JP4574492B2 - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP4574492B2
JP4574492B2 JP2005237447A JP2005237447A JP4574492B2 JP 4574492 B2 JP4574492 B2 JP 4574492B2 JP 2005237447 A JP2005237447 A JP 2005237447A JP 2005237447 A JP2005237447 A JP 2005237447A JP 4574492 B2 JP4574492 B2 JP 4574492B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
transmission member
winding frame
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005237447A
Other languages
Japanese (ja)
Other versions
JP2007053241A (en
Inventor
衛 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005237447A priority Critical patent/JP4574492B2/en
Publication of JP2007053241A publication Critical patent/JP2007053241A/en
Application granted granted Critical
Publication of JP4574492B2 publication Critical patent/JP4574492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、理化学用NMR分析装置、MRI装置、ICR質量分析装置等に用いられる超電導マグネット装置に関する。   The present invention relates to a superconducting magnet apparatus used in a physicochemical NMR analyzer, an MRI apparatus, an ICR mass spectrometer and the like.

従来、理化学用NMR分析装置、MRI装置、ICR質量分析装置などに用いられ、強力な磁場を発生させることが可能な超電導マグネット装置の一例として、超電導コイルをその中心軸が水平となるように設置した、いわゆる横置き型の超電導マグネット装置が知られている(たとえば、特許文献1参照)。この特許文献1には、同心状に配置された内側コイルおよび外側コイルの軸方向の一端同士をコイル支持体により一体的に固定支持した超電導マグネット装置(特許文献1中の図2参照)を、上記の横置き型に適用する場合には、自重によりコイルに発生する曲げモーメントを低減させる必要があることが記載されている。   Conventionally, as a superconducting magnet device that can be used in physics and chemistry NMR analyzers, MRI devices, ICR mass spectrometers, etc. and can generate a strong magnetic field, a superconducting coil is installed so that its central axis is horizontal. A so-called horizontal type superconducting magnet device is known (see, for example, Patent Document 1). In this Patent Document 1, a superconducting magnet device (see FIG. 2 in Patent Document 1) in which axial ends of the inner and outer coils arranged concentrically are integrally fixed and supported by a coil support. It is described that when applied to the above horizontal type, it is necessary to reduce the bending moment generated in the coil by its own weight.

また、特許文献1には、上記曲げモーメントを低減するために、内側コイルおよび外側コイルの軸方向の一方端同士をコイル支持体により一体的に固定支持するとともに、内側コイルの他方端を径方向荷重支持体により固定支持し、さらに、その径方向荷重支持体の外周面で外側コイルの他方端の内周面を支持するように構成した超電導コイル荷重支持体(特許文献1中の図1参照)が開示されている。この径方向荷重支持体は、外側コイルの内周に嵌め込まれており、各コイルを径方向に支持しながら、軸方向には互いにスライド可能にしている。
特開平11−329824号公報
In Patent Document 1, in order to reduce the bending moment, one end in the axial direction of the inner coil and the outer coil is integrally fixed and supported by a coil support body, and the other end of the inner coil is radially fixed. A superconducting coil load support that is fixedly supported by a load support and further supports the inner peripheral surface of the other end of the outer coil by the outer peripheral surface of the radial load support (see FIG. 1 in Patent Document 1). ) Is disclosed. This radial load support is fitted on the inner periphery of the outer coil, and is slidable in the axial direction while supporting each coil in the radial direction.
JP-A-11-329824

しかしながら、上記特許文献1に開示された従来の超電導コイル荷重支持体では、径方向荷重支持体を外側コイルの内周に嵌め込むことにより外側コイルを径方向に支持しているため、冷却時に内側コイルおよび外側コイルの径方向の間隔が小さくなるのに伴って径方向荷重支持体に作用する応力を、径方向荷重支持体が十分に吸収するのが困難であるという不都合がある。これにより、冷却時に、上記応力が抗力として外側コイルに過剰に作用する場合があるという問題点がある。   However, in the conventional superconducting coil load support disclosed in Patent Document 1, the outer coil is supported in the radial direction by fitting the radial load support into the inner periphery of the outer coil. There is an inconvenience that it is difficult for the radial load support to sufficiently absorb the stress acting on the radial load support as the radial distance between the coil and the outer coil decreases. Accordingly, there is a problem in that the stress may act excessively on the outer coil as a drag during cooling.

この発明は、上記のような課題を解決するためになされたものであり、コイルの自重による曲げモーメント等による強度的負担を軽減し、かつ、冷却時の熱収縮によりコイルに径方向の過剰な負担がかかるのを抑制することが可能な超電導マグネット装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and reduces the burden of strength due to a bending moment caused by the coil's own weight and excessive radial expansion of the coil due to thermal contraction during cooling. An object of the present invention is to provide a superconducting magnet device capable of suppressing the burden.

上記目的を達成するために、この発明の請求項1に記載の超電導マグネット装置は、巻枠に超電導線材を巻線して構成され、軸方向が実質的に水平方向と一致するように配置された第1コイルと、巻枠に超電導線材を巻線して構成され、前記第1コイルを取り巻くように当該第1コイルと同心状に配置され、軸方向の長さ寸法が前記第1コイルよりも大きな第2コイルと、前記第1コイルの一方端のみを支持するとともに、前記第2コイルの両端を支持するコイル支持手段と、前記第1コイルの自重による下方への撓み変形に対する前記第2コイルの巻枠の内周面からの抗力を前記第1コイルに伝達することにより、前記第1コイルの他方端側を上方に向かって押圧可能な抗力伝達手段とを備え、前記抗力伝達手段は、弾性変形可能な弾性部材を含んで前記第1コイルの他方端側の周面に対応する位置に設けられ、前記弾性部材の弾性変形によって、冷却時の前記第1コイルと前記第2コイルとの径方向の相対変位を許容可能とるように構成されていることを特徴とする。 To achieve the above object, a superconducting magnet apparatus according to claim 1 of the present invention is constructed by winding a superconducting wire in the winding frame, placed so that the axis direction coincides with the substantially horizontal direction The first coil is formed by winding a superconducting wire around a winding frame, is arranged concentrically with the first coil so as to surround the first coil, and has an axial length dimension of the first coil. and Do second coil size than, while supporting only one end of the first coil, and the coil support means for supporting opposite ends of said second coil, the relative bending deformation downward due to its own weight of the first coil A drag transmission means capable of pressing the other end side of the first coil upward by transmitting a drag force from an inner peripheral surface of the winding frame of the second coil to the first coil; means, elastically deformable elastic portion Provided a comprise a position corresponding to the peripheral surface of the other end of the first coil, by elastic deformation of the elastic member, a radial relative displacement between said first coil during cooling and the second coil wherein the has been configured to be acceptable.

この請求項1に記載の超電導マグネット装置では、上記のように、第1コイルの自重による下方への撓み変形に対する第2コイルからの抗力を第1コイルに伝達することにより、第1コイルの他方端側を上方に向かって押圧する抗力伝達手段を設けることによって、抗力伝達手段により、コイル支持手段に支持されていない第1コイルの他方端側を、第1コイルの自重による下方向への力(重力)に抗して上方に向かって押圧することができるので、第1コイルの他方端が下方に所定量以上撓むのを抑制することができる。また、抗力伝達手段を、冷却時の第1コイルと第2コイルとの径方向の相対変位を許容可能となるように構成することによって、抗力伝達手段により、冷却時の第1コイルと第2コイルとの径方向の相対変位を吸収することができる。   In the superconducting magnet device according to claim 1, as described above, the resistance from the second coil to the downward bending deformation due to the weight of the first coil is transmitted to the first coil, so that the other of the first coil By providing drag transmission means that presses the end side upward, the drag transmission means causes the other end side of the first coil that is not supported by the coil support means to exert downward force due to the weight of the first coil. Since it can be pressed upward against (gravity), it is possible to suppress the other end of the first coil from bending downward by a predetermined amount or more. Further, the drag transmission means is configured to allow the relative displacement in the radial direction between the first coil and the second coil during cooling, so that the first coil and the second coil during cooling are cooled by the drag transmission means. The relative displacement in the radial direction with respect to the coil can be absorbed.

また、抗力伝達手段弾性変形可能な弾性部材を含むことで、この弾性部材を弾性変形させるだけで、冷却時のコイル間の相対変位を許容して吸収することができるので、冷却時に、コイルに径方向の過剰な負担がかかるのを容易に抑制することができる。 Also, the drag transmitting means elastically deformable elastic member including Mukoto, by the elastic member simply by elastic deformation, since the relative displacement between the cooling time of the coils can be absorbed by permissible, upon cooling, It is possible to easily suppress an excessive radial load on the coil.

上記請求項1に記載の超電導マグネット装置において、抗力伝達手段は、第1コイルに取り付けられ、所定の弾性率を有する弾性部材と、第2コイルの巻枠に当接し、弾性部材に回転可能に保持された転動部材とを含み、弾性部材が弾性変形することによって、冷却時の第1コイルと第2コイルとの径方向の相対変位を許容するとともに、転動部材が第2コイルの巻枠上を転動することによって、冷却時の第1コイルと第2コイルとの軸方向の相対変位を許容する構成としてもよい(請求項)。このように構成すれば、所定の弾性率を有する弾性部材が弾性変形することによって、冷却時の第1コイルと第2コイルとの径方向の相対変位を許容して吸収することができるので、冷却時に、コイルに径方向の過剰な負担がかかるのを容易に抑制することができる。また、弾性部材に回転可能に保持された転動部材が第2コイルの巻枠上を転動することによって、冷却時の第1コイルと第2コイルとの軸方向の相対変位を許容して吸収することができるので、冷却時に、コイルに軸方向の過剰な負担がかかるのを容易に抑制することができる。また、第2コイルの巻枠上を転動する転動部材を用いることによって、転動部材と第2コイルの巻枠との接触部分を点や線に準じた形状にしてその接触面積を低減することができるとともに、冷却時のコイル間の軸方向の相対変位による接触部分の移動に伴って転動部材を転動させることができるので、冷却時の第1コイルと第2コイルとの軸方向の相対変位に伴って上記接触部分に発生する摩擦熱を大幅に低減することができる。 2. The superconducting magnet device according to claim 1, wherein the drag transmission means is attached to the first coil, abuts against an elastic member having a predetermined elastic modulus, and a winding frame of the second coil, and is rotatable on the elastic member. And the elastic member is elastically deformed to allow relative displacement in the radial direction between the first coil and the second coil during cooling, and the rolling member is wound around the second coil. by rolling the Wakujo may be configured to permit relative axial displacement of the cooling time of the first coil and the second coil (claim 2). If comprised in this way, since the elastic member which has predetermined | prescribed elastic modulus elastically deforms, since the relative displacement of the 1st coil and the 2nd coil at the time of cooling can be permitted and absorbed, It is possible to easily suppress an excessive radial load on the coil during cooling. In addition, the rolling member rotatably held by the elastic member rolls on the winding frame of the second coil to allow relative axial displacement between the first coil and the second coil during cooling. Since it can absorb, it can suppress easily that the excessive burden of an axial direction is applied to a coil at the time of cooling. Also, by using a rolling member that rolls on the winding frame of the second coil, the contact area between the rolling member and the winding frame of the second coil is made into a shape that conforms to a point or line, and the contact area is reduced. And the rolling member can be rolled with the movement of the contact portion due to the axial relative displacement between the coils during cooling, so that the axis of the first coil and the second coil during cooling Frictional heat generated at the contact portion with relative displacement in the direction can be greatly reduced.

上記請求項1に記載の超電導マグネット装置において、抗力伝達手段は、第1コイルの他方端近傍に設けられた第1伝達部材と、第2コイルの他方端近傍に設けられ、少なくとも冷却時に第1伝達部材に接触可能な第2伝達部材とを含み、第1伝達部材および第2伝達部材は、各々傾斜面を有しており、冷却時の第1コイルと第2コイルとの軸方向および径方向の相対変位により傾斜面に沿って互いに摺動可能なように、傾斜面同士が対向して配置されている構成としてもよい(請求項)。このように構成すれば、冷却時のコイル間の径方向および軸方向の相対変位に伴って第1伝達部材の傾斜面と第2伝達部材の傾斜面とが互いに摺動するので、上記コイル間の相対変位により第1伝達部材および第2伝達部材の位置関係が変化したとしても、第1伝達部材および第2伝達部材を互いに無理なく接触させ続けることができる。 The superconducting magnet device according to claim 1, wherein the drag transmission means is provided in the vicinity of the other end of the first coil and in the vicinity of the other end of the second coil. A second transmission member that can contact the transmission member, each of the first transmission member and the second transmission member having an inclined surface, and the axial direction and diameter of the first coil and the second coil during cooling. It is good also as a structure by which inclined surfaces are arrange | positioned facing each other so that it can slide mutually along an inclined surface by relative displacement of a direction (Claim 3 ). If comprised in this way, since the inclined surface of a 1st transmission member and the inclined surface of a 2nd transmission member will mutually slide with the radial and axial direction relative displacement between coils at the time of cooling, between the said coils Even if the positional relationship between the first transmission member and the second transmission member changes due to the relative displacement, the first transmission member and the second transmission member can be kept in contact with each other without difficulty.

上記請求項に記載の超電導マグネット装置において、好ましくは、第1伝達部材および第2伝達部材は、少なくとも一方が第1コイルの巻枠の弾性率および第2コイルの巻枠の弾性率よりも小さい弾性率を有している(請求項)。このように構成すれば、冷却時のコイル間の径方向および軸方向の相対変位に対して、第1伝達部材および第2伝達部材の少なくとも一方を大きく変形させることができるので、上記相対変位を抗力伝達手段が十分に吸収することができる。これにより、冷却時に第1コイルおよび第2コイルに過剰な負担がかかるのを十分に抑制することができる。 In the superconducting magnet device according to claim 3 , preferably, at least one of the first transmission member and the second transmission member is more than the elastic modulus of the winding frame of the first coil and the elastic modulus of the winding frame of the second coil. It has a small elastic modulus (Claim 4 ). If comprised in this way, since at least one of a 1st transmission member and a 2nd transmission member can be greatly deformed with respect to the relative displacement of the radial direction between a coil at the time of cooling, and an axial direction, the said relative displacement is reduced. The drag transmission means can sufficiently absorb. Thereby, it can fully suppress that an excessive burden is applied to the 1st coil and the 2nd coil at the time of cooling.

上記請求項またはに記載の超電導マグネット装置において、好ましくは、第1伝達部材の第2伝達部材に対する摩擦係数は、第1コイルの巻枠と第2コイルの巻枠との間の摩擦係数よりも小さい(請求項)。このように構成すれば、冷却時に互いに摺動する第1伝達部材の傾斜面と第2伝達部材の傾斜面との間に発生する摩擦熱を低減することができるので、当該超電導マグネット装置の内部温度を、各コイルが超電導状態となるのに必要な極低温(液体ヘリウム温度)まで容易に低下させることができる。 A superconducting magnet apparatus according to claim 3 or 4, preferably, the coefficient of friction with respect to the second transmission member of the first transmission member, the coefficient of friction between the spool and the spool of the second coil of the first coil (Claim 5 ). If comprised in this way, since the frictional heat which generate | occur | produces between the inclined surface of the 1st transmission member and the inclined surface of a 2nd transmission member which mutually slide at the time of cooling can be reduced, the inside of the said superconducting magnet apparatus The temperature can be easily lowered to the cryogenic temperature (liquid helium temperature) required for each coil to be in a superconducting state.

上記請求項1〜のいずれか1項に記載の超電導マグネット装置において、好ましくは、抗力伝達手段は、第1コイルの他方端側の周面に対応する位置に全周に亘って設けられている(請求項)。このように構成すれば、抗力伝達手段を第1コイルの軸心に対して等方性を有するように配置することができるので、当該超電導マグネット装置をコイルの軸方向が水平であるという条件下でどの向きに設置したとしても、上記と同様の効果を得ることができる。 In the superconducting magnet device according to any one of claims 1 to 5 , preferably, the drag transmission means is provided over the entire circumference at a position corresponding to the peripheral surface on the other end side of the first coil. (Claim 6 ). If comprised in this way, since a drag transmission means can be arrange | positioned so that it may have isotropy with respect to the axial center of a 1st coil, the said superconducting magnet apparatus is the conditions that the axial direction of a coil is horizontal. Even if it is installed in any direction, the same effect as described above can be obtained.

この発明の超電導マグネット装置によれば、第1コイルの他方端が下方に所定量以上撓むのを抑制することができるので、第1コイルの自重による曲げモーメントによる強度的負担を軽減することができる。また、冷却時の第1コイルと第2コイルとの径方向の相対変位を吸収することができるので、冷却時の熱収縮によりコイルに径方向の過剰な負担がかかるのを抑制することができる。   According to the superconducting magnet device of the present invention, it is possible to suppress the other end of the first coil from being bent downward by a predetermined amount or more, so that it is possible to reduce the strength burden caused by the bending moment due to the weight of the first coil. it can. Moreover, since the radial relative displacement of the 1st coil and the 2nd coil at the time of cooling can be absorbed, it can suppress that the excessive burden of a radial direction is applied to a coil by the thermal contraction at the time of cooling. .

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態による超電導マグネット装置の構成を示した断面正面図であり、図2および図3は、図1に示した超電導マグネット装置の要部構成を示した図である。また、図4は、図2に示した超電導マグネット装置の要部の冷却前の状態を示した図である。まず、図1を参照して、本発明の第1実施形態による超電導マグネット装置の構成について説明する。なお、本実施形態の超電導マグネット装置は、超電導コイルの軸方向が水平方向とほぼ一致する、いわゆる、横置き型の超電導マグネット装置である。
(First embodiment)
FIG. 1 is a cross-sectional front view showing the configuration of the superconducting magnet device according to the first embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing the main configuration of the superconducting magnet device shown in FIG. is there. FIG. 4 is a view showing a state before the main part of the superconducting magnet apparatus shown in FIG. 2 is cooled. First, the configuration of the superconducting magnet device according to the first embodiment of the present invention will be described with reference to FIG. Note that the superconducting magnet device of this embodiment is a so-called horizontal type superconducting magnet device in which the axial direction of the superconducting coil substantially coincides with the horizontal direction.

第1実施形態の超電導マグネット装置は、図1に示すように、液体ヘリウム13を収容可能な液体ヘリウム容器14と、液体ヘリウム容器14を外側から覆う輻射熱シールド板16と、輻射熱シールド板16を外側から覆う真空容器20とにより構成される低温容器10を備えている。図中符号13aは、液体ヘリウム容器14内に収容された液体ヘリウム13の液面である。また、液体ヘリウム容器14内には、2つの超電導コイル50および60が液体ヘリウム13中に浸漬された状態で配設されている。なお、第1実施形態の超電導コイル50および60は、それぞれ、本発明の「第1コイル」および「第2コイル」の一例である。   As shown in FIG. 1, the superconducting magnet device of the first embodiment includes a liquid helium container 14 that can contain liquid helium 13, a radiant heat shield plate 16 that covers the liquid helium container 14 from the outside, and a radiant heat shield plate 16 on the outside. And a vacuum container 20 covered with a low-temperature container 10. Reference numeral 13 a in the figure denotes the liquid level of the liquid helium 13 accommodated in the liquid helium container 14. In the liquid helium container 14, two superconducting coils 50 and 60 are disposed in a state immersed in the liquid helium 13. The superconducting coils 50 and 60 of the first embodiment are examples of the “first coil” and the “second coil” of the present invention, respectively.

すなわち、第1実施形態による超電導マグネット装置では、液体ヘリウム容器14が超電導コイル50および60をその冷却のための媒体である液体ヘリウム13とともに収納しており、輻射熱シールド板16および真空容器20が上記液体ヘリウム容器14を収容している。   That is, in the superconducting magnet apparatus according to the first embodiment, the liquid helium container 14 houses the superconducting coils 50 and 60 together with the liquid helium 13 that is a cooling medium, and the radiant heat shield plate 16 and the vacuum container 20 are the above. A liquid helium container 14 is accommodated.

また、超電導コイル50および60と液体ヘリウム容器14と輻射熱シールド板16と真空容器20とは、装置中央に設けられたサンプルセット用の貫通穴11を取り巻くようにドーナツ状に積層配置されており、超電導コイル50および60と貫通穴11とは、ほぼ同軸となるように構成されている。   The superconducting coils 50 and 60, the liquid helium container 14, the radiant heat shield plate 16, and the vacuum container 20 are laminated in a donut shape so as to surround the through hole 11 for the sample set provided in the center of the apparatus. Superconducting coils 50 and 60 and through hole 11 are configured to be substantially coaxial.

また、液体ヘリウム容器14、輻射熱シールド板16および真空容器20の上部には、それぞれ、一対の首管14a、16aおよび20aが上方に向かって延設されている。これらの首管14a、16aおよび20aは、その順で管径が大きくなるように設定されており、各管の軸心が互いに合致するように配設されている。そして、首管14aの外周面に首管16aおよび20aの上端部が溶接、ろう付、はんだ付等の手段により各々接合された状態となっている。従って、液体ヘリウム容器14の首管14aが真空容器20の首管20aの上端から吊り下がり、その首管14aから輻射熱シールド板16の首管16aが吊り下がった状態となっている。   A pair of neck tubes 14a, 16a, and 20a extend upward from the liquid helium container 14, the radiation heat shield plate 16, and the vacuum container 20, respectively. These neck tubes 14a, 16a, and 20a are set so that the diameters of the neck tubes 14a, 16a, and 20a increase in that order, and are arranged so that the axial centers of the tubes coincide with each other. The upper ends of the neck tubes 16a and 20a are joined to the outer peripheral surface of the neck tube 14a by means such as welding, brazing, and soldering. Therefore, the neck tube 14a of the liquid helium container 14 is suspended from the upper end of the neck tube 20a of the vacuum container 20, and the neck tube 16a of the radiant heat shield plate 16 is suspended from the neck tube 14a.

また、液体ヘリウム容器14と輻射熱シールド板16との間、および、輻射熱シールド板16と真空容器20との間には、それぞれ、図示しない連結棒が適宜配設されている。これらの連結棒は、GFRPやCFRPなどの断熱性の高い材料により構成されており、輻射熱シールド板16を含めた各容器同士の連結を行うとともに、事前に張力が付与されたテンションロッドとして機能するように構成されている。   Further, connecting rods (not shown) are appropriately disposed between the liquid helium container 14 and the radiant heat shield plate 16 and between the radiant heat shield plate 16 and the vacuum container 20, respectively. These connecting rods are made of a highly heat-insulating material such as GFRP or CFRP, and connect each container including the radiant heat shield plate 16 and function as a tension rod to which tension is applied in advance. It is configured as follows.

また、液体ヘリウム容器14、輻射熱シールド板16および真空容器20は、それぞれ、非磁性材料により構成されており、その具体的な材質は特に問わないが、液体ヘリウム容器14および真空容器20の材質としては、たとえばステンレス鋼が好適であり、輻射熱シールド板16の材質としては、たとえば熱伝導性に優れたアルミニウム合金が好適である。   Further, the liquid helium container 14, the radiant heat shield plate 16 and the vacuum container 20 are each made of a nonmagnetic material, and the specific materials thereof are not particularly limited, but the materials of the liquid helium container 14 and the vacuum container 20 are as follows. For example, stainless steel is preferable, and the material of the radiant heat shield plate 16 is preferably an aluminum alloy having excellent thermal conductivity, for example.

次に、図1および図3を参照して、液体ヘリウム容器14内に収容される超電導コイル50および60の構成について説明する。   Next, with reference to FIG. 1 and FIG. 3, the structure of the superconducting coils 50 and 60 accommodated in the liquid helium container 14 will be described.

超電導コイル50および60は、図1および図3に示すように、各々円筒形状に形成されており、その軸心が互いに合致するようにほぼ水平に配置されている。すなわち、超電導コイル50は、液体ヘリウム容器14内の径方向の内側に配設されており、超電導コイル60は、上記超電導コイル50を取り巻くように、超電導コイル50の外周面と径方向に所定間隔を隔てて配設されている。また、超電導コイル60は、超電導コイル50に比べて軸方向に長くなるように構成されている。   As shown in FIGS. 1 and 3, the superconducting coils 50 and 60 are each formed in a cylindrical shape, and are arranged substantially horizontally so that their axes coincide with each other. That is, the superconducting coil 50 is disposed radially inside the liquid helium container 14, and the superconducting coil 60 is radially spaced from the outer peripheral surface of the superconducting coil 50 so as to surround the superconducting coil 50. Are arranged apart from each other. Further, the superconducting coil 60 is configured to be longer in the axial direction than the superconducting coil 50.

この超電導コイル50は、巻枠51に超電導線材52を巻線することにより構成されており、巻枠51は、円筒状の胴部51aと、胴部51aの軸方向の両端から径方向に延びるように形成された一対のつば部51bおよび51cとを有している。また、超電導コイル60も、上述の超電導コイル50と同様、胴部61aと一対のつば部61bおよび61cとを有する巻枠61に超電導線材62を巻線することにより構成されている。このような巻枠51,61は、アルミニウム合金やステンレス鋼を主体とする合金などにより構成されるが、上記合金同士を軸方向に繋げることにより構成されていてもよい。また、超電導線材52および62としては、たとえば、NbTi、NbSn、NbAl等の化合物系や酸化物系が挙げられる。 The superconducting coil 50 is configured by winding a superconducting wire 52 around a winding frame 51. The winding frame 51 extends in a radial direction from both the cylindrical body 51a and both ends of the body 51a in the axial direction. A pair of flange portions 51b and 51c formed in this manner. Similarly to the superconducting coil 50 described above, the superconducting coil 60 is also configured by winding a superconducting wire 62 around a winding frame 61 having a body portion 61a and a pair of collar portions 61b and 61c. Such reels 51 and 61 are made of an aluminum alloy, an alloy mainly made of stainless steel, or the like, but may be made by connecting the alloys in the axial direction. Further, examples of the superconducting wires 52 and 62 include compound systems such as NbTi, Nb 3 Sn, and Nb 3 Al, and oxide systems.

前記超電導コイル50を構成する超電導線材52及び巻枠51の材質と、超電導コイル60を構成する超電導線材62及び巻枠61の材質は、互いに同じものであってもよいが、この実施の形態では、前記超電導コイル50と超電導コイル60とで互いに熱収縮率の異なる材質が用いられている。具体的には次のとおりである。   The material of the superconducting wire 52 and the winding frame 51 constituting the superconducting coil 50 and the material of the superconducting wire 62 and the winding frame 61 constituting the superconducting coil 60 may be the same, but in this embodiment, The superconducting coil 50 and the superconducting coil 60 are made of materials having different heat shrinkage rates. Specifically, it is as follows.

内側の巻枠51:ステンレス鋼
外側の巻枠61:アルミニウム合金
内側の超電導線材52:NbSn
外側の超電導線材62:NbTi
また、これらの超電導コイル50および60は、一対のコイル支持部材70aおよび70bにより支持されている。詳細には、液体ヘリウム容器14内には、コイル支持部材70aおよび70bが上記貫通穴11を取り巻くように、かつ、軸方向に所定間隔を隔てて配設されている。超電導コイル50の一方端側(図中の右側)のつば部51bは、スペーサ71を介してコイル支持部材70aにボルト80により固定されており、超電導コイル50の他方端側(図中の左側)のつば部51cは、支持部材等により支持されておらず、自由端として振舞うことが可能なようになっている。また、超電導コイル60の一方端側のつば部61bは、コイル支持部材70aにボルト80により固定されており、超電導コイル60の他方端側のつば部61cは、コイル支持部材70bにボルト80により固定されている。
Inner winding frame 51: Stainless steel Outer winding frame 61: Aluminum alloy Inner superconducting wire 52: Nb 3 Sn
Outer superconducting wire 62: NbTi
These superconducting coils 50 and 60 are supported by a pair of coil support members 70a and 70b. Specifically, coil support members 70a and 70b are disposed in the liquid helium container 14 so as to surround the through hole 11 and at a predetermined interval in the axial direction. A flange 51b on one end side (right side in the figure) of the superconducting coil 50 is fixed to the coil support member 70a with a bolt 80 via a spacer 71, and the other end side (left side in the figure) of the superconducting coil 50. The collar portion 51c is not supported by a support member or the like, and can behave as a free end. The flange portion 61b on one end side of the superconducting coil 60 is fixed to the coil support member 70a by a bolt 80, and the flange portion 61c on the other end side of the superconducting coil 60 is fixed to the coil support member 70b by the bolt 80. Has been.

なお、前記コイル支持部材70a,70bの材質としてはアルミニウム合金が好適であり、またスペーサ71の材質としてはステンレス鋼またはアルミニウム合金が好適であるが、その具体的な材質は特に限定されない。   The coil support members 70a and 70b are preferably made of an aluminum alloy, and the spacer 71 is preferably made of stainless steel or an aluminum alloy, but the specific material is not particularly limited.

このように構成された超電導コイル50は、熱や重力などの外的要因により変形可能であり、具体的には、液体ヘリウム容器14内に液体ヘリウム13を供給して容器内温度を常温から液体ヘリウム温度まで下降させることにより軸方向および径方向に熱収縮(変位)するとともに、超電導コイル50の自重によりその他方端が下方に向かって撓み変形する。なお、超電導コイル50の径方向の熱収縮(変位)は、コイル支持部材70aとともに行われる。   The superconducting coil 50 configured as described above can be deformed by external factors such as heat and gravity. Specifically, the liquid helium 13 is supplied into the liquid helium container 14 to change the container temperature from room temperature to liquid. By lowering to the helium temperature, heat shrinks (displaces) in the axial direction and the radial direction, and the other end of the superconducting coil 50 is bent and deformed downward by its own weight. The thermal contraction (displacement) in the radial direction of the superconducting coil 50 is performed together with the coil support member 70a.

また、超電導コイル60は、冷却時にコイル支持部材70aおよび70bとともに径方向に熱収縮(変位)する一方、その両端がコイル支持部材70aおよび70bに固定されているため、軸方向にはほとんど熱収縮することがないとともに、その自重によってもほとんど変形することがないようになっている。   The superconducting coil 60 is thermally contracted (displaced) in the radial direction together with the coil support members 70a and 70b during cooling, and both ends thereof are fixed to the coil support members 70a and 70b. In addition, there is almost no deformation due to its own weight.

また、冷却時における外側の超電導コイル60の径方向の熱収縮量は、内側の超電導コイル50の径方向の熱収縮量よりも大きい。   Further, the amount of heat shrinkage in the radial direction of the outer superconducting coil 60 during cooling is larger than the amount of heat shrinkage in the radial direction of the inner superconducting coil 50.

これらのことから、第1実施形態の超電導マグネット装置では、超電導コイル50の他方端側の外周面(つば部51c)のうち軸心よりも下方領域が、自重により超電導コイル60の内周面(胴部61a)に近づくように下方に撓み変形する。さらに、冷却時には、超電導コイル50の外周面が超電導コイル60の内周面に相対的に近づくように、超電導コイル50および60が径方向に熱収縮(変位)する。   From these facts, in the superconducting magnet device of the first embodiment, the region below the axial center of the outer peripheral surface (collar portion 51c) on the other end side of the superconducting coil 50 is the inner peripheral surface of the superconducting coil 60 due to its own weight ( It bends and deforms downward so as to approach the body 61a). Further, during cooling, the superconducting coils 50 and 60 are thermally contracted (displaced) in the radial direction so that the outer peripheral surface of the superconducting coil 50 is relatively close to the inner peripheral surface of the superconducting coil 60.

一方、冷却時におけるコイル軸方向の熱収縮については、外側の超電導コイル60がコイル支持部材70a,70bにより両端支持された状態にあるのに対し、内側の超電導コイル50はコイル支持部材70aのみによって片持ち梁の状態で支持されていることから、内側の超電導コイル50の熱収縮量が外側の超電導コイル60よりも大きくなる。すなわち、前記冷却時において、超電導コイル50における巻枠51の自由端側のつば部51cは、超電導コイル60における巻枠61の同じ側のつば部61cよりも大きくコイル支持部材70a側に変位することになる。   On the other hand, regarding the thermal contraction in the coil axis direction during cooling, the outer superconducting coil 60 is supported at both ends by the coil support members 70a and 70b, whereas the inner superconducting coil 50 is only supported by the coil support member 70a. Since it is supported in a cantilever state, the amount of heat shrinkage of the inner superconducting coil 50 is larger than that of the outer superconducting coil 60. That is, at the time of cooling, the flange portion 51c on the free end side of the winding frame 51 in the superconducting coil 50 is displaced to the coil support member 70a side more than the flange portion 61c on the same side of the winding frame 61 in the superconducting coil 60. become.

そこで、本実施形態では、前記両超電導コイル50,60間の軸方向及び径方向についての熱収縮量の差を考慮すべく、これら超電導コイル50,60間に図1〜図3に示すような所定の形状の第1伝達部材53及び第2伝達部材63が介設されている。   Therefore, in this embodiment, in order to take into account the difference in thermal shrinkage between the superconducting coils 50 and 60 in the axial direction and the radial direction, as shown in FIGS. A first transmission member 53 and a second transmission member 63 having a predetermined shape are interposed.

具体的に、前記第1伝達部材53は、超電導コイル50のつば部51cの先端、つまり、超電導コイル50の外周面に、その全周に亘って取り付けられている。この第1伝達部材53は、図2および図4に示すように、軸方向に沿った断面形状がほぼ直角三角形となるように構成されており、その傾斜面53aが超電導コイル50の他方端側(図中の左側)を向くように前記つば部51cに固定されている。   Specifically, the first transmission member 53 is attached to the tip of the flange portion 51c of the superconducting coil 50, that is, the outer peripheral surface of the superconducting coil 50 over the entire circumference. As shown in FIGS. 2 and 4, the first transmission member 53 is configured such that the cross-sectional shape along the axial direction is a substantially right triangle, and the inclined surface 53 a is on the other end side of the superconducting coil 50. It is fixed to the collar portion 51c so as to face (left side in the figure).

一方、第2伝達部材63は、超電導コイル60の胴部61aの他方端側の内周面に、全周に亘って取り付けられている。この第2伝達部材63も、上記第1伝達部材53と同様、軸方向に沿った断面形状がほぼ直角三角形となるように構成されており、その傾斜面63aが前記第1伝達部材53の傾斜面53aと対向して接触可能となるように、すなわち、前記傾斜面63aが超電導コイル60の一方端側(図中の右側)を向くように、前記胴部61aに第2伝達部材63が固定されている。   On the other hand, the 2nd transmission member 63 is attached to the inner peripheral surface of the other end side of the trunk | drum 61a of the superconducting coil 60 over the perimeter. Similarly to the first transmission member 53, the second transmission member 63 is configured such that the cross-sectional shape along the axial direction is a substantially right triangle, and the inclined surface 63 a is an inclination of the first transmission member 53. The second transmission member 63 is fixed to the body portion 61a so that the surface 53a can be opposed to the surface 53a, that is, the inclined surface 63a faces one end side (right side in the drawing) of the superconducting coil 60. Has been.

これらの各伝達部材53および63は、上述した冷却時の超電導コイル50および60間の相対変位に応じて、傾斜面53a(63a)に沿って摺動するように構成されている。すなわち、各伝達部材53および63は、液体ヘリウム容器14内に液体ヘリウム13を供給する前の状態では、図4に示すように、互いの傾斜面53aおよび63a同士が部分的に重なるような位置関係で配設されているのに対し、液体ヘリウム容器14内に液体ヘリウム13を供給して容器内温度を常温から液体ヘリウム温度まで下降させる際に、超電導コイル50,60間の径方向距離が縮まり、かつ、超電導コイル50が超電導コイル60よりも大きく軸方向に熱収縮するのに伴なって、両伝達部材53,63はその傾斜面53a,63aにほぼ沿う方向に相対的に摺動し、その結果、図2に示すように、互いの傾斜面53aおよび63a同士がほぼ全面に亘って重なるような位置関係となる。   Each of these transmission members 53 and 63 is configured to slide along the inclined surface 53a (63a) in accordance with the relative displacement between the superconducting coils 50 and 60 during cooling described above. That is, the transmission members 53 and 63 are positioned so that the inclined surfaces 53a and 63a partially overlap each other as shown in FIG. 4 before the liquid helium 13 is supplied into the liquid helium container 14. In contrast, when the liquid helium 13 is supplied into the liquid helium container 14 and the temperature in the container is lowered from the normal temperature to the liquid helium temperature, the radial distance between the superconducting coils 50 and 60 is reduced. As the superconducting coil 50 contracts and heat-shrinks larger in the axial direction than the superconducting coil 60, both transmission members 53, 63 slide relative to each other along the inclined surfaces 53a, 63a. As a result, as shown in FIG. 2, the positional relationship is such that the inclined surfaces 53a and 63a overlap each other over almost the entire surface.

上記のように、各伝達部材53および63が傾斜面53aおよび63aを有するように構成することによって、上述した冷却時の超電導コイル50および60間の径方向および軸方向の相対変位に伴って冷却時に第1伝達部材53および第2伝達部材63の位置関係が変化する場合に、第1伝達部材53の傾斜面53aと第2伝達部材63の傾斜面63aとが容易に摺動するので、第1伝達部材53および第2伝達部材63を互いに無理なく接触させ続けることが可能である。   As described above, each of the transmission members 53 and 63 is configured to have the inclined surfaces 53a and 63a, so that the cooling along with the radial and axial relative displacements between the superconducting coils 50 and 60 during the cooling described above. Sometimes, when the positional relationship between the first transmission member 53 and the second transmission member 63 changes, the inclined surface 53a of the first transmission member 53 and the inclined surface 63a of the second transmission member 63 slide easily. It is possible to keep the first transmission member 53 and the second transmission member 63 in contact with each other without difficulty.

なお、第1伝達部材53および第2伝達部材63が冷却時に無理なく(その接触部分に大きな負荷が加わることなく)摺動するために、その傾斜面53aおよび63aの傾斜角度を好適な値に設定しておくのが好ましい。   In addition, in order for the 1st transmission member 53 and the 2nd transmission member 63 to slide easily (without applying a big load to the contact part) at the time of cooling, the inclination angle of the inclined surfaces 53a and 63a is made into a suitable value. It is preferable to set it.

すなわち、容器内温度を常温から液体ヘリウム温度まで下降させた際の超電導コイル60に対する超電導コイル50の軸方向成分の相対変位Px(図4参照)および径方向成分の相対変位Pyをデータ等から算出し、超電導コイル50および60間の相対変位Pを求める。そして、傾斜面53aおよび63aが上記ベクトルPの向きに沿うようにその傾斜角度を設定することによって、冷却時の各伝達部材53および63の摺動に伴う負荷を低減することができる。この傾斜角度は、超電導コイル50および60の材質(熱膨張率)や大きさ等により種々に変化する値であるため、具体的には明記しないが、約45°以下に設定されるのが好ましいと考えられる。   That is, the relative displacement Px (see FIG. 4) of the axial component of the superconducting coil 50 and the relative displacement Py of the radial component with respect to the superconducting coil 60 when the container internal temperature is lowered from room temperature to liquid helium temperature are calculated from the data and the like. Then, the relative displacement P between the superconducting coils 50 and 60 is obtained. Then, by setting the inclination angle so that the inclined surfaces 53a and 63a follow the direction of the vector P, it is possible to reduce the load caused by the sliding of the transmission members 53 and 63 during cooling. This inclination angle is a value that varies variously depending on the material (thermal expansion coefficient) and size of the superconducting coils 50 and 60, and is not specifically described, but is preferably set to about 45 ° or less. it is conceivable that.

また、第1伝達部材53の弾性率および第2伝達部材63の弾性率は、いずれも、超電導コイル50の巻枠51の弾性率(この実施の形態ではステンレス鋼の弾性率:約210GPa)および超電導コイル60の巻枠61の弾性率(この実施の形態ではアルミニウム合金の弾性率:約70GPa)よりも小さくなるように構成することが好ましい。また、第1伝達部材53と第2伝達部材63との間の摩擦係数は、超電導コイル50の巻枠51と超電導コイル60の巻枠61との間の摩擦係数よりも小さくなるように構成するのが、好ましい。具体的に、前記第1伝達部材53および第2伝達部材63の材質としては、例えば、ポリテトラフルオロエチレン(弾性率約0.6GPa)、ポリカーボネート(弾性率約2.4GPa)、エポキシ(弾性率約2.6GPa)、ポリイミド(弾性率約4.4GPa)などの絶縁物や、GFRPなどの繊維強化型樹脂を成形あるいは打ち抜きを施した材料が好適である。ただし、両伝達部材53,63にはこれらの伝達部材53,63が設けられる巻枠51,61の材質(この実施の形態ではステンレス鋼及びアルミニウム合金)と同じ材質を用いることも可能である。   The elastic modulus of the first transmission member 53 and the elastic modulus of the second transmission member 63 are both the elastic modulus of the winding frame 51 of the superconducting coil 50 (in this embodiment, the elastic modulus of stainless steel: about 210 GPa) and It is preferable to make the structure smaller than the elastic modulus of the winding frame 61 of the superconducting coil 60 (in this embodiment, the elastic modulus of the aluminum alloy: about 70 GPa). Further, the friction coefficient between the first transmission member 53 and the second transmission member 63 is configured to be smaller than the friction coefficient between the winding frame 51 of the superconducting coil 50 and the winding frame 61 of the superconducting coil 60. Is preferred. Specifically, as the material of the first transmission member 53 and the second transmission member 63, for example, polytetrafluoroethylene (elastic modulus about 0.6 GPa), polycarbonate (elastic modulus about 2.4 GPa), epoxy (elastic modulus) A material obtained by molding or punching an insulator such as about 2.6 GPa) or polyimide (elastic modulus about 4.4 GPa) or a fiber reinforced resin such as GFRP is preferable. However, it is also possible to use the same material as the material of the winding frames 51 and 61 (in this embodiment, stainless steel and aluminum alloy) on which the transmission members 53 and 63 are provided for both the transmission members 53 and 63.

このように構成された超電導コイル50および60では、上述した外的要因による超電導コイル50および60の変形時に、超電導コイル50(60)の軸心よりも下方の所定領域において第1伝達部材53および第2伝達部材63が互いに接触するので、超電導コイル50の自重による下方への撓み変形に対する超電導コイル60からの抗力が超電導コイル50に伝達され、その結果、超電導コイル50の他方端側が上方に向かって押圧される。また、冷却時に第1伝達部材53および第2伝達部材63が互いの傾斜面53aおよび63aに沿って容易に摺動するので、冷却時の超電導コイル50および60間の相対変位が無理なく吸収される。   In the superconducting coils 50 and 60 configured as described above, when the superconducting coils 50 and 60 are deformed due to the above-described external factors, the first transmission member 53 and the first conductive member 53 and the superconducting coils 50 and 60 in a predetermined region below the axis of the superconducting coil 50 (60). Since the second transmission members 63 are in contact with each other, a resistance force from the superconducting coil 60 against downward deformation due to the weight of the superconducting coil 50 is transmitted to the superconducting coil 50, and as a result, the other end side of the superconducting coil 50 faces upward. Pressed. Further, since the first transmission member 53 and the second transmission member 63 easily slide along the inclined surfaces 53a and 63a during cooling, the relative displacement between the superconducting coils 50 and 60 during cooling is absorbed without difficulty. The

第1実施形態では、上記のように、超電導コイル50の自重による下方への撓み変形に対する超電導コイル60からの抗力を超電導コイル50に伝達することにより、超電導コイル50の他方端側を上方に向かって押圧する第1伝達部材53および第2伝達部材63を設けることによって、各伝達部材53および63により、自由端の超電導コイル50の他方端側を、超電導コイル50の自重による下方向への力(重力)に抗して上方に向かって押圧することができるので、超電導コイル50の他方端が下方に所定量以上撓むのを抑制することができる。これにより、超電導コイル50の自重による曲げモーメントによって、巻枠51の胴部51aとつば部51bとの境界部分のうち上端近傍に加わる強度的負担を軽減することができる。   In the first embodiment, as described above, the resistance from the superconducting coil 60 against the downward deformation due to the weight of the superconducting coil 50 is transmitted to the superconducting coil 50, so that the other end side of the superconducting coil 50 faces upward. By providing the first transmission member 53 and the second transmission member 63 to be pressed, the transmission member 53 and 63 causes the other end side of the superconducting coil 50 at the free end to exert a downward force due to the weight of the superconducting coil 50. Since it can be pressed upward against (gravity), the other end of the superconducting coil 50 can be prevented from bending downward by a predetermined amount or more. Thereby, the strength burden added to the upper end vicinity in the boundary part of the trunk | drum 51a of the winding frame 51 and the collar part 51b by the bending moment by the dead weight of the superconducting coil 50 can be reduced.

また、第1実施形態では、上記のように、第1伝達部材53および第2伝達部材63を、冷却時の超電導コイル50および60間の径方向の相対変位を許容可能なように構成することによって、第1伝達部材53および第2伝達部材63により、上記超電導コイル50および60間の径方向の相対変位を吸収することができるので、冷却時の熱収縮により超電導コイル50および60に径方向の過剰な負担がかかるのを抑制することができる。   In the first embodiment, as described above, the first transmission member 53 and the second transmission member 63 are configured so as to allow a relative displacement in the radial direction between the superconducting coils 50 and 60 during cooling. Thus, the first transmission member 53 and the second transmission member 63 can absorb the relative displacement in the radial direction between the superconducting coils 50 and 60, so that the superconducting coils 50 and 60 are radially displaced by the thermal contraction during cooling. It is possible to suppress the excessive burden of.

また、第1実施形態では、上記のように、冷却時の超電導コイル50および60間の径方向および軸方向の相対変位に伴って第1伝達部材53の傾斜面53aと第2伝達部材63の傾斜面63aとが互いに摺動するので、上記超電導コイル50および60間の相対変位により第1伝達部材53および第2伝達部材63の位置関係が変化したとしても、第1伝達部材53および第2伝達部材63を互いに無理なく接触させ続けることができる。   In the first embodiment, as described above, the inclined surface 53a of the first transmission member 53 and the second transmission member 63 are associated with the relative displacement in the radial direction and the axial direction between the superconducting coils 50 and 60 during cooling. Since the inclined surface 63a slides relative to each other, even if the positional relationship between the first transmission member 53 and the second transmission member 63 changes due to the relative displacement between the superconducting coils 50 and 60, the first transmission member 53 and the second transmission member 53 The transmission members 63 can be kept in contact with each other without difficulty.

また、第1実施形態では、上記のように、第1伝達部材53の弾性率および第2伝達部材63の弾性率を、いずれも、超電導コイル50の巻枠51の弾性率および超電導コイル60の巻枠61の弾性率よりも小さくなるように構成することによって、冷却時の超電導コイル50および60間の径方向および軸方向の相対変位に対して、各伝達部材53および63を大きく変形させることができるので、上記相対変位を各伝達部材53および63が十分に吸収することができる。これにより、冷却時に超電導コイル50および60に過剰な負担がかかるのを十分に抑制することができる。   In the first embodiment, as described above, the elastic modulus of the first transmission member 53 and the elastic modulus of the second transmission member 63 are both the elastic modulus of the winding frame 51 of the superconducting coil 50 and the superconducting coil 60. By making the elastic modulus smaller than that of the reel 61, the transmission members 53 and 63 are greatly deformed with respect to the radial and axial relative displacement between the superconducting coils 50 and 60 during cooling. Therefore, each of the transmission members 53 and 63 can sufficiently absorb the relative displacement. As a result, it is possible to sufficiently suppress the excessive burden on the superconducting coils 50 and 60 during cooling.

また、第1実施形態では、上記のように、第1伝達部材53と第2伝達部材63との間の摩擦係数が、超電導コイル50の巻枠51と超電導コイル60の巻枠61との間の摩擦係数よりも小さくなるように構成することによって、冷却時に互いに摺動する第1伝達部材53の傾斜面53aと第2伝達部材63の傾斜面63aとの間に発生する摩擦熱を低減することができるので、当該超電導マグネット装置の内部温度を、各超電導コイル50および60が超電導状態となるのに必要な極低温まで容易に低下させることができる。   In the first embodiment, as described above, the friction coefficient between the first transmission member 53 and the second transmission member 63 is between the winding frame 51 of the superconducting coil 50 and the winding frame 61 of the superconducting coil 60. By reducing the friction coefficient, the frictional heat generated between the inclined surface 53a of the first transmission member 53 and the inclined surface 63a of the second transmission member 63 that slide with each other during cooling is reduced. Therefore, the internal temperature of the superconducting magnet device can be easily lowered to the cryogenic temperature necessary for each superconducting coil 50 and 60 to be in the superconducting state.

また、第1実施形態では、上記のように、第1伝達部材53および第2伝達部材63を、超電導コイル50および60の周面に全周に亘って設けることによって、各伝達部材53および63を超電導コイル50(60)の軸心に対して等方性を有するように配置することができるので、当該超電導マグネット装置を超電導コイル50(60)の軸方向が水平であるという条件下でどの向きに設置したとしても、上述した第1実施形態の効果と同様の効果を得ることができる。   In the first embodiment, as described above, the first transmission member 53 and the second transmission member 63 are provided over the entire circumference of the superconducting coils 50 and 60, so that the transmission members 53 and 63 are provided. Can be arranged so as to be isotropic with respect to the axis of the superconducting coil 50 (60), so that the superconducting magnet device can be arranged under the condition that the axial direction of the superconducting coil 50 (60) is horizontal. Even if installed in the direction, the same effect as the effect of the first embodiment described above can be obtained.

なお、上記第1実施形態では、図3に示すように、第1伝達部材53および第2伝達部材63を超電導コイル50および60に全周に亘って設ける例について示したが、本発明はこれに限らず、図5に示すように、第1伝達部材53を超電導コイル50の外周面のうち軸心より下方の所定領域(本実施形態では、軸心から鉛直下方に向いた状態での見た目の角度αが約90°となる範囲内)のみに設け、第2伝達部材63を超電導コイル60の内周面のうち軸心より下方の上記所定領域のみに設けるように構成してもよい。このように構成すれば、冷却時の超電導コイル50および60間の径方向の相対変位を、伝達部材53および63が設けられていない軸心より上方の領域に超電導コイル50を移動させることにより吸収することができる。また、この場合には、巻枠51のつば部51cを延設することによって第1伝達部材53を形成してもよいし、巻枠61の胴部61aに第2伝達部材63を一体的に形成してもよい。   In the first embodiment, as shown in FIG. 3, the first transmission member 53 and the second transmission member 63 are provided on the superconducting coils 50 and 60 over the entire circumference. 5, as shown in FIG. 5, the first transmission member 53 is a predetermined region below the axial center on the outer peripheral surface of the superconducting coil 50 (in this embodiment, it looks as if it is oriented vertically downward from the axial center). The second transmission member 63 may be provided only in the predetermined region below the axis of the inner peripheral surface of the superconducting coil 60. If comprised in this way, the relative displacement of the radial direction between the superconducting coils 50 and 60 at the time of cooling will be absorbed by moving the superconducting coil 50 to the area | region above the axial center in which the transmission members 53 and 63 are not provided. can do. Further, in this case, the first transmission member 53 may be formed by extending the collar portion 51 c of the winding frame 51, or the second transmission member 63 is integrated with the trunk portion 61 a of the winding frame 61. It may be formed.

また、各伝達部材53および63は、各設定領域に必ずしも連続して形成される必要はなく、各設定領域内に飛び石状に形成されていてもよいが、伝達部材53および63を、それぞれ、軸心から鉛直下方の位置に少なくとも設けた場合には、超電導コイル50の自重による下方への撓み変形に対する超電導コイル60の抗力を超電導コイル50に効率良く伝達することができるので好ましい。   Further, the transmission members 53 and 63 are not necessarily formed continuously in each setting area, and may be formed in a stepping stone shape in each setting area. It is preferable to provide at least a position vertically below the axis because the resistance of the superconducting coil 60 against the downward deformation due to the weight of the superconducting coil 50 can be efficiently transmitted to the superconducting coil 50.

また、図6および図7に示すように、巻枠51のつば部51cに凹部51dを形成し、その凹部51d内に所定のバネ定数を有するバネ部材54を配設するとともに、そのバネ部材54の一方端に、巻枠61の胴部61aに当接しながら転動するボール部材55を回転可能に保持させるような構成としてもよい。このように構成すれば、バネ部材54が圧縮変形(弾性変形)することによって、冷却時の超電導コイル50および60間の径方向の相対変位を容易に許容して吸収することができるので、冷却時に各コイル50および60に径方向に過剰な負担がかかるのを容易に抑制することができる。また、上記構成によれば、バネ部材54に回転可能に保持されたボール部材55が超電導コイル60の巻枠61上を転動することによって、冷却時の超電導コイル50および60間の軸方向の相対変位を容易に許容して吸収することができるので、冷却時に各コイル50および60に軸方向に過剰な負担がかかるのを容易に抑制することができる。また、ボール部材55を、超電導コイル60の巻枠61上を転動可能なように構成することによって、ボール部材55と超電導コイル60の巻枠61との接触部分を点や線に準じた形状にしてその接触面積を低減することができるとともに、冷却時の超電導コイル50および60間の軸方向の相対変位による接触部分の移動に伴ってボール部材55を転動させることができるので、冷却時の超電導コイル50および60間の軸方向の相対変位に伴って上記接触部分に発生する摩擦熱を大幅に低減することができる。なお、この場合にも、バネ部材54およびボール部材55は、超電導コイル50の全周に亘って設けられていてもよいし、上述の所定領域に限定して設けられていてもよい。   Further, as shown in FIGS. 6 and 7, a recess 51d is formed in the flange portion 51c of the winding frame 51, and a spring member 54 having a predetermined spring constant is disposed in the recess 51d. It is good also as a structure which hold | maintains the ball member 55 which rolls in contact with the trunk | drum 61a of the winding frame 61 at one end of this so that rotation is possible. If comprised in this way, since the spring member 54 is compressively deformed (elastically deformed), the relative displacement in the radial direction between the superconducting coils 50 and 60 during cooling can be easily allowed and absorbed. Sometimes it is possible to easily prevent the coils 50 and 60 from being excessively loaded in the radial direction. Further, according to the above configuration, the ball member 55 rotatably held by the spring member 54 rolls on the winding frame 61 of the superconducting coil 60, so that the axial direction between the superconducting coils 50 and 60 during cooling is reduced. Since the relative displacement can be easily allowed and absorbed, it is possible to easily suppress an excessive load on the coils 50 and 60 in the axial direction during cooling. Further, by configuring the ball member 55 so as to roll on the winding frame 61 of the superconducting coil 60, the contact portion between the ball member 55 and the winding frame 61 of the superconducting coil 60 has a shape corresponding to a point or a line. Thus, the contact area can be reduced, and the ball member 55 can be rolled with the movement of the contact portion due to the axial relative displacement between the superconducting coils 50 and 60 during cooling. The frictional heat generated in the contact portion with the relative displacement in the axial direction between the superconducting coils 50 and 60 can be greatly reduced. Also in this case, the spring member 54 and the ball member 55 may be provided over the entire circumference of the superconducting coil 50, or may be provided limited to the predetermined region described above.

他の実施
次に、他の実施例を図に示す。ここに示す超電導マグネット装置は、無冷媒式のものであって、外側容器として真空容器20およびその内側の輻射熱シールド板16を備え、その内側にコイル冷却ステージ36が収納されており、このコイル冷却ステージ36上に超電導コイル150および160が固定支持されている。なお、他実施例の超電導コイル150および160は、内側の超電導コイル150が外側の超電導コイル160よりも長くなるように構成されていること以外、上記第1実施形態の超電導コイル50および60とほぼ同様の構成を有しているため、その詳細な説明を省略する。
( Other examples )
Next, another embodiment in FIG. The superconducting magnet device shown here is a non-refrigerant type, and includes a vacuum vessel 20 and an inner radiation heat shield plate 16 as an outer vessel, and a coil cooling stage 36 is housed inside the vacuum vessel 20. Superconducting coils 150 and 160 are fixedly supported on stage 36. The superconducting coils 150 and 160 of other examples are substantially the same as the superconducting coils 50 and 60 of the first embodiment except that the inner superconducting coil 150 is longer than the outer superconducting coil 160. Since it has the same structure, the detailed description is abbreviate | omitted.

他実施例の超電導マグネット装置は、冷熱源として冷凍機30を備え、その基端部分が真空容器20に固定されている。この冷凍機30には、第1ステージ31およびこの第1ステージ31よりも低温の第2ステージ32を有する二段階冷凍方式の冷凍機が用いられ、第1ステージ31が輻射熱シールド板16に熱伝導可能に接続されるとともに、第2ステージ32が伝熱材34を介してコイル冷却ステージ36に熱伝導可能に接続されている。 The superconducting magnet apparatus according to another embodiment includes a refrigerator 30 as a cold heat source, and a base end portion thereof is fixed to the vacuum container 20. The refrigerator 30 is a two-stage refrigeration refrigerator having a first stage 31 and a second stage 32 that is lower in temperature than the first stage 31, and the first stage 31 conducts heat to the radiant heat shield plate 16. The second stage 32 is connected to the coil cooling stage 36 via the heat transfer material 34 so as to be able to conduct heat.

コイル冷却ステージ36は、銅等の高熱伝導材料により平板状に形成され、図略の連結棒によって輻射熱シールド板16の適所に連結されている。そして、冷凍機30の生成する冷熱によって各コイル150および160の運転温度まで冷却されるとともに、その冷熱を各コイル150および160に伝達する伝熱媒体として機能する。   The coil cooling stage 36 is formed in a flat plate shape using a high heat conductive material such as copper, and is connected to an appropriate position of the radiant heat shield plate 16 by a connecting rod (not shown). And while cooling to the operating temperature of each coil 150 and 160 with the cold heat which the refrigerator 30 produces | generates, it functions as a heat-transfer medium which transmits the cold heat to each coil 150 and 160.

この他実施例の無冷媒式の超電導マグネット装置を、上記第1実施形態に適用することが可能である。 The superconducting magnet device for a continuously-refrigerant of the other embodiment, can be applied to the first embodiment form state.

本発明の第1実施形態による超電導マグネット装置を示した断面正面図である。It is the section front view showing the superconducting magnet device by a 1st embodiment of the present invention. 図1に示した超電導マグネット装置の第1伝達部材および第2伝達部材を示した断面図である。It is sectional drawing which showed the 1st transmission member and the 2nd transmission member of the superconducting magnet apparatus shown in FIG. 図1に示した超電導マグネット装置の超電導コイルを軸方向(右側方)から見た状態を示した側面図である。It is the side view which showed the state which looked at the superconducting coil of the superconducting magnet apparatus shown in FIG. 1 from the axial direction (right side). 図2に示した超電導マグネット装置の第1伝達部材および第2伝達部材の冷却前の状態を示した断面図である。It is sectional drawing which showed the state before cooling of the 1st transmission member of the superconducting magnet apparatus shown in FIG. 2, and a 2nd transmission member. 第1実施形態の変形例1による超電導マグネット装置の超電導コイルを軸方向(右側方)から見た状態を示した側面図である。It is the side view which showed the state which looked at the superconducting coil of the superconducting magnet apparatus by the modification 1 of 1st Embodiment from the axial direction (right side). 第1実施形態の変形例2による超電導マグネット装置の超電導コイルを軸方向(右側方)から見た状態を示した側面図である。It is the side view which showed the state which looked at the superconducting coil of the superconducting magnet apparatus by the modification 2 of 1st Embodiment from the axial direction (right side). 図6中のA−A線に沿った断面図である。It is sectional drawing along the AA line in FIG. 他実施例による超電導マグネット装置を示した断面正面図である。It is the cross-sectional front view which showed the superconducting magnet apparatus by another Example .

50、60 超電導コイル(第1コイル、第2コイル)
51、61、151、161 巻枠
52、62、152、162 超電導線材
53 第1伝達部材(抗力伝達手段)
53a、63a 傾斜面
54 バネ部材(弾性部材、抗力伝達手段)
55 ボール部材(転動部材、抗力伝達手段)
63 第2伝達部材(抗力伝達手段)
70a、70b、170b コイル支持部材(コイル支持手段)
150 超電導コイ
153 第3伝達部材(抗力伝達手段)
160 超電導コイ
50, 60 Superconducting coils (first coil, second coil)
51, 61, 151, 161 Winding frames 52, 62, 152, 162 Superconducting wire 53 First transmission member (drag transmission means)
53a, 63a Inclined surface 54 Spring member (elastic member, drag transmission means)
55 Ball member (rolling member, drag transmission means)
63 Second transmission member (drag transmission means)
70a, 70b, 170b Coil support member (coil support means)
150 superconducting coil
153 Third transmission member (drag transmission means)
160 superconducting coil

Claims (6)

巻枠に超電導線材を巻線して構成され、軸方向が実質的に水平方向と一致するように配置された第1コイルと、
巻枠に超電導線材を巻線して構成され、前記第1コイルを取り巻くように当該第1コイルと同心状に配置され、軸方向の長さ寸法が前記第1コイルよりも大きな第2コイルと、
前記第1コイルの一方端のみを支持するとともに、前記第2コイルの両端を支持するコイル支持手段と、
前記第1コイルの自重による下方への撓み変形に対する前記第2コイルの巻枠の内周面からの抗力を前記第1コイルに伝達することにより、前記第1コイルの他方端側を上方に向かって押圧可能な抗力伝達手段とを備え、
前記抗力伝達手段は、弾性変形可能な弾性部材を含んで前記第1コイルの他方端側の周面に対応する位置に設けられ、前記弾性部材の弾性変形によって、冷却時の前記第1コイルと前記第2コイルとの径方向の相対変位を許容可能とるように構成されていることを特徴とする、超電導マグネット装置。
Is constructed by winding a superconducting wire in the winding frame, a first coil that is placed so that the axis direction coincides with the substantially horizontal direction,
It is constructed by winding superconducting wires on the winding frame, the first disposed on the first coil concentrically so as to surround the coil, larger than the length dimension in the axial direction the first coil Do second coil When,
Coil support means for supporting only one end of the first coil and supporting both ends of the second coil;
By transmitting the resistance from the inner peripheral surface of the winding frame of the second coil to the downward bending deformation due to the weight of the first coil to the first coil, the other end side of the first coil is directed upward. And a drag transmission means that can be pressed
The drag transmitting means, provided at a position corresponding to the other end side of the peripheral surface of the first coil comprises an elastically deformable elastic member, the elastic deformation of the elastic member, said first coil during cooling wherein the has been configured to be acceptable in the radial direction of the relative displacement between the second coil, the superconducting magnet apparatus.
前記抗力伝達手段は、
前記第1コイルに取り付けられ、所定の弾性率を有する弾性部材と、
前記第2コイルの巻枠に当接し、前記弾性部材に回転可能に保持された転動部材とを含み、
前記弾性部材が弾性変形することによって、冷却時の前記第1コイルと前記第2コイルとの径方向の相対変位を許容するとともに、
前記転動部材が前記第2コイルの巻枠上を転動することによって、冷却時の前記第1コイルと前記第2コイルとの軸方向の相対変位を許容する、請求項1に記載の超電導マグネット装置。
The drag transmission means is
An elastic member attached to the first coil and having a predetermined elastic modulus;
A rolling member abutting on the winding frame of the second coil and rotatably held by the elastic member;
While elastically deforming the elastic member, the relative displacement in the radial direction between the first coil and the second coil during cooling is allowed,
2. The superconductivity according to claim 1, wherein the rolling member allows a relative displacement in an axial direction between the first coil and the second coil during cooling by rolling on a winding frame of the second coil. Magnet device.
前記抗力伝達手段は、
前記第1コイルの他方端近傍に設けられた第1伝達部材と、
前記第2コイルの他方端近傍に設けられ、少なくとも冷却時に前記第1伝達部材に接触可能な第2伝達部材とを含み、
前記第1伝達部材および前記第2伝達部材は、各々傾斜面を有しており、冷却時の前記第1コイルと前記第2コイルとの軸方向および径方向の相対変位により前記傾斜面に沿って互いに摺動可能なように、前記傾斜面同士が対向して配置されている、請求項1に記載の超電導マグネット装置。
The drag transmission means is
A first transmission member provided near the other end of the first coil;
A second transmission member provided near the other end of the second coil and capable of contacting at least the first transmission member during cooling;
Each of the first transmission member and the second transmission member has an inclined surface, and along the inclined surface due to an axial and radial relative displacement between the first coil and the second coil during cooling. The superconducting magnet device according to claim 1, wherein the inclined surfaces are arranged so as to be slidable with each other.
前記第1伝達部材および前記第2伝達部材は、少なくとも一方が前記第1コイルの巻枠の弾性率および前記第2コイルの巻枠の弾性率よりも小さい弾性率を有している、請求項に記載の超電導マグネット装置。 The at least one of the first transmission member and the second transmission member has an elastic modulus smaller than an elastic modulus of a winding frame of the first coil and an elastic modulus of a winding frame of the second coil. 3. The superconducting magnet device according to 3 . 前記第1伝達部材の前記第2伝達部材に対する摩擦係数は、前記第1コイルの巻枠と前記第2コイルの巻枠との間の摩擦係数よりも小さい、請求項またはに記載の超電導マグネット装置。 The superconductivity according to claim 3 or 4 , wherein a friction coefficient of the first transmission member with respect to the second transmission member is smaller than a friction coefficient between a winding frame of the first coil and a winding frame of the second coil. Magnet device. 前記抗力伝達手段は、前記第1コイルの他方端側の周面に対応する位置に全周に亘って設けられている、請求項1〜のいずれか1項に記載の超電導マグネット装置。 The superconducting magnet device according to any one of claims 1 to 5 , wherein the drag transmission means is provided over the entire circumference at a position corresponding to a circumferential surface on the other end side of the first coil.
JP2005237447A 2005-08-18 2005-08-18 Superconducting magnet device Expired - Fee Related JP4574492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237447A JP4574492B2 (en) 2005-08-18 2005-08-18 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237447A JP4574492B2 (en) 2005-08-18 2005-08-18 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2007053241A JP2007053241A (en) 2007-03-01
JP4574492B2 true JP4574492B2 (en) 2010-11-04

Family

ID=37917485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237447A Expired - Fee Related JP4574492B2 (en) 2005-08-18 2005-08-18 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP4574492B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5075234B2 (en) 2009-09-02 2012-11-21 ソニー株式会社 Optical element and display device
JP2012208526A (en) * 2009-09-02 2012-10-25 Sony Corp Optical element, and display unit
JP5443249B2 (en) * 2010-04-20 2014-03-19 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
CN102870174B (en) * 2010-03-30 2015-05-20 日本超导体技术公司 Superconducting magnet device
JP6033642B2 (en) * 2012-10-31 2016-11-30 住友重機械工業株式会社 Superconducting magnet device
US10559411B2 (en) 2014-06-09 2020-02-11 Hitachi, Ltd. Superconducting magnet
KR101630616B1 (en) 2014-10-14 2016-06-15 삼성전자 주식회사 Magnetic resonance imaging apparatus
JP6268108B2 (en) * 2015-01-30 2018-01-24 株式会社日立製作所 Superconducting magnet and magnetic resonance imaging device
JP6534630B2 (en) * 2016-03-30 2019-06-26 住友重機械工業株式会社 Superconducting electromagnet device
GB201704683D0 (en) 2017-03-24 2017-05-10 Siemens Healthcare Ltd Electromagnetic assembley
CN117877832B (en) * 2024-03-11 2024-05-24 陕西星环聚能科技有限公司 Superconducting coil supporting device, superconducting magnet device and pre-deformation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155707A (en) * 1986-12-19 1988-06-28 Mitsubishi Electric Corp Superconducting winding device
JPH0278206A (en) * 1988-09-14 1990-03-19 Toshiba Corp Superconducting coil
JPH04252005A (en) * 1990-04-06 1992-09-08 General Electric Co <Ge> Radial supporting system for mr magnet
JPH11329824A (en) * 1998-05-08 1999-11-30 Sumitomo Heavy Ind Ltd Superconducting coil load support
JP2005147668A (en) * 2003-11-11 2005-06-09 Hitachi Ltd Nuclear magnetic resonance equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155707A (en) * 1986-12-19 1988-06-28 Mitsubishi Electric Corp Superconducting winding device
JPH0278206A (en) * 1988-09-14 1990-03-19 Toshiba Corp Superconducting coil
JPH04252005A (en) * 1990-04-06 1992-09-08 General Electric Co <Ge> Radial supporting system for mr magnet
JPH11329824A (en) * 1998-05-08 1999-11-30 Sumitomo Heavy Ind Ltd Superconducting coil load support
JP2005147668A (en) * 2003-11-11 2005-06-09 Hitachi Ltd Nuclear magnetic resonance equipment

Also Published As

Publication number Publication date
JP2007053241A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
JP4574492B2 (en) Superconducting magnet device
US8228147B2 (en) Supported superconducting magnet
US4986078A (en) Refrigerated MR magnet support system
JP4031121B2 (en) Cryostat equipment
JP4133777B2 (en) Nuclear magnetic resonance probe
US5034713A (en) Radial support system for a MR magnet
US20200411218A1 (en) Cryostat assembly having a resilient, heat-conducting connection element
US10527693B2 (en) Superconducting magnet arrangement for magnetic resonance imaging scanner
JPH0559565B2 (en)
US7330029B2 (en) Cryostat configuration with thermally compensated centering
EP0450971B1 (en) Superconductive magnet
JP2005143853A (en) Superconductive magnet device and magnetic resonance imaging device using the same
JP2005144132A (en) Superconductive magnet device and magnetic resonance imaging device using the same
JP3647266B2 (en) Superconducting magnet device
GB2438442A (en) Superconducting coil former and a method of using the said former
JP5361724B6 (en) Supported superconducting magnet
CN214473886U (en) Magnetic resonance apparatus and cryostat
US20090174513A1 (en) Coil formers for mri magnets
JP4056967B2 (en) Nuclear magnetic resonance apparatus
JPH046883A (en) Cryostat
JP2643639B2 (en) Cryogenic equipment
CN117406151A (en) Thermal bus structure for magnetic resonance imaging device
JPS6161553B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees