JP4574278B2 - Method for producing flexible polyurethane foam - Google Patents

Method for producing flexible polyurethane foam Download PDF

Info

Publication number
JP4574278B2
JP4574278B2 JP2004231808A JP2004231808A JP4574278B2 JP 4574278 B2 JP4574278 B2 JP 4574278B2 JP 2004231808 A JP2004231808 A JP 2004231808A JP 2004231808 A JP2004231808 A JP 2004231808A JP 4574278 B2 JP4574278 B2 JP 4574278B2
Authority
JP
Japan
Prior art keywords
polyurethane foam
flexible polyurethane
superheated steam
bht
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004231808A
Other languages
Japanese (ja)
Other versions
JP2006045443A (en
Inventor
睦夫 間所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2004231808A priority Critical patent/JP4574278B2/en
Publication of JP2006045443A publication Critical patent/JP2006045443A/en
Application granted granted Critical
Publication of JP4574278B2 publication Critical patent/JP4574278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、揮発性有機化合物質を含む軟質ポリウレタン発泡原料から軟質ポリウレタンフォームを形成した後、後処理によって軟質ポリウレタンフォーム内の揮発性有機化合物質の除去あるいは含有量を減少させる軟質ポリウレタンフォームの製造方法に関する。   The present invention relates to the production of a flexible polyurethane foam in which a flexible polyurethane foam is formed from a flexible polyurethane foam raw material containing a volatile organic compound, and then the removal or content of the volatile organic compound in the flexible polyurethane foam is reduced by post-treatment. Regarding the method.

従来、軟質ポリウレタン発泡原料を発泡させて軟質ポリウレタンフォームを製造するに際し、軟質ポリウレタン発泡原料に揮発性有機化合物質を含むことが多い。例えば、原料の劣化防止や発泡時における軟質ポリウレタンフォームの変色防止等のため、軟質ポリウレタン発泡原料に酸化防止剤として含まれる、2,6−ジ−t−ブチルP−クレゾール(以下、BHTと記す)は、揮発性有機化合物質である。   Conventionally, when a flexible polyurethane foam material is produced by foaming a flexible polyurethane foam material, the flexible polyurethane foam material often contains a volatile organic compound. For example, 2,6-di-t-butyl P-cresol (hereinafter referred to as BHT), which is included as an antioxidant in the soft polyurethane foam raw material, is used for preventing deterioration of the raw material and preventing discoloration of the flexible polyurethane foam during foaming. ) Is a volatile organic compound.

ところが、BHTは、昇華性が高く、発泡後の軟質ポリウレタンフォームに残存するBHTの問題が指摘されている。例えば、軟質ポリウレタンフォームを、マットレスやクッションあるいはパッド材に用いた場合、軟質ポリウレタンフォームから昇華したBHTが、軟質ポリウレタンフォームを覆う生地に付着して生地の変色を起こす問題がある。また、座席クッションパッド等の自動車部品の用途においては、BHTは、大気汚染に影響を与える揮発性有機化合物(VOC)として挙げられている。   However, BHT has a high sublimation property, and the problem of BHT remaining in the flexible polyurethane foam after foaming has been pointed out. For example, when a soft polyurethane foam is used for a mattress, a cushion, or a pad material, there is a problem that BHT sublimated from the soft polyurethane foam adheres to the fabric covering the flexible polyurethane foam and causes discoloration of the fabric. In the use of automobile parts such as seat cushion pads, BHT is cited as a volatile organic compound (VOC) that affects air pollution.

このような状況から、最近ではBHT対策として、BHTよりも揮発性の低い代替品を用いたり、BHTを使用する場合には発泡後に熱処理を加えたりすることが提案されている。   Under these circumstances, recently, as a countermeasure against BHT, it has been proposed to use a substitute having a lower volatility than BHT, or to apply a heat treatment after foaming when BHT is used.

BHTよりも揮発性の低い代替品を用いる方法は、極めて有効な対策ではあるが、BHTと同等の酸化防止効果を有する代替品が少なく、しかも代替品による原料のコストアップが避けられない問題がある。   The method of using a substitute having a lower volatility than BHT is a very effective measure, but there are few substitutes having an antioxidant effect equivalent to that of BHT, and the cost of raw materials due to the substitute cannot be avoided. is there.

また、発泡後に熱処理を加える場合には、BHTを十分に除去するのに非常に長い時間が必要となる。また、熱を長く加えることによってフォームに劣化を生じ、熱変色や物性低下を生じるようになる。なお、熱処理として水蒸気による処理も提案されているが、乾燥工程が必要になり、設備的にコストが嵩む問題がある。
特開2000−95838号公報
In addition, when heat treatment is performed after foaming, a very long time is required to sufficiently remove BHT. Further, when heat is applied for a long time, the foam is deteriorated, resulting in thermal discoloration and deterioration of physical properties. In addition, although the process by water vapor | steam is also proposed as heat processing, a drying process is needed and there exists a problem which costs increase in terms of equipment.
JP 2000-95838 A

本発明は前記の点に鑑みなされたものであって、短時間で、しかもフォームの物性低下を招くことなく、BHT等の揮発性有機化合物質の除去あるいは含有量の減少を実現できる軟質ポリウレタンフォームの製造方法を提供する。   The present invention has been made in view of the above points, and is a flexible polyurethane foam capable of realizing removal of volatile organic compounds such as BHT or reduction of the content in a short time and without causing deterioration of the physical properties of the foam. A manufacturing method is provided.

請求項1の発明は、2,6−ジ−t−ブチルP−クレゾールからなる揮発性有機化合物質を含む軟質ポリウレタン発泡原料を発泡させて軟質ポリウレタンフォームを形成した後、前記軟質ポリウレタンフォームに過熱蒸気を当てることを特徴とする軟質ポリウレタンフォームの製造方法に係る。 The invention of claim 1 is to form a flexible polyurethane foam by foaming a flexible polyurethane foam raw material containing a volatile organic compound composed of 2,6-di-t-butyl P-cresol, and then superheat the flexible polyurethane foam. The present invention relates to a method for producing a flexible polyurethane foam characterized by applying steam.

本発明によれば、BHT等の揮発性有機化合物質を含む軟質ポリウレタン発泡原料を発泡させて軟質ポリウレタンフォームとした後、前記軟質ポリウレタンフォームに過熱蒸気を当てるため、軟質ポリウレタンフォーム内のBHT等の揮発性有機化合物質を、除去あるいは含有量を減少させることができる。しかも、過熱蒸気は、公知の如く100℃の飽和蒸気をさらに加熱した蒸気であり、温度が低下しても気体状態であるため、軟質ポリウレタンフォームに当てて過熱蒸気処理を行う際に、軟質ポリウレタンフォームを濡らすことがなく、過熱蒸気処理後に乾燥工程を行う必要がない。さらに、過熱蒸気は単位体積当たりの熱容量が高温空気よりもはるかに大きいため、軟質ポリウレタンフォームに対する処理時間を短くできることから、効率的に軟質ポリウレタンフォームを製造できるのみならず、長時間加熱によって生じるフォームの物性低下を防ぐことができる。   According to the present invention, a soft polyurethane foam raw material containing a volatile organic compound such as BHT is foamed to form a flexible polyurethane foam, and then superheated steam is applied to the flexible polyurethane foam. Volatile organic compounds can be removed or the content can be reduced. In addition, the superheated steam is a steam obtained by further heating a saturated steam at 100 ° C. as is known, and is in a gaseous state even when the temperature is lowered. Therefore, when the superheated steam is applied to the soft polyurethane foam, the soft polyurethane is used. It does not wet the foam and does not require a drying step after the superheated steam treatment. Furthermore, since superheated steam has a much larger heat capacity per unit volume than high-temperature air, the processing time for the flexible polyurethane foam can be shortened, so not only can the flexible polyurethane foam be produced efficiently, but also the foam generated by prolonged heating. Can prevent deterioration of physical properties.

本発明における軟質ポリウレタンフォームの製造方法は、2,6−ジ−t−ブチルP−クレゾールからなる揮発性有機化合物質を含む軟質ポリウレタン発泡原料を発泡させて軟質ポリウレタンフォームを形成した後、前記軟質ポリウレタンフォームに過熱蒸気を当てることを特徴とする。 In the method for producing a flexible polyurethane foam in the present invention, after forming a flexible polyurethane foam by foaming a flexible polyurethane foam raw material containing a volatile organic compound composed of 2,6-di-t-butyl P-cresol , It is characterized by applying superheated steam to the polyurethane foam.

本発明において、軟質ポリウレタン発泡原料は、ポリオール、酸化防止剤、触媒、発泡剤、整泡剤、適宜添加される助剤、及びポリイソシアネートからなる。   In the present invention, the flexible polyurethane foam raw material comprises a polyol, an antioxidant, a catalyst, a foaming agent, a foam stabilizer, an auxiliary agent added as appropriate, and a polyisocyanate.

ポリオールとしては、軟質ポリウレタンフォーム用として知られているエーテル系ポリオールまたはエステル系ポリオールを用いることができる。エーテル系ポリオールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、シュークロース等の多価アルコール、またはその多価アルコールにエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加したポリエーテルポリオールを挙げることができる。また、エステル系ポリオールとしては、マロン酸、コハク酸、アジピン酸等の脂肪族カルボン酸やフタル酸等の芳香族カルボン酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール等の脂肪族グリコール等とから重縮合して得られたポリエステルポリオールを使用することもできる。その他、ポリエーテルポリオールまたはポリエステルポリオール中でエチレン性不飽和化合物を重合させて得られるポリマーポリオールも使用することができる。   As the polyol, ether-based polyol or ester-based polyol known for use in flexible polyurethane foam can be used. Examples of ether polyols include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, pentaerythritol, trimethylolpropane, sorbitol, and sucrose, or polyhydric alcohols thereof. The polyether polyol which added alkylene oxides, such as ethylene oxide and a propylene oxide, can be mentioned. As ester polyols, polycondensation of aliphatic carboxylic acids such as malonic acid, succinic acid and adipic acid and aromatic carboxylic acids such as phthalic acid and aliphatic glycols such as ethylene glycol, diethylene glycol and propylene glycol. The polyester polyol obtained in this way can also be used. In addition, a polymer polyol obtained by polymerizing an ethylenically unsaturated compound in a polyether polyol or polyester polyol can also be used.

酸化防止剤としては、BHT(2,6−ジ−t−ブチルP−クレゾール)が好ましいが、その他、アスコルビン酸、アスコルビン酸ナトリウム、ホルムアルデヒド、アセトアルデヒド(水溶性アルデヒド)、亜硫酸ナトリウム、ホルムアルデヒドスルホシル酸ナトリウム、イソアスコルビン酸、チオグリセロール、チオソルビトオール、チオ尿素、チオグリコール酸、システイン塩酸塩、1,4−ジアゾビシクロ−(2,2,2)−オクタンなどの酸化防止剤のうち、揮発性を有するものを用いた場合にも本発明の効果が得られる。なお、BHTは揮発性有機化合物質であって、一般的な量は、ポリオール100重量部に対して0.01〜0.6重量部である。   As the antioxidant, BHT (2,6-di-t-butyl P-cresol) is preferable, but ascorbic acid, sodium ascorbate, formaldehyde, acetaldehyde (water-soluble aldehyde), sodium sulfite, formaldehyde sulfosilic acid Among the antioxidants such as sodium, isoascorbic acid, thioglycerol, thiosorbitol, thiourea, thioglycolic acid, cysteine hydrochloride, 1,4-diazobicyclo- (2,2,2) -octane, volatilization The effect of the present invention can also be obtained when a material having properties is used. BHT is a volatile organic compound, and a general amount is 0.01 to 0.6 parts by weight with respect to 100 parts by weight of polyol.

触媒としては、トリエチルアミンやテトラメチルグアニジン等のアミン触媒や、スタナスオクトエート等の錫触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)を用いることができる。触媒の一般的な量は、ポリオール100重量部に対して0.01〜2.0重量部である。   As the catalyst, an amine catalyst such as triethylamine or tetramethylguanidine, a tin catalyst such as stannous octoate, or a metal catalyst such as phenylmercurypropionate or lead octenoate (also referred to as an organometallic catalyst) is used. Can do. A common amount of catalyst is 0.01 to 2.0 parts by weight per 100 parts by weight of polyol.

発泡剤としては、水、あるいはペンタンなどの炭化水素を、単独または組み合わせて使用できる。水の場合は、原料組成物の反応時に炭酸ガスを発生し、その炭酸ガスによって発泡がなされる。発泡剤の量は適宜とされるが、水の場合、ポリオール100重量部に対して0.5〜7.0重量部程度が好適である。   As the blowing agent, water or hydrocarbons such as pentane can be used alone or in combination. In the case of water, carbon dioxide gas is generated during the reaction of the raw material composition, and foaming is performed by the carbon dioxide gas. The amount of the blowing agent is appropriately determined. In the case of water, about 0.5 to 7.0 parts by weight is preferable with respect to 100 parts by weight of the polyol.

整泡剤としては、軟質ポリウレタンフォームの製造に用いられるものであればよく、シリコーン系整泡剤、含フッ素化合物系整泡剤および公知の界面活性剤を挙げることができる。整泡剤の一般的な量は、ポリオール100重量部に対して0.1〜3.0重量部である。   Any foam stabilizer may be used as long as it is used in the production of flexible polyurethane foams. Examples thereof include silicone foam stabilizers, fluorine-containing compound foam stabilizers, and known surfactants. A common amount of foam stabilizer is 0.1 to 3.0 parts by weight per 100 parts by weight of polyol.

その他適宜添加される助剤としては、紫外線吸収剤、難燃剤、充填剤、着色剤等を挙げることができる。紫外線吸収剤としては、公知のものが使用される。例えば、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾオキサジノン系化合物が挙げられる。ベンゾフェノン系化合物としては、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸などを示すことができる。難燃剤は、特に衣料用ウレタンフォームには好適であり、有機リン酸化合物等からなるものを挙げることができる。   Other auxiliary agents that can be added as appropriate include ultraviolet absorbers, flame retardants, fillers, colorants, and the like. A well-known thing is used as a ultraviolet absorber. Examples thereof include benzophenone-based, benzotriazole-based, and benzoxazinone-based compounds. Examples of benzophenone compounds include 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-. Examples thereof include tetrahydroxybenzophenone, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, and the like. The flame retardant is particularly suitable for urethane foam for clothing, and examples thereof include those made of an organic phosphate compound.

ポリイソシアネートとしては、イソシアネート基を2以上有する脂肪族系または芳香族系ポリイソシアネート、それらの混合物、およびそれらを変性して得られる変性ポリイソシアネートを使用することができる。脂肪族系ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキサメタンジイソシアネート等を挙げることができ、芳香族ポリイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、ポリメリックポリイソシアネート(クルードMDI)等を挙げることができる。なお、その他プレポリマーも使用することができる。 As the polyisocyanate, aliphatic or aromatic polyisocyanates having two or more isocyanate groups, mixtures thereof, and modified polyisocyanates obtained by modifying them can be used. Examples of the aliphatic polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, and dicyclohexamethane diisocyanate. Examples of the aromatic polyisocyanate include toluene diisocyanate (TDI), diphenylmethane diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, Examples thereof include polymeric polyisocyanate (crude MDI). Other prepolymers can also be used.

前記ポリウレタン発泡原料を攪拌機で混合して反応させる公知の発泡方法によって軟質ポリウレタンフォームを形成し、発泡後の軟質ポリウレタンフォームに対して過熱蒸気を当てる過熱蒸気処理を行うことにより、軟質ポリウレタンフォーム内の揮発性有機化合物質に対する除去及び含有量減少が行われる。   A flexible polyurethane foam is formed by a known foaming method in which the polyurethane foam raw material is mixed and reacted with a stirrer, and superheated steam treatment is performed by applying superheated steam to the foamed soft polyurethane foam. Removal of volatile organic compounds and content reduction are performed.

過熱蒸気は、公知の如く100℃の飽和蒸気をさらに過熱した蒸気である。前記過熱蒸気の生成は、次のように行われる。まず蒸気発生器(ガス、石油等のボイラー)で飽和蒸気を生成し、次に飽和蒸気を減圧バルブで減圧し、得られた減圧飽和蒸気を過熱蒸気発生装置へ導入することにより過熱蒸気を生成する。前記減圧バルブは、過熱蒸気の吐出量を制御するための装置であり、減圧することで、大気圧下に吐出された過熱蒸気における過度の体積膨張を防止し、爆発等の災害を回避する。また、過熱蒸気発生装置は、飽和蒸気を過熱して過熱蒸気を形成できる公知の装置を用いることができる。   As is well known, superheated steam is steam obtained by further heating a saturated steam at 100 ° C. The superheated steam is generated as follows. First, generate saturated steam with a steam generator (boiler for gas, petroleum, etc.), then depressurize the saturated steam with a pressure reducing valve, and introduce the resulting reduced-pressure saturated steam into the superheated steam generator to generate superheated steam. To do. The decompression valve is a device for controlling the discharge amount of superheated steam, and by reducing the pressure, excessive volume expansion in the superheated steam discharged under atmospheric pressure is prevented, and disasters such as explosions are avoided. As the superheated steam generator, a known device that can superheat saturated steam to form superheated steam can be used.

過熱蒸気を軟質ポリウレタンフォームに当てる過熱蒸気処理時間は、適宜とされるが、通常数秒〜3分程度とされる。あまり過熱蒸気処理時間が長いと軟質ポリウレタンフォームの劣化や物性低下を生じるようになるため、処理時間は短いほうが好ましい。なお、過熱蒸気は、軟質ポリウレタンフォームの一の面に対して当てても良いし、全面に当ててもよい。軟質ポリウレタンフォームは連続気泡構造を有するため、一つの面に当てた過熱蒸気は、軟質ポリウレタンフォーム内の全体に至り、軟質ポリウレタンフォーム内のBHTに対して除去作用を発揮することができる。また、過熱蒸気は、前記軟質ポリウレタンフォームに当たって温度低下を生じても気体状態を維持するため、過熱蒸気処理によって軟質ポリウレタンフォームが濡れず、その後の乾燥処理が不要である。   The superheated steam treatment time for applying the superheated steam to the flexible polyurethane foam is appropriately selected, but is usually about several seconds to 3 minutes. If the superheated steam treatment time is too long, the flexible polyurethane foam is deteriorated and the physical properties are lowered. Therefore, the treatment time is preferably short. The superheated steam may be applied to one surface of the flexible polyurethane foam or may be applied to the entire surface. Since the flexible polyurethane foam has an open cell structure, the superheated steam applied to one surface reaches the entire inside of the flexible polyurethane foam, and can exert a removing action on the BHT in the flexible polyurethane foam. Further, since the superheated steam maintains a gaseous state even when the temperature falls upon the soft polyurethane foam, the soft polyurethane foam does not get wet by the superheated steam treatment, and subsequent drying treatment is unnecessary.

以下、本発明の実施例について説明する。以下の配合からなるポリウレタン発泡原料を、定法に従って20℃で攪拌混合し、発泡させることにより軟質ポリウレタンフォームを形成した。
ポリウレタン発泡原料
・ポリオール (三洋化成工業株式会社、サンニックスGP−3050): 100重量部
・酸化防止剤 (BHT) :0.10重量部
・触媒 (エアープロダクツジャパン株式会社、DABCO33-LV): 0.4重量部
・発泡剤 (水) : 2.4重量部
・整泡剤 (日本ユニカー株式会社、SZ−1136) : 1.5重量部
・ポリイソシアネート(ダウケミカル株式会社、T−80) :35.1重量部
Examples of the present invention will be described below. A polyurethane foam raw material having the following composition was stirred and mixed at 20 ° C. according to a conventional method and foamed to form a flexible polyurethane foam.
Polyurethane foaming raw material ・ Polyol (Sanyo Chemical Industries, Sannix GP-3050): 100 parts by weight ・ Antioxidant (BHT): 0.10 parts by weight ・ Catalyst (Air Products Japan, DABCO33-LV): 0 .4 parts by weight ・ Foaming agent (water): 2.4 parts by weight ・ Foam stabilizer (Nihon Unicar Co., Ltd., SZ-1136): 1.5 parts by weight 35.1 parts by weight

得られた軟質ポリウレタンフォームに対して、JIS K 6400に従い、見掛け密度、25%硬さ、反発弾性、引張強度、伸び、圧縮残留歪を測定した。各物性値の測定結果は表1の過熱蒸気処理前の欄に示す。   The apparent density, 25% hardness, impact resilience, tensile strength, elongation, and compressive residual strain were measured for the obtained flexible polyurethane foam according to JIS K 6400. The measurement result of each physical property value is shown in the column before superheated steam treatment in Table 1.

Figure 0004574278
Figure 0004574278

また、前記発泡後の軟質ポリウレタンフォームから200×200×10mmの試験片を所要個数裁断し、その試験片を金網上に載置すると共に、試験片上方から下向きにした配管の出口から試験片に過熱蒸気を吹き付けて当てることにより、過熱蒸気処理を行った。金網は、過熱蒸気が通過できる程度に粗く、かつ試験片を保持できる程度の強度を有するものである。過熱蒸気は、減圧バルブによる減圧前の飽和蒸気の圧力(一次側圧力)が0.6MPa、減圧バルブによる減圧後の圧力(二次側圧力)が0.04MPa、配管出口の過熱状気の温度が190±5℃であり、配管径が1/2、試験片と過熱蒸気配管出口との距離が50mmである。また、過熱蒸気を試験片に当てる処理時間(吹き付け時間)は、5秒、10秒、20秒、30秒、60秒、3分として、各処理時間に対して1個の試験片を割り当てた。過熱蒸気処理前(未処理品)の試験片と、過熱蒸気処理後の試験片に対して、ガスクロマトグラフ(株式会社島津製作所、GC−17A)によってBHTの残量を測定した。なお、過熱蒸気処理後の試験片に対するBHTの測定は、過熱蒸気を当てた面に対して行った。また、3分間過熱蒸気処理後の試験片については、前記各物性値についても測定した。BHTの測定値については表2に示すとおりであり、3分間過熱蒸気処理後の試験片に対する物性値の測定値については、表1における過熱蒸気処理後の欄に示すとおりである。   Further, a required number of 200 × 200 × 10 mm test pieces are cut from the foamed flexible polyurethane foam, the test pieces are placed on a wire mesh, and the test piece is placed from the outlet of the pipe facing downward from above the test piece. Superheated steam treatment was performed by spraying and applying superheated steam. The wire mesh is rough enough to allow superheated steam to pass through and has a strength sufficient to hold the test piece. The superheated steam has a saturated steam pressure (primary pressure) of 0.6 MPa before decompression by the decompression valve, a pressure (secondary pressure) after decompression by the decompression valve of 0.04 MPa, and the temperature of the superheated gas at the outlet of the pipe. Is 190 ± 5 ° C., the pipe diameter is ½, and the distance between the test piece and the superheated steam pipe outlet is 50 mm. In addition, the processing time (spraying time) for applying the superheated steam to the test piece was 5 seconds, 10 seconds, 20 seconds, 30 seconds, 60 seconds, 3 minutes, and one test piece was assigned to each processing time. . The residual amount of BHT was measured with a gas chromatograph (Shimadzu Corporation, GC-17A) on the test piece before the superheated steam treatment (untreated product) and on the test piece after the superheated steam treatment. In addition, the measurement of BHT with respect to the test piece after a superheated steam process was performed with respect to the surface which applied the superheated steam. Moreover, about the test piece after a superheated steam process for 3 minutes, it measured also about each said physical-property value. The measured value of BHT is as shown in Table 2, and the measured value of the physical property value for the test piece after 3 minutes of superheated steam treatment is as shown in the column after superheated steam treatment in Table 1.

比較のため、温度60℃×湿度60%の水蒸気を2時間試験片に当てた後、1時間常温で放置して乾燥させたもの、温度80℃×湿度90%の水蒸気を1時間試験片に当てた後、1時間常温で放置して乾燥させたもの、温度120℃×湿度100%の水蒸気を10分間試験片に当て後、1時間常温で放置して乾燥させたものについて、水蒸気を当てた面に対してBHTの残量を測定した。それぞれの測定結果は、表2のとおりである。   For comparison, water vapor having a temperature of 60 ° C. and humidity of 60% was applied to the test piece for 2 hours, and then left to dry at room temperature for 1 hour, and water vapor having a temperature of 80 ° C. and humidity of 90% was applied to the test piece for 1 hour. After being applied, water vapor is applied to a sample that has been left to dry at room temperature for 1 hour, and water that has been heated to 120 ° C. and 100% humidity for 10 minutes and then left to dry at room temperature for 1 hour. The remaining amount of BHT was measured on the surface. Each measurement result is as shown in Table 2.

Figure 0004574278
Figure 0004574278

表2から明らかなように、本発明における過熱蒸気処理を行うことによって、軟質ポリウレタンフォームの残留BHTが減少するのがわかる。特に、わずか30秒の過熱蒸気処理でも37ppmに残留BHTの量を減らすことができ、さらに60秒の過熱蒸気処理では9ppm、3分の過熱蒸気処理では4ppmまで残留BHTの量を減らすことができる。しかも、表1から明らかなように、3分の過熱蒸気処理によっても物性値が殆ど低下しないことがわかる。それに対し、従来の水蒸気処理においては、60℃×60%の水蒸気を2時間当てた場合に154ppm、80℃×90%の水蒸気を1時間当てた場合に76ppm、120℃×100%の水蒸気を10分当てた場合に41ppmとなり、何れも残量BHTの減少に関して、過熱蒸気処理よりも長時間水蒸気処理を行う必要がある。しかも、水蒸気処理の場合には、水蒸気処理によって軟質ポリウレタンフォームが濡れるため、その後に乾燥処理を行わねばならず、乾燥のために余分な時間がかかるのに対して、過熱蒸気処理の場合には過熱蒸気処理によって軟質ポリウレタンフォームが濡れないため、乾燥処理を行わなくてもよく、より一層の時間短縮を実現できる。   As is apparent from Table 2, it can be seen that the residual BHT of the flexible polyurethane foam is reduced by performing the superheated steam treatment in the present invention. In particular, the amount of residual BHT can be reduced to 37 ppm even with a superheated steam treatment of only 30 seconds, and the amount of residual BHT can be reduced to 9 ppm with a superheated steam treatment of 60 seconds and 4 ppm with a superheated steam treatment of 3 minutes. . Moreover, as is apparent from Table 1, it can be seen that the physical property value hardly decreases even by the superheated steam treatment for 3 minutes. On the other hand, in the conventional water vapor treatment, 154 ppm when 60 ° C. × 60% water vapor is applied for 2 hours, 76 ppm, 120 ° C. × 100% water vapor when 80 ° C. × 90% water vapor is applied for 1 hour. When it is applied for 10 minutes, it becomes 41 ppm, and it is necessary to perform the steam treatment for a longer time than the superheated steam treatment in relation to the decrease in the remaining amount BHT. Moreover, in the case of steam treatment, the flexible polyurethane foam is wetted by the steam treatment, and therefore, a drying treatment must be performed after that. In the case of superheated steam treatment, it takes extra time for drying. Since the flexible polyurethane foam does not get wet by the superheated steam treatment, it is not necessary to perform the drying treatment, and it is possible to further reduce the time.

なお、前記の説明においては、揮発性有機化合物質として、主にBHTの場合を示したが、本発明は、軟質ポリウレタンフォームに含まれる他の揮発性有機化合物についても、同様に除去あるいは含有量減少効果が期待できる。   In the above description, the case of BHT is mainly shown as the volatile organic compound, but the present invention also removes or contains other volatile organic compounds contained in the flexible polyurethane foam. Reduction effect can be expected.

Claims (1)

2,6−ジ−t−ブチルP−クレゾールからなる揮発性有機化合物質を含む軟質ポリウレタン発泡原料を発泡させて軟質ポリウレタンフォームを形成した後、前記軟質ポリウレタンフォームに過熱蒸気を当てることを特徴とする軟質ポリウレタンフォームの製造方法。 A soft polyurethane foam material is formed by foaming a flexible polyurethane foam material containing a volatile organic compound composed of 2,6-di-t-butyl P-cresol, and then superheated steam is applied to the flexible polyurethane foam. A method for producing a flexible polyurethane foam.
JP2004231808A 2004-08-09 2004-08-09 Method for producing flexible polyurethane foam Active JP4574278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231808A JP4574278B2 (en) 2004-08-09 2004-08-09 Method for producing flexible polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231808A JP4574278B2 (en) 2004-08-09 2004-08-09 Method for producing flexible polyurethane foam

Publications (2)

Publication Number Publication Date
JP2006045443A JP2006045443A (en) 2006-02-16
JP4574278B2 true JP4574278B2 (en) 2010-11-04

Family

ID=36024404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231808A Active JP4574278B2 (en) 2004-08-09 2004-08-09 Method for producing flexible polyurethane foam

Country Status (1)

Country Link
JP (1) JP4574278B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900218B2 (en) * 2012-07-20 2016-04-06 トヨタ紡織株式会社 Method for reducing toluene contained in polyurethane foam
JP6903870B2 (en) * 2016-03-11 2021-07-14 東ソー株式会社 Composition for molding flexible polyurethane foam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470377A (en) * 1977-10-20 1979-06-06 Ford Motor Co Method of decomposing polyurethane by superheated steam
WO2003106528A1 (en) * 2002-06-13 2003-12-24 Basf Aktiengesellschaft Method for the production of polyurethane foam materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470377A (en) * 1977-10-20 1979-06-06 Ford Motor Co Method of decomposing polyurethane by superheated steam
WO2003106528A1 (en) * 2002-06-13 2003-12-24 Basf Aktiengesellschaft Method for the production of polyurethane foam materials
JP2005534731A (en) * 2002-06-13 2005-11-17 ビーエーエスエフ アクチェンゲゼルシャフト Production of polyurethane foam

Also Published As

Publication number Publication date
JP2006045443A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP7368417B2 (en) Flexible polyurethane foam and its manufacturing method
KR20110114544A (en) Flexible polyurethane foam
WO2006115169A1 (en) Low-resilience soft polyurethane foam and method for producing same
RU2263687C2 (en) Method of producing soft to semi-rigid polyurethane integral foamed plastics
JP2007111423A (en) Mattress cushion material
WO2011024413A1 (en) Soft polyurethane foam and manufacturing method therefor
JP4574278B2 (en) Method for producing flexible polyurethane foam
JP5356719B2 (en) Deodorant polyurethane foam
JP4050357B2 (en) Method for producing elastic polyurethane slab material foam
JP6559513B2 (en) Soft polyurethane foam for mattress
JP4514205B2 (en) Method for producing film-free flexible polyurethane foam
JP4948055B2 (en) Polyurethane foam and method for producing the same
JPH02120335A (en) Production of foamed synthetic resin
KR101491089B1 (en) Flexible polyurethane foam
KR100543850B1 (en) Method for Producing Soft to Medium-Hard Structural Polyurethane Foams
JP2004231710A (en) Method for manufacturing viscoelastic polyurethane foam for bedding
JP7220009B2 (en) Method for producing low-resilience polyurethane foam, composition for low-resilience polyurethane foam, and low-resilience polyurethane foam
JP7059875B2 (en) Polyurethane foam
JP5354923B2 (en) Method for manufacturing damping material for electronic device parts
JP2007297442A (en) Polyurethane foam
JPH0641266A (en) Polyurethane foam excellent thermoformability
JP2006282936A (en) Low resilience flexible polyurethane foam
JP4700266B2 (en) Laminated cushion material
JP2004323744A (en) Antibacterial soft urethane foam and pillow using same foam
JPH01135820A (en) Production of expanded synthetic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4574278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250