JP4573370B2 - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
JP4573370B2
JP4573370B2 JP03577999A JP3577999A JP4573370B2 JP 4573370 B2 JP4573370 B2 JP 4573370B2 JP 03577999 A JP03577999 A JP 03577999A JP 3577999 A JP3577999 A JP 3577999A JP 4573370 B2 JP4573370 B2 JP 4573370B2
Authority
JP
Japan
Prior art keywords
voltage
voltages
sub
output
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03577999A
Other languages
Japanese (ja)
Other versions
JP2000234969A (en
Inventor
俊也 千田
貴幸 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Corp
Original Assignee
Showa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Corp filed Critical Showa Corp
Priority to JP03577999A priority Critical patent/JP4573370B2/en
Priority to US09/502,358 priority patent/US6474179B1/en
Publication of JP2000234969A publication Critical patent/JP2000234969A/en
Application granted granted Critical
Publication of JP4573370B2 publication Critical patent/JP4573370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/221Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to steering wheels, e.g. for power assisted steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トルクを一対のコイルのインダクタンス変化に基づいて検出するトルクセンサに関し、特にコイルの接続不良等の異常を検出可能なトルクセンサに関する。
【0002】
【従来の技術】
この種のトルクセンサでコイルの接続不良を検出できるものとして、特開平8−136366号公報に記載された例がある。
【0003】
すなわち同例のトルクセンサは、トルクに応じて互いに逆方向にインダクタンスが変化する一対のコイルと、該一対のコイルに誘導される一対の検出電圧を受けて差動増幅する差動増幅回路とを有し、該差動増幅回路の出力によりトルクを検出するものである。
【0004】
そして一対のコイルに誘導される検出電圧の一方から異常を検出すると、差動増幅回路の出力を定常出力範囲外の所定値になるように制御している。
差動増幅回路の出力がかかる所定値を示したときに、一方のコイルの接続不良等の異常があるものと判断する。
【0005】
【発明が解決しようとする課題】
本発明は、その目的とする処は、差動増幅回路の出力で少なくとも一方のコイルの接続不良等の異常を判断できるトルクセンサを供する点にある。
【0006】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、トルクに応じて互いに逆方向にインダクタンスが変化する一対のコイルと、前記両コイルのそれぞれのインダクタンス変化に基づく出力電圧を第1,第2の整流・平滑回路により整流及び平滑した第1,第2副電圧を入力して第1,第2副電圧の差を増幅して第1主電圧として出力する第1差動増幅手段と、前記両コイルのそれぞれのインダクタンス変化に基づく出力電圧を第3,第4の整流・平滑回路により整流及び平滑した第3,第4副電圧を入力して第3,第4副電圧の差を増幅して第2主電圧として出力する第2差動増幅手段と、前記第1主電圧と前記第2主電圧の差が所定許容範囲を超えると異常状態信号を出力する異常状態信号出力手段と、を備えたトルクセンサにおいて、前記第1,第2,第3,第4副電圧の少なくとも1つの電圧が所定範囲を超えると前記コイルの接続不良と判断する異常判断手段と、前記異常判断手段が異常と判断したときに前記第2主電圧を前記所定許容範囲を超えて変位させる電圧変位手段とを有し、前記コイルに接続不良がある場合も前記異常状態信号出力手段が異常状態信号を出力することができるトルクセンサとした。
【0007】
コイルに接続不良等の異常があると、第1,第2,第3,第4副電圧から異常判断手段が異常と判断して電圧変位手段が第2主電圧を所定許容範囲を超えて変位させるので、異常状態信号出力手段はこの変位した第2主電圧と第1主電圧との差から所定許容範囲の基準に基づき判断して異常状態信号を出力することができる。
【0010】
コイルが接続不良であると、副電圧が所定範囲外の一定電圧を示すことになるので、第1,第2,第3,第4副電圧の少なくとも1つの電圧が所定範囲を超えればコイルに接続不良があると判断できる。
【0011】
請求項2記載の発明は、請求項1記載のトルクセンサにおいて、前記第2差動増幅手段が、負帰還をかけられた差動アンプであり、前記電圧変位手段が、前記差動アンプの非反転入力に所定電圧を印加することで前記第2主電圧を変位させることを特徴とする。
【0012】
差動アンプの非反転入力に印加された電圧は、差動アンプの出力(第2主電圧)のバイアイス電圧とすることができ
【0013】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図5に図示し説明する。
本実施の形態に係るトルクセンサ1は、車両のパワーステアリング装置に適用されたもので、その概略構造を図1に示す。
【0014】
ハウジング2にベアリング5,6を介して回転自在に軸支され同軸に挿入された入力軸3と出力軸4とが、内部でトーションバー7により連結されている。
円筒状のコア8が出力軸4の大径端部4aの外周面にセレーション嵌合して出力軸4に対して軸方向にのみ摺動自在に設けられ、入力軸3より突設されたスライダピン9が大径端部4aの周方向に長尺の長孔を貫通して前記コア8のスパイラル溝8aに係合している。
【0015】
ハウジング2の内部に支持された2個のトルク検出用のコイル11,12が、軸方向に摺動する円筒状のコア8の外周に空隙を介して設けられている。
該2個のコイル11,12は、コア8の軸方向の移動中心に関して互いに反対側に配置されている。
【0016】
入力軸3に捩じり力が作用すると、トーションバー7を介して出力軸4に回転力が伝達されるが、トーションバー7は弾性変形して入力軸3と出力軸4との間に回転方向の相対的変位が生じる。
この回転方向の相対的変位は、スライダピン9とスパイラル溝8aとの係合を介してコア8を軸方向に摺動させる。
【0017】
コア8が軸方向に移動すると、コイル11,12のそれぞれコア8を囲む面積が変化し、一方の面積が増すと他方の面積が減る関係にある。
コア8を囲む面積が大きくなると、磁気損失が増えコイルのインダクタンスは減り、逆にコア8を囲む面積が小さくなると、磁気損失が減りコイルのインダクタンスは増す。
【0018】
したがってコア8がコイル11側に移動するトルクが作用したときは、コイル11のインダクタンスL1が減少し、コイル12のインダクタンスL2が増加し、逆にコア8がコイル12側に移動するトルクが作用したときは、コイル11のインダクタンスL1が増加し、コイル12のインダクタンスL2が減少する。
【0019】
このコイル11,12のインダクタンスL1,L2の変化に基づいてトルクを検出するトルクセンサ1の電気的回路部分を概略構成図として図2に示す。
コイル11,12は、それぞれ抵抗13(R1),抵抗回路14(R2)を介して正電圧Eに吊るされており、コイル11,12の他端は、ともにCPU20搭載の制御ボード20aの発振出力端子oscに接続されている。
【0020】
抵抗回路14は、直列接続された抵抗16とサーミスタ17に対して抵抗15を並列に接続した構成であり、サーミスタ17の作用により温度補償機能を果たしている。
すなわち温度変化に関係なく常にR1/L1=R2/L2が満足される抵抗値R2を示すような温度特性をサーミスタ17が有している。
【0021】
コイル11と抵抗13の接続部から延出した電圧信号線21が分岐してそれぞれ整流・平滑回路23,25に接続され、コイル12と抵抗14の接続部から延出した電圧信号線22が分岐してそれぞれ整流・平滑回路24,26に接続されている。
【0022】
すなわちコイル11,12,抵抗13,抵抗回路14によりブリッジ回路が構成され、該ブリッジ回路に発振電圧が入力され、その出力電圧が整流・平滑回路23,24,25,26に入力される。
【0023】
該ブリッジ回路の出力電圧が各整流・平滑回路23,24,25,26により整流及び平滑されて第1,第2,第3,第4副電圧S1,S2,S3,S4としてそれぞれバッファ回路27,28,29,30に出力される。
【0024】
バッファ回路27,28の出力端子は、それぞれ抵抗31,32を介して差動アンプ41の反転入力端子,非反転入力端子に接続されている。
同様にバッファ回路29,30の出力端子は、それぞれ抵抗33,34を介して差動アンプ42の反転入力端子,非反転入力端子に接続されている。
【0025】
差動アンプ41,42には、それぞれ抵抗35,36により負帰還がかけられて差動増幅器として機能し、その出力は、第1主電圧M1,第2主電圧M2として電子コントロールユニットECU50に入力される。
【0026】
また差動アンプ41,42の各非反転入力端子には、それぞれ中立点電圧設定回路43,44からバッファ回路45,46及び抵抗37,38を介して中立点調整電圧V1,V2が入力される。
【0027】
この中立点電圧設定回路43,44は、制御ボード20aの中立点調整出力端子aj1,aj2からの各調整信号を入力して、同調整信号に従って中立点電圧V1,V2を設定する。
【0028】
そこで差動アンプ41は、第1副電圧S1と第2副電圧S2の差を増幅度A倍し、バイアス電圧として中立点調整電圧V1を加えた電圧を第1主電圧M1として出力する。
すなわち第1主電圧M1は、
M1=(S2−S1)・A+V1
である。
【0029】
同様に差動アンプ42についても、出力される第2主電圧M2は、
M2=(S4−S3)・A+V2
である。
【0030】
なお右操舵トルク(右方向の捩じりトルク)と左操舵トルク(左方向の捩じりトルク)のいずれにも偏しない中立時の主電圧を中立点電圧と称し、上記中立点調整電圧V1,V2が中立点電圧となる。
【0031】
ECU50は、第1主電圧M1に基づきモータ制御の指示信号をモータドライバ51に出力し、モータドライバ51によりステアリングを補助するモータ52が駆動される。
【0032】
そして第2主電圧M2は異常状態検知のために用いられ、ECU50は、第1主電圧M1と第2主電圧M2の差が所定の許容範囲内にあるか否かを判別し、許容範囲を超えているときはトルクセンサ1が何らかの異常状態にあるものとして異常状態信号を出力してモータ52の制御を停止する。
【0033】
また制御ボード20aには、第1,第2,第3,第4副電圧S1,S2,S3,S4及び第1,第2主電圧M1,M2が入力され、制御ボード20aは、第1,第2,第3,第4副電圧S1,S2,S3,S4に基づいてコイル11,12の異常を判断し、異常があると、異常出力端子fsから異常検出信号を異常時電圧設定回路49に出力する。
【0034】
異常時電圧設定回路49は、差動アンプ42の非反転入力端子に接続する電圧線上のバッファ回路46の入力端子に接続されており、異常検出信号を入力すると、バイアス電圧である中立点調整電圧V2を異常時電圧に変化させて第2主電圧M2を変位させることができる。
【0035】
その他に制御ボード20aには、中立点調整スイッチAJS−SW47から中立点調整を指示する中立点調整信号AJSが中立点調整端子ajsに入力されるとともに、中立点電圧設定状態を記憶し書き換えもできるE2PROM48が中立点電圧設定端子romに接続されている。
【0036】
本トルクセンサー1は、以上のような概略回路構成をなし、その動作を第1,第2,第3,第4副電圧S1,S2,S3,S4及び第1,第2主電圧M1,M2の様子を示した図3ないし図5に基づいて以下説明する。
図3ないし図5において示された座標は、縦軸を電圧とし、横軸右方向を右操舵トルク、横軸左方向を左操舵トルクとして原点0が中立点である。
【0037】
図3は、トルクセンサ1が正常に動作したときのもので、右操舵トルクが大きくなると、入力軸3と出力軸4の相対的回転によりコア8がコイル11側に移動し、コイル12のインダクタンスL2を増加してその誘導起電力を大きくし、逆にコイル11のインダクタンスL1を減少させてその誘導起電力を小さくするので、第2,第4副電圧S2,S4が大きくなり、第1,第3副電圧S1,S3が小さくなる(図3▲1▼、▲2▼参照)。
【0038】
また左操舵トルクが大きくなる場合は、上記とは逆に第2,第4副電圧S2,S4が小さくなり、第1,第3副電圧S1,S3が大きくなる(図3▲1▼、▲2▼参照)。
したがって両者の差をA倍して中立点電圧を加えた差動アンプ41,42の出力である第1,第2主電圧M1,M2は、図3▲3▼,▲4▼に示すように中立点でV1,V2を通る右上がりの傾斜線となる。
【0039】
ECU50は、この第1,第2主電圧M1,M2を比較し、両者の差が許容範囲内にあるかを判定する。
正常であれば図3▲5▼に示すように第1,第2主電圧M1,M2の変化は略一致しており、許容範囲内にあり正常と判断できる。
【0040】
正常と判断されれば第1主電圧M1に基づきモータ52を駆動すべき指示信号をモータドライバ51に出力する。
こうして操舵トルクに応じたモータによる補助力がステアリングに作用してパワーステアリングが実行される。
【0041】
しかるにコイル11,12の装着が確実になされず両者ともに接続不良状態にあるような場合は、両コイル11,12が断線状態にあって図4▲1▼,▲2▼に示すように第1,第2,第3,第4副電圧S1,S2,S3,S4が一定の高い電圧値に固定されている。
CPU20は、これら副電圧の状態から異常と判断し、異常検出信号を異常出力端子fsから異常時電圧設定回路49に出力する。
【0042】
第1主電圧M1は、中立点電圧V1に固定されるが(図4▲3▼参照)、第2主電圧M2は、差動アンプ42の非反転入力端子に入力される中立点電圧V2が異常時電圧設定回路49により異常時電圧に設定され、許容範囲を超えて変位され図4▲4▼,▲5▼に示すように第1主電圧M1より適当に低い電圧V2に固定される。
【0043】
正常時に略一致しなければならない第1主電圧M1と第2主電圧M2の僅かな差を判別する前記許容範囲を適用して、この第1,第2主電圧M1,M2の差は該許容範囲を超えるようになる。
したがってECU50は、従前の許容範囲をもとに異常状態と判断することができ、モータ52の駆動を停止させる異常状態信号を出力する。
【0044】
またコイル11,12のいずれか一方が接続不良であったり、断線しているような場合は、例えばコイル12が断線しているとすると、図5▲1▼,▲2▼に示すように第1,第3副電圧S1,S3は正常な値を示すが、第2,第4副電圧S2,S4は、一定の高い電圧に固定される。
【0045】
図5▲3▼に示すように第1主電圧M1は、中立点電圧V1を通って正常時より傾斜の緩やかな直線を示しており、第2主電圧M2はCPU20から異常信号が出力されて図5▲4▼に示すように許容範囲を超えて変位され、第1主電圧M1より適当に低い電圧を示している。
【0046】
したがって第1,第2主電圧M1,M2の差は該許容範囲を超えるようになり(図5▲5▼参照)、ECU50は異常状態と判断することができ、モータ52の駆動を停止させる異常状態信号を出力する。
【0047】
このように本トルクセンサ1は、従前よりECU50が備えている異常を判断する許容範囲を利用してコイル11,12の接続不良等の異常を第1,第2主電圧M1,M2から判断することができ、別途新たな判断手段を設ける必要がない。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るトルクセンサの機械的部分の概略構成図である。
【図2】同トルクセンサの電気的回路部分の概略構成図である。
【図3】正常時における第1,第2,第3,第4副電圧及び第1,第2主電圧の状態を示す図である。
【図4】異常時における第1,第2,第3,第4副電圧及び第1,第2主電圧の状態を示す図である。
【図5】別の異常時における第1,第2,第3,第4副電圧及び第1,第2主電圧の状態を示す図である。
【符号の説明】
1…トルクセンサ、2…ハウジング、3…入力軸、4…出力軸、5,6…ベアリング、7…トーションバー、8…コア、9…スライダピン、
11,12…コイル、13…抵抗、14…抵抗回路、15,16…抵抗、17…サーミスタ、 20…CPU,20a…制御ボード、21,22…電圧信号線、23,24,25,26…整流・平滑回路、27,28,29,30…バッファ回路、31,32,33,34,35,36,37,38…抵抗、
41,42…差動アンプ、
43,44…中立点電圧設定回路、45,46…バッファ回路、47…中立点調整スイッチAJS−SW、48…E2PROM、49…異常時電圧設定回路、
50…ECU,51…モータドライバ、52…モータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torque sensor that detects torque based on an inductance change of a pair of coils, and more particularly to a torque sensor that can detect abnormality such as poor connection of coils.
[0002]
[Prior art]
An example described in Japanese Patent Laid-Open No. 8-136366 is that this type of torque sensor can detect a connection failure of a coil.
[0003]
That is, the torque sensor of the example includes a pair of coils whose inductances change in opposite directions according to torque, and a differential amplifier circuit that differentially amplifies the pair of detection voltages induced in the pair of coils. And detecting the torque from the output of the differential amplifier circuit.
[0004]
When an abnormality is detected from one of the detection voltages induced in the pair of coils, the output of the differential amplifier circuit is controlled to be a predetermined value outside the steady output range.
When the output of the differential amplifier circuit shows such a predetermined value, it is determined that there is an abnormality such as poor connection of one coil.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to provide a torque sensor that can determine an abnormality such as a connection failure of at least one coil by the output of a differential amplifier circuit.
[0006]
[Means for solving the problems and effects]
In order to achieve the above object, the invention according to claim 1 is characterized in that a pair of coils whose inductances change in opposite directions according to torque, and output voltages based on respective inductance changes of the two coils are first and second. First differential amplifying means for inputting the first and second sub-voltages rectified and smoothed by the second rectifying / smoothing circuit , amplifying the difference between the first and second sub-voltages and outputting the first main voltage as a first main voltage; The third and fourth sub-voltages obtained by rectifying and smoothing the output voltage based on the inductance changes of the two coils by the third and fourth rectifying / smoothing circuits are input, and the difference between the third and fourth sub-voltages is calculated. Second differential amplification means for amplifying and outputting as a second main voltage; and an abnormal condition signal output means for outputting an abnormal condition signal when a difference between the first main voltage and the second main voltage exceeds a predetermined allowable range; In a torque sensor comprising When at least one of the first, second, third, and fourth sub-voltages exceeds a predetermined range, an abnormality determination unit that determines that the coil is poorly connected; and when the abnormality determination unit determines that an abnormality has occurred, A voltage displacement means for displacing the second main voltage beyond the predetermined allowable range, and the abnormal condition signal output means can output an abnormal condition signal even when the coil has a poor connection ; did.
[0007]
If there is an abnormality such as a connection failure in the coil, the abnormality determining means will determine that there is an abnormality from the first, second, third and fourth subvoltages, and the voltage displacing means will displace the second main voltage beyond a predetermined allowable range Therefore, the abnormal state signal output means can output an abnormal state signal by making a determination based on a reference of a predetermined allowable range from the difference between the displaced second main voltage and the first main voltage.
[0010]
If the coil is poorly connected, the sub-voltage indicates a constant voltage outside the predetermined range, so if at least one of the first, second, third and fourth sub-voltages exceeds the predetermined range, It can be determined that there is a connection failure.
[0011]
According to a second aspect of the present invention, in the torque sensor according to the first aspect , the second differential amplifying unit is a differential amplifier to which negative feedback is applied, and the voltage displacing unit is not a differential amplifier. The second main voltage is displaced by applying a predetermined voltage to the inverting input.
[0012]
Inverting the voltage applied to the input of the differential amplifier, Ru can be Baiaisu voltage of the output of the differential amplifier (second main voltage).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
The torque sensor 1 according to the present embodiment is applied to a vehicle power steering apparatus, and its schematic structure is shown in FIG.
[0014]
An input shaft 3 and an output shaft 4 that are rotatably supported on the housing 2 via bearings 5 and 6 and are coaxially connected to each other are connected to each other by a torsion bar 7.
A cylindrical core 8 is serrated to the outer peripheral surface of the large-diameter end portion 4 a of the output shaft 4, is slidable only in the axial direction with respect to the output shaft 4, and is a slider protruding from the input shaft 3 The pin 9 is engaged with the spiral groove 8a of the core 8 through a long hole extending in the circumferential direction of the large-diameter end 4a.
[0015]
Two torque detection coils 11 and 12 supported inside the housing 2 are provided on the outer periphery of a cylindrical core 8 that slides in the axial direction via a gap.
The two coils 11 and 12 are arranged on opposite sides with respect to the axial movement center of the core 8.
[0016]
When a torsional force acts on the input shaft 3, a rotational force is transmitted to the output shaft 4 through the torsion bar 7, but the torsion bar 7 is elastically deformed and rotates between the input shaft 3 and the output shaft 4. A relative displacement in direction occurs.
The relative displacement in the rotational direction causes the core 8 to slide in the axial direction through the engagement between the slider pin 9 and the spiral groove 8a.
[0017]
When the core 8 moves in the axial direction, the area surrounding the core 8 of each of the coils 11 and 12 changes, and when one area increases, the other area decreases.
When the area surrounding the core 8 increases, the magnetic loss increases and the inductance of the coil decreases. Conversely, when the area surrounding the core 8 decreases, the magnetic loss decreases and the inductance of the coil increases.
[0018]
Therefore, when the torque that moves the core 8 toward the coil 11 acts, the inductance L1 of the coil 11 decreases, the inductance L2 of the coil 12 increases, and conversely, the torque that moves the core 8 toward the coil 12 acts. When the inductance L1 of the coil 11 increases, the inductance L2 of the coil 12 decreases.
[0019]
An electrical circuit portion of the torque sensor 1 that detects torque based on changes in the inductances L1 and L2 of the coils 11 and 12 is shown in FIG. 2 as a schematic configuration diagram.
The coils 11 and 12 are suspended at a positive voltage E through a resistor 13 (R1) and a resistor circuit 14 (R2), respectively, and the other ends of the coils 11 and 12 are both oscillation outputs of the control board 20a mounted with the CPU 20. It is connected to the terminal osc.
[0020]
The resistor circuit 14 has a configuration in which a resistor 15 is connected in parallel to the resistor 16 and the thermistor 17 connected in series, and the temperature compensation function is achieved by the action of the thermistor 17.
That is, the thermistor 17 has such a temperature characteristic that the resistance value R2 always satisfies R1 / L1 = R2 / L2 regardless of the temperature change.
[0021]
The voltage signal line 21 extending from the connection portion of the coil 11 and the resistor 13 is branched and connected to the rectifying / smoothing circuits 23 and 25, respectively, and the voltage signal line 22 extending from the connection portion of the coil 12 and the resistor 14 is branched. Are connected to the rectifying / smoothing circuits 24 and 26, respectively.
[0022]
That is, a bridge circuit is configured by the coils 11, 12, the resistor 13, and the resistor circuit 14, an oscillation voltage is input to the bridge circuit, and an output voltage thereof is input to the rectifying / smoothing circuits 23, 24, 25, and 26.
[0023]
The output voltage of the bridge circuit is rectified and smoothed by the rectifying / smoothing circuits 23, 24, 25, and 26, and the buffer circuits 27 are respectively provided as first, second, third, and fourth sub-voltages S1, S2, S3, and S4. , 28, 29 and 30 are output.
[0024]
The output terminals of the buffer circuits 27 and 28 are connected to the inverting input terminal and the non-inverting input terminal of the differential amplifier 41 via resistors 31 and 32, respectively.
Similarly, the output terminals of the buffer circuits 29 and 30 are connected to the inverting input terminal and the non-inverting input terminal of the differential amplifier 42 via resistors 33 and 34, respectively.
[0025]
The differential amplifiers 41 and 42 are negatively fed back by resistors 35 and 36, respectively, to function as differential amplifiers, and their outputs are input to the electronic control unit ECU 50 as the first main voltage M1 and the second main voltage M2. Is done.
[0026]
Further, neutral point adjustment voltages V1, V2 are input to the non-inverting input terminals of the differential amplifiers 41, 42 from the neutral point voltage setting circuits 43, 44 through the buffer circuits 45, 46 and the resistors 37, 38, respectively. .
[0027]
The neutral point voltage setting circuits 43 and 44 receive the respective adjustment signals from the neutral point adjustment output terminals aj1 and aj2 of the control board 20a, and set the neutral point voltages V1 and V2 according to the adjustment signals.
[0028]
Therefore, the differential amplifier 41 multiplies the difference between the first sub-voltage S1 and the second sub-voltage S2 by an amplification factor A, and outputs a voltage obtained by adding the neutral adjustment voltage V1 as a bias voltage as the first main voltage M1.
That is, the first main voltage M1 is
M1 = (S2-S1) .A + V1
It is.
[0029]
Similarly, for the differential amplifier 42, the output second main voltage M2 is
M2 = (S4-S3) .A + V2
It is.
[0030]
The neutral main voltage that is not biased to either the right steering torque (right torsion torque) or the left steering torque (left torsion torque) is referred to as a neutral point voltage, and the neutral point adjustment voltage V1. , V2 becomes a neutral point voltage.
[0031]
The ECU 50 outputs a motor control instruction signal to the motor driver 51 based on the first main voltage M1, and the motor 52 that assists steering is driven by the motor driver 51.
[0032]
The second main voltage M2 is used for detecting an abnormal state, and the ECU 50 determines whether or not the difference between the first main voltage M1 and the second main voltage M2 is within a predetermined allowable range, and sets the allowable range. If it exceeds, the torque sensor 1 is assumed to be in some abnormal state, an abnormal state signal is output, and the control of the motor 52 is stopped.
[0033]
The control board 20a receives the first, second, third, and fourth sub-voltages S1, S2, S3, and S4 and the first and second main voltages M1 and M2. Based on the second, third, and fourth sub-voltages S1, S2, S3, and S4, the abnormality of the coils 11 and 12 is determined. If there is an abnormality, an abnormality detection signal is output from the abnormality output terminal fs to the abnormal voltage setting circuit 49. Output to.
[0034]
The abnormal voltage setting circuit 49 is connected to the input terminal of the buffer circuit 46 on the voltage line connected to the non-inverting input terminal of the differential amplifier 42. When an abnormality detection signal is input, the neutral point adjustment voltage which is a bias voltage The second main voltage M2 can be displaced by changing V2 to an abnormal voltage.
[0035]
In addition, a neutral point adjustment signal AJS for instructing neutral point adjustment is input from the neutral point adjustment switch AJS-SW47 to the neutral point adjustment terminal ajs, and the neutral point voltage setting state can be stored and rewritten in the control board 20a. E 2 PROM 48 is connected to the neutral point voltage setting terminal rom.
[0036]
The torque sensor 1 has a schematic circuit configuration as described above, and operates in accordance with the first, second, third, and fourth sub-voltages S1, S2, S3, and S4 and the first and second main voltages M1 and M2. This will be described below with reference to FIGS.
In the coordinates shown in FIGS. 3 to 5, the vertical axis is voltage, the horizontal axis right direction is right steering torque, the horizontal axis left direction is left steering torque, and the origin 0 is a neutral point.
[0037]
FIG. 3 shows the torque sensor 1 operating normally. When the right steering torque increases, the core 8 moves to the coil 11 side due to the relative rotation of the input shaft 3 and the output shaft 4, and the inductance of the coil 12. L2 is increased to increase the induced electromotive force, and conversely, the inductance L1 of the coil 11 is decreased to decrease the induced electromotive force. Therefore, the second and fourth sub-voltages S2 and S4 increase, The third sub-voltages S1 and S3 are reduced (see (1) and (2) in FIG. 3).
[0038]
On the other hand, when the left steering torque is increased, the second and fourth sub-voltages S2 and S4 are decreased and the first and third sub-voltages S1 and S3 are increased (FIG. 3 (1), ▲). 2 ▼).
Accordingly, the first and second main voltages M1 and M2 which are the outputs of the differential amplifiers 41 and 42 obtained by multiplying the difference between them by A and adding the neutral point voltage are as shown in FIGS. It becomes an upward-sloping slope line passing through V1 and V2 at the neutral point.
[0039]
The ECU 50 compares the first and second main voltages M1 and M2 and determines whether the difference between the two is within an allowable range.
If it is normal, the changes in the first and second main voltages M1 and M2 are substantially the same as shown in FIG.
[0040]
If it is determined to be normal, an instruction signal for driving the motor 52 is output to the motor driver 51 based on the first main voltage M1.
In this way, the assisting force by the motor corresponding to the steering torque acts on the steering to execute power steering.
[0041]
However, if the coils 11 and 12 are not securely attached and both of them are in a poor connection state, the coils 11 and 12 are in a disconnected state, and as shown in FIGS. , Second, third and fourth sub-voltages S1, S2, S3, S4 are fixed to a constant high voltage value.
The CPU 20 determines that there is an abnormality from the state of these sub-voltages, and outputs an abnormality detection signal from the abnormality output terminal fs to the abnormality voltage setting circuit 49.
[0042]
Although the first main voltage M1 is fixed to the neutral point voltage V1 (see (3) in FIG. 4), the second main voltage M2 is the neutral point voltage V2 input to the non-inverting input terminal of the differential amplifier 42. The abnormal voltage setting circuit 49 sets the abnormal voltage, which is displaced beyond the allowable range, and is fixed at a voltage V2 that is appropriately lower than the first main voltage M1, as shown in FIGS. 4 (4) and (5).
[0043]
Applying the allowable range for discriminating a slight difference between the first main voltage M1 and the second main voltage M2 that should be substantially the same when normal, the difference between the first and second main voltages M1 and M2 is the allowable value. Beyond the range.
Therefore, the ECU 50 can determine an abnormal state based on the conventional allowable range, and outputs an abnormal state signal for stopping the driving of the motor 52.
[0044]
Further, when one of the coils 11 and 12 is poorly connected or disconnected, for example, if the coil 12 is disconnected, as shown in FIGS. 5 (1) and (2), Although the first and third sub-voltages S1 and S3 show normal values, the second and fourth sub-voltages S2 and S4 are fixed at a constant high voltage.
[0045]
As shown in FIG. 5 (3), the first main voltage M1 passes through the neutral point voltage V1 and shows a straight line having a gentler slope than normal, and the second main voltage M2 has an abnormal signal output from the CPU 20. As shown in FIG. 5 (4), the voltage is displaced beyond the allowable range and shows a voltage appropriately lower than the first main voltage M1.
[0046]
Therefore, the difference between the first and second main voltages M1 and M2 exceeds the allowable range (refer to (5) in FIG. 5), and the ECU 50 can determine that the state is abnormal, and an abnormality that stops the driving of the motor 52. Output a status signal.
[0047]
As described above, the torque sensor 1 determines an abnormality such as a poor connection of the coils 11 and 12 from the first and second main voltages M1 and M2 by using an allowable range for determining an abnormality included in the ECU 50. Therefore, it is not necessary to provide a new determination means.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a mechanical part of a torque sensor according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of an electric circuit portion of the torque sensor.
FIG. 3 is a diagram illustrating a state of first, second, third, and fourth sub-voltages and first and second main voltages in a normal state.
FIG. 4 is a diagram illustrating states of first, second, third, and fourth sub-voltages and first and second main voltages at the time of abnormality.
FIG. 5 is a diagram illustrating states of first, second, third, and fourth sub-voltages and first and second main voltages when another abnormality occurs.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Torque sensor, 2 ... Housing, 3 ... Input shaft, 4 ... Output shaft, 5, 6 ... Bearing, 7 ... Torsion bar, 8 ... Core, 9 ... Slider pin,
11, 12 ... coil, 13 ... resistor, 14 ... resistor circuit, 15, 16 ... resistor, 17 ... thermistor, 20 ... CPU, 20a ... control board, 21, 22 ... voltage signal line, 23, 24, 25, 26 ... Rectifying / smoothing circuit, 27, 28, 29, 30 ... buffer circuit, 31, 32, 33, 34, 35, 36, 37, 38 ... resistor,
41, 42 ... differential amplifier,
43, 44 ... neutral point voltage setting circuit, 45, 46 ... buffer circuit, 47 ... neutral point adjustment switch AJS-SW, 48 ... E 2 PROM, 49 ... abnormality voltage setting circuit,
50 ... ECU, 51 ... Motor driver, 52 ... Motor.

Claims (2)

トルクに応じて互いに逆方向にインダクタンスが変化する一対のコイルと、
前記両コイルのそれぞれのインダクタンス変化に基づく出力電圧を第1,第2の整流・平滑回路により整流及び平滑した第1,第2副電圧を入力して第1,第2副電圧の差を増幅して第1主電圧として出力する第1差動増幅手段と、
前記両コイルのそれぞれのインダクタンス変化に基づく出力電圧を第3,第4の整流・平滑回路により整流及び平滑した第3,第4副電圧を入力して第3,第4副電圧の差を増幅して第2主電圧として出力する第2差動増幅手段と、
前記第1主電圧と前記第2主電圧の差が所定許容範囲を超えると異常状態信号を出力する異常状態信号出力手段と、
を備えたトルクセンサにおいて、
前記第1,第2,第3,第4副電圧の少なくとも1つの電圧が所定範囲を超えると前記コイルの接続不良と判断する異常判断手段と、
前記異常判断手段が異常と判断したときに前記第2主電圧を前記所定許容範囲を超えて変位させる電圧変位手段とを有し、
前記コイルに接続不良がある場合も前記異常状態信号出力手段が異常状態信号を出力することができることを特徴とするトルクセンサ。
A pair of coils whose inductances change in opposite directions according to torque;
The first and second sub-voltages obtained by rectifying and smoothing the output voltage based on the inductance changes of the two coils by the first and second rectifying / smoothing circuits are input to amplify the difference between the first and second sub-voltages. A first differential amplifying means for outputting as a first main voltage;
The third and fourth sub-voltages obtained by rectifying and smoothing the output voltage based on the inductance changes of the two coils by the third and fourth rectifying / smoothing circuits are input to amplify the difference between the third and fourth sub-voltages. A second differential amplifying means for outputting as a second main voltage;
An abnormal state signal output means for outputting an abnormal state signal when a difference between the first main voltage and the second main voltage exceeds a predetermined allowable range;
In the torque sensor with
An abnormality determining means for determining a connection failure of the coil when at least one of the first, second, third and fourth sub-voltages exceeds a predetermined range;
Voltage displacement means for displacing the second main voltage beyond the predetermined allowable range when the abnormality determination means determines that there is an abnormality,
The torque sensor characterized in that the abnormal state signal output means can output an abnormal state signal even when there is a connection failure in the coil.
前記第2差動増幅手段が、負帰還をかけられた差動アンプであり、
前記電圧変位手段は、前記差動アンプの非反転入力に所定電圧を印加することで前記第2主電圧を変位させることを特徴とする請求項1記載のトルクセンサ。
The second differential amplifying means is a differential amplifier to which negative feedback is applied;
2. The torque sensor according to claim 1, wherein the voltage displacing means displaces the second main voltage by applying a predetermined voltage to a non-inverting input of the differential amplifier.
JP03577999A 1999-02-15 1999-02-15 Torque sensor Expired - Fee Related JP4573370B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03577999A JP4573370B2 (en) 1999-02-15 1999-02-15 Torque sensor
US09/502,358 US6474179B1 (en) 1999-02-15 2000-02-14 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03577999A JP4573370B2 (en) 1999-02-15 1999-02-15 Torque sensor

Publications (2)

Publication Number Publication Date
JP2000234969A JP2000234969A (en) 2000-08-29
JP4573370B2 true JP4573370B2 (en) 2010-11-04

Family

ID=12451395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03577999A Expired - Fee Related JP4573370B2 (en) 1999-02-15 1999-02-15 Torque sensor

Country Status (2)

Country Link
US (1) US6474179B1 (en)
JP (1) JP4573370B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148128A (en) * 2000-11-10 2002-05-22 Showa Corp Abnormality detector for torque sensor
KR100455674B1 (en) * 2000-12-28 2004-11-08 주식회사 만도 Apparatus for power steering of vehicle having monitoring unit
JP2003050167A (en) * 2001-08-07 2003-02-21 Showa Corp Temperature-compensating apparatus for torque sensor
JP2003065876A (en) * 2001-08-21 2003-03-05 Showa Corp Abnormality detection device of torque sensor
JP2004061149A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Torque sensor and electric power steering apparatus using the same
JP4004411B2 (en) * 2003-01-27 2007-11-07 株式会社ショーワ Torque sensor temperature compensation device
JP4107134B2 (en) * 2003-04-02 2008-06-25 株式会社ジェイテクト Torque sensor
JP2006267045A (en) * 2005-03-25 2006-10-05 Nsk Ltd Torque sensor
KR100729119B1 (en) * 2006-04-21 2007-06-14 현대모비스 주식회사 A torque sensor for steering system of vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631042A1 (en) * 1986-09-12 1988-03-24 Vdo Schindling ANGLE SENSOR
US4907460A (en) * 1987-10-30 1990-03-13 Koyo Seiko Co., Ltd. Torque sensor
US4918418A (en) * 1988-08-04 1990-04-17 Caterpillar Inc. Inductive coil structure with electrical return path
JPH0719971A (en) * 1993-05-07 1995-01-20 Unisia Jecs Corp Torque detection device
JP3309604B2 (en) 1994-11-14 2002-07-29 日本精工株式会社 Torque sensor
US5796014A (en) * 1996-09-03 1998-08-18 Nsk Ltd. Torque sensor

Also Published As

Publication number Publication date
US6474179B1 (en) 2002-11-05
JP2000234969A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP3309604B2 (en) Torque sensor
US6386052B1 (en) Torque sensor
JP4573370B2 (en) Torque sensor
US6704665B2 (en) Torque sensor abnormality detecting device
EP1283414B1 (en) Temperature compensator of torque sensor
EP1167939B1 (en) Abnormal state detecting apparatus of torque sensor
JP4004411B2 (en) Torque sensor temperature compensation device
JP4023940B2 (en) Torque sensor temperature compensation device
JP2002022567A (en) Abnormality detector for torque sensor
JP4662681B2 (en) Torque sensor abnormality detection device
JP4902043B2 (en) Torque sensor abnormality detection device
JP4522045B2 (en) Torque sensor abnormality detection device
JP4133275B2 (en) Torque sensor abnormality detection device
JP2002148128A (en) Abnormality detector for torque sensor
JP3173903B2 (en) Torque sensor abnormality detection device and abnormality detection method
JP2002022569A (en) Torque sensor
JP2000234966A (en) Adjusting device for neutral-point voltage of torque sensor
JP2002022570A (en) Torque sensor
JP2000028449A (en) Torque detector
JP4024130B2 (en) Torque sensor temperature compensation device
JP2002022568A (en) Torque sensor
JPH10142082A (en) Torque sensor
JP2002055001A (en) Anomaly detection device for torque sensor
JP5648435B2 (en) Electric power steering apparatus and vehicle equipped with the same
JP3380276B2 (en) Electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees