JP4571366B2 - Method for improving the quality of heat-processed foods - Google Patents

Method for improving the quality of heat-processed foods Download PDF

Info

Publication number
JP4571366B2
JP4571366B2 JP2002020790A JP2002020790A JP4571366B2 JP 4571366 B2 JP4571366 B2 JP 4571366B2 JP 2002020790 A JP2002020790 A JP 2002020790A JP 2002020790 A JP2002020790 A JP 2002020790A JP 4571366 B2 JP4571366 B2 JP 4571366B2
Authority
JP
Japan
Prior art keywords
food
heat
water
processed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002020790A
Other languages
Japanese (ja)
Other versions
JP2003219810A (en
Inventor
康文 福間
健一郎 東
睦夫 三島
昭彦 山根
Original Assignee
株式会社氷温
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社氷温 filed Critical 株式会社氷温
Priority to JP2002020790A priority Critical patent/JP4571366B2/en
Publication of JP2003219810A publication Critical patent/JP2003219810A/en
Application granted granted Critical
Publication of JP4571366B2 publication Critical patent/JP4571366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、加熱加工(調理)する食品原料内の水分の存在状態を予め均一化する予備処理をした後、加熱加工(調理)することで、加熱加工食品を高品質化する方法に関するものであり、更に詳しくは、食品を加熱加工(調理)する際に、上記食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工(調理)原料内の水分の存在状態を予め均一化する予備処理方法と、これを加熱加工(調理)する方法とを組み合わせることで、加熱加工時間の短縮化、加熱加工食品の品質の改善、加熱加工食品の加熱ムラの低減、それらによる加熱加工食品の製造方法の改善、得られる製品の高品質化を実現することを可能とする、新しい加熱加工食品の高品質化技術に関するものである。
【0002】
【従来の技術】
一般に、食品中の水分は、ランダムに、しかも不均一に散在している。したがって、加熱加工(調理を含む) 食品の加熱工程においては、外部からの熱は食品内部に均等に伝導されていない。その結果、加熱加工(調理)する際に、焼きムラ、茹でムラなど加熱ムラが引き起こされ、加えて、食品内部からの部分的な旨み成分の流出、食品中の水分の部分的蒸散を招き、食品の外観、テクスチャー、味、風味等における著しい品質低下が避けられない状況にある。
【0003】
一方、水は、温度によりクラスター(分子集団) の大きさが変化することが知られている。しかし、食品原料中の水分の存在状態を均一化することと、上記クラスターとの関係については、未だ不明な点が多く、しかも、これまで、食品原料内の水分の存在状態と該食品原料の加熱加工(調理)との関係について研究された例はほとんどなく、したがって、食品原料内の水分の存在状態の差異が、加熱加工(調理)にどのような影響を与えるのか、といった問題は、未だ未解決の状態にあるのが実情である。
【0004】
【発明が解決しようとする課題】
このような状況の中で、本発明者らは、物性特性、示差熱分析、電子顕微鏡観察、X線回折により、食品原料内の水分の存在状態を調べるとともに、食品原料内の水分の存在状態の均一ないし不均一性とその加熱加工に与える影響との関係を種々調べたところ、水のクラスターについては、プラスの温度領域では大小のクラスターが混在するが、低温、特に0℃以下においてはクラスターが小さくなり、食品原料中でのその移行性が高まること、その結果、食品原料中のタンパク質、多糖類などの生体高分子と水との親和性も均一に高まり、加熱加工(調理)時の加熱ムラの低減に繋がり、加熱時間の短縮化とともに加熱加工(調理) 食品の品質の向上化が可能になることがわかった。
【0005】
そこで、本発明者らは、更に、食品原料内の水分の存在状態を均一化する方法及び該方法と加熱加工方法とを一体化した新しい加熱加工(調理)技術を開発することを目標として鋭意研究を積み重ねた結果、食品原料を0℃以下の未凍結温度領域に保持することによって、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水の存在状態を均一化できること、また、食品原料内の水分の存在状態をこの方法で均一化してから加熱加工(調理)することにより、加熱加工(調理)時間の短縮化、加熱加工食品の高品質化、加熱加工食品の加熱ムラの低減化、食品の加熱加工方法の改善の点で、顕著な効果が得られることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、加熱加工(調理)する食品原料内の水分の存在状態を均一化する方法を提供することを目的とするものである。
また、本発明は、上記方法で食品原料内の水分の存在状態を予め均一化する予備処理をした後、加熱加工(調理)を施すことからなる食品の加工方法を提供することを目的とするものである。
更に、本発明は、上記方法により、食品の加熱加工時間を短縮する方法、上記方法により加熱加工食品の品質を改善する方法、上記の方法により加熱加工食品の加熱ムラを低減する方法、上記方法により加工することで得られる品質改善された加熱加工食品、及び上記方法により加工することで得られる加熱ムラの低減された加熱加工食品、を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、食品の加熱加工時間を短縮する方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする食品の加熱加工時間の短縮方法。
)加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、加熱加工食品の品質を改善する方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする加熱加工食品の品質改善方法。
)加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、加熱加工食品の加熱ムラを低減させる方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる、ことで特徴付けられる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする加熱加工食品の加熱ムラ低減方法。
)焼成加工して、焼成加工食品の焼きムラを低減させる請求項に記載の加熱ムラ低減方法。
【0008】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
そもそも食品加工における加熱の目的は、1)安全性や貯蔵性の向上、2)除去・分離操作の補助・促進、3)消化性や嗜好性の改善、に大別することができる。これらの目的を達成するための加熱条件はさまざまであるが、加熱条件が不適当な場合には、所期の目的を達成できないだけでなく、焦げ臭、褐変、栄養価の低下などによる品質低下を招くことがある。そこで、食品の性質や加熱の目的に応じて、最適加熱条件(昇温速度、到達温度、温度保持時間、冷却速度)を設定することが大事である、とされている(「食生活と加工食品」、日本家政学会編、朝倉書店)。基本的には加熱条件を検討することが最重要課題であり、前処理、しかも0℃以下の未凍結温度領域における均一化処理を施すことが加熱食品の向上、加熱時間の短縮化などを可能にするといった発想はこれまでに報告がない。
【0009】
また、加えて、加熱加工の目的の中で安全性や貯蔵性の向上があるが、濃厚ポタージュや濃縮果汁の加熱殺菌を行う場合、表面部分のみ加熱され、中心部分には熱が伝導しにくく、残菌など安全性、衛生上の問題が発生する。しかし、これら不均一的加熱処理の対処法は、被加熱食品を静置しないで、振動させたり、回転させる(回転殺菌法という)ことにより、均一に加熱殺菌する(「食品化学」、藤巻ら共著、朝倉書店)というように、加熱時の物理的条件付けの研究が圧倒的に多く、前処理としての加熱ムラの解決方法そのものが無いか、あるとしても僅かである。更に、一般に、煮熟前の穀類の吸水処理において、その吸水率は浸漬温度によって異なり、温度が高いほど速まる。したがって、常識的には如何に高温で浸漬処理を行うかという方法論に従うけれども、高温・長時間の浸漬は異臭を生じ、まめ類などの場合、種皮の破裂を著しくする傾向があるため、留意する必要があるとされている(「植物性食品II」、下村ら編、朝倉書店)。これらの事項からも明らかなように、0℃以下の未凍結温度領域を活用した水浸漬など予備的処理技術は、新しい技術思想によるものである。
【0010】
本発明の方法は、特に、天然物由来の食品原料、例えば、農産物、畜産物、水産物などの食品原料内の水分の存在状態を均一化するのに好適に用いられる。一般に、天然物由来の食品原料には、移動しやすい自由水、通常の自由水、及び束縛水が存在しており、通常、例えば、粉体、粒状等の食品原料の調製時に、表面の乾燥化等により、食品原料中の水分の存在状態はアンバランスになっていることが多々みられ、また、通常、それを防ぐことは困難である。したがって、通常、食品原料を加熱加工する際に、例えば、精白米、豆類等の食品原料を水に浸漬処理することが行われているが、浸漬に長時間を要し、かなりの時間的、経済的ロスを避けられないのが実情である。
本発明は、食品原料を0℃以下の未凍結温度領域に保持することで食品原料内の水の存在状態を均一化する方法、この方法で食品原料中の水の存在状態を均一化した後、加熱加工(調理)することで、加熱ムラを低減する方法、加熱時間を短縮する方法、加熱加工食品の品質を改善する方法、等の新しい加熱加工(調理)技術を提供するものである。
【0011】
次に、本発明の均一化処理−加熱加工(調理)方法の好適な態様を幾つか例示する。
(1) 加熱加工(調理) 原料(農産物、畜産物、水産物など) を、例えば、0℃以下の未凍結温度領域、湿度30%〜100%にて1時間〜6ヶ月間保存し、均一化処理を行った後に、加熱加工(調理) する。
(2) 加熱加工(調理) 原料(農産物、畜産物、水産物など) を、例えば、0℃以下の未凍結温度領域の水(食塩水、調味液含む) に10分〜6ヶ月間浸漬し、均一化処理を行った後に、加熱加工(調理) する。
(3) 加熱加工(調理) 原料(農産物、水産物、畜産物など) に、例えば、副原料(食塩、調味液、発酵微生物など) を加え、一次加工した後、0℃以下の未凍結温度領域、湿度30%〜100%にて1時間〜6ヶ月間保存し、均一化処理を行った後に、加熱加工(調理) する。
(4) 加熱加工(調理)原料(農産物、畜産物、水産物など) を、例えば、一次加工した後、0℃以下の未凍結温度領域に保持して、該原料内の水分の存在状態を予め均一化する予備処理をした後、加熱加工(焼成加工など)する。
(5) 上記(1) 〜(4) の均一化処理とともに、乾燥、加圧、減圧、電磁波照射などの処理を同時に行った後に、加熱加工(調理) する。
