JP4574741B2 - Heat fixing device - Google Patents

Heat fixing device Download PDF

Info

Publication number
JP4574741B2
JP4574741B2 JP2010059911A JP2010059911A JP4574741B2 JP 4574741 B2 JP4574741 B2 JP 4574741B2 JP 2010059911 A JP2010059911 A JP 2010059911A JP 2010059911 A JP2010059911 A JP 2010059911A JP 4574741 B2 JP4574741 B2 JP 4574741B2
Authority
JP
Japan
Prior art keywords
temperature
heater
circuit
detection
ceramic heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010059911A
Other languages
Japanese (ja)
Other versions
JP2010146028A (en
Inventor
洋 高見
朋之 牧平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010059911A priority Critical patent/JP4574741B2/en
Publication of JP2010146028A publication Critical patent/JP2010146028A/en
Application granted granted Critical
Publication of JP4574741B2 publication Critical patent/JP4574741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)

Description

本発明は電子写真方式を用いた複写機やプリンタ、ファクシミリあるいはその複合機等の画像形成装置に関し、特に画像形成装置における加熱定着装置に関するものである。   The present invention relates to an image forming apparatus such as a copying machine, a printer, a facsimile, or a complex machine using an electrophotographic method, and more particularly to a heat fixing device in the image forming apparatus.

画像形成装置における加熱定着装置としては、熱源である通電発熱体と、前記発熱体に電流を供給する電源と、発熱近傍の温度を検出する温度検出手段と、前記温度検出手段からの信号に基づいて上記電源の供給電流を制御する制御手段等を有し、画像形成装置の作像部で未定着画像を形成担持させた記録材を加熱して画像を定着させる加熱式の定着装置が知られている。上記構成によって画像定着温度が画像定着のための所定の温度に制御される。   The heating and fixing device in the image forming apparatus is based on an energization heating element that is a heat source, a power source that supplies current to the heating element, a temperature detection unit that detects a temperature near the heat generation, and a signal from the temperature detection unit. There is known a heating type fixing device having a control means for controlling the supply current of the power source, and fixing the image by heating a recording material on which an unfixed image is formed and supported by an image forming unit of the image forming device. ing. With the above configuration, the image fixing temperature is controlled to a predetermined temperature for image fixing.

このような加熱定着装置においては、発熱体、電源、温度検出手段、制御手段の何れか1つの要素でも正常に機能しない場合は定着装置として機能しない。さらには、通電暴走を生じた時には過熱による装置の破壊に至るおそれもある。そこで、このような定着装置においては、特許文献1等で開示されているように、次のような異常過熱安全装置を備えることで、通電暴走時の過熱・発煙・発火を回避している。   Such a heat fixing device does not function as a fixing device if any one of the heating element, power source, temperature detecting means, and control means does not function normally. Furthermore, when energization runaway occurs, there is a risk that the device may be destroyed due to overheating. Therefore, in such a fixing device, as disclosed in Patent Document 1 and the like, the following abnormal overheat safety device is provided to avoid overheating, smoke generation, and ignition during energization runaway.

(1)発熱体の通電回路に温度ヒューズやサーモスイッチ等の安全装置(サーモプロテクタ)を介入させて、通電暴走で過熱を生じた時は発熱体への通電を遮断させる。   (1) A safety device (thermo protector) such as a thermal fuse or a thermo switch intervenes in the energization circuit of the heating element, and when overheating occurs due to energization runaway, the energization of the heating element is cut off.

(2)発熱体の近傍にサーミスタ等の温度検出手段を配置し、発熱体が異常過熱状態である場合には、通電回路に介入されたリレー等の電流遮断手段によって発熱体への通電を遮断させる。上記異常過熱温度安全装置の作動する温度は、正常動作時において到達する温度以上に設定して正常動作時に誤動作することを防ぎ、異常過熱時のみ作動するようにしている。   (2) If temperature detection means such as a thermistor is placed in the vicinity of the heating element, and the heating element is in an abnormally overheated state, current supply to the heating element is interrupted by a current interruption means such as a relay intervening in the energizing circuit. Let The temperature at which the abnormal overheat temperature safety device operates is set to a temperature higher than the temperature reached during normal operation to prevent malfunction during normal operation and to operate only during abnormal overheat.

特開平08-248813号公報JP 08-248813 A

前述のような異常過熱安全装置が作動した後の処置は、本来はトラブルの原因となった定着装置の構成部品もしくはユニット(発熱体、電源、温度検出手段、制御手段等)と、作動済みのサーモスイッチ等の用済みの安全装置をサービスマンが交換すればよいわけである。   After the abnormal overheat safety device as described above is activated, the fixing component or unit (heating element, power supply, temperature detection means, control means, etc.) that originally caused the trouble, A serviceman may replace a used safety device such as a thermo switch.

しかしながら、実際には定着装置が過熱トラブルを生じてからサーモスイッチ等の安全装置が作動するまでの間における周辺温度の過昇温により、定着装置内部の加圧ローラやセラミックヒータといった部材のみならず、その周辺機器にも過熱により変形や変質等のダメージを与えてしまうことがあり、最悪の場合には定着装置全体やその周辺機器についても修理や交換をしなくてはならない結果になることもある。このような通電暴走時に生じるダメージを抑えるには、異常過熱安全装置の作動温度を極力低く設定すればよい。しかし、作動温度を低く設定すると、正常動作時に異常過熱安全装置が作動して画像形成装置が誤動作する不具合が発生してしまう。   However, in actuality, not only the pressure roller and ceramic heater inside the fixing device due to the excessive temperature rise of the surrounding temperature after the safety device such as the thermo switch is activated after the fixing device is overheated. Also, the peripheral equipment may be damaged by overheating, such as deformation and deterioration, and in the worst case, the entire fixing device and the peripheral equipment may have to be repaired or replaced. is there. In order to suppress the damage that occurs during such energization runaway, the operating temperature of the abnormal overheat safety device may be set as low as possible. However, if the operating temperature is set low, the abnormal overheat safety device is activated during normal operation and the image forming apparatus malfunctions.

そこで、本発明は、正常動作時に誤動作することなく、上述のような装置過熱により定着装置全体やその周辺機器についても修理や交換をしなければならないような事態が発生することを防止し、装置ダメージを最小限に押えて交換部品のコストやサービスコストの負荷を最小に押える加熱定着装置を提供することを目的とする。   Therefore, the present invention prevents the occurrence of a situation in which the entire fixing device and its peripheral devices must be repaired or replaced due to the above-described apparatus overheating without malfunction during normal operation. It is an object of the present invention to provide a heat fixing apparatus that can minimize damage and minimize the cost of replacement parts and service costs.

かかる課題を解決するために、本発明の加熱定着装置は、筒状のフィルムと、基材上に発熱パターンが形成されており前記筒状のフィルムの内面に接触するヒータと、前記筒状のフィルムを介して前記ヒータと共に記録紙を搬送するニップ部を形成する加圧ローラと、前記ヒータの長手方向において装置に使用可能な最小サイズの記録紙が通過する領域のヒータ温度を検知する第1の温度検知素子と、前記最小サイズの記録紙の通過領域外のヒータ温度を検知する第2の温度検知素子と、前記第1の温度検知素子の検知温度が目標温度を維持するように電源から前記発熱パターンへの通電を制御する制御部と、前記電源と前記発熱パターンとの給電回路中に設けられたリレーと、前記制御部とは独立して前記リレーを駆動する安全回路であって、前記第2の温度検知素子の検知温度が作動温度に達すると前記給電回路を開放するように前記リレーを駆動する前記安全回路と、
を有する加熱定着装置において、前記加圧ローラの回転状態を検知する回転検出回路を有し、前記回転検出回路の検出結果に応じて前記安全回路の前記作動温度が設定されることを特徴とする。
In order to solve such a problem, the heat fixing device of the present invention includes a cylindrical film, a heater having a heat generation pattern formed on a substrate, and being in contact with the inner surface of the cylindrical film, and the cylindrical film. A pressure roller that forms a nip portion that conveys the recording paper together with the heater through the film, and a heater temperature in a region through which a recording paper of a minimum size usable in the apparatus passes in the longitudinal direction of the heater. A temperature detecting element, a second temperature detecting element for detecting a heater temperature outside the passing area of the minimum size recording paper, and a power source so that the detected temperature of the first temperature detecting element maintains a target temperature. A control unit that controls energization of the heat generation pattern; a relay provided in a power supply circuit for the power source and the heat generation pattern; and a safety circuit that drives the relay independently of the control unit. And said safety circuit sensing the temperature of said second temperature sensing element to drive the relay to open the supply circuit to reach operating temperature,
The heat fixing device includes a rotation detection circuit that detects a rotation state of the pressure roller, and the operating temperature of the safety circuit is set according to a detection result of the rotation detection circuit. .

ここで、前記加圧ローラが停止している場合の前記作動温度は前記加圧ローラが回転している場合の前記作動温度より低く設定される。   Here, the operating temperature when the pressure roller is stopped is set lower than the operating temperature when the pressure roller is rotating.

本発明によれば、画像形成装置の動作状態に応じて発熱体の異常過熱検知温度が切り替わることで、正常動作時に端部昇温が発生する場合であっても、安全装置を誤作動させることなく、通電暴走時に低い温度で発熱体への通電を遮断することが可能となり、装置ダメージを最小限に押えて交換部品のコストやサービスコストの負荷を最小に押えることができる。   According to the present invention, the abnormal overheat detection temperature of the heating element is switched according to the operation state of the image forming apparatus, so that the safety device can malfunction even when the end temperature rise occurs during normal operation. In addition, it is possible to cut off the power supply to the heating element at a low temperature during energization runaway, minimizing damage to the device and minimizing the cost of replacement parts and service costs.

すなわち、加圧ローラの回転状態に応じて発熱体の異常過熱検知の検知温度が切り替わることで、安全装置を誤作動させることなく、通電暴走時に低い温度で発熱体への通電を遮断することが可能となり、装置ダメージを最小限に押えて交換部品のコストやサービスコストの負荷を最小に押えることができる。   In other words, by switching the detection temperature for detecting the abnormal overheating of the heating element according to the rotation state of the pressure roller, it is possible to cut off the power supply to the heating element at a low temperature during a runaway energization without causing the safety device to malfunction. This makes it possible to minimize damage to the apparatus and minimize the cost of replacement parts and service costs.

実施形態1における画像形成装置の構成例を示す図である。1 is a diagram illustrating a configuration example of an image forming apparatus in Embodiment 1. FIG. 実施形態1における定着装置の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a fixing device according to the first exemplary embodiment. 実施形態1におけるセラミックヒータの構成例を示す図である。It is a figure which shows the structural example of the ceramic heater in Embodiment 1. FIG. 実施形態1における発熱分布を説明する図である。It is a figure explaining the heat_generation | fever distribution in Embodiment 1. FIG. 実施形態1における電力制御回路の構成例を示す図である。3 is a diagram illustrating a configuration example of a power control circuit in Embodiment 1. FIG. 実施形態1における温度検出回路の構成例を示す図である。3 is a diagram illustrating a configuration example of a temperature detection circuit in Embodiment 1. FIG. 実施形態1における電力比率の説明する図である。It is a figure explaining the electric power ratio in Embodiment 1. FIG. 実施形態1における端部昇温の説明する図である。FIG. 3 is a diagram for explaining edge temperature rise in the first embodiment. 実施形態1における安全回路の説明する図である。It is a figure explaining the safety circuit in Embodiment 1. FIG. 実施形態1における安全回路の作動温度設定表を示す図である。It is a figure which shows the operating temperature setting table | surface of the safety circuit in Embodiment 1. FIG. 実施形態2における電力制御回路の構成例を示す図である。It is a figure which shows the structural example of the power control circuit in Embodiment 2. FIG. 実施形態2における定着駆動モータ回転検知回路の構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of a fixing drive motor rotation detection circuit according to a second embodiment. 実施形態2における安全回路の説明する図である。It is a figure explaining the safety circuit in Embodiment 2. FIG. 実施形態2における安全回路の作動温度設定表を示す図である。It is a figure which shows the operating temperature setting table | surface of the safety circuit in Embodiment 2. FIG. サーモスイッチの作動点の説明する図である。It is a figure explaining the operating point of a thermo switch. 実施形態におけるサーモスイッチの動作を説明する図である。It is a figure explaining operation | movement of the thermoswitch in embodiment. 実施形態のリレー制御の手順例を示すフローチャートである。It is a flowchart which shows the example of a procedure of the relay control of embodiment.

[実施形態1]
以下、本発明の実施形態を図面に基づいて説明する。
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1)画像形成装置の構成例
図1は、本実施形態のレーザビームプリンタ100の構成図である。
(1) Configuration Example of Image Forming Apparatus FIG. 1 is a configuration diagram of a laser beam printer 100 according to the present embodiment.

レーザプリンタ100は、記録紙Pを収納するデッキ101を有し、デッキ101内の記録紙Pの有無を検知するデッキ紙有無センサ、デッキ101内の記録紙Pのサイズを検知する紙サイズ検知センサ103、デッキ101から記録紙Pを繰り出すピックアップローラ104、前記ピックアップローラ104によって繰り出された記録紙Pを搬送するデッキ給紙ローラ105、前記デッキ給紙ローラ105と対をなし、記録紙Pの重送を防止するためのリタードローラ106が設けられている。   The laser printer 100 includes a deck 101 that stores recording paper P, a deck paper presence sensor that detects the presence or absence of the recording paper P in the deck 101, and a paper size detection sensor that detects the size of the recording paper P in the deck 101. 103, a pickup roller 104 that feeds the recording paper P from the deck 101, a deck paper feeding roller 105 that transports the recording paper P fed by the pickup roller 104, and a pair of the deck paper feeding roller 105. A retard roller 106 is provided to prevent feeding.

そして、デッキ給紙ローラ105の下流にはデッキ101と、後述する両面反転部からの給紙搬送状態を検知する給紙センサ107、さらに下流へと記録紙Pを搬送するための給紙搬送ローラ108、記録紙Pを印刷タイミングと同期して搬送するレジストローラ対109、前記レジストローラ対109への記録紙Pの搬送状態を検知するレジ前センサ110が配設されている。   A deck 101, a paper feed sensor 107 that detects a paper feed conveyance state from a double-side reversing unit (to be described later), and a paper feed conveyance roller for conveying the recording paper P further downstream of the deck paper supply roller 105. 108, a registration roller pair 109 that conveys the recording paper P in synchronization with the printing timing, and a pre-registration sensor 110 that detects the conveyance state of the recording paper P to the registration roller pair 109 are provided.

また、レジストローラ対の下流には、レーザスキャナ部111からのレーザ光に基づいて感光ドラム1上にトナー像を形成するプロセスカートリッジ112と、感光ドラム1上に形成されたトナー像を記録紙P上に転写するためのローラ部材113(以後転写ローラと記す)、記録紙P上の電荷を除去し感光ドラム1からの分離を促進するための放電部材114(以後除電針と記す)が配設されている。   Further, downstream of the pair of registration rollers, a process cartridge 112 that forms a toner image on the photosensitive drum 1 based on the laser beam from the laser scanner unit 111, and a toner image formed on the photosensitive drum 1 are recorded on the recording paper P. A roller member 113 (hereinafter referred to as a transfer roller) for transferring up and a discharge member 114 (hereinafter referred to as a charge eliminating needle) for removing charges on the recording paper P and promoting separation from the photosensitive drum 1 are provided. Has been.

さらに、除電針114の下流には搬送ガイド115、記録紙P上に転写されたトナー像を熱定着する定着装置116、定着装置116からの搬送状態を検知する定着排紙センサ119、定着装置116から搬送されてきた記録紙Pを排紙部か両面反転部に行き先を切り替えるための両面フラッパ120が配設されており、排紙部側の下流には排紙部の紙搬送状態を検知する排紙センサ121、記録紙を排紙する排紙ローラ対122が配設されている。   Further, downstream of the static elimination needle 114, a conveyance guide 115, a fixing device 116 that thermally fixes the toner image transferred onto the recording paper P, a fixing paper discharge sensor 119 that detects the conveyance state from the fixing device 116, and the fixing device 116. A double-sided flapper 120 for switching the destination of the recording paper P conveyed from the paper discharge unit to the double-side reversing unit is provided, and the paper conveyance state of the paper discharge unit is detected downstream of the paper discharge unit side. A paper discharge sensor 121 and a paper discharge roller pair 122 for discharging the recording paper are provided.

一方、記録紙Pの両面に印字するために片面印字終了後の記録紙Pを表裏反転させ、再度画像形成部へと給紙するための両面反転部側には、正逆転によって記録紙Pをスイッチバックさせる反転ローラ対123、反転ローラ123への紙搬送状態を検知する反転センサ124、記録紙Pの横方向位置を合わせるための横方向レジスト部(不図示)から記録紙Pを搬送するためのDカットローラ125、両面反転部の記録紙P搬送状態を検知する両面センサ126、両面反転部から給紙部へと記録紙Pを搬送するための両面搬送ローラ対127が配設されている。   On the other hand, the recording paper P after one-sided printing is reversed in order to print on both sides of the recording paper P, and the recording paper P is fed to the double-side reversing part side for feeding again to the image forming part by forward / reverse rotation. A pair of reversing rollers 123 to be switched back, a reversing sensor 124 for detecting the state of paper conveyance to the reversing rollers 123, and a lateral registration portion (not shown) for aligning the lateral position of the recording paper P to transport the recording paper P. A D-cut roller 125, a double-sided sensor 126 for detecting the recording paper P conveyance state of the double-side reversing unit, and a double-sided conveyance roller pair 127 for conveying the recording paper P from the double-side reversing unit to the paper feeding unit. .

(2)定着装置116の構成例
図2は、定着装置116の概略構成の模式図である。本例の定着装置は、例えば特開平4−44075〜44083号公報、特開平4−204980〜204984号公報等に開示のフィルム加熱方式の装置である。
(2) Configuration Example of Fixing Device 116 FIG. 2 is a schematic diagram of a schematic configuration of the fixing device 116. The fixing device of this example is a film heating type device disclosed in, for example, Japanese Patent Application Laid-Open Nos. 4-44075 to 44083 and Japanese Patent Application Laid-Open No. 4-204800 to 204984.

204はセラミックヒータ固定兼フィルム内面ガイド用の耐熱性・断熱性・剛体ステーであり、記録紙210の搬送路を横断する方向(図面に垂直方向)を長手とする横長部材である。205は後述するセラミックヒータであり、上記ステーの下面に長手に沿って形成した溝部に嵌入して耐熱性接着剤で固定支持させた、転写材搬送路を横断する方向を長手とする横長部材である。201は円筒状の耐熱性フィルム材(以下、定着フィルムと記す)であり、セラミックヒータ205を取り付けたステー204にルーズに外嵌させてある。例えば、厚さ40〜100μm程度の、耐熱性・離型性・強度・耐久性等を有するPTFE、PFA、FEPなどの円筒状単層フィルム、あるいはポリイミド、ポリアミド、PEEK、PES、PPSなどの円筒状フィルムの外周面にPTFE、PFA、FEPなどをコーティングした複合層フィルムである。   Reference numeral 204 denotes a heat-resistant, heat-insulating, and rigid body stay for fixing the ceramic heater and guiding the inner surface of the film, and is a horizontally long member having the longitudinal direction in the direction crossing the conveyance path of the recording paper 210 (perpendicular to the drawing). 205 is a ceramic heater, which will be described later, and is a horizontally long member that is inserted in a groove formed along the length of the lower surface of the stay and is fixedly supported by a heat-resistant adhesive and has a length in the direction crossing the transfer material conveyance path. is there. 201 is a cylindrical heat-resistant film material (hereinafter referred to as a fixing film), which is loosely fitted on a stay 204 to which a ceramic heater 205 is attached. For example, a cylindrical single layer film such as PTFE, PFA, FEP, etc. having a thickness of about 40 to 100 μm and having heat resistance, releasability, strength, durability, etc., or a cylinder such as polyimide, polyamide, PEEK, PES, PPS It is a composite layer film in which PTFE, PFA, FEP, etc. are coated on the outer peripheral surface of the film-like film.

202は加圧ローラであり、芯金203の外周にシリコーンゴム等の耐熱性弾性層204をローラ状に同心一体に設けた弾性ローラである。この加圧ローラ202と、上記ステー204側のセラミックヒータ205とを定着フィルム201を挟ませて加圧ローラの弾性に抗して圧接させてある。矢印Nで示した範囲がその圧接により形成される定着ニップ部である。加圧ローラ204は定着駆動モータM2 (118)により矢示Bの方向に所定の周速度で回転駆動される。この加圧ローラ204の回転駆動による、定着ニップ部Nにおける該ローラ204とフィルム201の外面との摩擦力でフィルム201に直接的に回転力が作用し(記録紙210が矢印A方向で定着ニップ部Nに導入されたときは記録紙210を介してフィルム201に回転力が間接的に作用)、フィルム201がセラミックヒータ205の下面に圧接摺動しつつ矢示の時計方向Cに回転駆動される。   A pressure roller 202 is an elastic roller in which a heat-resistant elastic layer 204 such as silicone rubber is provided concentrically and integrally on the outer periphery of the core metal 203. The pressure roller 202 and the ceramic heater 205 on the stay 204 side are pressed against the elasticity of the pressure roller with the fixing film 201 interposed therebetween. A range indicated by an arrow N is a fixing nip portion formed by the pressure contact. The pressure roller 204 is rotationally driven in the direction of arrow B at a predetermined peripheral speed by a fixing drive motor M2 (118). A rotational force acts directly on the film 201 by the frictional force between the roller 204 and the outer surface of the film 201 at the fixing nip portion N due to the rotational driving of the pressure roller 204 (the recording paper 210 moves in the fixing nip in the direction of arrow A). When the film 201 is introduced into the portion N, the rotational force is indirectly applied to the film 201 via the recording paper 210), and the film 201 is rotationally driven in the clockwise direction C as indicated by the arrow while sliding against the lower surface of the ceramic heater 205. The

ステー204はフィルム内面ガイド部材としても機能してフィルム201の回転を容易にする。フィルム201の内面とセラミックヒータ205の下面との摺動抵抗を低減するために両者の間に耐熱性グリス等の潤滑剤を少量介在させることもできる。加圧ローラ202の回転によるフィルム201の回転が定常化し、セラミックヒータ205の温度が所定に立ち上がった状態において、フィルム201を挟んでセラミックヒータ205と加圧ローラ202とで形成される定着ニップ部Nのフィルム201と加圧ローラ202との間に画像定着すべき記録紙210が導入されてフィルム201と一緒に定着ニップ部Nを挟持搬送されることによりセラミックヒータ205の熱がフィルム201を介して記録紙210・未定着画像に付与され記録紙210上の未定着画像が記録紙210面に加熱定着されるものである。定着ニップ部Nを通った記録紙210はフィルム201の面から分離されて搬送される。なお、図2における矢印Aは記録紙210の搬送方向を示す。   The stay 204 also functions as a film inner surface guide member to facilitate the rotation of the film 201. In order to reduce the sliding resistance between the inner surface of the film 201 and the lower surface of the ceramic heater 205, a small amount of lubricant such as heat-resistant grease can be interposed between them. The fixing nip portion N formed by the ceramic heater 205 and the pressure roller 202 with the film 201 interposed therebetween in a state where the rotation of the film 201 by the rotation of the pressure roller 202 becomes steady and the temperature of the ceramic heater 205 rises to a predetermined level. The recording paper 210 to be image-fixed is introduced between the film 201 and the pressure roller 202, and the fixing nip portion N is nipped and conveyed together with the film 201, so that the heat of the ceramic heater 205 passes through the film 201. The recording sheet 210 is applied to the unfixed image and the unfixed image on the recording sheet 210 is heated and fixed on the surface of the recording sheet 210. The recording paper 210 that has passed through the fixing nip N is separated from the surface of the film 201 and conveyed. 2 indicates the conveyance direction of the recording paper 210.

(3)セラミックヒータ205の構成例
図3は、セラミックヒータ205の構成例を示す図である。セラミックヒータ205は、記録紙の搬送方向に対して直交する方向に長く配設されている。
(3) Configuration Example of Ceramic Heater 205 FIG. 3 is a diagram illustrating a configuration example of the ceramic heater 205. The ceramic heater 205 is long disposed in a direction orthogonal to the recording paper conveyance direction.

基材301としてのアルミナ(Al23)を用いており、一面側には印刷によって2つの発熱パターン302a及び302bが形成されている。また、発熱パターン302a及び302bは電気絶縁層としてのガラス保護膜によって被覆されている。なお、本実施形態では発熱パターン302aで形成されたヒータ部をメインヒータ、発熱パターン302bで形成されたヒータ部をサブヒータと記す。303a、303b、303cは給電電極であり、発熱パターンの両端に電圧を印加できるように形成されている。2つのメインヒータ302a及びメインヒータ302bは発熱分布が大きく異なる。 Alumina (Al 2 O 3 ) is used as the substrate 301, and two heat generation patterns 302a and 302b are formed on one side by printing. The heat generation patterns 302a and 302b are covered with a glass protective film as an electrical insulating layer. In the present embodiment, the heater portion formed by the heat generation pattern 302a is referred to as a main heater, and the heater portion formed from the heat generation pattern 302b is referred to as a sub-heater. 303a, 303b, and 303c are power supply electrodes, and are formed so that a voltage can be applied to both ends of the heat generation pattern. The two main heaters 302a and main heater 302b have greatly different heat generation distributions.

図4は、メインヒータ302a及びサブヒータ302bの発熱分布を示すものである。メインヒータ302aは、セラミックヒータ205の中央部で発熱量が大きく形成されている。一方、サブヒータ301bは、セラミックヒータ205の端部での発熱量が大きく形成されている。   FIG. 4 shows the heat distribution of the main heater 302a and the sub heater 302b. The main heater 302a is formed with a large calorific value at the center of the ceramic heater 205. On the other hand, the sub-heater 301b is formed to generate a large amount of heat at the end of the ceramic heater 205.

(4)サーミスタの例
本実施形態の定着装置では、セラミックヒータの温度を測定するためのサーミスタを3個有する。各サーミスタはセラミックヒータ205上に所定の圧で押し当てられている。
(4) Example of thermistor The fixing device of this embodiment has three thermistors for measuring the temperature of the ceramic heater. Each thermistor is pressed onto the ceramic heater 205 with a predetermined pressure.

図4にはサーミスタの配置関係が示されており、サーミスタのセラミックヒータ長手方向の配置を矢印E、F、Gで示す。サーミスタ1はセラミックヒータ205の中央部に配置されている。一方、サーミスタ2、3はセラミックヒータ205の端部に配置している。各サーミスタは不図示の温度検出回路に接続されている。   FIG. 4 shows the arrangement relationship of the thermistor, and the arrangement of the thermistor in the longitudinal direction of the ceramic heater is indicated by arrows E, F, and G. The thermistor 1 is disposed at the center of the ceramic heater 205. On the other hand, the thermistors 2 and 3 are arranged at the end of the ceramic heater 205. Each thermistor is connected to a temperature detection circuit (not shown).

図6は、温度検出回路の内部回路例である。   FIG. 6 is an example of an internal circuit of the temperature detection circuit.

サーミスタ1、2、及び3はそれぞれ抵抗604、606及び607と直列に接続されている。S6、S7、及びS8は検出信号であり、温度によって変化するサーミスタの抵抗値に応じて変動する。検出信号S6、S7、及びS8はCPU501及び後述の安全回路509に接続している。   The thermistors 1, 2 and 3 are connected in series with resistors 604, 606 and 607, respectively. S6, S7, and S8 are detection signals, which vary according to the resistance value of the thermistor that varies with temperature. The detection signals S6, S7, and S8 are connected to the CPU 501 and a safety circuit 509 described later.

(5)サーモスイッチの例
本実施形態の定着装置では、異常加熱時の電流遮断手段として非図示のサーモスイッチを1個有している。サーモスイッチはセラミックヒータ205上に所定の圧で押し当てられている。
(5) Example of Thermo Switch The fixing device of the present embodiment has one thermo switch (not shown) as a current interrupting means during abnormal heating. The thermo switch is pressed against the ceramic heater 205 with a predetermined pressure.

図4には、サーモスイッチのセラミックヒータ長手方向の位置が矢印Dで示されている。サーモスイッチの作動温度は250℃である。   In FIG. 4, the position of the thermo switch in the longitudinal direction of the ceramic heater is indicated by an arrow D. The operating temperature of the thermoswitch is 250 ° C.

ここで、サーモスイッチの作動温度について説明する。サーモスイッチの作動温度は作動温度に到達するまでの温度上昇速度に大きく関係する。   Here, the operating temperature of the thermoswitch will be described. The operating temperature of the thermoswitch is largely related to the rate of temperature rise until the operating temperature is reached.

図15は、セラミックヒータ205の温度とサーモスイッチが実際に作動する温度との関係を示す図である。LINE-Bは低い温度上昇速度でヒータを加熱した場合であり、サーモスイッチはセラミックヒータ205が250℃からΔTb過熱したB点で作動する。一方、LINE-Aは高い温度上昇速度でセラミックヒータ205を加熱した場合を示す。この場合サーモスイッチは250℃では作動せず、250℃よりもΔTa過熱したA点で作動する。ΔTaの大きさはΔTbに比べて大きい。即ち、サーモスイッチは作動温度に到達するまでの温度上昇速度が低いほど、より作動温度(250℃)に近い温度で作動する特性をもつ。このような特性はサーモスイッチ自体が持つ熱容量によって生じるものである。   FIG. 15 is a diagram showing the relationship between the temperature of the ceramic heater 205 and the temperature at which the thermoswitch actually operates. LINE-B is a case where the heater is heated at a low temperature rise rate, and the thermo switch operates at a point B where the ceramic heater 205 is heated from 250 ° C. by ΔTb. On the other hand, LINE-A indicates a case where the ceramic heater 205 is heated at a high temperature rise rate. In this case, the thermo switch does not operate at 250 ° C., and operates at the point A where ΔTa is heated more than 250 ° C. The size of ΔTa is larger than ΔTb. That is, the thermoswitch has a characteristic of operating at a temperature closer to the operating temperature (250 ° C.) as the temperature increase rate until reaching the operating temperature is lower. Such characteristics are caused by the heat capacity of the thermoswitch itself.

(6)電力制御回路の例
次に、セラミックヒータ205に電力を供給する電力制御回路について説明する。電力制御回路は、メインヒータ302aとサブヒータ302bで独立して制御する構成となっている。
(6) Example of Power Control Circuit Next, a power control circuit that supplies power to the ceramic heater 205 will be described. The power control circuit is configured to be controlled independently by the main heater 302a and the sub heater 302b.

図5は、電力制御回路の接続例を示す図である。   FIG. 5 is a diagram illustrating a connection example of the power control circuit.

501は演算制御用のCPU、502,503は第1と第2のトライアック、504はAC電源、505はリレー(RL)、507は電流検出回路である。第1のトライアック502とメインヒータ302aとは直列接続し、また第2のトライアック503とサブヒータ302bとは直列接続し、それらを並列にAC電源504に対して接続させてある。第1と第2のトライアック502,503は、それぞれCPU501からの第1と第2のヒータ駆動信号S1,S2のHigh/LowでON/OFF制御される。リレー505は、第1と第2のトライアック502,503とAC電源504の間に挿入されており、リレー505の駆動によりメインヒータ302a及びサブヒータ302bへの通電を遮断できる構成になっている。リレー505の制御信号S4は後述の安全回路509に接続されている。電流検出回路507は、リレー505とAC電源504の間に挿入されており、電流検出信号S5を安全回路に送る。電流検出回路507の動作については後述する。安全回路509は、CPU501からの制御信号S3で制御される。   Reference numeral 501 denotes an arithmetic control CPU, 502 and 503 are first and second triacs, 504 is an AC power source, 505 is a relay (RL), and 507 is a current detection circuit. The first triac 502 and the main heater 302a are connected in series, the second triac 503 and the sub-heater 302b are connected in series, and they are connected to the AC power source 504 in parallel. The first and second triacs 502 and 503 are ON / OFF controlled by the high and low levels of the first and second heater drive signals S1 and S2 from the CPU 501, respectively. The relay 505 is inserted between the first and second triacs 502 and 503 and the AC power source 504, and is configured to cut off the energization of the main heater 302a and the sub heater 302b by driving the relay 505. The control signal S4 of the relay 505 is connected to a safety circuit 509 described later. The current detection circuit 507 is inserted between the relay 505 and the AC power source 504, and sends a current detection signal S5 to the safety circuit. The operation of the current detection circuit 507 will be described later. The safety circuit 509 is controlled by a control signal S3 from the CPU 501.

(7)電力制御シーケンスの例
本画像形成装置における電力制御の方法について説明する。本実施形態においては、メインヒータ302aとサブヒータ302bに対し、1半波内の位相角で通電のON/OFFを行なうことで、各ヒータへの印加電力を制御する位相制御を行なっている。
(7) Example of Power Control Sequence A power control method in the image forming apparatus will be described. In the present embodiment, the main heater 302a and the sub heater 302b are turned on / off at a phase angle within one half wave, thereby performing phase control for controlling the power applied to each heater.

(7-1)立ち上げ時の制御
CPU501は、不図示のコントローラからプリントスタート信号を受けると、画像形成シーケンスを実行させる。同時に第1及び第2のヒータ駆動信号S1,S2を制御して第1及び第2のトライアック502,503をONし、セラミックヒータ205を昇温させる。セラミックヒータ205の昇温に伴い、サーミスタ1の抵抗値が低下し、CPU501はサーミスタ1からの出力信号S6をモニタすることでセラミックヒータ205の中央部の温度状態を検知・認識する。このときセラミックヒータ205への印加電力(Pup)はサーミスタ1の検出温度と所定の定着目標温度との差から設定する。Pupのレベルを大きく設定することでセラミックヒータ205の温度を短時間で立ち上げることができる。Pupは全位相でON状態の時を100%の電力として、80%以上の電力で設定する。
(7-1) Control at Startup When the CPU 501 receives a print start signal from a controller (not shown), it executes an image forming sequence. At the same time, the first and second heater drive signals S1, S2 are controlled to turn on the first and second triacs 502, 503, and the ceramic heater 205 is heated. As the temperature of the ceramic heater 205 rises, the resistance value of the thermistor 1 decreases, and the CPU 501 detects and recognizes the temperature state at the center of the ceramic heater 205 by monitoring the output signal S6 from the thermistor 1. At this time, the applied power (Pup) to the ceramic heater 205 is set from the difference between the temperature detected by the thermistor 1 and a predetermined fixing target temperature. By setting the Pup level large, the temperature of the ceramic heater 205 can be raised in a short time. Pup is set at a power of 80% or more, assuming that the power is 100% when all phases are ON.

(7-2)定常温度制御
サーミスタ1による検出温度が所定の定着温度に立ち上がったことを検知したら、セラミックヒータ205の印加電力を低下させて、セラミックヒータ205の温度を抑える。この後は、サーミスタ1の検出温度と所定の定着目標温度との差に応じて印加電力を増減することで、セラミックヒータ205の中央部の温度が定着目標温度となるように制御する。このときの印加電力(Psat)は立ち上げ時の印加電力(Pup)よりも小さく、0%〜60%で制御する。
(7-2) Steady Temperature Control When it is detected that the temperature detected by the thermistor 1 has risen to a predetermined fixing temperature, the power applied to the ceramic heater 205 is reduced to suppress the temperature of the ceramic heater 205. Thereafter, the applied power is increased or decreased according to the difference between the detected temperature of the thermistor 1 and a predetermined fixing target temperature, so that the temperature at the center of the ceramic heater 205 is controlled to be the fixing target temperature. The applied power (Psat) at this time is smaller than the applied power (Pup) at the start-up, and is controlled at 0% to 60%.

上記処理において、サブヒータ302bの通電方法は、記録紙の記録紙搬送方向に対して垂直な方向の長さ、つまり幅サイズに応じて変更する。   In the above process, the energization method of the sub-heater 302b is changed according to the length in the direction perpendicular to the recording sheet conveyance direction of the recording sheet, that is, the width size.

図7は、記録紙の幅サイズとサブヒータ302bとの通電設定の関係を示す図であり、幅サイズに応じて4つに分類して制御方法を切り替える。ここで、サブヒータ電力比率とはメインヒータ302aに印加する電力に対して、サブヒータ302bに印加する電力割合を示している。第2のヒータ駆動信号S2はこの設定に応じて制御をする。紙幅が小さい場合ほどサブヒータ302bの電力比率を小さく設定することで、プリント中に定着器端部の温度が高くなる現象(以下、端部昇温と記す)を抑える。端部昇温は記録紙の幅サイズに大きく関係する。定着器の加熱領域の幅に比べて記録紙の幅が小さい場合、定着器端部が非通紙領域となる。記録紙を通紙する部分と通紙しない部分では、奪われる熱量が大きく異なるため、セラミックヒータ端部の温度が高くなるという現象が起きる。この端部昇温によって、しわやオフセットなどといった様々な問題が起こる可能性が起こる。通紙する記録紙が、幅が狭い記録紙であれば、セラミックヒータ205の熱の不均一さはより大きくなる傾向にある。   FIG. 7 is a diagram showing the relationship between the width size of the recording paper and the energization setting of the sub-heater 302b. The control method is classified into four according to the width size. Here, the sub-heater power ratio indicates the power ratio applied to the sub-heater 302b with respect to the power applied to the main heater 302a. The second heater drive signal S2 is controlled according to this setting. By setting the power ratio of the sub-heater 302b to be smaller as the paper width is smaller, a phenomenon in which the temperature at the end of the fixing device increases during printing (hereinafter referred to as end temperature rise) is suppressed. Edge temperature rise is largely related to the width size of the recording paper. When the width of the recording paper is smaller than the width of the heating region of the fixing device, the end of the fixing device becomes a non-sheet passing region. Since the amount of heat taken away greatly differs between the portion where the recording paper is passed and the portion where the recording paper is not passed, a phenomenon occurs in which the temperature at the end of the ceramic heater increases. This edge temperature rise may cause various problems such as wrinkles and offsets. If the recording paper to be passed is a narrow recording paper, the non-uniformity of heat of the ceramic heater 205 tends to become larger.

(8)端部昇温対策制御の例
本画像形成装置においては、端部のセラミックヒータ205の温度をサーミスタ2及び3で検出し、端部昇温によってセラミックヒータ端部の温度が所定温度以上となった場合は、記録紙の通紙間隔を長くする制御を行なう。通紙間隔を長くすることで記録紙を通紙する部分と通紙しない部分との温度差が小さくなり、端部昇温を抑えることができる。
(8) Example of edge temperature rise countermeasure control In this image forming apparatus, the temperature of the ceramic heater 205 at the edge is detected by the thermistors 2 and 3, and the temperature at the edge of the ceramic heater is equal to or higher than a predetermined temperature due to the edge temperature rise. In such a case, control is performed to increase the interval between recording sheets. By increasing the paper passing interval, the temperature difference between the portion where the recording paper is passed and the portion where the recording paper is not passed is reduced, and the temperature rise at the edge can be suppressed.

図8は、紙幅が図7における「A」に分類される記録紙を通紙した時の端部昇温の推移を示す図である。横軸はプリント開始からの時間、縦軸はセラミックヒータ205の中央部に配置されたサーミスタ1と端部に配置されたサーミスタ3の検出温度である。プリント開始後、サーミスタ1の検出温度が所定値となるようにセラミックヒータ205に電力が供給され、サーミスタ1の検出温度が200℃まで立ち上がる(ポイントa)。   FIG. 8 is a diagram showing the transition of the temperature rise at the edge when the recording paper whose paper width is classified as “A” in FIG. 7 is passed. The horizontal axis represents the time from the start of printing, and the vertical axis represents the detected temperature of the thermistor 1 disposed at the center of the ceramic heater 205 and the thermistor 3 disposed at the end. After printing is started, electric power is supplied to the ceramic heater 205 so that the detected temperature of the thermistor 1 becomes a predetermined value, and the detected temperature of the thermistor 1 rises to 200 ° C. (point a).

その後は、サーミスタ1の検出温度は一定に制御される。一方、サーミスタ3の検出温度はプリント開始後から緩やかに上昇する。これは紙幅が「A」に分類される記録紙の通紙時はサブヒータ302bが通電しないためである。サブサーミスタ3の検出温度はサーミスタ1の検出温度200℃を超えても更に上昇し(ポイントb)、240℃まで達する(ポイントc)。サーミスタ3の温度が240℃に達した場合、通紙間隔を長くする制御を開始する。これにより端部の温度上昇は停止する。   Thereafter, the detected temperature of the thermistor 1 is controlled to be constant. On the other hand, the temperature detected by the thermistor 3 rises gradually after printing is started. This is because the sub-heater 302b is not energized when the recording paper whose paper width is classified as “A” is passed. Even if the detection temperature of the sub-thermistor 3 exceeds the detection temperature of 200 ° C. of the thermistor 1 (point b), it reaches 240 ° C. (point c). When the temperature of the thermistor 3 reaches 240 ° C., control for increasing the sheet passing interval is started. This stops the temperature rise at the end.

(9)電流検出回路507の例
電流検出回路507は、リレー505とAC電源504との間に挿入している。電流検出回路507では、メインヒータ302aとサブヒータ302bに流れる電流の合計電流値を検出し、検出信号S5を出力する。検出信号S5は後述の安全回路508に接続されている。検出信号S5はヒータ電流値が基準電流(Ipr)よりも大な場合にHigh状態となる。基準電流(Ipr)は印加電力が80%の時に流れるヒータ電流に相当する。前述した通り、印加電力が80%以上となるのは立ち上げ時の制御の場合のみであるので、検出信号S5は立ち上げ時のみHigh状態となる。
(9) Example of Current Detection Circuit 507 The current detection circuit 507 is inserted between the relay 505 and the AC power source 504. The current detection circuit 507 detects the total current value of the currents flowing through the main heater 302a and the sub heater 302b, and outputs a detection signal S5. The detection signal S5 is connected to a safety circuit 508 described later. The detection signal S5 is in a high state when the heater current value is larger than the reference current (Ipr). The reference current (Ipr) corresponds to the heater current that flows when the applied power is 80%. As described above, the applied power becomes 80% or more only in the case of control at the time of start-up, so that the detection signal S5 is in a high state only at the time of start-up.

(10)安全回路509の例
本実施形態の画像形成装置では安全装置を設けて、通電暴走時のセラミックヒータ205の過熱を回避している。安全装置として前述のサーモスイッチの他に、サーミスタによってセラミックヒータ205の異常過熱を検知して通電を遮断する回路を設けている。
(10) Example of Safety Circuit 509 In the image forming apparatus of this embodiment, a safety device is provided to avoid overheating of the ceramic heater 205 during energization runaway. As a safety device, in addition to the above-described thermoswitch, a circuit that detects abnormal overheating of the ceramic heater 205 by a thermistor and interrupts energization is provided.

図9は、サーミスタ検出によって通電の遮断を制御する安全回路509の回路図である。   FIG. 9 is a circuit diagram of a safety circuit 509 that controls the interruption of energization by thermistor detection.

サーミスタ1,2,3の検出信号S6、S7、S8は、コンパレータ901,902,903の負極入力にそれぞれ入力し、正極に入力されている比較電圧(Vref)との比較を行なうことで異常過熱状態を判断する。サーミスタ1の検出信号に対する比較電圧(Vref1)は、Vccを抵抗904及び905で分圧した電圧値と比較する。電圧比較の結果によりコンパレータ901がオン状態に切り替わると、トランジスタ915に抵抗912を介してベース電流が流れてオン状態となる。これによりリレー制御信号S4がLow状態となってリレーへの通電が停止し、リレー505が遮断状態となる。   The detection signals S6, S7, and S8 of the thermistors 1, 2, and 3 are input to the negative inputs of the comparators 901, 902, and 903, respectively, and are compared with the comparison voltage (Vref) input to the positive electrodes to cause abnormal overheating. Determine the state. The comparison voltage (Vref1) for the detection signal of the thermistor 1 is compared with a voltage value obtained by dividing Vcc by resistors 904 and 905. When the comparator 901 is turned on as a result of the voltage comparison, a base current flows to the transistor 915 through the resistor 912 and the transistor 915 is turned on. As a result, the relay control signal S4 becomes a low state, the energization to the relay is stopped, and the relay 505 is cut off.

一方、サーミスタ2の検出信号に対する比較電圧(Vref2)は抵抗906、907及び908で決まる値と比較する。抵抗907はトランジスタ925が直列に接続されている。トランジスタ925は電流検出回路507の出力信号で駆動されており、比較電圧(Vref2)は電流検出回路507の検出結果に応じて切り替わる。電流検出信号S5はヒータ電流が所定値よりも大きい場合でHigh状態となることから、ヒータ電流値が大きい場合には比較電圧(Vref2)は抵抗907と抵抗908の並列接続の合成抵抗値と、抵抗906との分圧値となる。一方、ヒータ電流値が小さい場合には電流検出信号S5がLow状態となり、比較電圧は抵抗908と抵抗906の分圧で決まる。   On the other hand, the comparison voltage (Vref2) for the detection signal of the thermistor 2 is compared with a value determined by the resistors 906, 907, and 908. A resistor 907 has a transistor 925 connected in series. The transistor 925 is driven by the output signal of the current detection circuit 507, and the comparison voltage (Vref2) is switched according to the detection result of the current detection circuit 507. Since the current detection signal S5 is in a high state when the heater current is larger than a predetermined value, the comparison voltage (Vref2) is the combined resistance value of the parallel connection of the resistor 907 and the resistor 908 when the heater current value is large. The voltage is divided with the resistor 906. On the other hand, when the heater current value is small, the current detection signal S5 is in a low state, and the comparison voltage is determined by the divided voltage of the resistors 908 and 906.

また、サーミスタ3の検出信号に対する比較電圧(Vref3)は抵抗909、910及び911で決まる値と比較する。サーミスタ2の場合と同様に、比較電圧(Vref3)はヒータ電流値が大きい場合には抵抗910と抵抗911の並列接続の合成抵抗値と、抵抗909の分圧値となる。一方、ヒータ電流値が小さい場合には、比較電圧は抵抗909と抵抗911の分圧で決まる。   The comparison voltage (Vref3) for the detection signal of the thermistor 3 is compared with a value determined by the resistors 909, 910, and 911. As in the case of the thermistor 2, the comparison voltage (Vref3) is a combined resistance value of the resistor 910 and the resistor 911 connected in parallel and a divided voltage value of the resistor 909 when the heater current value is large. On the other hand, when the heater current value is small, the comparison voltage is determined by the divided voltage of the resistors 909 and 911.

図10は、各サーミスタに対する安全回路の作動温度の設定表である。安全回路509の作動温度は各サーミスタで異なる。   FIG. 10 is a setting table of the operating temperature of the safety circuit for each thermistor. The operating temperature of the safety circuit 509 is different for each thermistor.

サーミスタ1の作動温度はヒータ電流状態に関わらず220℃である。前述のように、本実施形態の画像形成装置ではセラミックヒータ205はサーミスタ1の検出値が200℃となるように制御される。よって、正常動作時に安全回路509が作動することなく、通電暴走時には検出温度が220℃で安全回路509が作動し、セラミックヒータ205への通電を遮断できる。   The operating temperature of the thermistor 1 is 220 ° C. regardless of the heater current state. As described above, in the image forming apparatus of the present embodiment, the ceramic heater 205 is controlled so that the detection value of the thermistor 1 is 200 ° C. Accordingly, the safety circuit 509 does not operate during normal operation, and the safety circuit 509 operates at a detected temperature of 220 ° C. during energization runaway, and the energization to the ceramic heater 205 can be cut off.

サーミスタ2及びサーミスタ3の作動温度はヒータ電流状態によって切り替わる。ヒータ電流が低レベルの場合の作動温度は260℃に設定される。正常動作時は、端部昇温が発生した場合においても、サーミスタ2及び3の検出値は260℃には到達しないため、安全回路509が作動することはない。通電暴走時は、セラミックヒータ205が250℃に到達すると同時にサーモスイッチが作動し、セラミックヒータ205への通電を遮断する。   The operating temperature of the thermistor 2 and the thermistor 3 is switched depending on the heater current state. The operating temperature when the heater current is at a low level is set to 260 ° C. During normal operation, even if end temperature rise occurs, the detection values of the thermistors 2 and 3 do not reach 260 ° C., so the safety circuit 509 does not operate. During energization runaway, the thermoswitch is activated at the same time as the ceramic heater 205 reaches 250 ° C., and the energization to the ceramic heater 205 is cut off.

図16は、通電暴走時のサーモスイッチ部のセラミックヒータ205の温度とサーモスイッチの作動点との関係を示す図である。LINE-Cはメインヒータ302aのみが通電暴走した時のライン、LINE-Dはメインヒータ302aとサブヒータ302bが通電暴走した時のライン、LINE-Eはサブヒータ302bのみが通電暴走した時のラインである。3つのラインの違いは各ヒータの発熱分布により生じる。   FIG. 16 is a diagram showing the relationship between the temperature of the ceramic heater 205 of the thermo switch unit and the operating point of the thermo switch during energization runaway. LINE-C is a line when only the main heater 302a is energized, LINE-D is a line when the main heater 302a and the sub heater 302b are energized, and LINE-E is a line when only the sub heater 302b is energized. . The difference between the three lines is caused by the heat distribution of each heater.

図4で示した通り、サーミスタ1はメインヒータ302aの発熱分布の領域に配置しているため、メインヒータ302aの通電暴走時はサブヒータ302bの通電暴走時に比べて速い温度上昇速度で上昇する。いずれの通電暴走の場合もセラミックヒータ205の温度がサーモスイッチの作動温度(250℃)に到達すると同時にサーモスイッチを作動させることができる。これは、ヒータ電流が低レベルの場合はセラミックヒータ205の印加電力も低く、セラミックヒータ205の温度上昇速度が低いためである。   As shown in FIG. 4, since the thermistor 1 is disposed in the heat distribution region of the main heater 302a, the energization runaway of the main heater 302a increases at a faster temperature rise rate than the energization runaway of the sub heater 302b. In any energization runaway, the thermo switch can be operated simultaneously with the temperature of the ceramic heater 205 reaching the operating temperature (250 ° C.) of the thermo switch. This is because when the heater current is at a low level, the applied power of the ceramic heater 205 is low and the temperature rise rate of the ceramic heater 205 is low.

一方、ヒータ電流が高レベルの場合、作動温度は220℃に設定される。ヒータ電流が高レベルとなるのはヒータ立ち上げ動作時のみである。図8で示したように端部昇温は連続して通紙した場合に生じる現象であるため、ヒータ立ち上げ時に端部の温度が220℃以上となることはない。よって、正常動作時に安全回路509が作動することはない。通電暴走時には、検出温度が220℃で安全回路509が作動し、セラミックヒータ205への通電が遮断される。   On the other hand, when the heater current is at a high level, the operating temperature is set to 220 ° C. The heater current becomes high only during the heater start-up operation. As shown in FIG. 8, the temperature rise at the edge is a phenomenon that occurs when the paper is continuously fed, so the temperature at the edge does not exceed 220 ° C. when the heater is started up. Therefore, the safety circuit 509 does not operate during normal operation. During energization runaway, the safety circuit 509 operates at a detected temperature of 220 ° C., and energization of the ceramic heater 205 is interrupted.

以上説明したとおり、本実施形態の画像形成装置では、セラミックヒータ205に流れる電流のレベルに応じて複数のサーミスタによる異常過熱検知回路の検知温度を切替える。これにより、正常動作時で端部昇温が発生する場合であっても、安全装置を誤作動させることなく、通電暴走時には低い温度でセラミックヒータ205への通電を遮断することが可能となる。   As described above, in the image forming apparatus according to the present embodiment, the detection temperature of the abnormal overheat detection circuit using a plurality of thermistors is switched according to the level of the current flowing through the ceramic heater 205. As a result, even when the temperature rise at the end occurs during normal operation, the energization to the ceramic heater 205 can be cut off at a low temperature during energization runaway without causing the safety device to malfunction.

[実施形態2]
本発明の第2の実施形態について説明する。第1の実施形態ではセラミックヒータの電流検出結果に応じて、複数サーミスタの異常過熱温度の判断レベルを切替えた。本実施形態の基本構成は第1の実施形態と同じであり、加圧ローラの回転状態に応じて異常過熱温度の判断レベルを切替えることを特徴とする。第1の実施形態と異なる部分のみ説明する。
[Embodiment 2]
A second embodiment of the present invention will be described. In the first embodiment, the determination level of the abnormal overheat temperature of the plurality of thermistors is switched according to the current detection result of the ceramic heater. The basic configuration of this embodiment is the same as that of the first embodiment, and is characterized in that the determination level of the abnormal superheat temperature is switched according to the rotation state of the pressure roller. Only parts different from the first embodiment will be described.

(1)定着駆動モータ回転検知の例
図11は、本実施形態の回路構成図である。
(1) Example of Fixing Drive Motor Rotation Detection FIG. 11 is a circuit configuration diagram of this embodiment.

118は加圧ローラ204を回転駆動する定着駆動モータM2である。定着駆動モータM2(118)はACC信号、BLK信号、FG(Frequency Generator)信号によって定速回転で制御する。ACC信号は加速信号であり、CPU501から出力される。ACC信号をON状態とすると定着駆動モータM2(118)の回転速度が加速状態となる。一方、BLK信号は減速信号でありCPU501から出力される。BLK信号をON状態にすると回転速度が減速状態となる。FG信号は回転速度検出信号であり、回転数に比例した周波数のパルスを出力する。CPU501は受信したFG信号の周波数が所定値となるようにACC信号、BLK信号を制御することで回転速度を所定レベルに制御する。   Reference numeral 118 denotes a fixing drive motor M2 that rotationally drives the pressure roller 204. The fixing drive motor M2 (118) is controlled at a constant speed by an ACC signal, a BLK signal, and an FG (Frequency Generator) signal. The ACC signal is an acceleration signal and is output from the CPU 501. When the ACC signal is turned on, the rotation speed of the fixing drive motor M2 (118) is accelerated. On the other hand, the BLK signal is a deceleration signal and is output from the CPU 501. When the BLK signal is turned on, the rotational speed is decelerated. The FG signal is a rotation speed detection signal and outputs a pulse having a frequency proportional to the rotation speed. The CPU 501 controls the rotation speed to a predetermined level by controlling the ACC signal and the BLK signal so that the frequency of the received FG signal becomes a predetermined value.

一方、FG信号はモータ回転検出回路1102に接続されている。モータ回転検出回路1102はFG信号からモータが停止状態であるか否かを検知し、検知信号S10を安全回路509の送出する。図12はモータ回転検出回路1102の内部回路である。入力されたFG信号はDフリップフロップ回路1201で半分の周波数の矩形波に分周されて、FET1201のゲート電圧を駆動する。FET1204の駆動によりコンデンサ1204に振幅24Vの矩形波が印加され、ダイオード1205を介して電流が流れる。電流はオペアンプ1211、抵抗1209、コンデンサ1210で構成された積分回路に入力され、ここで直流電圧に変換される。オペアンプ1211の出力値(Vop)は下記式で表せる。   On the other hand, the FG signal is connected to a motor rotation detection circuit 1102. The motor rotation detection circuit 1102 detects whether or not the motor is stopped from the FG signal, and sends a detection signal S10 to the safety circuit 509. FIG. 12 shows an internal circuit of the motor rotation detection circuit 1102. The input FG signal is frequency-divided into a half-frequency rectangular wave by the D flip-flop circuit 1201 to drive the gate voltage of the FET 1201. A rectangular wave having an amplitude of 24 V is applied to the capacitor 1204 by driving the FET 1204, and a current flows through the diode 1205. The current is input to an integrating circuit composed of an operational amplifier 1211, a resistor 1209, and a capacitor 1210, where it is converted into a DC voltage. The output value (Vop) of the operational amplifier 1211 can be expressed by the following equation.

Vop=Vt−(24−Vt)×C1204×R1209×f÷2
ここで、Vtはオペアンプ1211の正極入力電圧、C1204はコンデンサ1204の静電容量値、R1209はR1209の抵抗値、fはFG信号の周波数である。上記式から明らかなように、オペアンプ1211の出力値(Vop)はFG信号の周波数に応じた値となる。オペアンプ1211の出力は更にコンパレータ1214の正極入力に入力されており、負極入力に入植されている基準電圧と比較され、FG信号の周波数に応じてコンパレータ出力のHigh/Low状態が切り替わる。このようにして、定着駆動モータM2(118)の回転有無を検知する回転検知信号S10が出力される。
Vop = Vt− (24−Vt) × C 1204 × R 1209 × f ÷ 2
Here, Vt is the positive input voltage of the operational amplifier 1211, C 1204 is the capacitance value of the capacitor 1204, R 1209 is the resistance value of R1209, and f is the frequency of the FG signal. As is clear from the above equation, the output value (Vop) of the operational amplifier 1211 is a value corresponding to the frequency of the FG signal. The output of the operational amplifier 1211 is further input to the positive input of the comparator 1214 and is compared with the reference voltage set in the negative input, and the high / low state of the comparator output is switched according to the frequency of the FG signal. In this way, the rotation detection signal S10 for detecting the presence or absence of rotation of the fixing drive motor M2 (118) is output.

(2)安全回路509’の例
図13は、サーミスタ検出によって通電の遮断を制御する安全回路509’の回路図である。
(2) Example of Safety Circuit 509 ′ FIG. 13 is a circuit diagram of a safety circuit 509 ′ that controls the interruption of energization by thermistor detection.

第1の実施形態の安全回路509と異なるのは、サーミスタ2の検出信号に対する比較電圧:Vrefの切替方法である。サーミスタ2の検出信号に対する比較電圧(Vref2)は、モータ回転検出回路1102の検出結果に応じて切り替わる。即ち、モータの回転状態に応じて安全回路509’の作動温度が切り替わる。回転検知信号S10は、定着駆動モータM2(118)が回転状態でLow状態となる。よって、回転時は比較電圧(Vref2)は抵抗907と抵抗908の並列接続の合成抵抗値と、抵抗906の分圧値となる。一方、非回転時には回転検知信号S10がHIgh状態になり、比較電圧(Vref2)は抵抗908と抵抗906の分圧で決まる。   The difference from the safety circuit 509 of the first embodiment is a method of switching the comparison voltage: Vref for the detection signal of the thermistor 2. The comparison voltage (Vref2) for the detection signal of the thermistor 2 is switched according to the detection result of the motor rotation detection circuit 1102. That is, the operating temperature of the safety circuit 509 'is switched according to the rotation state of the motor. The rotation detection signal S10 is in a low state when the fixing drive motor M2 (118) is rotating. Therefore, at the time of rotation, the comparison voltage (Vref2) becomes a combined resistance value of the parallel connection of the resistor 907 and the resistor 908 and a divided value of the resistor 906. On the other hand, at the time of non-rotation, the rotation detection signal S10 is in the HIgh state, and the comparison voltage (Vref2) is determined by the divided voltage of the resistor 908 and the resistor 906.

図14は、各サーミスタに対する安全回路509’の作動温度の設定表である。異常過熱の判断レベルは各サーミスタで異なる。作動温度が第1の実施形態と異なるのはサーミスタ2についてのみである。   FIG. 14 is a setting table of the operating temperature of the safety circuit 509 ′ for each thermistor. The judgment level of abnormal overheating is different for each thermistor. The operating temperature is different from that of the first embodiment only for the thermistor 2.

定着駆動モータM2(118)が回転時は、作動温度は260℃に設定される。正常動作時に端部昇温が発生した場合においても、サーミスタ2の検出値は260℃には到達しないため、正常動作時に安全回路509’が作動することはない。   When the fixing drive motor M2 (118) rotates, the operating temperature is set to 260 ° C. Even when the end temperature rise occurs during normal operation, the detected value of the thermistor 2 does not reach 260 ° C., so that the safety circuit 509 ′ does not operate during normal operation.

通電暴走時は、セラミックヒータ205が250℃に到達すると同時にサーモスイッチが作動し、セラミックヒータ205への通電を遮断できる。これは、定着駆動モータM2(118)が回転時、即ち加圧ローラ204が回転状態の場合は、加圧ローラ204の温度上昇が小さくなり、セラミックヒータ205の温度上昇速度が低くなり、セラミックヒータ205の温度がサーモスイッチの作動温度(250℃)に到達すると同時にサーモスイッチを作動させることができる。   During energization runaway, the ceramic heater 205 reaches 250 ° C., and at the same time, the thermo switch is activated to cut off the energization to the ceramic heater 205. This is because when the fixing drive motor M2 (118) rotates, that is, when the pressure roller 204 is in a rotating state, the temperature rise of the pressure roller 204 becomes small, the temperature rise rate of the ceramic heater 205 becomes low, and the ceramic heater As soon as the temperature of 205 reaches the operating temperature (250 ° C.) of the thermo switch, the thermo switch can be operated.

一方、定着駆動モータM2(118)が非回転時は、220℃に設定される。端部昇温は連続して通紙した場合に生じる現象であるため、モータ非回転時に端部の温度が220℃以上となることはない。よって、正常動作時に安全回路509’が作動することはない。通電暴走時には検出温度が220℃で安全回路509’が作動し、セラミックヒータ205への通電が遮断される。   On the other hand, when the fixing drive motor M2 (118) is not rotating, the temperature is set to 220 ° C. Since the temperature rise at the edge is a phenomenon that occurs when the paper is continuously passed, the temperature at the edge does not become 220 ° C. or higher when the motor is not rotating. Therefore, the safety circuit 509 'does not operate during normal operation. During energization runaway, the safety circuit 509 'operates at a detected temperature of 220 ° C., and the energization to the ceramic heater 205 is interrupted.

以上説明したとおり、本実施形態の画像形成装置では、加圧ローラの回転状態に応じて複数のサーミスタによる異常過熱検知回路のうち、1つの検知回路の検知温度を切り替える。またセラミックヒータ205に流れる電流の検出値に応じて複数のサーミスタによる異常過熱検知回路のうち、前記以外の検知回路の検知温度を切り替える。   As described above, in the image forming apparatus of the present embodiment, the detection temperature of one detection circuit is switched among the abnormal overheat detection circuits using a plurality of thermistors according to the rotation state of the pressure roller. In addition, the detection temperature of the detection circuit other than the above is switched among the abnormal overheat detection circuits using a plurality of thermistors according to the detection value of the current flowing through the ceramic heater 205.

これにより、正常動作時で端部昇温が発生する場合であっても、安全装置を誤作動させることなく、通電暴走時には低い温度でセラミックヒータ205への通電を遮断することが可能となる。   As a result, even when the temperature rise at the end occurs during normal operation, the energization to the ceramic heater 205 can be cut off at a low temperature during energization runaway without causing the safety device to malfunction.

尚、上述の安全回路509(図9),509’(図13)やモータ回転検知回路1102(図12)の回路素子については、具体的な特性値を示していないが、サーミスタの特性や電源Vccの値などにより切り替えたい温度値に対応した特性値がそれぞれ設定可能であり、当業者であれば特性値の設定は容易に成し得る。   The circuit elements of the safety circuit 509 (FIG. 9) and 509 ′ (FIG. 13) and the motor rotation detection circuit 1102 (FIG. 12) do not show specific characteristic values. The characteristic value corresponding to the temperature value to be switched can be set according to the Vcc value, etc., and those skilled in the art can easily set the characteristic value.

又、本実施形態においては、安全回路509(図9),509’(図13)やモータ回転検知回路1102(図12)はアナログ回路で示したが、温度,電流,回転などの情報をデジタルデータに変換して、プログラムによりリレー制御を行ってもよい。   In this embodiment, the safety circuits 509 (FIG. 9), 509 ′ (FIG. 13) and the motor rotation detection circuit 1102 (FIG. 12) are shown as analog circuits, but information such as temperature, current, and rotation is digitally displayed. It may be converted into data and relay control may be performed by a program.

図17に、プログラムによるリレー制御の手順例をフローチャートで示す。尚、図17には実施形態2の場合を示すが、実施形態1の場合も類似のフローチャートで実現が可能である。   FIG. 17 is a flowchart showing a procedure example of relay control by a program. FIG. 17 shows the case of the second embodiment, but the case of the first embodiment can be realized by a similar flowchart.

ステップS171でサーミスタ1からの出力データが220℃以上か否かを判定する。220℃以上であればステップS178に進んでリレー505を断とする。220℃未満であればステップS172に進んで、加圧ローラが回転か/非回転かをモータ回転検知回路からの出力データから判定する。   In step S171, it is determined whether the output data from the thermistor 1 is 220 ° C. or higher. If it is 220 degreeC or more, it will progress to step S178 and will make the relay 505 cut off. If it is less than 220 ° C., the process proceeds to step S172, and it is determined from the output data from the motor rotation detection circuit whether the pressure roller is rotating / non-rotating.

回転であればステップS173でサーミスタ2からの出力データが260℃以上か否かを判定する。260℃以上であればステップS178に進んでリレー505を断とする。260℃未満であればステップS175に進む。一方、非回転であればステップS174でサーミスタ2からの出力データが220℃以上か否かを判定する。220℃以上であればステップS178に進んでリレー505を断とする。220℃未満であればステップS175に進む。   If it is rotation, it is determined in step S173 whether the output data from the thermistor 2 is 260 ° C. or higher. If it is 260 degreeC or more, it will progress to step S178 and the relay 505 will be cut off. If it is less than 260 ° C., the process proceeds to step S175. On the other hand, if it is not rotating, it is determined in step S174 whether the output data from the thermistor 2 is 220 ° C. or higher. If it is 220 degreeC or more, it will progress to step S178 and will make the relay 505 cut off. If it is less than 220 ° C., the process proceeds to step S175.

ステップS175で電流検出回路507からのヒータ電流が所定値より高いか否かを判定する。低電流であればステップS176でサーミスタ3からの出力データが260℃以上か否かを判定する。260℃以上であればステップS178に進んでリレー505を断とする。260℃未満であればステップS179に進んで、リレー505を接とする。一方、高電流であればステップS177でサーミスタ2からの出力データが220℃以上か否かを判定する。220℃以上であればステップS178に進んでリレー505を断とする。220℃未満であればステップS175に進んで、リレー505を接とする。   In step S175, it is determined whether the heater current from the current detection circuit 507 is higher than a predetermined value. If the current is low, it is determined in step S176 whether the output data from the thermistor 3 is 260 ° C. or higher. If it is 260 degreeC or more, it will progress to step S178 and the relay 505 will be cut off. If it is less than 260 ° C., the process proceeds to step S179 and the relay 505 is brought into contact. On the other hand, if the current is high, it is determined in step S177 whether the output data from the thermistor 2 is 220 ° C. or higher. If it is 220 degreeC or more, it will progress to step S178 and will make the relay 505 cut off. If it is less than 220 ° C., the process proceeds to step S175, and the relay 505 is brought into contact.

101 画像形成装置、116 定着装置、205 セラミックヒータ、206 サーミスタ、204 加圧ローラ、502 トライアック、501 CPU、505 リレー、901 オペアンプ、915 トランジスタ、1205 ダイオード   101 Image forming apparatus, 116 fixing apparatus, 205 ceramic heater, 206 thermistor, 204 pressure roller, 502 triac, 501 CPU, 505 relay, 901 operational amplifier, 915 transistor, 1205 diode

Claims (2)

筒状のフィルムと、
基材上に発熱パターンが形成されており前記筒状のフィルムの内面に接触するヒータと、
前記筒状のフィルムを介して前記ヒータと共に記録紙を搬送するニップ部を形成する加圧ローラと、
前記ヒータの長手方向において装置に使用可能な最小サイズの記録紙が通過する領域のヒータ温度を検知する第1の温度検知素子と、
前記最小サイズの記録紙の通過領域外のヒータ温度を検知する第2の温度検知素子と、
前記第1の温度検知素子の検知温度が目標温度を維持するように電源から前記発熱パターンへの通電を制御する制御部と、
前記電源と前記発熱パターンとの給電回路中に設けられたリレーと、
前記制御部とは独立して前記リレーを駆動する安全回路であって、前記第2の温度検知素子の検知温度が作動温度に達すると前記給電回路を開放するように前記リレーを駆動する前記安全回路と、
を有する加熱定着装置において、
前記加圧ローラの回転状態を検知する回転検出回路を有し、
前記回転検出回路の検出結果に応じて前記安全回路の前記作動温度が設定されることを特徴とする加熱定着装置。
A tubular film,
A heater in which a heat generation pattern is formed on the substrate and contacting the inner surface of the cylindrical film;
A pressure roller that forms a nip portion for conveying recording paper together with the heater through the cylindrical film;
A first temperature detecting element for detecting a heater temperature in a region through which a recording sheet of a minimum size usable in the apparatus passes in the longitudinal direction of the heater;
A second temperature detecting element for detecting a heater temperature outside the passing area of the minimum size recording paper;
A control unit for controlling energization from a power source to the heat generation pattern so that a detection temperature of the first temperature detection element maintains a target temperature;
A relay provided in a power supply circuit of the power source and the heat generation pattern;
A safety circuit that drives the relay independently of the control unit, and that drives the relay to open the power supply circuit when the detected temperature of the second temperature detecting element reaches an operating temperature. Circuit,
In the heat fixing apparatus having
A rotation detection circuit for detecting a rotation state of the pressure roller;
The heating and fixing device, wherein the operating temperature of the safety circuit is set according to a detection result of the rotation detection circuit.
前記加圧ローラが停止している場合の前記作動温度は前記加圧ローラが回転している場合の前記作動温度より低く設定されることを特徴とする請求項1に記載の加熱定着装置。   The heat fixing device according to claim 1, wherein the operating temperature when the pressure roller is stopped is set lower than the operating temperature when the pressure roller is rotating.
JP2010059911A 2010-03-16 2010-03-16 Heat fixing device Expired - Fee Related JP4574741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010059911A JP4574741B2 (en) 2010-03-16 2010-03-16 Heat fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059911A JP4574741B2 (en) 2010-03-16 2010-03-16 Heat fixing device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004139097A Division JP4522138B2 (en) 2004-05-07 2004-05-07 Heat fixing device

Publications (2)

Publication Number Publication Date
JP2010146028A JP2010146028A (en) 2010-07-01
JP4574741B2 true JP4574741B2 (en) 2010-11-04

Family

ID=42566459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059911A Expired - Fee Related JP4574741B2 (en) 2010-03-16 2010-03-16 Heat fixing device

Country Status (1)

Country Link
JP (1) JP4574741B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083764A (en) 2011-01-18 2012-07-26 삼성전자주식회사 Apparatus and method for protecting fusing unit in image forming apparatus, and image forming apparatus having it
JP5927156B2 (en) * 2013-07-31 2016-05-25 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010434A (en) * 1998-06-25 2000-01-14 Canon Inc Image forming device and heating device
JP2000228269A (en) * 1999-02-08 2000-08-15 Canon Inc Heater control unit, electrophotography recorder, heater control method, and control method for thremally fixing heater of electrophotography recorder
JP2001282039A (en) * 2000-03-31 2001-10-12 Canon Inc Image forming device
JP2003043853A (en) * 2001-07-30 2003-02-14 Konica Corp Image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010434A (en) * 1998-06-25 2000-01-14 Canon Inc Image forming device and heating device
JP2000228269A (en) * 1999-02-08 2000-08-15 Canon Inc Heater control unit, electrophotography recorder, heater control method, and control method for thremally fixing heater of electrophotography recorder
JP2001282039A (en) * 2000-03-31 2001-10-12 Canon Inc Image forming device
JP2003043853A (en) * 2001-07-30 2003-02-14 Konica Corp Image forming device

Also Published As

Publication number Publication date
JP2010146028A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4522138B2 (en) Heat fixing device
JP4979449B2 (en) Fixing device
JP5127542B2 (en) Fixing device
JP5465092B2 (en) Fixing apparatus and image forming apparatus
JP4659204B2 (en) Fixing apparatus and image forming apparatus provided with the fixing apparatus
JP5288236B2 (en) Fixing apparatus, image forming apparatus, and fixing method
JP6202936B2 (en) Image heating device
US8731424B2 (en) Image forming apparatus
US9002229B2 (en) Image forming apparatus
JP5528194B2 (en) Image forming apparatus
KR102383348B1 (en) Image heating apparatus and image forming apparatus
JP4574741B2 (en) Heat fixing device
JP4817862B2 (en) Heat fixing device
JP5383148B2 (en) Fixing device
US11198575B2 (en) Image forming device that determines whether a recording material is in a skewed state
JP4773751B2 (en) Image forming apparatus
JP4262010B2 (en) Fixing device
JP2013050634A (en) Image formation device
JP2009186752A (en) Image forming apparatus
JP5901491B2 (en) Fixing temperature monitoring apparatus and image forming apparatus
US11609518B2 (en) Image heating apparatus
JP5156866B2 (en) Fixing device
JP2018014163A (en) Heater, fixing device and image formation device
JP2007256633A (en) Image forming apparatus
JP2006154456A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees