JP4574413B2 - Reliability test method for semiconductor light emitting device for external cavity laser - Google Patents

Reliability test method for semiconductor light emitting device for external cavity laser Download PDF

Info

Publication number
JP4574413B2
JP4574413B2 JP2005098996A JP2005098996A JP4574413B2 JP 4574413 B2 JP4574413 B2 JP 4574413B2 JP 2005098996 A JP2005098996 A JP 2005098996A JP 2005098996 A JP2005098996 A JP 2005098996A JP 4574413 B2 JP4574413 B2 JP 4574413B2
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
emitting device
emitting element
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005098996A
Other languages
Japanese (ja)
Other versions
JP2006278937A (en
Inventor
貴司 中山
一明 三瀬
浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005098996A priority Critical patent/JP4574413B2/en
Publication of JP2006278937A publication Critical patent/JP2006278937A/en
Application granted granted Critical
Publication of JP4574413B2 publication Critical patent/JP4574413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、外部共振器型レーザ用半導体発光素子の信頼性試験方法に関し、特に窓領域を有する半導体発光素子(以下、窓構造型半導体発光素子という。)と、光導波路の少なくとも1つの端面が素子端面に対して斜めに交差する構造を有する斜め交差構造半導体発光素子等を外部共振器型レーザ用の半導体発光素子として用いる外部共振器型レーザ用半導体発光素子の信頼性試験方法に関する。   The present invention relates to a reliability test method for a semiconductor light emitting device for an external cavity laser, and in particular, a semiconductor light emitting device having a window region (hereinafter referred to as a window structure type semiconductor light emitting device) and at least one end face of an optical waveguide. The present invention relates to a reliability test method for a semiconductor light emitting device for an external resonator type laser using a diagonally crossed semiconductor light emitting device having a structure that obliquely intersects an element end face as a semiconductor light emitting device for an external resonator type laser.

従来、外部共振器型レーザ用の半導体発光素子として、出力特性の波長依存性の平坦性の観点から窓構造型半導体発光素子が開発されてきた(例えば、特許文献1参照。)。特許文献1に開示された窓構造型半導体発光素子は、図5に示すように、メサストライプ部13の長手方向の先端界面15a、15bが長手方向および基板面に直交せず、これらに直交する方向に平行とならないようになっている。   2. Description of the Related Art Conventionally, a window structure type semiconductor light emitting element has been developed as a semiconductor light emitting element for an external cavity type laser from the viewpoint of flatness of wavelength dependency of output characteristics (for example, see Patent Document 1). In the window structure type semiconductor light emitting device disclosed in Patent Document 1, as shown in FIG. 5, the front end interfaces 15a and 15b in the longitudinal direction of the mesa stripe portion 13 are not orthogonal to the longitudinal direction and the substrate surface, but are orthogonal to these. It is not parallel to the direction.

メサストライプ部13の先端界面15a、15bをこのようにすることによって、メサストライプ部13の先端界面15a、15bから出射した光が、窓構造型半導体発光素子の素子端面14a、14bで反射しても実質的にメサストライプ部13の先端界面15a、15bを介してメサストライプ部13に戻らないようになっている。これによって、窓構造型半導体発光素子の素子端面14a、14bとメサストライプ部13の先端界面15a、15bとで反射した光が共鳴することを防止することができ、広帯域にわたって波長依存性の少ない出力特性を実現できる。   By making the tip interfaces 15a and 15b of the mesa stripe part 13 in this way, the light emitted from the tip interfaces 15a and 15b of the mesa stripe part 13 is reflected by the element end faces 14a and 14b of the window structure type semiconductor light emitting element. The mesa stripe part 13 is not substantially returned to the mesa stripe part 13 via the tip interfaces 15a and 15b. As a result, it is possible to prevent the light reflected by the element end faces 14a and 14b of the window structure type semiconductor light emitting element and the front end interfaces 15a and 15b of the mesa stripe part 13 from resonating, and output with less wavelength dependence over a wide band. The characteristics can be realized.

かかる外部共振器型レーザ用の窓構造型半導体発光素子の信頼性試験方法としては、半導体発光素子を組み込んで外部共振器型半導体レーザを構成して行う方法(以下、第1の信頼性試験方法という。)と、外部共振器型半導体レーザを構成せずに窓構造型半導体発光素子に対して行う方法(以下、第2の信頼性試験方法という。)とが知られている。第1の信頼性試験方法は、窓構造型半導体発光素子の実際の利用態様で試験できるため、正確に信頼性を評価することができるという長所がある。   As a reliability test method for such a window structure type semiconductor light emitting device for an external resonator type laser, a method of performing an external resonator type semiconductor laser by incorporating a semiconductor light emitting device (hereinafter referred to as a first reliability test method). And a method (hereinafter referred to as a second reliability test method) performed on a window structure type semiconductor light emitting element without forming an external cavity semiconductor laser. The first reliability test method has an advantage that the reliability can be accurately evaluated because the test can be performed in an actual usage mode of the window structure type semiconductor light emitting device.

しかし、第1の信頼性試験方法で信頼性を評価する場合、システムが複雑でかつ手続きが煩雑であるため、簡易に窓構造型半導体発光素子の信頼性を評価することができないという問題がある。そのため、通常は、第2の信頼性試験方法で窓構造型半導体発光素子の信頼性が評価される。ここで、第2の信頼性試験方法で信頼性を評価する場合、窓構造型半導体発光素子に所定の駆動電流を流してレーザ発振させず発光させ、窓構造型半導体発光素子の反射率の低い出射端面から出射する光をモニタすることによって動作状態を検出する。   However, when the reliability is evaluated by the first reliability test method, there is a problem that the reliability of the window structure type semiconductor light emitting element cannot be easily evaluated because the system is complicated and the procedure is complicated. . Therefore, normally, the reliability of the window structure type semiconductor light emitting element is evaluated by the second reliability test method. Here, when the reliability is evaluated by the second reliability test method, a predetermined drive current is supplied to the window structure type semiconductor light emitting element to emit light without causing laser oscillation, and the window structure type semiconductor light emitting element has low reflectance. The operation state is detected by monitoring the light emitted from the emission end face.

ここで、窓構造型半導体発光素子は、外部共振器型半導体レーザ内でレーザ発振する通常の動作では、レーザ発振中の誘導放出で、活性層に注入されたキャリヤが再結合する。したがって、外部共振器型半導体レーザ内でレーザ発振した状態では、窓構造型半導体発光素子の活性層中のキャリヤのライフタイムは短く、通常、活性層中にキャリヤが過剰に蓄積されることがない。   Here, in the normal operation in which the window structure type semiconductor light emitting element performs laser oscillation in the external resonator type semiconductor laser, carriers injected into the active layer are recombined by stimulated emission during laser oscillation. Therefore, in the state of laser oscillation in the external resonator type semiconductor laser, the lifetime of carriers in the active layer of the window structure type semiconductor light emitting device is short, and normally, carriers are not accumulated excessively in the active layer. .

特開2003−17809号公報Japanese Patent Laid-Open No. 2003-17809

しかし、このような従来の窓構造型半導体発光素子の第1の信頼性試験方法では、簡易に窓構造型半導体発光素子の信頼性評価を行うことができず、また、第2の信頼性試験方法では、精度良く窓構造型半導体発光素子の信頼性を評価できないという問題があった。第2の信頼性試験方法では、レーザ発振させないため誘導放出に寄与せずにライフタイムの長いキャリヤが活性層に過剰に蓄積され、活性層に蓄積されたキャリヤが素子の寿命等を1〜2桁程度低下させてしまうからである。   However, in the first reliability test method for the conventional window structure type semiconductor light emitting device, the reliability evaluation of the window structure type semiconductor light emitting device cannot be easily performed, and the second reliability test is performed. This method has a problem that the reliability of the window structure type semiconductor light emitting device cannot be evaluated with high accuracy. In the second reliability test method, since laser oscillation is not performed, carriers having a long lifetime are excessively accumulated in the active layer without contributing to stimulated emission, and the carriers accumulated in the active layer reduce the lifetime of the device by 1-2. This is because it is reduced by an order of magnitude.

本発明はこのような問題を解決するためになされたもので、半導体発光素子を組み込んで外部共振器型半導体レーザを構成することなく、従来の信頼性試験方法よりも高い精度で外部共振器型レーザ用半導体発光素子の信頼性を評価することができる外部共振器型レーザ用半導体発光素子の信頼性試験方法を提供するものである。   The present invention has been made to solve such a problem, and does not constitute an external resonator type semiconductor laser by incorporating a semiconductor light emitting element, and has an external resonator type with higher accuracy than a conventional reliability test method. An object of the present invention is to provide a reliability test method for a semiconductor light emitting device for an external resonator type laser capable of evaluating the reliability of the semiconductor light emitting device for laser.

以上の点を考慮して、請求項1に係る発明は、外部共振器型レーザに用いられ、その内部に形成された光導波路の光導波方向における素子端面の少なくとも一方に窓領域を有する半導体発光素子の信頼性試験方法であって、前記半導体発光素子と同一の被検査半導体発光素子を準備する工程と、前記被検査半導体発光素子の単体での発振しきい値を、前記半導体発光素子を用いて構成した前記外部共振器型レーザで想定されるしきい値と同等にするように、前記被検査半導体発光素子を加工するしきい値調整工程と、前記しきい値調整工程で加工された前記被検査半導体発光素子に試験電流を流し、レーザ発振させて前記半導体発光素子の信頼性を評価する発振評価工程とを備え、前記しきい値調整工程は、前記被検査半導体発光素子の前記窓領域を、前記被検査半導体発光素子の素子長が前記半導体発光素子の素子長よりも短くなる位置でへきかいする窓へきかい工程と、前記被検査半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成する高反射膜形成工程とのうち、少なくともいずれか1つの工程を備えた構成を有している。 In view of the above points, the invention according to claim 1 is a semiconductor light emitting device that is used for an external cavity laser and has a window region on at least one of element end faces in the optical waveguide direction of an optical waveguide formed inside the laser. a reliability test method for the device, a step of preparing the semiconductor light-emitting device of the same inspected semiconductor light-emitting device, wherein the oscillation threshold at a single inspection semiconductor light emitting element, the semiconductor light emitting element Processed in the threshold value adjusting step for processing the semiconductor light emitting element to be inspected and the threshold value adjusting step so as to be equal to the threshold value assumed in the external resonator type laser constituted by using the flow of test current to be inspected semiconductor light emitting element, by laser oscillation with an oscillation evaluation step of evaluating the reliability of the semiconductor light emitting device, the threshold adjustment step, the of the inspection semiconductor light emitting element Highly reflective to at least one of a window opening step in which a region is opened at a position where the element length of the semiconductor light emitting element to be inspected is shorter than the element length of the semiconductor light emitting element, and an element end face of the semiconductor light emitting element to be inspected It has the structure provided with at least any one process among the highly reflective film formation processes which form a film | membrane .

この構成により、しきい値調整工程で単体の被検査半導体発光素子の発振しきい値を外部共振器型レーザで想定されるしきい値と同等にするように、被検査半導体発光素子が加工されるため、半導体発光素子を組み込んで外部共振器型半導体レーザを構成することなく、従来の信頼性試験方法よりも高い精度で外部共振器型レーザ用半導体発光素子の信頼性を評価することが可能な外部共振器型レーザ用半導体発光素子の信頼性試験方法を実現できる。
また、この構成により、しきい値調整工程で被検査半導体発光素子の一部をへきかいまたは素子端面に高反射膜を形成することによって発振しきい値の調整を行うため、簡易に外部共振器型レーザ用半導体発光素子の信頼性を評価することが可能な外部共振器型レーザ用半導体発光素子の信頼性試験方法を実現できる。
This configuration, as equal to the threshold value is assumed the oscillation threshold of a single object to be inspected semiconductor light emitting element by the threshold adjustment process by an external cavity laser, the inspected semiconductor light-emitting device is processed Therefore, it is possible to evaluate the reliability of a semiconductor light emitting device for an external resonator type laser with higher accuracy than a conventional reliability test method without incorporating a semiconductor light emitting device to constitute an external resonator type semiconductor laser. It is possible to realize a reliability test method for a semiconductor light emitting device for an external cavity type laser.
In addition, this configuration makes it easy to adjust the oscillation threshold by scratching a part of the semiconductor light emitting element to be inspected or forming a highly reflective film on the end face of the element in the threshold adjustment step. It is possible to realize a reliability test method for a semiconductor light emitting element for an external resonator type laser capable of evaluating the reliability of the semiconductor light emitting element for laser.

また、請求項2に係る発明は、外部共振器型レーザに用いられ、その内部に形成された光導波路の少なくとも1つの端面が素子端面に対して斜めに交差する構造を有する半導体発光素子の信頼性試験方法であって、前記半導体発光素子と同一の被検査半導体発光素子を準備する工程と、前記被検査半導体発光素子の単体での発振しきい値を、前記半導体発光素子を用いて構成した前記外部共振器型レーザで想定されるしきい値と同等にするように、前記被検査半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成する高反射膜形成工程と、前記高反射膜形成工程で加工された前記被検査半導体発光素子に試験電流を流し、レーザ発振させて前記半導体発光素子の信頼性を評価する発振評価工程とを備えた構成を有している。 The invention according to claim 2 is a reliability of a semiconductor light emitting device used for an external resonator type laser and having a structure in which at least one end face of an optical waveguide formed therein obliquely intersects the end face of the element. A test method comprising: preparing a semiconductor light emitting element to be inspected that is the same as the semiconductor light emitting element; and forming a single oscillation threshold of the semiconductor light emitting element to be inspected using the semiconductor light emitting element. A highly reflective film forming step of forming a highly reflective film on at least one of element end faces of the semiconductor light emitting element to be inspected so as to be equal to a threshold assumed for the external cavity laser; And an oscillation evaluation step of evaluating the reliability of the semiconductor light emitting device by applying a test current to the semiconductor light emitting device to be inspected processed in the reflective film forming step to cause laser oscillation .

この構成により、高反射膜形成工程被検査半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成することによって発振しきい値の調整を行うため、簡易に外部共振器型レーザ用の窓構造型半導体発光素子の信頼性を評価することが可能な外部共振器型レーザ用半導体発光素子の信頼性試験方法を実現できる。 With this configuration, for adjusting the oscillation threshold by forming on at least one high-reflection film of the element end face of the inspection semiconductor light-emitting device with a highly reflective film forming step, an external cavity laser in a simple It is possible to realize a reliability testing method for a semiconductor light emitting device for an external resonator type laser that can evaluate the reliability of the window structure type semiconductor light emitting device for use.

本発明は、しきい値調整工程で単体の半導体発光素子の発振しきい値を外部共振器型レーザで想定されるしきい値と同等にするように、半導体発光素子が加工されるため、半導体発光素子を組み込んで外部共振器型半導体レーザを構成することなく、従来の信頼性試験方法よりも高い精度で外部共振器型レーザ用半導体発光素子の信頼性を評価することが可能な外部共振器型レーザ用半導体発光素子の信頼性試験方法を提供できる。   In the present invention, the semiconductor light emitting device is processed so that the oscillation threshold value of the single semiconductor light emitting device is equal to the threshold value assumed for the external cavity laser in the threshold adjustment step. An external resonator capable of evaluating the reliability of a semiconductor light emitting device for an external resonator type laser with higher accuracy than a conventional reliability test method without forming an external resonator type semiconductor laser by incorporating a light emitting device A reliability test method for a semiconductor light emitting device for a type laser can be provided.

以下、本発明の実施の形態について、図面を用いて説明する。
(実施の形態)
図1〜図4は、本発明の実施の形態に係る外部共振器型レーザ用半導体発光素子の信頼性試験方法について説明するための図である。図1(a)には、外部共振器型レーザ用半導体発光素子としての窓構造型半導体発光素子の概略の構成を示す。図1(a)において、活性層を有するメサストライプ部111の出射端と窓構造型半導体発光素子100の出射端面112との間には窓領域114が設けられ、窓構造型半導体発光素子100の出射端面112からの反射光が反対側の反射端面113との間でレーザ共振しないようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment)
1 to 4 are diagrams for explaining a reliability test method for an external cavity laser light emitting device according to an embodiment of the present invention. FIG. 1A shows a schematic configuration of a window structure type semiconductor light emitting device as a semiconductor light emitting device for an external resonator type laser. In FIG. 1A, a window region 114 is provided between the emission end of the mesa stripe portion 111 having an active layer and the emission end surface 112 of the window structure type semiconductor light emitting device 100. The reflected light from the emission end face 112 does not resonate with the reflection end face 113 on the opposite side.

以下、メサストライプ部111の先端界面と窓構造型半導体発光素子100の出射端面112との間の距離を、窓領域長という。窓領域長は、レーザ共振を防止する観点からその値が設定される。窓構造型半導体発光素子100の構造にもよるが、窓領域長は、通常10μm以上の長さとされ、好適には20〜40μm程度に設定される。窓領域長をこのように設定することによって、出射端面112からの反射光がメサストライプ部111に実質的に入射しないようになっている。   Hereinafter, the distance between the tip interface of the mesa stripe portion 111 and the emission end face 112 of the window structure type semiconductor light emitting device 100 is referred to as a window region length. The value of the window region length is set from the viewpoint of preventing laser resonance. Although depending on the structure of the window structure type semiconductor light emitting device 100, the window region length is usually set to 10 μm or more, and preferably set to about 20 to 40 μm. By setting the window region length in this way, the reflected light from the emission end face 112 is not substantially incident on the mesa stripe portion 111.

出射端面112上には、通常、窓構造型半導体発光素子100から出射する光が反射されないように所定の反射率以下の無反射膜115が形成されている。ただし、信頼性試験対象の窓構造型半導体発光素子は、図1(b)に示すように、窓構造型半導体発光素子100から無反射膜115を除いた構成の窓構造型半導体発光素子110でもよい。以下、特に断る場合を除き、窓構造型半導体発光素子100と記載した場合は、窓構造型半導体発光素子110を含むものとする。   On the emission end face 112, an antireflection film 115 having a predetermined reflectance or less is usually formed so that light emitted from the window structure type semiconductor light emitting device 100 is not reflected. However, as shown in FIG. 1B, the window structure type semiconductor light emitting device 110 in which the non-reflective film 115 is removed from the window structure type semiconductor light emitting device 100 as shown in FIG. Good. Hereinafter, the window structure type semiconductor light emitting device 100 includes the window structure type semiconductor light emitting device 110 unless otherwise specified.

本発明の実施の形態に係る外部共振器型レーザ用半導体発光素子の信頼性試験方法は、半導体発光素子の単体での発振しきい値を、半導体発光素子を用いて構成した外部共振器型レーザで想定されるしきい値と同等にするように、半導体発光素子を加工するしきい値調整工程と、しきい値調整工程で加工された半導体発光素子に試験電流を流し、レーザ発振させて半導体発光素子の信頼性を評価する発振評価工程とを有する。   A method of testing a reliability of a semiconductor light emitting device for an external resonator type laser according to an embodiment of the present invention includes: an external resonator type laser configured by using a semiconductor light emitting device as a single oscillation threshold value of the semiconductor light emitting device. The threshold adjustment step for processing the semiconductor light emitting device and the semiconductor light emitting device processed in the threshold adjustment step are supplied with a test current to cause the laser to oscillate so that it is equivalent to the threshold value assumed in FIG. And an oscillation evaluation step for evaluating the reliability of the light emitting element.

窓構造型半導体発光素子100を外部共振器型レーザ用半導体発光素子とする場合、上記のしきい値調整工程は、窓構造型半導体発光素子100の窓領域116を外部共振器型レーザ内で使用されるときよりも短くなる位置でへきかいする窓へきかい工程(図1(c)参照。)と、窓構造型半導体発光素子100の素子端面のうちの少なくとも一方に高反射膜を形成する高反射膜形成工程とのうち、少なくともいずれか1つの工程を備えるように構成される。   When the window structure type semiconductor light emitting device 100 is used as a semiconductor light emitting device for an external resonator type laser, the above threshold adjustment step uses the window region 116 of the window structure type semiconductor light emitting device 100 in the external resonator type laser. A high-reflective film that forms a high-reflective film on at least one of the end face of the window structure type semiconductor light-emitting device 100 and a window-peeling step (see FIG. 1C) that is opened at a position that is shorter than that of the window structure type. It is comprised so that at least any one process may be provided among a formation process.

メサストライプ部111は、通常、例えば<011>軸等の所定の結晶軸方向に長手方向が向き、窓構造型半導体発光素子100の出射端面をへきかいで形成しやすいようになっている。以下、メサストライプ部111の長手方向は<011>軸方向を向き、窓領域長は30μmに設定されているものとする。また、<011>軸に直交するへきかい面に対して窓領域長が30μm以下であればレーザ発振するようになっているものとする。   The mesa stripe portion 111 is usually oriented in the longitudinal direction in a predetermined crystal axis direction such as the <011> axis, for example, so that the emission end face of the window structure type semiconductor light emitting element 100 can be easily formed. Hereinafter, it is assumed that the longitudinal direction of the mesa stripe portion 111 faces the <011> axis direction and the window region length is set to 30 μm. Further, it is assumed that laser oscillation is performed when the window region length is 30 μm or less with respect to the cleavage plane orthogonal to the <011> axis.

この場合、窓へきかい工程で行われるへきかいは、<011>軸に直交する(011)面が得られ、窓領域長が15μm程度に短縮されるように行われる。以下、窓へきかい工程で得られたへきかい面をへきかい端面という。上記のようにへきかい端面117を形成することによって、窓構造型半導体発光素子100内でレーザ発振させることができるようになる。   In this case, the screening performed in the window screening process is performed such that a (011) plane orthogonal to the <011> axis is obtained and the window region length is reduced to about 15 μm. In the following, the face obtained in the window making process is referred to as a face end face. By forming the large end face 117 as described above, laser oscillation can be performed in the window structure type semiconductor light emitting device 100.

なお、上記では、へきかいして得られた窓領域の窓領域長(以下、短縮窓領域長という。)を15μm程度としたが、へきかいで得られるへきかい端面117の位置の誤差(以下、へきかい誤差という。)に応じて短縮窓領域長を決定するのでもよい。具体的には、へきかい誤差が例えば5μmのときは、短縮窓領域長を10μm〜25μmとし、窓領域を残すと共にレーザ発振を担保するようにするのでもよい。   In the above description, the window region length (hereinafter referred to as a shortened window region length) of the window region obtained by the cracking is set to about 15 μm. However, an error in the position of the crack end face 117 obtained by the cracking (hereinafter referred to as a cracking error). The shortened window area length may be determined according to the above. Specifically, when the cracking error is 5 μm, for example, the shortened window region length may be set to 10 μm to 25 μm to leave the window region and ensure laser oscillation.

また、図2(d)に示すように、へきかい端面117上に反射率を高める薄膜(以下、高反射膜という。)121を形成し、レーザ発振に必要な反射率以上の反射率を有する出射端面をより確実に形成するのでもよい。さらに、窓構造型半導体発光素子100が、所定の反射率の高反射膜を無反射膜115上に設けたときにレーザ発振するように構成されている場合は、図2(e)に示すように、レーザ発振を可能にする反射率の高反射膜122を無反射膜115上に形成するのでもよい。   Further, as shown in FIG. 2 (d), a thin film (hereinafter referred to as a highly reflective film) 121 for increasing the reflectance is formed on the gap end face 117, and the output has a reflectance higher than the reflectance necessary for laser oscillation. The end face may be formed more reliably. Further, when the window structure type semiconductor light emitting element 100 is configured to oscillate when a high reflection film having a predetermined reflectance is provided on the non-reflection film 115, as shown in FIG. In addition, a highly reflective film 122 having a reflectance that enables laser oscillation may be formed on the non-reflective film 115.

同様に、窓構造型半導体発光素子110が、所定の反射率の高反射膜を出射端面112上に設けたときにレーザ発振するように構成されている場合は、図2(f)に示すように、レーザ発振を可能にする反射率の高反射膜123を出射端面112上に形成するのでもよい。以下、高反射膜121〜123のいずれかを形成する工程を、高反射膜形成工程という。   Similarly, when the window structure type semiconductor light emitting device 110 is configured to oscillate when a high reflection film having a predetermined reflectance is provided on the emission end face 112, as shown in FIG. In addition, a highly reflective film 123 having a reflectance that enables laser oscillation may be formed on the emission end face 112. Hereinafter, the process of forming any of the highly reflective films 121 to 123 is referred to as a highly reflective film forming process.

次に、発振評価工程について説明する。まず、上記の窓へきかい工程および高反射膜形成工程のうちのいずれかの工程がしきい値調整工程として行われ、発振可能となった窓構造型半導体発光素子(以下、被検査窓構造型半導体発光素子という。)に配線等を接続し、通電可能状態とする。次に、被検査窓構造型半導体発光素子に、試験電流を通電してレーザ発振させる。ここで、レーザ発振は、被検査窓構造型半導体発光素子からの出力光をモニタして検出する。   Next, the oscillation evaluation process will be described. First, a window structure type semiconductor light emitting device (hereinafter referred to as a window structure type semiconductor to be inspected) in which any one of the above-described window grinding process and high reflection film forming process is performed as a threshold adjustment process. A wiring or the like is connected to the light emitting element) so that energization is possible. Next, a laser current is oscillated by supplying a test current to the inspection window structure type semiconductor light emitting element. Here, the laser oscillation is detected by monitoring the output light from the inspection window structure type semiconductor light emitting element.

なお、被検査窓構造型半導体発光素子に通電する試験電流の強さは、評価する信頼性の内容に応じて変えるようにするのでもよい。具体的には、長時間にわたり通電する長期寿命試験、寿命試験の時間を短縮するために温度を上げて行う加速試験、一定電流を通電して光出力の変動を測定する定電流試験、一定の出力を維持して素子の劣化に応じて電流を増加させていく低出力試験等に応じて変えるのでもよい。   It should be noted that the strength of the test current applied to the inspection window structure type semiconductor light emitting element may be changed in accordance with the content of reliability to be evaluated. Specifically, a long-term life test that energizes over a long period of time, an accelerated test that raises the temperature to shorten the time of the life test, a constant-current test that measures fluctuations in light output by energizing a constant current, a constant test It may be changed according to a low output test or the like in which the output is maintained and the current is increased according to the deterioration of the element.

上記で説明したように、発振評価工程では、試験電流を通電して被検査窓構造型半導体発光素子をレーザ発振させて信頼性を評価するため、活性層に注入された電子およびホールはレーザ発振中の誘導放出で再結合し、レーザ発振させない場合のように活性層中に過剰に蓄積されることはない。その結果、背景技術で説明したような、窓構造型半導体発光素子の寿命を1〜2桁も縮めてしまう問題を除去できる。   As described above, in the oscillation evaluation process, the test current is supplied to cause the inspected window structure type semiconductor light emitting element to oscillate and evaluate the reliability, so that the electrons and holes injected into the active layer are oscillated. Recombination by stimulated emission therein does not cause excessive accumulation in the active layer as in the case of no laser oscillation. As a result, the problem of shortening the lifetime of the window structure type semiconductor light emitting element as described in the background art by 1 to 2 digits can be eliminated.

上記では、外部共振器型レーザ用半導体発光素子として窓構造型半導体発光素子を例にとり説明したが、例えば図3に示すような、光導波路の少なくとも1つの端面が素子端面に対して斜めに交差する構造を有する斜め交差構造半導体発光素子についても同様に適用できる。図3(a1)および(b1)は、斜め交差構造半導体発光素子の概略の構成の一例を示す説明図である。図3(a1)に示す斜め交差構造半導体発光素子300は、素子端面312近傍で導波路311が角度θ傾斜し、導波路の端面が素子端面に対して斜めに交差する構造を有する。また、図3(b1)に示す斜め交差構造半導体発光素子500は、導波路511が素子端面512、513間を結ぶ直線から角度φ傾斜し、導波路の端面が素子端面に対して斜めに交差する構造を有する。   In the above description, the window structure type semiconductor light emitting element is described as an example of the semiconductor light emitting element for an external cavity laser. However, for example, as shown in FIG. 3, at least one end face of the optical waveguide obliquely intersects the element end face. The present invention can be similarly applied to a diagonally crossed structure semiconductor light emitting device having the above structure. FIGS. 3A1 and 3B1 are explanatory diagrams illustrating an example of a schematic configuration of a diagonally crossed semiconductor light emitting device. The obliquely crossed semiconductor light emitting device 300 shown in FIG. 3A1 has a structure in which the waveguide 311 is inclined at an angle θ in the vicinity of the element end face 312 and the end face of the waveguide intersects with the element end face obliquely. Further, in the oblique cross structure semiconductor light emitting device 500 shown in FIG. 3B1, the waveguide 511 is inclined by an angle φ from a straight line connecting the element end faces 512 and 513, and the end face of the waveguide crosses the element end face obliquely. It has the structure to do.

外部共振器型レーザ用半導体発光素子が斜め交差構造半導体発光素子の場合、上記のしきい値調整工程では、斜め交差構造半導体発光素子300の素子端面312、313のうちの少なくとも一方(図3(a2)では312)に高反射膜415を形成する。図3(b1)に示す斜め交差構造半導体発光素子500の場合も同様に、斜め交差構造半導体発光素子500の素子端面512、513のうちの少なくとも一方(図3(b2)では512)に高反射膜615を形成する。以下、この工程を高反射膜形成工程という。高反射膜形成工程で高反射膜を形成することによって発振可能となった斜め交差構造半導体発光素子(以下、被検査斜め交差構造半導体発光素子という。)400、600は、発振評価工程で上記の方法と同様に信頼性が評価される。   In the case where the semiconductor light emitting element for an external resonator type laser is a diagonally crossed semiconductor light emitting element, in the above threshold adjustment step, at least one of the element end faces 312 and 313 of the diagonally crossed semiconductor light emitting element 300 (FIG. 3 ( In a2), a highly reflective film 415 is formed in 312). Similarly, in the case of the obliquely crossed semiconductor light emitting device 500 shown in FIG. 3B1, high reflection is applied to at least one of the element end faces 512 and 513 (512 in FIG. 3B2) of the obliquely crossed semiconductor light emitting device 500. A film 615 is formed. Hereinafter, this process is referred to as a highly reflective film forming process. The oblique cross structure semiconductor light emitting devices (hereinafter referred to as “inspected oblique cross structure semiconductor light emitting devices”) 400 and 600 that can be oscillated by forming the high reflection film in the high reflection film formation step are the above-described in the oscillation evaluation step. Reliability is evaluated in the same way as the method.

なお、上記では、光導波路の少なくとも1つの端面が素子端面に対して斜めに交差する構造を有する斜め交差構造半導体発光素子を例にとり説明したが、請求項2の本発明の適用は図4に示すように、導波路の端面と素子端面間に窓領域が設けられた構成の斜め交差構造半導体発光素子についても同様に適用される。図4に示す半導体発光素子は、窓領域を有するため、窓領域をへきかいして短縮することによって反射率を高くすることができる。さらに、光導波路の端面が素子端面に対して斜めになっていることによって反射率が低下しているため、素子端面にさらに高反射膜を形成してもよい。   In the above description, the oblique cross structure semiconductor light emitting element having a structure in which at least one end face of the optical waveguide obliquely intersects with the element end face has been described as an example. As shown, the present invention is similarly applied to an obliquely crossed structure semiconductor light emitting device having a configuration in which a window region is provided between the end face of the waveguide and the end face of the element. Since the semiconductor light emitting element shown in FIG. 4 has a window region, the reflectance can be increased by shortening the window region by scratching. Furthermore, since the reflectivity is lowered because the end face of the optical waveguide is inclined with respect to the end face of the element, a further highly reflective film may be formed on the end face of the element.

以上説明したように、本発明の実施の形態に係る外部共振器型レーザ用半導体発光素子の信頼性試験方法は、しきい値調整工程で単体の半導体発光素子の発振しきい値を外部共振器型レーザで想定されるしきい値と同等にするように、半導体発光素子が加工されるため、半導体発光素子を組み込んで外部共振器型半導体レーザを構成することなく、従来の信頼性試験方法よりも高い精度で外部共振器型レーザ用半導体発光素子の信頼性を評価することができる。   As described above, the reliability test method for a semiconductor light-emitting device for an external resonator type laser according to an embodiment of the present invention uses the external resonator to set the oscillation threshold value of a single semiconductor light-emitting device in the threshold adjustment step. Since the semiconductor light emitting device is processed so as to be equivalent to the threshold value assumed for the type laser, it is more reliable than the conventional reliability test method without forming the external resonator type semiconductor laser by incorporating the semiconductor light emitting device. It is possible to evaluate the reliability of the semiconductor light emitting element for external cavity laser with high accuracy.

また、しきい値調整工程で窓構造型半導体発光素子の窓領域の一部をへきかいまたは素子端面に高反射膜を形成することによって発振しきい値の調整を行うため、簡易に外部共振器型レーザ用の窓構造型半導体発光素子の信頼性を評価することができる。   In addition, the threshold value adjustment process is used to adjust the oscillation threshold by scratching a part of the window region of the window structure type semiconductor light emitting element or forming a highly reflective film on the end face of the element. The reliability of the window structure type semiconductor light emitting element for laser can be evaluated.

さらに、しきい値調整工程で斜め交差構造半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成することによって発振しきい値の調整を行うため、簡易に外部共振器型レーザ用の斜め交差構造半導体発光素子の信頼性を確実に評価することができる。   Furthermore, since the oscillation threshold value is adjusted by forming a highly reflective film on at least one of the element end faces of the obliquely crossed structure semiconductor light emitting element in the threshold value adjusting step, it can be easily used for an external resonator type laser. The reliability of the obliquely crossed semiconductor light emitting device can be reliably evaluated.

本発明に係る外部共振器型レーザ用半導体発光素子の信頼性試験方法は、半導体発光素子を組み込んで外部共振器型半導体レーザを構成することなく、従来の信頼性試験方法よりも高い精度で外部共振器型レーザ用半導体発光素子の信頼性を評価することができるという効果が有用な外部共振器型レーザ用半導体発光素子の信頼性試験方法等の用途にも適用できる。   The reliability test method for a semiconductor light emitting device for an external resonator type laser according to the present invention is an external device with a higher accuracy than the conventional reliability test method without incorporating a semiconductor light emitting device to constitute an external resonator type semiconductor laser. The present invention can also be applied to uses such as a reliability test method for an external resonator type semiconductor light emitting device for a laser, which is useful for evaluating the reliability of the semiconductor light emitting device for a resonator type laser.

本発明の信頼性試験方法の試験対象とする外部共振器型レーザ用半導体発光素子(窓構造型半導体発光素子)の断面図Sectional drawing of the semiconductor light emitting element for external resonator type lasers (window structure type semiconductor light emitting element) to be tested in the reliability test method of the present invention 図1に示す構成以外に試験対象とする窓構造型半導体発光素子の概略の構成例を示す断面図Sectional drawing which shows the example of a general | schematic structure of the window structure type semiconductor light emitting element made into a test object other than the structure shown in FIG. 外部共振器型レーザ用半導体発光素子としての斜め交差構造半導体発光素子の上面図Top view of a semiconductor light emitting device with an oblique cross structure as a semiconductor light emitting device for an external cavity laser 窓領域を有する斜め交差構造半導体発光素子の上面図Top view of a semiconductor light emitting device having an oblique cross structure having a window region 窓構造型半導体発光素子の概略の素子構成の一例を示す図The figure which shows an example of a rough element structure of a window structure type semiconductor light emitting element

符号の説明Explanation of symbols

11、100、110 窓構造型半導体発光素子
12 半導体基板
13 メサストライプ部
14a、14b、312、313、512、513 素子端面
15a、15b メサストライプ部の先端界面
28 出射光
32a、32b、114、116 窓領域
33a、33b、115 無反射膜
200、210、220、230 被検査窓構造型半導体発光素子
111 メサストライプ部
112 出射端面
113 反射端面
117 へきかい面(へきかい端面)
121、122、123、415、615 高反射膜
300、500 斜め交差構造半導体発光素子
311、511 導波路
400、600 被検査斜め交差構造半導体発光素子
11, 100, 110 Window structure type semiconductor light emitting element 12 Semiconductor substrate 13 Mesa stripe part 14a, 14b, 312, 313, 512, 513 Element end face 15a, 15b End interface of mesa stripe part 28 Emission light 32a, 32b, 114, 116 Window region 33a, 33b, 115 Non-reflective film 200, 210, 220, 230 Inspected window structure type semiconductor light emitting device 111 Mesa stripe part 112 Outgoing end face 113 Reflecting end face 117 Big face (heavy end face)
121, 122, 123, 415, 615 High reflection film 300, 500 Diagonal cross structure semiconductor light emitting device 311 511 Waveguide 400, 600 Diagonal cross structure semiconductor light emitting device to be inspected

Claims (2)

外部共振器型レーザに用いられ、その内部に形成された光導波路の光導波方向における素子端面の少なくとも一方に窓領域を有する半導体発光素子の信頼性試験方法であって、
前記半導体発光素子と同一の被検査半導体発光素子を準備する工程と、
前記被検査半導体発光素子の単体での発振しきい値を、前記半導体発光素子を用いて構成した前記外部共振器型レーザで想定されるしきい値と同等にするように、前記被検査半導体発光素子を加工するしきい値調整工程と、
前記しきい値調整工程で加工された前記被検査半導体発光素子に試験電流を流し、レーザ発振させて前記半導体発光素子の信頼性を評価する発振評価工程とを備え
前記しきい値調整工程は、前記被検査半導体発光素子の前記窓領域を、前記被検査半導体発光素子の素子長が前記半導体発光素子の素子長よりも短くなる位置でへきかいする窓へきかい工程と、前記被検査半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成する高反射膜形成工程とのうち、少なくともいずれか1つの工程を備えたことを特徴とする外部共振器型レーザ用半導体発光素子の信頼性試験方法。
A method for testing a reliability of a semiconductor light-emitting element used in an external resonator type laser and having a window region on at least one of element end faces in an optical waveguide direction of an optical waveguide formed therein ,
Preparing the same semiconductor light emitting device as the semiconductor light emitting device,
The oscillation threshold by itself of the inspection semiconductor light emitting element, so as to equal to the threshold value expected by the external cavity laser is constructed by using the semiconductor light emitting device, the inspection semiconductor A threshold adjustment process for processing the light emitting element;
Wherein said processed by the threshold adjustment step passing a test current to be inspected semiconductor light emitting element, and a oscillation evaluation step of evaluating the reliability of the semiconductor light emitting element by laser oscillation,
The threshold adjustment step is a window opening step in which the window region of the semiconductor light emitting element to be inspected is opened at a position where the element length of the semiconductor light emitting element to be inspected is shorter than the element length of the semiconductor light emitting element; For an external resonator type laser comprising at least one of a high reflection film forming step of forming a high reflection film on at least one of element end faces of the semiconductor light emitting element to be inspected Reliability testing method for semiconductor light emitting devices.
外部共振器型レーザに用いられ、その内部に形成された光導波路の少なくとも1つの端面が素子端面に対して斜めに交差する構造を有する半導体発光素子の信頼性試験方法であって、A method for testing a reliability of a semiconductor light-emitting element used in an external cavity laser and having a structure in which at least one end face of an optical waveguide formed therein obliquely intersects the end face of the element,
前記半導体発光素子と同一の被検査半導体発光素子を準備する工程と、Preparing the same semiconductor light emitting device to be inspected as the semiconductor light emitting device;
前記被検査半導体発光素子の単体での発振しきい値を、前記半導体発光素子を用いて構成した前記外部共振器型レーザで想定されるしきい値と同等にするように、前記被検査半導体発光素子の素子端面のうちの少なくとも一方に高反射膜を形成する高反射膜形成工程と、The semiconductor light emission to be inspected so that the oscillation threshold value of the single semiconductor light emitting element to be inspected is equivalent to the threshold value assumed for the external cavity laser configured using the semiconductor light emitting element. A highly reflective film forming step of forming a highly reflective film on at least one of the element end faces of the element;
前記高反射膜形成工程で加工された前記被検査半導体発光素子に試験電流を流し、レーザ発振させて前記半導体発光素子の信頼性を評価する発振評価工程とを備えたことを特徴とする外部共振器型レーザ用半導体発光素子の信頼性試験方法。And an oscillation evaluation step for evaluating the reliability of the semiconductor light emitting device by applying a test current to the semiconductor light emitting device to be inspected processed in the highly reflective film forming step to cause laser oscillation. For testing the reliability of semiconductor light emitting devices for lasers.
JP2005098996A 2005-03-30 2005-03-30 Reliability test method for semiconductor light emitting device for external cavity laser Active JP4574413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098996A JP4574413B2 (en) 2005-03-30 2005-03-30 Reliability test method for semiconductor light emitting device for external cavity laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098996A JP4574413B2 (en) 2005-03-30 2005-03-30 Reliability test method for semiconductor light emitting device for external cavity laser

Publications (2)

Publication Number Publication Date
JP2006278937A JP2006278937A (en) 2006-10-12
JP4574413B2 true JP4574413B2 (en) 2010-11-04

Family

ID=37213330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098996A Active JP4574413B2 (en) 2005-03-30 2005-03-30 Reliability test method for semiconductor light emitting device for external cavity laser

Country Status (1)

Country Link
JP (1) JP4574413B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170016A (en) * 1993-10-08 1995-07-04 Hewlett Packard Co <Hp> Method and equipment for optimizing output characteristics of outside cavity type tunable laser
JP2000101146A (en) * 1998-09-22 2000-04-07 Sumitomo Electric Ind Ltd Light emitting element module
JP2001223432A (en) * 2000-02-10 2001-08-17 Fuji Photo Film Co Ltd Wavelength stabilizing laser
JP2003017809A (en) * 2001-07-02 2003-01-17 Anritsu Corp Semiconductor light-emitting element and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170016A (en) * 1993-10-08 1995-07-04 Hewlett Packard Co <Hp> Method and equipment for optimizing output characteristics of outside cavity type tunable laser
JP2000101146A (en) * 1998-09-22 2000-04-07 Sumitomo Electric Ind Ltd Light emitting element module
JP2001223432A (en) * 2000-02-10 2001-08-17 Fuji Photo Film Co Ltd Wavelength stabilizing laser
JP2003017809A (en) * 2001-07-02 2003-01-17 Anritsu Corp Semiconductor light-emitting element and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006278937A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JPH10221572A (en) Optical device
JP2001189519A (en) Semiconductor laser device
US20070047609A1 (en) Wafer testing of edge emitting lasers
JP2004047636A (en) Surface-emmitting semiconductor laser, and method and apparatus for manufacturing the same
KR100651705B1 (en) Semiconductor laser apparatus and light pickup appratus using the same
US5438208A (en) Mirror coupled monolithic laser diode and photodetector
JP4574413B2 (en) Reliability test method for semiconductor light emitting device for external cavity laser
JP2024010144A (en) Semiconductor laser element, inspection method, and inspection device
WO2018105234A1 (en) Optical element and display device
KR100754956B1 (en) Semiconductor laser device and laser system
JP2601218B2 (en) Surface emitting laser
JP2003229630A (en) Laser diode module
JP2006086184A (en) Laser diode
JP5447465B2 (en) Method of measuring end face angle of semiconductor laser element
WO2017217101A1 (en) Optical element and display device
Wang et al. High power long life superluminescent diode
US8284806B2 (en) Apparatus and method for manufacturing light source
JP2009135305A (en) Light-emitting element wafer, light-emitting element chip, burn-in method, and manufacturing method of light-emitting element chip
JP2009177058A (en) Semiconductor laser device
JP2003347649A (en) Light emitting device and its producing process
KR100308022B1 (en) semiconductor laser diode
KR100260271B1 (en) Apparatus for measuring optical angle and height-employing a photonic quantun ring laser
Díaz et al. Internal defect localization in 980 nm ridge waveguide lasers
JP2006086218A (en) Ridge type semiconductor laser device and its manufacturing method
JPH02213186A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250