 300 μm to prepare grains, and mixed to obtain a mixed powder.

ポリラクトン系化合物として、ダイセル化学工業(株)製の商品名「プラクセルH5」(重量平均分子量50,000)5部を80℃に加温しながら溶解させたものを、上記混合粉95部に添加し、十分に混合した後、110℃で1時間乾燥させて、本発明の組成物を得た後、更に上記の方法により円柱状ストランドに成型した。測定結果を表1に示す。   As a polylactone-based compound, a product name "Placcel H5" (weight average molecular weight 50,000) manufactured by Daicel Chemical Industries, Ltd. dissolved in 80 parts while being heated to 80 ° C is added to 95 parts of the mixed powder. Then, after thoroughly mixing, dried at 110 ° C. for 1 hour to obtain the composition of the present invention, and further molded into a cylindrical strand by the above method. The measurement results are shown in Table 1.

比較例1
硝酸グアニジン42.44部、硝酸アンモニウム28.36部、過塩素酸カリウム18.10部を300μmの網目のSUS製篩に2回擦り通して粒を揃え、混合して組成物を得た後、更に上記の方法により円柱状ストランドに成型した。測定結果を表1に示す。
Comparative Example 1
After rubbing 42.44 parts of guanidine nitrate, 28.36 parts of ammonium nitrate and 18.10 parts of potassium perchlorate twice through a 300 μm mesh SUS sieve, the particles were aligned and mixed to obtain a composition. Molded into a cylindrical strand by the above method. The measurement results are shown in Table 1.

比較例2
硝酸グアニジン42.44部、硝酸アンモニウム30.76部、過塩素酸カリウム21.80部、カルボキシメチルセルロース5.00部を300μmの網目のSUS製篩に2回擦り通して粒を揃え、混合して組成物を得た後、更に上記の方法により円柱状ストランドに成型した。測定結果を表1に示す。
Comparative Example 2
Rub 42.44 parts of guanidine nitrate, 30.76 parts of ammonium nitrate, 21.80 parts of potassium perchlorate, and 5.00 parts of carboxymethyl cellulose through a 300 μm mesh SUS screen twice to prepare and mix the grains. After obtaining the product, it was further molded into a cylindrical strand by the above method. The measurement results are shown in Table 1.

Figure 0004575036
Figure 0004575036

実施例1〜3の燃焼速度は、当初設計値と同程度であった。これは、混合段階において、アセトンを添加混合するか、又は無溶媒で熱溶融させたポリラクトン系化合物を添加混合した後、成型したため、燃料及び酸化剤の原料粒度(篩通過粒度)が維持されていることを意味している。また、アセトンを使用した場合でも、有機溶媒をバインダーとして使用した場合に比べると、溶剤の回収除去作業は容易である。   The burning rates of Examples 1 to 3 were similar to the initial design values. This is because in the mixing stage, acetone is added or mixed, or a polylactone compound that has been heat-melted without solvent is added and mixed, and then molded, so that the raw material particle size (screening particle size) of the fuel and oxidant is maintained. It means that Even when acetone is used, the solvent recovery and removal operation is easier than when an organic solvent is used as a binder.

実施例1、2の残渣質量から明らかなとおり、スラグ形成能が高いことから、噴出するミスト量を低減できる。   As apparent from the residue masses of Examples 1 and 2, since the slag forming ability is high, the amount of mist ejected can be reduced.

実施例1と比較例1、2の質量減少率の対比から明らかなとおり、実施例1では硝酸アンモニウムを含有しているにも拘わらず、耐熱性が優れていた。

As is apparent from the comparison of the mass reduction ratios of Example 1 and Comparative Examples 1 and 2, Example 1 was excellent in heat resistance despite containing ammonium nitrate.

Claims (4)

燃料、酸化剤、バインダーを含有するガス発生剤組成物であって、
前記バインダーがポリラクトン系化合物から選ばれる1種又は2種以上のものであ
前記燃料が、硝酸グアニジン、ニトログアニジン、5−アミノテトラゾール、ジシアンジアミド、アゾジカルボンアミド、硝酸アンモニウム、メラミン、グリシンから選ばれる1種又は2種以上の含窒素有機化合物であり、
燃焼後の排出ガス分析結果でアンモニア、二酸化窒素の濃度が実質的に0ppmとなるものである、エアバッグ用ガス発生器に使用するガス発生剤組成物。
A gas generant composition containing a fuel, an oxidant, and a binder ,
The binder Ri one or more of what Der selected from polylactone compound,
The fuel is one or more nitrogen-containing organic compounds selected from guanidine nitrate, nitroguanidine, 5-aminotetrazole, dicyandiamide, azodicarbonamide, ammonium nitrate, melamine, and glycine;
A gas generating composition for use in an air bag gas generator, wherein the concentration of ammonia and nitrogen dioxide is substantially 0 ppm as a result of exhaust gas analysis after combustion.
ポリラクトン系化合物の重量平均分子量が100〜100,000である請求項1記載のエアバッグ用ガス発生器に使用するガス発生剤組成物。 The gas generant composition used for a gas generator for an air bag according to claim 1, wherein the polylactone compound has a weight average molecular weight of 100 to 100,000. ポリラクトン系化合物がポリε−カプロラクトンである請求項1又は2記載のエアバッグ用ガス発生器に使用するガス発生剤組成物。 The gas generant composition used for a gas generator for an air bag according to claim 1 or 2, wherein the polylactone compound is polyε-caprolactone . 無機酸化剤が、塩基性硝酸銅、硝酸ナトリウム、硝酸カリウム、硝酸ストロンチウム、過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸ストロンチウムから選ばれる1種又は2種以上のものである請求項1〜のいずれか1項に記載のエアバッグ用ガス発生器に使用するガス発生剤組成物。 Inorganic oxidizing agents, basic copper nitrate, sodium nitrate, potassium nitrate, strontium nitrate, sodium perchlorate, potassium perchlorate, claim 1-3 is from the perchlorate strontium least one selected gas generating composition for use in a gas generator for an air bag according to any one of.
JP2004167940A 2004-06-07 2004-06-07 Gas generant composition Expired - Lifetime JP4575036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004167940A JP4575036B2 (en) 2004-06-07 2004-06-07 Gas generant composition
US11/144,604 US20060042730A1 (en) 2004-06-07 2005-06-06 Gas generating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167940A JP4575036B2 (en) 2004-06-07 2004-06-07 Gas generant composition

Publications (2)

Publication Number Publication Date
JP2005343767A JP2005343767A (en) 2005-12-15
JP4575036B2 true JP4575036B2 (en) 2010-11-04

Family

ID=35496482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167940A Expired - Lifetime JP4575036B2 (en) 2004-06-07 2004-06-07 Gas generant composition

Country Status (1)

Country Link
JP (1) JP4575036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105285A1 (en) * 2013-04-25 2014-10-30 Fischerwerke Gmbh & Co. Kg Electrically ignitable caseless propellant, its preparation and use
KR102575548B1 (en) * 2020-09-08 2023-09-05 한화에어로스페이스 주식회사 Boron bead complex for solid propellant, method for manufacturing the same, and solid propellant comprising the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150321A (en) * 1986-11-06 1988-06-23 モートン サイオコール,インコーポレイティド Block copolymer, elastomeric binder and propellant
JPH05140295A (en) * 1990-08-02 1993-06-08 Morton Thiokol Inc Improved method for preparing poly(glycidyl nitrate)
JPH08262796A (en) * 1995-03-28 1996-10-11 Mita Ind Co Ltd Electrophotographic toner and binder resin
JPH11217289A (en) * 1997-10-03 1999-08-10 Daicel Chem Ind Ltd Hybrid inflater for increasing air/safety bag inflation characteristic
JPH11292678A (en) * 1998-04-15 1999-10-26 Daicel Chem Ind Ltd Gas generating agent composition for air bag
JP2001342091A (en) * 2000-03-28 2001-12-11 Daicel Chem Ind Ltd Manufacturing method of gas generating agent
US6350330B1 (en) * 1989-06-07 2002-02-26 Alliant Techsystems Inc. Poly(butadiene)poly(lactone) thermoplastic block polymers, methods of making, and uncured high energy compositions containing same as binders
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
JP2002302010A (en) * 2001-04-04 2002-10-15 Daicel Chem Ind Ltd Reduction method of nitrogen oxides for hybrid inflator
JP2005538834A (en) * 2002-09-12 2005-12-22 テクストロン システムズ コーポレーション Multistage gas generator and gas generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150321A (en) * 1986-11-06 1988-06-23 モートン サイオコール,インコーポレイティド Block copolymer, elastomeric binder and propellant
US6350330B1 (en) * 1989-06-07 2002-02-26 Alliant Techsystems Inc. Poly(butadiene)poly(lactone) thermoplastic block polymers, methods of making, and uncured high energy compositions containing same as binders
JPH05140295A (en) * 1990-08-02 1993-06-08 Morton Thiokol Inc Improved method for preparing poly(glycidyl nitrate)
JPH08262796A (en) * 1995-03-28 1996-10-11 Mita Ind Co Ltd Electrophotographic toner and binder resin
US6427599B1 (en) * 1997-08-29 2002-08-06 Bae Systems Integrated Defense Solutions Inc. Pyrotechnic compositions and uses therefore
JPH11217289A (en) * 1997-10-03 1999-08-10 Daicel Chem Ind Ltd Hybrid inflater for increasing air/safety bag inflation characteristic
JPH11292678A (en) * 1998-04-15 1999-10-26 Daicel Chem Ind Ltd Gas generating agent composition for air bag
JP2001342091A (en) * 2000-03-28 2001-12-11 Daicel Chem Ind Ltd Manufacturing method of gas generating agent
JP2002302010A (en) * 2001-04-04 2002-10-15 Daicel Chem Ind Ltd Reduction method of nitrogen oxides for hybrid inflator
JP2005538834A (en) * 2002-09-12 2005-12-22 テクストロン システムズ コーポレーション Multistage gas generator and gas generator

Also Published As

Publication number Publication date
JP2005343767A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP3913786B2 (en) Non-azide gas generating composition
CN105777460B (en) Gas generant composition
JP3608902B2 (en) Gas generating agent composition and molded body thereof
JP2007534587A (en) Gas generation system
US20060219340A1 (en) Gas generating system
JP2002187790A (en) Gas generating agent composition and gas generator using the same
JP2000103691A (en) Gas generator composition
US20060042730A1 (en) Gas generating composition
US8034133B2 (en) Gas generating composition
JP4575036B2 (en) Gas generant composition
US20080105342A1 (en) Gas generating composition
JP3756559B2 (en) Gas generating agent and method for producing the same
JP2000154085A (en) Gas generating agent composition
JP4500586B2 (en) Gas generant composition
JP4500576B2 (en) Gas generant composition
EP4223729A1 (en) Gas-forming agent composition
WO2022071462A1 (en) Gas-generating agent composition
JP5058540B2 (en) Gas generant composition
JP5394040B2 (en) Gas generant composition
JPH11310489A (en) Fuel for gas generating agent and gas generating agent composition
US20140150935A1 (en) Self-healing additive technology
JP2000219589A (en) Fuel for gas generating agent and gas generating agent composition
JP2007169094A (en) Molded article of enhancing agent for inflator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R151 Written notification of patent or utility model registration

Ref document number: 4575036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term