【0012】
次に、温度領域については、本発明において、0℃以下の未凍結温度領域とは、0℃以下、食品の凍り始める温度(氷結点) まで、ないしは過冷却温度領域を含めた未凍結温度領域を意味する。具体的には、生鮮食品類においては概ね0℃〜−5.0℃であり、穀類、豆類、栗、ナッツ類、コーヒー豆、海藻類などにおいては概ね0℃〜−30℃である。
各食品原料内の水分の均一化において、適宜緩慢冷却あるいは段階的昇温処理を付加することによって、更に均一効果を高めることができる。
次に、湿度条件については、食品の種類、状態により、概ね30%〜100%であるが、食品の種類、状態、処理時間などにより適宜調節して最適化する。
次に、処理期間については、浸漬、あるいは加水物における均一化は比較的短時間にての処理が可能であるが、穀類などのように乾燥状態の食品の場合、長時間を要するため、適宜調節して最適化する。
次に、適応食品については、好適には、米、小麦、蕎麦、トウモロコシなど穀類、大豆、小豆など豆類、粟、コーヒー豆、カカオ、ナッツ類、海藻類、その他植物性原料及びこれらの加熱加工(調理) 食品、水産物、畜産物など動物性原料(魚の一夜干し、畜肉、鶏肉など)及びこれらの加熱加工(調理) 食品等が例示される。
【0013】
本発明により得られる均一化処理−加熱加工(調理)の主な作用効果を以下に示す。
(1)加熱加工(調理) 時間の短縮化により、生産コストの削減が可能となる。
(2)加熱加工(調理) 製品の水分の保持率の向上、ないしは水分活性の低下が引き起こされ、外観(色調の保持、ツヤなど)、テクスチャー(歯ごたえ、咀嚼性など)、物性面(弾力性、伸展性など) における高品質化が可能となる。
(3)澱粉高含有食品(麺類、パン類、穀類、栗、ナッツ類など) においては、各食品中に散在する澱粉粒のアルファー化が均一に促進されるのみならず、グルテンの形成、水和をも促進し、併せて酸化、老化を抑制することが可能となる。
(4)水産物、畜産物などの動物性原料(魚の一夜干し、畜肉、鶏肉など)においては、例えば、焼成工程における焼きムラ、局所的な焼け焦げ、及び焼成時の食品の反り返りを確実に防止することが可能となる。
本発明は、食品中の水の均一化処理と加熱加工(調理) を組み合わせることによって加熱食品の高品質化を可能にするものであるが、この方法の前処理でもある均一化処理は、非加熱食品において、特に、味なじみ、塩かどの低減にも効果がある他、冷凍食品製造の冷凍前処理にも有効であり、解凍時の鮮度保持、ドリップの低減などを可能にする方法として有用である。
【0014】
本発明において、加熱加工(調理)とは、例えば、煮る、茹でる、焼く(焼成)、乾熱する等に代表される通常の加熱加工(調理)を意味するものであり、工業的な加熱加工プロセス、調理過程における加熱加工プロセスの全てを包含する。したがって、これらの加熱加工の手段、条件及び装置そのものは、特に制限されるものではなく、対象とされる加熱加工食品の種類、加熱加工方法に応じて通常の加熱加工(調理)技術が適宜使用される。
本発明において、加熱加工する食品原料内の水分の存在状態を予め均一化する予備処理をした後、続いて、加熱加工することにより、食品の加熱加工時間の短縮化、加熱加工食品の品質の改善化、加熱加工食品の加熱ムラ(特に、焼きムラ、局所的な焼け焦げ、食品の反り返りなど)の低減化、これらによる加熱加工食品の高品質化を実現することが可能となる。
これらの加熱加工食品の品質上の改善効果は、加熱加工食品の高付加価値化、製造経費の低コスト化、人的・資源エネルギーの有効利用、加熱加工技術の近代化及びイノベーションを実現化する重要かつ必須のものとして当該技術・産業分野において強く待望されているものである。
本発明は、例えば、ベーカリー製品、豆類製品、穀類製品、ナッツ類製品、麺類、練り製品、水産物(一夜干しなど)、畜肉製品(焼き鳥など)に代表される加熱加工食品の新しい加熱加工技術として有用である。特に、水産物(アジ、イカ等の一夜干しなど)、畜肉製品(焼き肉、焼き鳥など)を焼成した場合、焼きムラ、局所的な焼け焦げ、食品の焼成時の反り返りがなく、通常の焼成方法では得られない効果が奏される。
【0015】
次に、試験例に基づいて本発明を具体的に説明する。
試験例1
本試験例では、加熱加工(調理)の予備的処理としての、食品原料内の水分の存在状態の均一化の基礎的実験例について説明する。したがって、ここでは、加熱加工(調理)のプロセスについての説明は省略する。
(1)加水による小麦粉の均一化処理試験について
1)方法
200gの小麦粉に水90mlと食塩2.5gを加え、ホームベーカリーにて12分間捏ねあげ、これを1cm厚及び3mm厚に延ばし、一定の大きさに切断したもの(縦4cm×横2cm、含水率40%;以下、ドウという)を供試材料とした。
ドウを常温(+20℃、相対湿度40%)及び0℃以下(−0.5℃、相対湿度40%)に設定した貯蔵庫内にて均一化処理を施し(重量減少率15%を終点とした)、その均一化の状態の外観観察(1cm厚)及び示差熱分析(3mm厚)を行った。
なお、外観観察については約3%乾燥時の切断面について調査し、示差熱分析についてはサンプルパン(示差熱分析用の容器)にてくり抜き、分析用サンプルとした。
【0016】
2)結果
まず、外観観察の結果を図1及び図2に示す。常温における均一化では内部より表面が特に乾燥が進み、その表面は粗く、硬化が促進している状態を呈し、不均一性を示していた。一方、0℃以下における均一化では、ドウの内側、外側の乾燥状態が均一であり、しっとり感を呈していることが明らかである。ここでは、詳細は示していないが、5℃前後にて均一化処理したものは、常温と0℃以下のものとの中間に位置していることも観察された。
【0017】
次に、示差熱分析の結果を図3〜図5に示す。
示差熱分析の結果、処理前では、40℃(移動しやすい自由水)、110℃(自由水)、135℃(束縛水)に吸収ピークが観察された(図3)。次に、常温で処理したものは、110℃(自由水)のピークが著明に減少し、表面の過度の乾燥などアンバランスな水分の存在状態を示していた(図4)。一方、−0.5℃で処理したものは、40℃、110℃及び135℃のピークがバランス良く観察され、表面、内側に限らず均一に水分が存在していることが確認された(図5)。
【0018】
(2)水浸漬した精白米について
1)方法
精白米に15℃及び−0.5℃の冷水を加え、12時間浸漬した後、得られた浸漬米の切断面を走査電子顕微鏡(1000倍及び3000倍)にて観察した。
2)結果
その結果を図6及び図7(顕微鏡写真)に示す。
図6に示されるように、15℃の水にて浸漬した精白米の表面は粗く、水分の存在状態にムラが発生し、亀裂が多数観察された。一方、図7に示されるように、−0.5℃の水にて浸漬した精白米の表面はなめらかであり、水分子が精白米中の内胚乳(貯蔵デンプンに富む)等と高い親和性を示しながら均一に存在していることが確認された。
水の存在が均一な状態を示す−0.5℃浸漬精白米を用いて炊飯したところ、15℃浸漬のものと比較して、米飯中澱粉のアルファ化がより促進され、結果として炊飯米としての水分の保持率が向上し、ツヤ、透明感を有するなどの高品質化が可能となる他、炊飯時間の短縮化が図れることがわかった。
【0019】
試験例2
本試験例では、加熱加工(調理)の予備的処理としての、小麦粉ドウ内の水分の存在状態の均一化処理におけるその物理的特性について説明する。したがって、ここでは、加熱加工(調理)のプロセスについての説明は省略する。
(1)試験方法
供試材料として、市販の中力小麦粉より作製した小麦粉ドウを成形し、使用した。乾燥処理には、インキュベーターを用い、+20℃設定にて乾燥処理を施す冷風乾燥処理区と、−0.5℃設定にて乾燥処理を施す均一化処理区の2試験区を設けた。また、各試験区について、重量減少率が10%になるまで乾燥処理を施した小麦粉ドウを用い、以下の1)〜5)の調査を行った。
1)物性測定
これは、レオメーター(レオテック社製)を用いて測定を行った。破断応力(g)、脆さ(g)の測定は、球状プランジャー(7φ使用)、突き刺し速度6cm/minの測定条件で行った。
2)示差熱分析
これは、TG−DTA(MACサイエンス社製)を用いて分析を行い、室温(+23℃)から160℃までK/minで昇温した時の吸熱反応及び重量減少率を調査した。
3)水分含有率及び色調
これらの測定は、常法に従って行った。
4)電子顕微鏡による組織構造の観察
これは、小麦粉ドウを金でスパッタリングコートした後、走査型電子顕微鏡(日本電子社製、加速電圧10kV)で組織構造の観察を行った。
5)デンプン結晶構造の調査
これは、X線回折装置(rigaku社製)を用いて行った。
【0020】
(2)試験結果
まず、物性測定の結果について説明する。
図8に、各試験区における小麦粉ドウの乾燥曲線を示す。図8より、均一化処理区は、冷風乾燥区に比べ、乾燥速度が遅いことが観察された。本試験においては、冷風乾燥区は約17時間、均一化処理区では約27時間の乾燥処理を施し、10%乾燥した小麦粉ドウを得た。図9に、物性測定の条件及び小麦粉の波形を示す。図10に、各試験区における乾燥処理後の破断応力を示す。図11に、各試験区における乾燥処理後の脆さを示す。破断応力及び脆さについては、図10及び図11より、均一化処理区の方が数値が低く、表層部と内部の硬さの差が小さいことが確認された。
このように、物性測定の結果、均一化処理区は冷風乾燥区よりも表層部の部分的な硬化が進行していないことが観察された。
【0021】
次に、示差熱分析の結果について説明する。
図12に、原料小麦粉には60℃付近に吸熱ピークが確認され、乾燥前の小麦粉ドウには、60℃付近と120℃付近に吸熱ピークが確認された。この60℃付近の吸熱ピークは、文献等から、デンプンの糊化反応によるものと判断できる。一方、120℃付近の吸熱ピークは加水後に現れていることから、糊化反応に使われなかった水分、つまり水和していなかった水分によるものと考えられる。
図13に、小麦粉ドウ表層部のDTA曲線を示す。図13より、表層部については、原料小麦粉と同じように60℃付近の第1ピークしか観察されなかった。
この図より、均一化処理区の方が、第1ピークが大きいことから、糊化反応に伴う吸熱変化が大きいことが観察された。これはデンプンンと水和している水分が多いためと考えられる。
【0022】
また、160℃まで昇温した時の重量減少率が、冷風乾燥区は約19%であるのに対し、均一化処理区は約24%であることから、均一化処理区は冷風乾燥区に比べ、小麦粉ドウ表層部の水分含有率が高いものと推察された。図14に、小麦粉ドウ内部のDTA曲線を示す。図14より、内部については、乾燥前の小麦粉ドウと同じく、第1ピークと第2ピークの2つのピークが観察された。この図より、均一化処理区は冷風乾燥区に比べ、第1ピークが大きく、第2ピークが小さい傾向が観察され、表層部と同様、内部においても均一化処理区の方が水和している水分が多いと考えられる。
このように、示差熱分析の結果より、均一化処理区は冷風乾燥区に比べ、高い水和状態にあると考えられる。また、160℃まで昇温した時の重量減少率を比較したところ、両試験区ともに約36%であることから、均一化処理区は冷風乾燥区に比べ、表層部と内部の重量減少率の差が小さいことが確認でき、より均一的に乾燥されているものと推察された。これは、小麦粉ドウ内部の第2ピークが小さくなっていることから、水和していない水分が表層部へ移行しているためと考えられる。
【0023】
小麦粉ドウ表層部の水分含有率を常法に従って測定した結果、10%乾燥後、均一化処理区は冷風乾燥区い比べ、水分含有率が高いことが確認された(表1)。 目視による外観観察より、表面色に差が確認されたことから、小麦粉ドウ表面の色調を測定したところ、冷風乾燥区は明るさを表すハンターL値が低下していることから、暗色化が進行しているものと考えられた。一方、均一化処理区には大きな変化は確認されず、暗色化等の変化が起こっていないものと考えられた(表2)。
【0024】
【表1】

Figure 0004571366
【0025】
【表2】
Figure 0004571366
【0026】
更に、電子顕微鏡を用い、小麦粉ドウ表面の組織構造を観察(×300)したところ、冷風乾燥区には、ところどころにひび割れが確認されたが、均一化処理区にはひび割れは確認されなかった(図15)。この冷風乾燥区に観察されたひび割れは、急速な乾燥によりケースハードニング(表面硬化)が生じたためだと考えられる。このケースハードニングの発生を防止するためには、保水性の強い物質を添加する方法があるが、均一に乾燥することが可能である均一化処理は、保水性の強い物質を添加することなく抑制できるものと考えられる。
【0027】
図16に、原料小麦粉及び乾燥前の小麦粉ドウのX線回折パターンを示す。図16より、原料小麦粉には、15°、17°、18°及び23°に比較的大きいピークが観察される。しかし、乾燥前の小麦粉ドウは、加水することによってデンプンが結晶性を失うため、固有のピークが観察されなくなる。図17に、乾燥処理後の小麦粉ドウ表層部のX線回折パターンを示す。図17より、冷風乾燥区には原料小麦粉と同じく、15°、17°、18°及び23°にピークが観察された。一方、均一化処理区は、ピークが観察されず、乾燥前の小麦粉ドウと同様な回折パターンを示した。この冷風乾燥区に原料小麦粉と同様な回折パターンが現れたのは、劣化が進行しているものと考察される。一方、均一化処理区にはピークが観察されないことから、劣化の進行が抑制されているものと考えられる。
【0028】
以上のとおり、均一化処理は、冷風乾燥処理に比べ、破断応力及び脆さが小さく、表層部の硬化が抑制されているのが確認された。また、示差熱分析の結果より、均一化処理は小麦粉ドウ表層部、内部ともに高い水和状態を維持し、更に、小麦粉ドウ内部から表層部への水分移行により、均一的に乾燥されるものと考えられる。また、電子顕微鏡による組織構造の観察、X線回折装置によるデンプン結晶構造の観察等の結果より、均一化処理は、乾燥による小麦粉ドウ表面の劣化を抑制するものと推察される。
尚、上記試験例では、加熱加工(調理)の予備的処理としての、食品原料内の水分の存在状態の均一化処理について具体的に説明したが、上記食品原料内の水分の存在状態を予め均一化する予備処理をした後、続いて、通常の方法により加熱加工(焼成など)することにより、後記する実施例に具体的に示されるように、従来の方法からは到底予期し得ない格別の作用効果が得られる。
【0029】
【作用】
本発明は、加熱加工(調理)する食品原料内の水分の存在状態を予め均一化する予備処理をすることにより、加熱後に高品質化や加熱加工(調理)時間の短縮化が可能になる、といった作用効果が得られるが、これらは、水の均一化による親和性の拡大や加熱加工時の加水分解を促進させるような準備(例えば、酵素タンパク質と水分子の水和を高めておくなど)が出来ているため、加熱加工時に均一的なる熱の伝導が可能となり、加熱時間の短縮化や加熱ムラの低減化が達成され、また、物理的品質向上に加えて酵素的加水分解がより促進され、得られた加熱加工食品の糖含量が増え、結果として加熱加工食品が高品質化することによるものと考えられる。
【0030】
【実施例】
次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。
実施例1
(生あん原料の均一化処理−加熱加工)
原料豆(アズキ) を水洗後、煮熟(2〜3時間)、裏ごし、篩別して得られたあん汁を水晒、脱水し、生あんを製造する工程において、原料アズキの保存・均一化処理を−1℃(相対湿度80%、段階的昇温処理含む) にて10日間行ったもの(均一化処理区)と、従来通り、常温にて保存されていたもの(無処理区)とから製造される生あんの品質を比較した。
まず、水道水中(15℃、24時間) におけるアズキ(100粒) の吸水率をアズキ粒の横幅の膨張率にて比較した結果、表3に示したように、均一化処理区の方が無処理区より有意に高く、アズキの中に水道水が浸漬ムラなく均一に浸透していることが明らかとなった。
また、煮熟時間を製品化(生あん) 可能時間として比較したところ、均一化処理区においては、20〜30分短縮されることが判明した。
【0031】
Figure 0004571366
【0032】
次に、各試験区にて得られた生あんの品質を色調(色差計によるL値:明るさ)、及び官能試験(ツヤ、風味、甘み、なめらかさ) の結果を、5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い) にて比較検討した。その結果を表4に示す。更に、浸漬時の水温を0℃にて行う処理(12〜24時間)、あるいは水晒を0℃以下にて行う処理を加えることにより、更に生あんの高品質化が可能となることがわかった。
【0033】
Figure 0004571366
【0034】
実施例2
(甘栗原料の均一化処理−加熱加工)
原料生栗を選別・洗浄後、焼成(糖分散布、ツヤ出し含む;約25分) し、蒸し焼き(約10〜15分)、放冷し、甘栗を製造する工程において、原料生栗の保存・均一化処理を−1.5℃(相対湿度90%、段階的昇温処理含む) にて3週間行ったもの(均一化処理区)と、従来通り常温にて保存されていたもの(無処理区) とから製造される甘栗の品質を比較した。
まず、生栗保存中の糖度(%)、遊離全糖量(g/100g)を比較したところ、表5に示したように、均一化処理を施した栗は糖度が約2%向上し、遊離全糖量も多く含まれることが明らかとなった。
【0035】
Figure 0004571366
【0036】
また、焼成工程にて焼き上げるまでの時間を比較したところ、無処理区(25〜28分) と比較して、均一化処理区(20分〜23分) では約5分間短縮できることも明らかとなった。
次に、各試験区にて得られた甘栗の品質について、官能試験(甘み、風味、やわらかさ、しっとり感) の結果を、5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い) にて、また、焼きムラについても同様に5段階評価(5;ない、4;ほとんどない、3;普通、2;やや多い、1;多い) にて、比較検討した。その結果を表6に示す。
【0037】
Figure 0004571366
【0038】
以上の結果から、生栗保存中に均一化処理を施すことにより、高品質の甘栗が得られるのみならず、焼成時間の短縮、焼きムラを低減することが可能であることが判明した。
更に、得られた甘栗を0℃以下の未凍結温度領域にて保存することにより、しっとり感が増し、風味を更に向上させることも可能であることがわかった。
【0039】
実施例3
(生そば原料の均一化処理−加熱加工)
そば粉と小麦粉の混合原料に加水、ミキシング後、圧延し、製麺を得る一連の工程において、圧延時に−1℃にて均一化処理(湿度95%、48時間) を行ったものと、従来法に従った(無処理) 場合の製麺の品質の比較を行った。
官能試験は、ゆで麺として比較し、色・ツヤ、コシ、弾力性、舌触りについて5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い)にて比較検討した結果、表7に示すように、生そばの高品質化が可能であることが明らかとなった。
【0040】
Figure 0004571366
【0041】
また、茹で上げ後の麺の切断強度(麺線切断時の荷重) をレオメーターにて測定した結果、表8に示すように、均一化処理を施したそばは、無処理のものと比較して、切断強度の保持率が明らかに高く、茹でたての風味が持続する麺であることが判明した。
【0042】
Figure 0004571366
【0043】
実施例4
(練り製品の均一化処理−加熱加工)
活マアジの頭部・内臓を除去し、水洗後に魚肉を採取した。得られた魚肉に食塩(3%)、卵白(5%)、片栗粉(6%)を添加し、練り加工を行った。続いて、坐り工程において、−2.0℃にて均一化処理(72時間) を施したものと、従来法にしたがった無処理(5℃、72時間) のものをそれぞれ90℃、30分間加熱し、レオメーターにて破断強度(g)、くぼみ度(mm)、ゼリー強度(g・cm)を求めた。その結果、表9に示すように、均一化処理を行うことにより、物性面における品質の向上効果が確認された。
【0044】
Figure 0004571366
【0045】
官能試験は、練り製品として比較し、外観、香り、味、テクスチャーについて5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い)にて比較検討した結果、表10に示すように、練り製品の高品質化が十分可能であることが明らかとなった。
【0046】
Figure 0004571366
【0047】
実施例5
(乾燥うどん原料の均一化処理−加熱加工)
小麦粉200gに水90ml、食塩2.5gを混合した後、捏ね上げ、2時間常温にてねかせたものを1cm厚に切断した。得られたうどんを常温(23℃)にて4.5%乾燥させたもの(無処理区) と、−0.5℃にて均一化処理を行いながら、同じく4.5%乾燥したもの(均一化処理区) との物性を比較検討した。物性は、破断応力(g)、脆さ(g)(表面と内部の乾燥状況が異なると高い数値となる) および変形率(%)について調査した(表11)。また、官能試験はゆで麺として比較し、色・ツヤ、コシ、弾力性、舌触りについて5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い) にて比較検討した(表12) 。これらの結果から、0℃以下の未凍結温度領域にて均一化処理を行いながら乾燥したうどんは、コシ、弾力性の向上など、品質の向上効果が確認された。
【0048】
Figure 0004571366
【0049】
Figure 0004571366
【0050】
実施例6
(アジ一夜干しの均一化処理−加熱加工)
下処理して腹開きにした生鮮アジを4%の塩水に2時間浸漬した後、8℃にて12時間乾燥したものを冷風乾燥処理区とし、また、−1.0℃(RH70%)にて24時間均一化処理を施したものを均一化処理区として、それぞれ焼き網上で焼いた後の品質を5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い)にて比較検討した。その結果を表13に示す。
【0051】
Figure 0004571366
その結果、均一化処理のものは、短時間で中まで均等に焼かれており、非常に肉汁が豊かな状態であったが、冷風乾燥処理区のものは、表面に焦げが多く発生し、パサパサ感を強く呈するのと同時に反り返ってしまうことがわかった。
【0052】
実施例7
(焼き鳥の均一化処理−加熱加工)
鶏肉、砂肝、レバー(脂肪を除き、水につけて血抜き済みのもの)を一口大に切り、竹串に刺した後、塩少々をふったものを無処理区とした。一方、この状態で更に、−0.5℃下、24時間の均一化処理を施したものを均一化処理区とし、それぞれ焼き網上で焼いた後の焼き鳥の品質を5段階評価(5;非常に良い、4;良い、3;普通、2;やや悪い、1;悪い)にて比較検討した。その結果を表14に示す。
【0053】
Figure 0004571366
その結果、塩ふりした後、−0.5℃で均一化処理を行うと、表面のみならず中心部からも水分が塩の浸透圧にて移行することにより、焼け焦げることなく均一に焼けることがわかった。
【0054】
【発明の効果】
以上詳述したように、本発明は、加熱加工(調理)する食品原料内の水分の存在状態を予め均一化する予備処理方法、この方法により食品原料内の水分の存在状態を予め均一化する予備処理をした後、続いて、加熱加工(調理)する方法に係るものであり、本発明によれば、1)加熱加工(調理)する食品原料中の水分の存在状態を簡便かつ短時間に均一化することができる、2)加熱加工食品の、加熱ムラを防止し、品質改善された高品質の加熱加工食品の作製を可能とする、3)加熱加工食品の加熱加工プロセスにおける加熱加工時間を短縮することができる、4)加熱加工食品の新しい加熱加工技術を提供することができる、という格別の作用効果が奏される。
【図面の簡単な説明】
【図1】常温における均一化(ドウの断面図)を示す。
【図2】−0.5℃における均一化(ドウの断面図)を示す。
【図3】示差熱分析(処理前)の吸収ピークを示す。
【図4】示差熱分析(常温)の吸収ピークを示す。
【図5】示差熱分析(−0.5℃)の吸収ピークを示す。
【図6】浸漬米(15℃)の断面写真を示す。
【図7】浸漬米(−0.5℃)の断面写真を示す。
【図8】各試験区における小麦粉ドウの乾燥曲線を示す。
【図9】物性測定の条件及び小麦粉ドウの波形を示す。
【図10】各試験区における乾燥処理後の破断応力を示す。
【図11】各試験区における乾燥処理後の脆さを示す。
【図12】原料小麦粉及び乾燥前小麦粉ドウのDTA曲線を示す。
【図13】小麦粉ドウ表層部のDTA曲線を示す。
【図14】小麦粉ドウ内部のDTA曲線を示す。
【図15】小麦粉ドウ表面の組織構造の走査型電子顕微鏡写真(×300)を示す。
【図16】原料小麦粉及び乾燥前の小麦粉ドウのX線回折パターンを示す。
【図17】乾燥処理後の小麦粉ドウ表層部のX線回折パターンを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving the quality of a heat-processed food by performing a pre-process for preliminarily homogenizing the presence of moisture in a food material to be heat-processed (cooked) and then heat-processing (cooking). Yes, more specifically, when food is cooked (cooked), the food material is kept in an unfrozen temperature range of 0 ° C. or lower, and the presence of moisture in the cooked (cooked) material is made uniform in advance. By combining the pre-treatment method to be converted into a heat-processing (cooking) method, the heat-processing time is shortened, the quality of the heat-processed food is improved, the heating unevenness of the heat-processed food is reduced, and the heat processing by them The present invention relates to a technology for improving the quality of a new heat-processed food, which makes it possible to improve the manufacturing method of the food and to improve the quality of the resulting product.
[0002]
[Prior art]
In general, water in food is scattered randomly and non-uniformly. Therefore, heat processing (including cooking) In the heating process of food, heat from outside is not evenly conducted inside the food. As a result, when heated (cooked), uneven heating such as baking unevenness and boiled unevenness is caused, and in addition, partial savory spillage from the inside of the food, and partial transpiration of moisture in the food, There is an unavoidable situation in which a significant deterioration in the appearance, texture, taste, flavor, etc. of the food is unavoidable.
[0003]
On the other hand, it is known that the size of a cluster (molecular group) changes with temperature. However, there are still many unclear points regarding the relationship between the homogenization of moisture in food ingredients and the above-mentioned clusters, and until now, the presence of moisture in food ingredients and the relationship between the food ingredients Few studies have been conducted on the relationship with heat processing (cooking), so the question of how the difference in the presence of moisture in food ingredients affects the heat processing (cooking) is still unsolved. The actual situation is in an unresolved state.
[0004]
[Problems to be solved by the invention]
Under such circumstances, the present inventors investigated the presence of moisture in the food material by physical property, differential thermal analysis, electron microscope observation, X-ray diffraction, and the presence of moisture in the food material. As a result of various investigations on the relationship between the uniformity or non-uniformity of water and its effect on heat processing, water clusters are mixed in large and small clusters in the positive temperature range, but at low temperatures, especially below 0 ° C, the clusters are mixed. As a result, the transferability in food ingredients increases, and as a result, the affinity between water and biopolymers such as proteins and polysaccharides in food ingredients increases evenly, and during heat processing (cooking) It has been found that this leads to a reduction in heating unevenness and shortens the heating time and improves the quality of the heat-processed (cooked) food.
[0005]
Therefore, the present inventors have further earnestly aimed at developing a method for homogenizing the presence of moisture in the food material and a new heat processing (cooking) technology that integrates the method and the heat processing method. As a result of repeated research, by maintaining food ingredients in an unfrozen temperature range of 0 ° C or less, the state of free water, normal free water, and bound water present in food ingredients is made uniform. In addition, by making the presence of moisture in the food ingredients uniform by this method and then heat-processing (cooking), shortening the heat-processing (cooking) time, improving the quality of the heat-processed food, heat-processed food The present inventors have found that a remarkable effect can be obtained in terms of reducing the unevenness of heating and improving the heat processing method of food, and have completed the present invention.
[0006]
That is, an object of the present invention is to provide a method for uniformizing the presence of moisture in a food material to be heat-processed (cooked).
Another object of the present invention is to provide a food processing method comprising performing a pretreatment for preliminarily homogenizing the presence of moisture in a food material by the above method, followed by heating (cooking). Is.
Further, the present invention provides a method for shortening the heat processing time of food by the above method, a method for improving the quality of heat processed food by the above method, a method for reducing heating unevenness of heat processed food by the above method, and the above method. It is an object of the present invention to provide a heat-processed food product with improved quality obtained by processing and a heat-processed food product with reduced heating unevenness obtained by processing by the above method.
[0007]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
(1) A method of shortening the heat processing time of food by heat-processing after pre-homogenizing the presence of moisture in the food material to be heat-processed. Maintain in the freezing temperature region and preliminarily process the presence of moisture in the heat-processed raw material 2) Thereby, free water, normal free water, and restraint existing in the food raw material water Including water Equalize the presence state of Expected After the preparation process, The food raw material is in a state where water is present uniformly from the balance of absorption peaks by differential thermal analysis, not only on the surface and inside. A method for shortening the heat processing time of food, characterized by heat processing.
( 2 ) A method for improving the quality of heat-processed food by preliminarily homogenizing the presence of moisture in the food material to be heat-processed, and 1) pre-freezing the food material at 0 ° C. or less in advance. 2), thereby preliminarily treating the presence of moisture in the heat-processed raw material, and 2) easily moving free water, normal free water, and bound water existing in the food raw material. Including water Equalize the presence state of Expected After the preparation process, The food raw material is in a state where water is present uniformly from the balance of absorption peaks by differential thermal analysis, not only on the surface and inside. A method for improving the quality of a heat-processed food, characterized by heat-processing.
( 3 ) A method of reducing the unevenness of heating of the heat-processed food after pre-uniformizing the presence of moisture in the food material to be heat-processed, and 1) pre-freezing the food raw material at 0 ° C. or lower Maintaining in the temperature region, preliminarily homogenizing the presence of moisture in the heat-processed raw material 2) Thereby, free free water, normal free water, and bound water present in the food raw material Including water After the pretreatment characterized by homogenizing the presence state of The food raw material is in a state where water is present uniformly from the balance of absorption peaks by differential thermal analysis, not only on the surface and inside. A method for reducing heating unevenness of a heat-processed food, characterized by performing heat processing.
( 4 Claim to reduce baking unevenness of baking processed food by baking processing 3 The method for reducing heating unevenness described in 1.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
In the first place, the purpose of heating in food processing can be broadly divided into 1) improving safety and storage, 2) assisting and promoting removal and separation operations, and 3) improving digestibility and palatability. There are various heating conditions to achieve these objectives, but when the heating conditions are inappropriate, not only the intended purpose cannot be achieved, but also quality deterioration due to burnt odor, browning, reduced nutritional value, etc. May be invited. Therefore, it is important to set the optimal heating conditions (heating rate, ultimate temperature, temperature holding time, cooling rate) according to the nature of the food and the purpose of heating ("Food life and processing" Food ", edited by Japanese Society of Home Economics, Asakura Shoten). Basically, examining the heating conditions is the most important issue, and pre-treatment and uniform treatment in the non-freezing temperature range below 0 ° C can improve heated foods and shorten heating time. No idea has been reported so far.
[0009]
In addition, there is an improvement in safety and storability for the purpose of heat processing, but when heat sterilization of concentrated potage or concentrated fruit juice, only the surface part is heated, and heat is not easily conducted to the central part Safety and hygiene problems such as residual bacteria occur. However, the method of dealing with these non-uniform heat treatments is to heat and sterilize evenly by shaking or rotating (called rotational sterilization method) without leaving the food to be heated ("food chemistry", Fujimaki et al. (Co-authored by Asakura Shoten), research on physical conditioning during heating is overwhelmingly large, and there is little or no solution for heating unevenness as a pretreatment. Furthermore, in general, in the water absorption treatment of cereals before ripening, the water absorption rate varies depending on the soaking temperature, and increases as the temperature increases. Therefore, although it is common practice to follow the methodology of how to perform immersion treatment at high temperatures, it should be noted that immersion at high temperatures for a long period of time produces a strange odor, and in the case of blisters, etc., there is a tendency for the seed coat to rupture significantly. It is said that it is necessary ("Plant food II", edited by Shimomura et al., Asakura Shoten). As is clear from these matters, a preliminary treatment technique such as water immersion utilizing an unfrozen temperature range of 0 ° C. or lower is based on a new technical idea.
[0010]
The method of the present invention is particularly suitably used for homogenizing the presence of moisture in food raw materials derived from natural products, for example, food raw materials such as agricultural products, livestock products, and marine products. In general, food materials derived from natural products include free water that is easy to move, normal free water, and bound water. Usually, for example, when a food material such as powder or granules is prepared, the surface is dried. As a result, the presence of moisture in the food material is often unbalanced, and it is usually difficult to prevent it. Therefore, usually, when the food material is heat-processed, for example, food raw materials such as polished rice and beans are immersed in water, but it takes a long time to immerse, The reality is that economic losses cannot be avoided.
The present invention is a method for homogenizing the presence of water in a food material by maintaining the food material in an unfrozen temperature range of 0 ° C. or less, and after homogenizing the presence of water in the food material by this method. The present invention provides new heat processing (cooking) techniques such as a method of reducing heating unevenness, a method of shortening the heating time, a method of improving the quality of heat processed foods, etc. by heat processing (cooking).
[0011]
Next, some preferred embodiments of the homogenization treatment-heating process (cooking) method of the present invention will be exemplified.
(1) Heat processing (cooking) Raw materials (agricultural products, livestock products, marine products, etc.) are stored for 1 hour to 6 months in an unfrozen temperature range of 0 ° C or less and humidity of 30% to 100%, for example, and homogenized After processing, heat processing (cooking).
(2) Heat processing (cooking) Raw materials (agricultural products, livestock products, marine products, etc.) are soaked for 10 minutes to 6 months, for example, in water (including salt solution and seasoning liquid) in an unfrozen temperature range of 0 ° C or lower, After performing the homogenization process, heat processing (cooking).
(3) Heat processing (cooking) Raw materials (agricultural products, marine products, livestock products, etc.) are added to, for example, auxiliary materials (salt, seasoning liquid, fermenting microorganisms, etc.) The sample is stored at a humidity of 30% to 100% for 1 hour to 6 months, and after homogenization, it is heated (cooked).
(4) Heat-processed (cooked) raw materials (agricultural products, livestock products, marine products, etc.), for example, after primary processing, are kept in an unfrozen temperature range of 0 ° C. or less, and the presence of moisture in the raw materials is determined in advance. After pre-processing to make uniform, heat processing (baking processing etc.) is performed.
(5) Heat treatment (cooking) is performed after simultaneously carrying out the treatments such as drying, pressurization, decompression, and electromagnetic wave irradiation in addition to the homogenization treatments of (1) to (4) above.
[0012]
Next, regarding the temperature range, in the present invention, the non-freezing temperature range of 0 ° C. or lower is the temperature of 0 ° C. or lower until the food begins to freeze (freezing point) or the non-freezing temperature range including the supercooling temperature range. Means. Specifically, it is generally 0 ° C to -5.0 ° C for fresh foods, and is generally 0 ° C to -30 ° C for cereals, beans, chestnuts, nuts, coffee beans, seaweeds, and the like.
In homogenizing the moisture in each food material, a uniform effect can be further enhanced by adding a slow cooling or a stepwise heating process as appropriate.
Next, the humidity condition is approximately 30% to 100% depending on the type and state of the food, but is optimized and adjusted as appropriate depending on the type, state and processing time of the food.
Next, with regard to the treatment period, soaking or homogenization in the water can be performed in a relatively short time, but in the case of a dry food such as cereal, it takes a long time, and accordingly Adjust and optimize.
Next, for adaptive foods, preferably, grains such as rice, wheat, buckwheat and corn, beans such as soybeans and red beans, straw, coffee beans, cacao, nuts, seaweeds, other plant materials, and heat processing thereof (Cooking) Animal raw materials such as food, marine products, and livestock products (dried overnight fish, livestock meat, chicken, etc.) and heat-processed (cooked) foods thereof are exemplified.
[0013]
The main effects of the homogenization treatment-heating process (cooking) obtained by the present invention are shown below.
(1) Heating (cooking) The production cost can be reduced by shortening the time.
(2) Heat processing (cooking) Increased moisture retention of the product or reduced water activity, appearance (color retention, gloss, etc.), texture (crispness, chewability, etc.), physical properties (elasticity) , Extensibility, etc.) can be improved.
(3) In foods with high starch content (noodles, breads, cereals, chestnuts, nuts, etc.), not only the starch particles dispersed in each food are uniformly promoted, but also gluten formation, water It also promotes harmony and can also suppress oxidation and aging.
(4) In animal raw materials such as marine products and livestock products (such as overnight overnight fish, livestock meat, and chicken), for example, reliably prevent uneven baking in the baking process, local charring, and curling of food during baking. It becomes possible.
The present invention makes it possible to improve the quality of heated food by combining the homogenization treatment of water in food and heat processing (cooking). It is effective for reducing the familiarity of taste and salt, especially for heated foods, and is also effective for pre-freezing treatment in the production of frozen foods. It is useful as a method to maintain freshness during thawing and reduce drip. It is.
[0014]
In the present invention, the heating process (cooking) means a normal heating process (cooking) represented by, for example, boiling, boiling, baking (baking), dry heating, etc., and is an industrial heating process. Includes all processes and cooking processes in cooking. Accordingly, the means, conditions, and apparatus of the heat processing are not particularly limited, and a normal heat processing (cooking) technique is appropriately used depending on the type of heat processed food to be processed and the heat processing method. Is done.
In the present invention, after pre-processing that pre-homogenizes the presence of moisture in the food material to be heat-processed, followed by heat-processing, thereby shortening the time for heat-processing food, improving the quality of the heat-processed food It is possible to improve, reduce heating unevenness of the heat-processed food (particularly, uneven baking, local scorch, food warping, etc.), and to improve the quality of the heat-processed food.
These quality-improving effects of heat-processed foods will enable higher value-added heat-processed foods, lower manufacturing costs, effective use of human and resource energy, modernization of heat-processing technology and innovation It is highly anticipated as an important and essential item in the technical and industrial fields.
The present invention is useful as a new heat processing technique for heat processed foods represented by, for example, bakery products, legume products, cereal products, nut products, noodles, kneaded products, marine products (such as dried overnight), and meat products (such as yakitori). It is. In particular, when marine products (dried overnight, such as horse mackerel, squid, etc.) and livestock meat products (baked meat, yakitori, etc.) are baked, there is no uneven baking, local scorch, or curling during baking of food, and it can be obtained with ordinary baking methods. The effect that is not possible is produced.
[0015]
Next, the present invention will be specifically described based on test examples.
Test example 1
In this test example, a basic experimental example of equalizing the presence of moisture in a food material as a preliminary process of heat processing (cooking) will be described. Therefore, description of the process of cooking (cooking) is omitted here.
(1) About homogenization test of wheat flour by water
1) Method
Add 200 ml of water and 2.5 g of salt to 200 g of flour, knead for 12 minutes in a home bakery, extend this to 1 cm thickness and 3 mm thickness, and cut to a certain size (length 4 cm x width 2 cm, moisture content 40 %; Hereinafter referred to as dough) was used as a test material.
The dough was homogenized in a storage set at room temperature (+ 20 ° C., relative humidity 40%) and 0 ° C. or less (−0.5 ° C., relative humidity 40%) (weight reduction rate 15% as the end point). ), Appearance observation (1 cm thickness) and differential thermal analysis (3 mm thickness) of the homogenized state were performed.
In addition, about the external appearance observation, it investigated about the cut surface at the time of about 3% drying, and about the differential thermal analysis, it cut out with the sample pan (container for differential thermal analysis), and set it as the sample for analysis.
[0016]
2) Results
First, the results of appearance observation are shown in FIGS. In the homogenization at room temperature, the surface was especially dried from the inside, the surface was rough, and the curing was accelerated, indicating non-uniformity. On the other hand, in the uniformization at 0 ° C. or lower, it is clear that the dry state inside and outside the dough is uniform and gives a moist feeling. Although details are not shown here, it was also observed that what was homogenized at around 5 ° C. was positioned between normal temperature and 0 ° C. or less.
[0017]
Next, the results of differential thermal analysis are shown in FIGS.
As a result of differential thermal analysis, before treatment, absorption peaks were observed at 40 ° C. (free mobile water), 110 ° C. (free water), and 135 ° C. (bound water) (FIG. 3). Next, what was processed at normal temperature had a 110 ° C. (free water) peak markedly reduced, indicating an unbalanced presence of moisture such as excessive drying of the surface (FIG. 4). On the other hand, in the case of treatment at −0.5 ° C., peaks at 40 ° C., 110 ° C. and 135 ° C. were observed in a well-balanced manner, and it was confirmed that moisture was present uniformly not only on the surface and inside (FIG. 5).
[0018]
(2) About polished rice immersed in water
1) Method
Cold water at 15 ° C. and −0.5 ° C. was added to the polished rice and immersed for 12 hours, and then the cut surface of the obtained immersed rice was observed with a scanning electron microscope (1000 × and 3000 ×).
2) Results
The results are shown in FIGS. 6 and 7 (micrographs).
As shown in FIG. 6, the surface of polished rice immersed in water at 15 ° C. was rough, unevenness occurred in the presence of moisture, and many cracks were observed. On the other hand, as shown in FIG. 7, the surface of polished rice soaked in water at −0.5 ° C. is smooth, and water molecules have a high affinity with endosperm (rich in stored starch) and the like in polished rice. It was confirmed that it was uniformly present.
When the rice is cooked using -0.5 ° C soaked polished rice showing the uniform presence of water, compared to the rice soaked at 15 ° C, the pregelatinization of starch in the cooked rice is further promoted, and as a result, as cooked rice It has been found that the moisture retention rate of the rice is improved, and it is possible to improve the quality such as gloss and transparency, and the rice cooking time can be shortened.
[0019]
Test example 2
In this test example, the physical characteristics in the process of homogenizing the presence of moisture in the flour dough as a preliminary process of the heating process (cooking) will be described. Therefore, description of the process of cooking (cooking) is omitted here.
(1) Test method
As a test material, a flour dough produced from commercially available medium strength flour was molded and used. For the drying process, an incubator was used, and two test sections were provided: a cold-air drying treatment section where drying treatment was performed at + 20 ° C. and a uniform treatment section where drying treatment was performed at −0.5 ° C. setting. Moreover, about each test section, the following 1) -5) investigation was performed using the flour dough which performed the drying process until the weight reduction rate became 10%.
1) Physical property measurement
This was measured using a rheometer (manufactured by Rheotech). The breaking stress (g) and brittleness (g) were measured under the measurement conditions of a spherical plunger (using 7φ) and a piercing speed of 6 cm / min.
2) Differential thermal analysis
This was analyzed using TG-DTA (manufactured by MAC Science), and the endothermic reaction and the weight loss rate when the temperature was raised from room temperature (+ 23 ° C.) to 160 ° C. at K / min were investigated.
3) Moisture content and color tone
These measurements were performed according to conventional methods.
4) Observation of tissue structure by electron microscope
In this method, after the wheat flour dough was sputter coated with gold, the structure was observed with a scanning electron microscope (manufactured by JEOL Ltd., acceleration voltage 10 kV).
5) Investigation of starch crystal structure
This was performed using an X-ray diffractometer (manufactured by Rigaku).
[0020]
(2) Test results
First, the result of the physical property measurement will be described.
In FIG. 8, the drying curve of the flour dough in each test section is shown. From FIG. 8, it was observed that the drying rate was slower in the homogenized treatment section than in the cold air drying section. In this test, the cold air drying section was dried for about 17 hours and the homogenized section was dried for about 27 hours to obtain 10% dried wheat flour dough. FIG. 9 shows the physical property measurement conditions and the flour waveform. In FIG. 10, the breaking stress after the drying process in each test section is shown. In FIG. 11, the brittleness after the drying process in each test section is shown. Regarding the breaking stress and brittleness, it was confirmed from FIG. 10 and FIG. 11 that the homogenization treatment section had lower numerical values and the difference in hardness between the surface layer portion and the inside was smaller.
As described above, as a result of the physical property measurement, it was observed that partial curing of the surface layer portion did not progress in the homogenized treatment section than in the cold air drying section.
[0021]
Next, the results of differential thermal analysis will be described.
In FIG. 12, an endothermic peak was confirmed around 60 ° C. in the raw flour, and an endothermic peak was confirmed around 60 ° C. and 120 ° C. in the flour dough before drying. The endothermic peak around 60 ° C. can be determined from literature and the like due to starch gelatinization reaction. On the other hand, since the endothermic peak near 120 ° C. appears after the addition of water, it is considered that the endothermic peak is attributed to water that was not used in the gelatinization reaction, that is, water that was not hydrated.
In FIG. 13, the DTA curve of the flour dough surface layer part is shown. From FIG. 13, about the surface layer part, only the 1st peak of 60 degreeC vicinity was observed like raw material flour.
From this figure, it was observed that the endothermic change accompanying the gelatinization reaction was larger because the first peak was larger in the homogenization treatment section. This is thought to be due to the large amount of water hydrated with starch.
[0022]
In addition, the weight reduction rate when the temperature is raised to 160 ° C. is about 19% in the cold air drying section, whereas it is about 24% in the uniform processing section. In comparison, the moisture content of the surface part of the flour dough was presumed to be high. FIG. 14 shows a DTA curve inside the flour dough. As shown in FIG. 14, two peaks, a first peak and a second peak, were observed in the interior as in the flour dough before drying. From this figure, it is observed that the homogenized treatment zone tends to have a larger first peak and a smaller second peak than the cold air dry zone, and the homogenized treatment zone is hydrated inside as well as the surface layer. It is thought that there is a lot of moisture.
Thus, from the result of differential thermal analysis, it is considered that the homogenized treatment zone is in a higher hydration state than the cold air drying zone. Also, when the weight loss rate when the temperature was raised to 160 ° C. was compared, both test sections were about 36%, so the homogenization treatment section had a weight reduction rate of the surface layer portion and the interior compared to the cold air drying section. It was confirmed that the difference was small, and that it was more uniformly dried. This is considered to be because the non-hydrated water has moved to the surface layer part because the second peak inside the flour dough is small.
[0023]
As a result of measuring the moisture content of the surface portion of the flour dough according to a conventional method, it was confirmed that the moisture content was higher in the homogenized treatment section than in the cold air drying section after 10% drying (Table 1). Since the difference in surface color was confirmed by visual appearance observation, when the color tone of the flour dough surface was measured, since the Hunter L value representing the brightness in the cold-air drying zone was reduced, darkening progressed It was thought that. On the other hand, no significant change was confirmed in the uniform treatment section, and it was considered that no change such as darkening occurred (Table 2).
[0024]
[Table 1]
Figure 0004571366
[0025]
[Table 2]
Figure 0004571366
[0026]
Furthermore, when the structure of the flour dough surface was observed using an electron microscope (× 300), cracks were confirmed in some places in the cold-air drying section, but no cracks were confirmed in the homogenized treatment section ( FIG. 15). The cracks observed in this cold air drying zone are thought to be due to case hardening (surface hardening) caused by rapid drying. In order to prevent the occurrence of this case hardening, there is a method of adding a substance with strong water retention, but the homogenization treatment that can be uniformly dried is performed without adding a substance with strong water retention. It can be suppressed.
[0027]
FIG. 16 shows the X-ray diffraction patterns of the raw material flour and the flour dough before drying. From FIG. 16, relatively large peaks are observed at 15 °, 17 °, 18 ° and 23 ° in the raw flour. However, the wheat flour dough before drying loses its crystallinity due to water addition, so that an inherent peak is not observed. In FIG. 17, the X-ray-diffraction pattern of the flour dough surface layer part after a drying process is shown. As shown in FIG. 17, peaks were observed at 15 °, 17 °, 18 ° and 23 ° in the cold-air drying zone, as in the case of the raw wheat flour. On the other hand, in the homogenization treatment section, no peak was observed and a diffraction pattern similar to that of the flour dough before drying was shown. The appearance of a diffraction pattern similar to that of the raw wheat flour in this cold-air drying zone is considered to be advancing deterioration. On the other hand, since no peak is observed in the homogenized area, it is considered that the progress of deterioration is suppressed.
[0028]
As described above, it was confirmed that the homogenization treatment had a smaller breaking stress and brittleness than the cold air drying treatment, and the surface layer portion was suppressed from being cured. In addition, from the results of differential thermal analysis, the homogenization treatment maintains a high hydration state in both the flour dough surface layer and the inside, and further, it is uniformly dried by moisture transfer from the flour dough inside to the surface layer. Conceivable. In addition, from the results of observation of the tissue structure with an electron microscope, observation of the starch crystal structure with an X-ray diffractometer, etc., it is presumed that the homogenization treatment suppresses the deterioration of the flour dough surface due to drying.
In the above test example, the processing for uniformizing the presence of moisture in the food material as a preliminary process for heat processing (cooking) has been specifically described. After pre-processing to make it uniform, it is then heat-processed (fired, etc.) by a normal method, and as specifically shown in the examples described later, it is exceptionally unexpected from the conventional method. The following effects can be obtained.
[0029]
[Action]
The present invention makes it possible to improve the quality after heating and shorten the heat processing (cooking) time by pre-processing to make the presence state of moisture in the food raw material to be heat processed (cooked) in advance, However, these preparations can increase the affinity by homogenizing water and promote hydrolysis during heat processing (for example, increase the hydration of enzyme proteins and water molecules). As a result, uniform heat conduction during heat processing is possible, shortening the heating time and reducing heating unevenness, and in addition to improving physical quality, enzymatic hydrolysis is further accelerated. It is considered that the sugar content of the heat-processed food obtained is increased, and as a result, the quality of the heat-processed food is improved.
[0030]
【Example】
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
Example 1
(Raw material for homogenization-heat processing)
After washing raw beans (adzuki bean), boiled (2 to 3 hours), scoured and sieved, soup stock obtained by water exposure and dehydration to produce raw red bean paste, storage and homogenization of raw adzuki beans From -1 ° C (relative humidity 80%, including stepwise temperature rise treatment) for 10 days (homogenized treatment section) and conventionally stored at room temperature (no treatment section) We compared the quality of the raw bean paste produced.
First, the water absorption rate of azuki bean (100 grains) in tap water (15 ° C., 24 hours) was compared with the expansion coefficient of the width of azuki bean grains. It was significantly higher than the treatment area, and it became clear that tap water uniformly penetrated into the azuki bean without uneven immersion.
Moreover, when the cooking time was compared as the time required for commercialization (raw bean paste), it was found that in the homogenized treatment section, the time was shortened by 20-30 minutes.
[0031]
Figure 0004571366
[0032]
Next, the quality of the raw bean paste obtained in each test section was evaluated on a five-point scale based on the color tone (L value by color difference meter: brightness) and the results of sensory tests (gloss, flavor, sweetness, smoothness) (5 Very good, 4; good, 3; normal, 2; somewhat bad, 1; bad). The results are shown in Table 4. Furthermore, it is understood that the quality of the green tea can be further improved by adding a treatment (12 to 24 hours) in which the water temperature at the time of immersion is 0 ° C. or a treatment in which water is exposed to 0 ° C. or less. It was.
[0033]
Figure 0004571366
[0034]
Example 2
(Uniformity treatment of sweet chestnut ingredients-heat processing)
After the raw raw chestnuts are selected and washed, they are baked (including sugar-dispersed cloth and glossy; about 25 minutes), steamed (about 10-15 minutes), allowed to cool, and in the process of producing sweet chestnuts, Homogenization treatment at -1.5 ° C (90% relative humidity, including stepwise temperature rise treatment) for 3 weeks (homogenization treatment section) and one that has been stored at normal temperature (no treatment) We compared the quality of sweet chestnuts manufactured from
First, when comparing the sugar content (%) during storage of raw chestnuts and the amount of free total sugar (g / 100 g), as shown in Table 5, the chestnut subjected to the homogenization treatment has improved sugar content by about 2%, It was revealed that the amount of free total sugar was also high.
[0035]
Figure 0004571366
[0036]
Moreover, when the time until baking in the baking process is compared, it is clear that it can be shortened by about 5 minutes in the homogenized treatment section (20 to 23 minutes) compared to the untreated section (25 to 28 minutes). It was.
Next, regarding the quality of the sweet chestnut obtained in each test section, the results of the sensory test (sweetness, flavor, softness, moist feeling) were evaluated on a five-point scale (5; very good, 4; good, 3; normal) 2; Slightly bad, 1; Poor), and the unevenness of baking was also evaluated in a five-point scale (5; None, 4; Almost no, 3; Normal, 2; Slightly high, 1; High) A comparative study was conducted. The results are shown in Table 6.
[0037]
Figure 0004571366
[0038]
From the above results, it was found that by performing a homogenization process during storage of raw chestnuts, not only high-quality sweet chestnuts can be obtained, but also baking time can be shortened and baking unevenness can be reduced.
Furthermore, it was found that by storing the obtained sweet chestnut in an unfrozen temperature range of 0 ° C. or less, the moist feeling is increased and the flavor can be further improved.
[0039]
Example 3
(Uniform processing of raw buckwheat raw material-heat processing)
In a series of steps to obtain noodles by adding water, mixing to buckwheat flour and wheat flour, and rolling to obtain noodles, a homogenization treatment (humidity 95%, 48 hours) at -1 ° C during rolling, and conventional A comparison was made of the quality of the noodles made according to the law (no treatment).
The sensory test was compared with boiled noodles, with a five-point evaluation (5; very good, 4; good, 3; normal, 2; somewhat bad, 1; bad) for color, gloss, stiffness, elasticity, and touch As a result of comparative examination, as shown in Table 7, it became clear that the quality of raw buckwheat can be improved.
[0040]
Figure 0004571366
[0041]
Moreover, as a result of measuring the cutting strength (load when cutting the noodle strings) of the noodles after boiling with a rheometer, as shown in Table 8, the buckwheat noodles subjected to the homogenization treatment were compared with the untreated ones. Thus, it was found that the noodles have a high cutting strength retention rate and a freshly boiled flavor.
[0042]
Figure 0004571366
[0043]
Example 4
(Kneaded product homogenization treatment-Heat processing)
The head and internal organs of live horse mackerel were removed, and fish meat was collected after washing with water. Salt (3%), egg white (5%), and starch starch (6%) were added to the obtained fish meat and kneaded. Subsequently, in the sitting step, those subjected to homogenization treatment at -2.0 ° C (72 hours) and those not treated according to the conventional method (5 ° C, 72 hours) were respectively 90 ° C and 30 minutes. After heating, the breaking strength (g), the degree of dent (mm), and the jelly strength (g · cm) were determined with a rheometer. As a result, as shown in Table 9, the effect of improving the quality in terms of physical properties was confirmed by performing the homogenization treatment.
[0044]
Figure 0004571366
[0045]
The sensory test was compared as a kneaded product, and the results of a comparative study with a five-step evaluation (5; very good, 4; good, 3; normal, 2; somewhat bad, 1; bad) for appearance, aroma, taste, and texture As shown in Table 10, it was revealed that the quality of the kneaded product can be sufficiently improved.
[0046]
Figure 0004571366
[0047]
Example 5
(Drying udon raw material homogenization treatment-Heat processing)
After mixing 90 g of water and 2.5 g of salt with 200 g of wheat flour, it was rolled up and cut at 1 cm thickness for 2 hours at room temperature. The obtained udon was dried at room temperature (23 ° C) for 4.5% (untreated section), and the same udon was dried at 4.5% while being homogenized at -0.5 ° C ( The physical properties were compared with those of the homogenization treatment section. The physical properties were investigated with respect to breaking stress (g), brittleness (g) (higher numerical values when the drying conditions on the surface and the interior are different) and deformation rate (%) (Table 11). In addition, the sensory test was compared to boiled noodles, and was evaluated on a 5-point scale (5; very good, 4; good, 3; normal, 2; somewhat bad, 1; bad) for color, gloss, stiffness, elasticity, and touch. (Table 12). From these results, it was confirmed that the udon noodles that had been dried while being homogenized in an unfrozen temperature range of 0 ° C. or lower had improved quality, such as improved stiffness and elasticity.
[0048]
Figure 0004571366
[0049]
Figure 0004571366
[0050]
Example 6
(Uniform treatment of dried horse mackerel overnight-heat processing)
The freshly processed horse mackerel that had been pretreated and opened in 4% salt water for 2 hours and then dried at 8 ° C. for 12 hours was used as a cold air drying treatment zone, and the temperature was kept at −1.0 ° C. (RH 70%). The quality after baking for 24 hours on the grilled net is evaluated on a 5-level scale (5; very good, 4; good, 3; normal, 2; slightly bad) 1; bad). The results are shown in Table 13.
[0051]
Figure 0004571366
As a result, the homogenized product was evenly baked to the inside in a short time and was in a very rich state of gravy, but the one in the cold-air drying treatment area generated a lot of scorching on the surface, It turned out that it was warped at the same time as it felt strongly.
[0052]
Example 7
(Yakitori homogenization treatment-Heat processing)
Chicken, gizzards, and liver (excluding fat, soaked in water) were cut into bite-sized pieces, stabbed into bamboo skewers, and then covered with a little salt to make an untreated section. On the other hand, in this state, the material subjected to the homogenization treatment at −0.5 ° C. for 24 hours is used as the homogenization treatment zone, and the quality of the yakitori after baking on the grill is evaluated in five stages (5; Very good, 4; good, 3; normal, 2; somewhat bad, 1; bad). The results are shown in Table 14.
[0053]
Figure 0004571366
As a result, when the salt is sprinkled and then homogenized at -0.5 ° C., moisture is transferred not only from the surface but also from the center due to the osmotic pressure of the salt, so that it can be burned uniformly without scorching. I understood.
[0054]
【The invention's effect】
As described above in detail, the present invention preliminarily homogenizes the presence of moisture in the food material to be heat-processed (cooked), and uniformizes the presence of moisture in the food material by this method. After the preliminary treatment, the method relates to a method of heating (cooking). According to the present invention, 1) the presence of moisture in the food material to be heated (cooked) can be simply and quickly. 2) Heat-processed foods can be made uniform by preventing uneven heating and improving quality, and 3) Heat-processing time in the heat-processed food process 4) It is possible to provide a special effect of providing a new heat processing technology for heat-processed foods.
[Brief description of the drawings]
FIG. 1 shows homogenization at normal temperature (cross-sectional view of a dough).
FIG. 2 shows homogenization (cross-sectional view of a dough) at −0.5 ° C.
FIG. 3 shows absorption peaks of differential thermal analysis (before treatment).
FIG. 4 shows an absorption peak of differential thermal analysis (at room temperature).
FIG. 5 shows an absorption peak of differential thermal analysis (−0.5 ° C.).
FIG. 6 shows a cross-sectional photograph of immersed rice (15 ° C.).
FIG. 7 shows a cross-sectional photograph of immersed rice (−0.5 ° C.).
FIG. 8 shows a drying curve of flour dough in each test section.
FIG. 9 shows physical property measurement conditions and the waveform of flour dough.
FIG. 10 shows breaking stress after drying treatment in each test section.
FIG. 11 shows brittleness after drying treatment in each test section.
FIG. 12 shows DTA curves of raw flour and pre-dried flour dough.
FIG. 13 shows a DTA curve of the surface part of the flour dough.
FIG. 14 shows a DTA curve inside flour dough.
FIG. 15 shows a scanning electron micrograph (× 300) of the texture structure of the flour dough surface.
FIG. 16 shows X-ray diffraction patterns of raw flour and flour dough before drying.
FIG. 17 shows an X-ray diffraction pattern of the surface part of the flour dough after the drying treatment.

Claims (4)

加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、食品の加熱加工時間を短縮する方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする食品の加熱加工時間の短縮方法。This is a method of shortening the heat processing time of food by homogenizing the presence state of moisture in the food raw material to be heat processed in advance, and 1) pre-freezing the food raw material at 0 ° C. or less. 2), thereby preliminarily treating the presence of moisture in the heat-processed raw material, and 2) including free free water, normal free water, and bound water present in the food raw material. after the preliminary process Ru is uniform the state of presence of water, followed by the food product starting material, the balance of the absorption peak by differential thermal analysis, that the surface is uniformly water is not limited to the inside are present A method for shortening the heat processing time of food, characterized in that the heat processing is performed in a state where the above is confirmed . 加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、加熱加工食品の品質を改善する方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする加熱加工食品の品質改善方法。This is a method for improving the quality of heat-processed food by pre-uniformizing the presence of moisture in the food raw material to be heat-processed, and 1) pre-freezing the food raw material at 0 ° C. or lower. 2), thereby preliminarily treating the presence of moisture in the heat-processed raw material, and 2) including free free water, normal free water, and bound water present in the food raw material. after the preliminary process Ru is uniform the state of presence of water, followed by the food product starting material, the balance of the absorption peak by differential thermal analysis, that the surface is uniformly water is not limited to the inside are present A method for improving the quality of heat-processed foods, characterized in that heat-processing is performed in a state where the above is confirmed . 加熱加工する食品原料内の水分の存在状態を予め均一化した後、加熱加工して、加熱加工食品の加熱ムラを低減させる方法であって、1)予め食品原料を0℃以下の未凍結温度領域に保持して、該加熱加工原料内の水分の存在状態を予め均一化処理する、2)それにより、食品原料内に存在する、移動しやすい自由水、通常の自由水、及び束縛水を含む水の存在状態を均一化させる、ことで特徴付けられる予備処理をした後、続いて、該食品原料を、示差熱分析による吸収ピークのバランスから、その表面、内側に限らず均一に水が存在していることが確認される状態で加熱加工する、ことを特徴とする加熱加工食品の加熱ムラ低減方法。This is a method of reducing the unevenness of heating of the heat-processed food after uniformizing the presence of moisture in the food material to be heat-processed in advance, and 1) pre-freezing the food raw material at 0 ° C. or less holds in the region, pre-processed uniform state of existence of water of the heating process the raw material, by 2) which is present in the food material, move easily free water, normal free water, and the bound water After the pretreatment characterized by homogenizing the presence of water, the food material is then uniformly distributed not only on its surface but also on the inside from the balance of absorption peaks by differential thermal analysis. A method for reducing heating unevenness of a heat-processed food, characterized in that the heat-processing is performed in a state where it is confirmed to be present . 焼成加工して、焼成加工食品の焼きムラを低減させる請求項に記載の加熱ムラ低減方法。The method for reducing unevenness in heating according to claim 3 , wherein the unevenness in baking is reduced by baking.
JP2002020790A 2002-01-29 2002-01-29 Method for improving the quality of heat-processed foods Expired - Lifetime JP4571366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002020790A JP4571366B2 (en) 2002-01-29 2002-01-29 Method for improving the quality of heat-processed foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002020790A JP4571366B2 (en) 2002-01-29 2002-01-29 Method for improving the quality of heat-processed foods

Publications (2)

Publication Number Publication Date
JP2003219810A JP2003219810A (en) 2003-08-05
JP4571366B2 true JP4571366B2 (en) 2010-10-27

Family

ID=27744192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002020790A Expired - Lifetime JP4571366B2 (en) 2002-01-29 2002-01-29 Method for improving the quality of heat-processed foods

Country Status (1)

Country Link
JP (1) JP4571366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849009B2 (en) * 2012-04-02 2016-01-27 キユーピー株式会社 Cooked egg processed food
JP6461479B2 (en) * 2014-03-26 2019-01-30 元司 堀 How to prevent moisture transfer to the immersed material

Also Published As

Publication number Publication date
JP2003219810A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
KR101368917B1 (en) Cereal grain production method using
CN103416660B (en) High-strength rice gel tailored flour, as well as preparation method and application thereof
JP2006311849A (en) Noodle quality modifier
JP2004105150A (en) Method for producing noodle
KR101189661B1 (en) Low-fat meat sausage containing headmeat skin and fermented vinegar and manufacturing method thereof
JP2004033139A (en) Flour for deep-fried food
JP4571366B2 (en) Method for improving the quality of heat-processed foods
JP6869986B2 (en) Noodle manufacturing method
JPWO2020040271A1 (en) Pasta manufacturing method
JP3392044B2 (en) Manufacturing method of instant noodles treated with hot water
KR100194084B1 (en) Manufacturing method of rice cake for Tteokguk and Tteokbokki
JP5123267B2 (en) Dry noodle manufacturing method
CN109567020B (en) Cheese and mustard mixed noodles and preparation method thereof
JP4584696B2 (en) Cold noodles that do not require cooking and a method for producing the same
US20160135488A1 (en) Method for preparing oat noodle
KR102627565B1 (en) Method of manufacturing dried rice cake for microwave oven and instant puffing rice cake using the same
KR20210079444A (en) Manufacturing method of rice bread with improved visual acceptability and chewiness
US558393A (en) Flaked cereals and process of preparing same
JPS60259154A (en) Half-cooked noodle and its preparation
JPH11346690A (en) Production of short pasta
JP3655713B2 (en) Process for producing ice-temperature processed food
JPS6055102B2 (en) Fermented food manufacturing method
JPH08336366A (en) Production of noodles
KR100839232B1 (en) Noodle With High Water Content and Preparation Methods of Preparation Thereof
JPS585651B2 (en) How to make brown rice noodles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070427

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100402

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4571366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term