JP4570075B2 - Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector - Google Patents
Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector Download PDFInfo
- Publication number
- JP4570075B2 JP4570075B2 JP2004235297A JP2004235297A JP4570075B2 JP 4570075 B2 JP4570075 B2 JP 4570075B2 JP 2004235297 A JP2004235297 A JP 2004235297A JP 2004235297 A JP2004235297 A JP 2004235297A JP 4570075 B2 JP4570075 B2 JP 4570075B2
- Authority
- JP
- Japan
- Prior art keywords
- plasmid
- rhodococcus
- added
- coli
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Description
本発明は、新規な複製系を有するプラスミドおよびそれを利用したシャトルベクターに関する。より具体的には、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)由来の新規な複製系を有する自律複製可能なプラスミド、およびその複製系を利用した大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターに関するものである。 The present invention relates to a plasmid having a novel replication system and a shuttle vector using the plasmid. More specifically, the present invention relates to an autonomously replicable plasmid having a novel replication system derived from Rhodococcus rhodochrous, and an Escherichia coli-Rhodococcus genus bacterial shuttle vector using the replication system.
ロドコッカス(Rhodococcus)属細菌は、多種類の有機化合物の変換反応に際し、微生物触媒として使用されている。例えば、ニトリル化合物を基質とするアミド化合物への変換反応に使用されており、現在、工業化されている(非特許文献1参照)。 Rhodococcus bacteria are used as microbial catalysts in the conversion reactions of many kinds of organic compounds. For example, it is used in a conversion reaction to an amide compound using a nitrile compound as a substrate, and is currently industrialized (see Non-Patent Document 1).
また、ロドコッカス(Rhodococcus)属細菌は、芳香属化合物、複素環化合物等、多種類の化合物を代謝、分解する能力を有していることも知られている(非特許文献2参照)。
このようにロドコッカス(Rhodococcus)属細菌は各種有機化合物に対して、幅広い触媒活性を有していることから、産業上での幅広い利用が期待できる。
It is also known that Rhodococcus bacteria have the ability to metabolize and decompose many kinds of compounds such as aromatic compounds and heterocyclic compounds (see Non-Patent Document 2).
As described above, Rhodococcus bacteria have a wide range of catalytic activities for various organic compounds, and thus can be expected to be widely used in industry.
このような背景から、ロドコッカス属細菌の微生物触媒としての機能をさらに改良するために、ロドコッカス属細菌を宿主とする宿主−ベクター系が開発されている。ロドコッカス(Rhodococcus)属細菌の潜在性プラスミドについては、すでに数種類見出されている。その内、プラスミドpFAJ2600、pRC4およびpAK22については塩基配列が決定されている(非特許文献3、4、5参照)。それら塩基配列は、いずれもColE2型プラスミドのファミリーに属するMycobacterium fortuitum由来のプラスミドpAL5000の複製タンパク質RepAと比較的ホモロジーが高い。よって、これらのプラスミドは類似の複製系を有していると推定できる。 Against this background, in order to further improve the function of Rhodococcus bacteria as a microbial catalyst, host-vector systems using Rhodococcus bacteria as hosts have been developed. Several types of potential plasmids of Rhodococcus bacteria have already been found. Among them, the nucleotide sequences of plasmids pFAJ2600, pRC4 and pAK22 have been determined (see Non-Patent Documents 3, 4 and 5). These base sequences are relatively high in homology with the replication protein RepA of the plasmid pAL5000 derived from Mycobacterium fortuitum belonging to the family of ColE2 type plasmids. Therefore, it can be presumed that these plasmids have a similar replication system.
しかし、現在までに知られているプラスミドは、前述のように類似の複製系を有していると推定でき、そのようなプラスミドを同一菌体内に複数個存在させると、不和合性により、プラスミド同士の共存が困難となる。よって、同一菌体内で数種類の蛋白質を産生することが困難となる。 However, it can be presumed that the plasmids known so far have a similar replication system as described above, and if a plurality of such plasmids are present in the same cell, the plasmids are incompatible. Coexistence between them becomes difficult. Therefore, it becomes difficult to produce several types of proteins in the same cell.
そこで、本発明は、新規な複製系を有する自律複製可能なプラスミド、および大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターを提供することを目的とする。 Accordingly, an object of the present invention is to provide an autonomously replicable plasmid having a novel replication system, and an Escherichia coli-Rhodococcus genus bacterial shuttle vector.
本発明者は、上記課題を解決すべく鋭意検討した結果、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC 21199株由来の潜在性プラスミドが新規な複製系を有することを見出し、本発明を完成させた。また、このようなプラスミドと大腸菌プラスミドを利用して新規な複製系を有する大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターを構築し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a latent plasmid derived from Rhodococcus rhodochrous ATCC 21199 strain has a novel replication system and completed the present invention. In addition, an E. coli-Rhodococcus bacterium shuttle vector having a novel replication system was constructed using such a plasmid and an E. coli plasmid, and the present invention was completed.
すなわち、本発明は以下の通りである。
(1)配列番号1記載の塩基配列からなるプラスミドまたはその誘導体。(2)配列番号2記載のアミノ酸配列をコードする塩基配列を有するプラスミド。(3)配列番号3記載の塩基配列を有するプラスミド。(4)配列番号4記載の塩基配列を有するプラスミド。(5)ロドコッカス(Rhodococcus)属細菌内で自律複製可能な(1)〜(4)のいずれかに記載のプラスミド。(6)(1)〜(5)のいずれかに記載のプラスミドまたはその一部と、大腸菌内で自律複製可能なプラスミドまたはその一部から構築され、ロドコッカス(Rhodococcus)属細菌内および大腸菌内で自律複製可能なシャトルベクター。
That is, the present invention is as follows.
(1) A plasmid comprising the nucleotide sequence set forth in SEQ ID NO: 1 or a derivative thereof. (2) A plasmid having a base sequence encoding the amino acid sequence set forth in SEQ ID NO: 2. (3) A plasmid having the base sequence described in SEQ ID NO: 3. (4) A plasmid having the base sequence described in SEQ ID NO: 4. (5) The plasmid according to any one of (1) to (4), capable of autonomous replication in a bacterium belonging to the genus Rhodococcus. (6) It is constructed from the plasmid according to any one of (1) to (5) or a part thereof, and a plasmid or a part thereof capable of autonomous replication in Escherichia coli, and in a Rhodococcus bacterium or in Escherichia coli. A self-replicating shuttle vector.
本発明によれば、ロドコッカス(Rhodococcus)属細菌内で既存のプラスミドおよびベクターと共存可能である新規な複製系を有するプラスミド、および大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the plasmid which has a novel replication system which can coexist with the existing plasmid and vector within the bacterium of the genus Rhodococcus, and E. coli-Rhodococcus bacterium shuttle vector can be provided.
本発明は、新規な複製系を有する自律複製可能なプラスミドである。配列番号1記載の塩基配列を有するプラスミドまたはその誘導体である。具体的には、ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC21199株より採取されるプラスミドpRC032が挙げられる。プラスミドpRC032は、配列番号1記載の塩基配列を有している。図1は、プラスミドpRC032の制限酵素地図を示したものである。 The present invention is an autonomously replicable plasmid having a novel replication system. A plasmid having a base sequence described in SEQ ID NO: 1 or a derivative thereof. Specifically, plasmid pRC032 collected from Rhodococcus rhodochrous ATCC 21199 strain is mentioned. The plasmid pRC032 has the base sequence described in SEQ ID NO: 1. FIG. 1 shows a restriction map of plasmid pRC032.
上記のプラスミドは、例えば、自然界および分譲機関由来のロドコッカス(Rhodococcus)属細菌の中からプラスミドの有無を電気泳動等により確認し、プラスミドの大きさが10 kb以下のプラスミドを選抜する。 The above-mentioned plasmid is confirmed, for example, by electrophoresis or the like from among bacteria of the genus Rhodococcus derived from the natural world and distribution agencies, and a plasmid having a plasmid size of 10 kb or less is selected.
従来から知られているプラスミドと複製系が異なるプラスミドを取得するために、採取したプラスミドの塩基配列を、ColE2型プラスミドのファミリーに属するMycobacterium fortuitum由来のプラスミドpAL5000の複製タンパク質RepAのそれと比較する。ホモロジーが低い場合、採取したプラスミドはこれまで知られているプラスミドとは非類似の複製系を有していると判断する。 In order to obtain a plasmid having a replication system different from that of a conventionally known plasmid, the base sequence of the collected plasmid is compared with that of the replication protein RepA of the plasmid pAL5000 derived from Mycobacterium fortuitum belonging to the family of ColE2-type plasmids. If the homology is low, it is judged that the collected plasmid has a replication system dissimilar to previously known plasmids.
ここでプラスミドの「誘導体」とは、菌株より採取されたプラスミドの複製必須領域(複製開始部位および複製タンパク質遺伝子(rep遺伝子))を必ず含んでいるものをいう。例えば、複製必須領域は保存され、それ以外の部分が挿入および/または削除されたものである。 Here, a “derivative” of a plasmid means a plasmid that necessarily contains a replication essential region (replication initiation site and replication protein gene (rep gene)) of a plasmid collected from a strain. For example, the duplication essential area is saved, and the other part is inserted and / or deleted.
複製必須領域の同定は、各種制限酵素を使用し、制限酵素で消化した配列断片を取り除いた欠失プラスミドを作成することにより行う。欠失プラスミドからの複製必須領域の同定を容易とするため、プラスミドは予め薬剤耐性遺伝子等を有していることが好ましい。 Identification of the replication essential region is performed by preparing a deletion plasmid using various restriction enzymes and removing the sequence fragment digested with the restriction enzymes. In order to facilitate identification of the replication essential region from the deletion plasmid, the plasmid preferably has a drug resistance gene or the like in advance.
次に本発明の大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターに関して説明する。
本発明のシャトルベクターは、ロドコッカス(Rhodococcus)属細菌のプラスミド由来の複製必須領域と大腸菌のプラスミド由来の複製必須領域を有するものである。好ましくは、上記の複製必須領域に加え薬剤耐性遺伝子を有している。ロドコッカス(Rhodococcus)属細菌のプラスミドであれば、前述のプラスミドpRC032が好適に使用される。好ましくは配列番号2のアミノ酸配列をコードする塩基配列、配列番号3および4の塩基配列、特に好ましくは配列番号4の塩基配列を有するシャトルベクターを作成する。
Next, the E. coli-Rhodococcus genus shuttle vector of the present invention will be described.
The shuttle vector of the present invention has an essential replication region derived from a plasmid of the genus Rhodococcus and an essential replication region derived from an Escherichia coli plasmid. Preferably, it has a drug resistance gene in addition to the above-mentioned replication essential region. As the plasmid of the genus Rhodococcus, the plasmid pRC032 described above is preferably used. A shuttle vector having a base sequence encoding the amino acid sequence of SEQ ID NO: 2, a base sequence of SEQ ID NOs: 3 and 4, particularly preferably a base sequence of SEQ ID NO: 4 is prepared.
本発明で使用される大腸菌由来のプラスミドとしては、pBR322、pSC101、pACYC184、pACYC177、pTrc99A、pUC18、pUC19、pUC118、pUC119、pHSG298またはpHSG299等が挙げられる。好ましくは、薬剤耐性遺伝子を有するpUC系ベクター誘導体の、pTrc99A、pUC18、pUC19、pUC118、pUC119、pHSG298またはpHSG299等が挙げられる。特に、カナマイシン耐性遺伝子を有するpHSG298が好ましい。 Examples of the plasmid derived from E. coli used in the present invention include pBR322, pSC101, pACYC184, pACYC177, pTrc99A, pUC18, pUC19, pUC118, pUC119, pHSG298 or pHSG299. Preferred examples include pTrc99A, pUC18, pUC19, pUC118, pUC119, pHSG298, pHSG299, and the like, which are pUC vector derivatives having drug resistance genes. In particular, pHSG298 having a kanamycin resistance gene is preferred.
本発明のシャトルベクターは、上述のロドコッカス(Rhodococcus)属細菌のプラスミド、大腸菌由来のプラスミドおよび必要に応じて薬剤耐性遺伝子を連結することにより作成することができる。薬剤耐性遺伝子としては、抗生物質耐性遺伝子が好ましく、カナマイシン耐性遺伝子がより好ましい。 The shuttle vector of the present invention can be prepared by ligating the aforementioned Rhodococcus bacterium plasmid, Escherichia coli-derived plasmid and, if necessary, a drug resistance gene. As the drug resistance gene, an antibiotic resistance gene is preferable, and a kanamycin resistance gene is more preferable.
本発明の好ましいシャトルベクターとしては、pKR321、pKR322、pKR323、pKR324、pKR325、pKR326、pKR327またはpKR328が挙げられる。これらいずれのシャトルベクターも、大腸菌由来のプラスミドpHSG298およびロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC21199由来のpRC032を用いて作成することができる。
例えば、シャトルベクターpKR321は、プラスミドpHSG298をBamHI消化して得られる断片とプラスミドpRC032をBamHI消化して得られる断片とを連結することにより作成できる。シャトルベクターpKR321は独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1-1-1中央第6)に平成16年5月31日付で寄託されており、その受託番号はFERM P-20070である。また、シャトルベクターpKR322、pKR323、pKR324、pKR325、pKR326、pKR327またはpKR328は、プラスミドpRC032およびpHSG298またはpKR321を用いて作成することができる。
Preferred shuttle vectors of the present invention include pKR321, pKR322, pKR323, pKR324, pKR325, pKR326, pKR327 or pKR328. Any of these shuttle vectors can be prepared using plasmid pHSG298 derived from E. coli and pRC032 derived from Rhodococcus rhodochrous ATCC21199.
For example, shuttle vector pKR321 can be prepared by ligating a fragment obtained by digesting plasmid pHSG298 with BamHI and a fragment obtained by digesting plasmid pRC032 with BamHI. The shuttle vector pKR321 was deposited on May 31, 2004 at the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center (1-1-1 Higashi 1-1-1, Tsukuba City, Ibaraki Prefecture). The deposit number is FERM P -20070. The shuttle vectors pKR322, pKR323, pKR324, pKR325, pKR326, pKR327 or pKR328 can be prepared using the plasmid pRC032 and pHSG298 or pKR321.
次に、シャトルベクターは宿主細胞に導入される。ロドコッカス(Rhodococcus)属細菌および大腸菌のいずれでも機能するシャトルベクターの選別は、例えば、宿主細胞の薬剤耐性を指標に行う。宿主細胞への導入方法は、細菌にDNAを導入する方法であれば特に限定されるものではない。例えば、カルシウムイオンを用いる方法、エレクトロポレーション法等が挙げられる。 The shuttle vector is then introduced into the host cell. Selection of a shuttle vector that functions in any of the Rhodococcus bacteria and E. coli is performed, for example, using the drug resistance of the host cell as an indicator. The method for introducing the host cell is not particularly limited as long as it is a method for introducing DNA into bacteria. Examples thereof include a method using calcium ions and an electroporation method.
本発明で使用される、シャトルベクターが導入される宿主細胞としては、ロドコッカス・ロドクロウス(Rhodococcus rhodochrous)ATCC999株、ATCC12674株、ATCC17895株、ATCC15998株、ATCC33275株、ATCC184株、ATCC4001株、ATCC4273株、ATCC4276株、ATCC9356株、ATCC12483株、ATCC14341株、ATCC14347株、ATCC14350株、ATCC15905株、ATCC15998株、ATCC17041株、ATCC19149株、ATCC19150株、ATCC21243株、ATCC29670株、ATCC29672株、ATCC29675株、ATCC33258株、ATCC13808株、ATCC17043株、ATCC19067株、ATCC21999株、ATCC21291株、ATCC21785株、ATCC21924株、IFO14894株、IFO3338株、NCIMB11215株、NCIMB11216株、JCM3202株、ロドコッカス・グロベルルス(Rhodococcus globerulus)IFO14531株、ロドコッカス・ルテウス(Rhodococcus luteus)JCM6162株、JCM6164株、ロドコッカス・エリスロポリス(Rhodococcus erythropolis)IFO12538株、IFO12320株、ロドコッカス・エクイ(Rhodococcus equi)IFO3730株またはJCM1313株等が挙げられる。好ましくは、ロドコッカス・ロドクロウス(Rhodococcus rhodochrous)ATCC 12674株、ロドコッカス・ロドクロウス(Rhodococcus rhodochrous)ATCC19140株またはロドコッカス・ロドクロウス(Rhodococcus rhodochrous)ATCC 17895株、特に好ましくはロドコッカス・ロドクロウス(Rhodococcus rhodochrous)ATCC 12674株である。上記ATCC株はアメリカンタイプカルチャーコレクションから容易に入手することができる。上記IFO株は財団法人発酵研究所から容易に入手することができる。上記NCIMB株はNCIMB Japan 研究センターから容易に入手することができる。上記JCM株は微生物系統保存施設から容易に入手することができる。 As the host cell into which the shuttle vector is introduced used in the present invention, Rhodococcus rhodochrous ATCC999 strain, ATCC12674 strain, ATCC17895 strain, ATCC15998 strain, ATCC33275 strain, ATCC184 strain, ATCC4001 strain, ATCC4273 strain, ATCC4276 , ATCC9356, ATCC12483, ATCC14341, ATCC14347, ATCC14347, ATCC14350, ATCC15905, ATCC15998, ATCC17041, ATCC19149, ATCC19150, ATCC21243, ATCC29670, ATCC29672, ATCC29675, ATCC13258, ATCC13808 ATCC17043, ATCC19067, ATCC21999, ATCC21291, ATCC21785, ATCC21924, IFO14894, IFO3338, NCIMB11215, NCIMB11216, JCM3202, Rhodococcus globerulus, IFO14531, Rhodococcus globerulus JCM6162, JCM6164, Rhodococcus erythropolis IFO12538, IFO12320, Rhodococc Equi (Rhodococc) us equi) IFO3730 strain or JCM1313 strain. Preferably, Rhodococcus rhodochrous ATCC 12674 strain, Rhodococcus rhodochrous ATCC 19140 strain or Rhodococcus rhodochrous ATCC 17895 strain, particularly preferably Rhodococcus rhodochrous strain 126 . The ATCC strain can be easily obtained from the American Type Culture Collection. The IFO strain can be easily obtained from the Fermentation Research Institute. The NCIMB strains can be easily obtained from the NCIMB Japan Research Center. The JCM strain can be easily obtained from a microbial strain storage facility.
上述のシャトルベクターの作成では、予めロドコッカス(Rhodococcus)属細菌由来のプラスミドの複製必須領域を特定し、その領域と大腸菌由来の複製必須領域を連結したが、先にロドコッカス(Rhodococcus)属細菌由来のプラスミドの適当な領域と大腸菌由来の複製必須領域を連結し、そのプラスミドに対して、欠失プラスミドを作成しても良い。欠失プラスミドを作成、評価することによりシャトルベクターのサイズの最適化、およびロドコッカス(Rhodococcus)属細菌由来のプラスミドの複製必須領域を特定することができる。
上記のごとくプラスミドpRC032に対しても欠失プラスミドを作製し、複製必須領域を特定することができる。配列番号2は、図1の制限酵素部位XbaIおよびBglIIで消化して得られる約2kbの断片内に見出されるORF(Open Reading Frame)のアミノ酸配列である。配列番号3は、図1の制限酵素部位XbaIおよびBglIIで消化して得られる約2kbの断片内に見出されるORF(Open Reading Frame)の塩基配列である。配列番号4は、図1の制限酵素部位XbaIおよびBglIIで消化して得られる約2kbの断片の塩基配列である。
In the preparation of the shuttle vector described above, a replication essential region of a plasmid derived from a Rhodococcus genus bacterium was identified in advance, and this region was linked to an essential replication region derived from Escherichia coli, but first from a genus Rhodococcus genus. An appropriate plasmid region may be ligated with an E. coli-derived replication essential region, and a deletion plasmid may be prepared for the plasmid. By creating and evaluating deletion plasmids, it is possible to optimize the size of the shuttle vector and to identify the replication essential region of the plasmid derived from the genus Rhodococcus.
As described above, a deletion plasmid can also be prepared for plasmid pRC032, and a replication essential region can be identified. SEQ ID NO: 2 is an amino acid sequence of ORF (Open Reading Frame) found in an approximately 2 kb fragment obtained by digestion with restriction enzyme sites XbaI and BglII in FIG. SEQ ID NO: 3 is the base sequence of ORF (Open Reading Frame) found in an approximately 2 kb fragment obtained by digestion with restriction enzyme sites XbaI and BglII in FIG. SEQ ID NO: 4 is the base sequence of an approximately 2 kb fragment obtained by digestion with restriction enzyme sites XbaI and BglII in FIG.
以下、実施例により本発明をさらに詳細に説明する。
[実施例1]
(1)ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC21199株からのプラスミドpRC032の調製および塩基配列の決定
ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC21199株を、MYK液体培地(ポリペプトン5g/L、Bacto-Malt extract 3g/L、Bacto-yeast extract 3g/L、KH2PO4 0.5g/L、K2HPO4 0.5g/L)を10 ml入れた試験管に植菌し、37℃で24時間振盪培養した。MYK液体培地80mlを入れた500ml容三角フラスコに該前培養液1mlを植菌し、30℃で8時間振盪培養し、8mlの20%グリシンを添加後、さらに3日間振盪培養した。培養終了後、培養液を遠心管に移し、5000 rpm(約3700×g)で30分間遠心分離し、菌体を回収した。該回収菌体に5mlのリゾチーム(150mg)を含むTENS溶液(0.05M-Tris, 0.01M-EDTA, 0.05M-NaCl, 20% sucrose)を加え、37℃で一晩反応させた。その後、一旦、-20℃で凍結し、室温で解凍した。これに、750μlの10%SDSを加え、すぐにVortexで強く攪拌し、37℃で30分間インキュベートし、10分間氷上に置いた。次に、750μlの2N-NaOHを加えすぐにVortexで攪拌し、10分間氷上に置いた。これに4mlの3M−酢酸ナトリウム(pH4.8)を加えVoretxで攪拌し、30分間氷上に置いた。該処理菌液を14000rpm(約20,000×g)で10分間遠心分離し10mlの上清を別の遠沈管に移し、25mlの冷エタノールを加え14000rpmで30分間遠心分離した。沈殿に、1mlの Sol IV(2μl RNase/7.5μl Sol IVを調製)を加え、室温で20分間放置後、2.5mlの冷エタノールを加え14000rpmで30分間遠心分離し、5mlの冷70%エタノールを注ぎ、14000rpmで1分間遠心分離し、上清を除いた。
沈殿を乾燥後、100μlの滅菌水を加えプラスミド溶液とした。プラスミド溶液を0.7%アガロースゲル電気泳動により分析し、プラスミドの存在を確認した。該プラスミドをpRC032と命名した。該プラスミドの塩基配列の決定は、ABI PRISM 3100を用いて行った。その結果、配列番号1に示される塩基配列が得られた。
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
(1) Preparation of plasmid pRC032 from Rhodococcus rhodochrous ATCC21199 strain and determination of nucleotide sequence -yeast extract 3 g / L, KH 2 PO 4 0.5 g / L, K 2 HPO 4 0.5 g / L) was inoculated into a test tube and cultured at 37 ° C. for 24 hours with shaking. 1 ml of the preculture was inoculated into a 500 ml Erlenmeyer flask containing 80 ml of MYK liquid medium, shake-cultured at 30 ° C. for 8 hours, added with 8 ml of 20% glycine, and further cultured with shaking for 3 days. After completion of the culture, the culture solution was transferred to a centrifuge tube and centrifuged at 5000 rpm (about 3700 × g) for 30 minutes to recover the cells. A TENS solution (0.05M-Tris, 0.01M-EDTA, 0.05M-NaCl, 20% sucrose) containing 5 ml of lysozyme (150 mg) was added to the collected cells and reacted at 37 ° C. overnight. Then, it was once frozen at −20 ° C. and thawed at room temperature. To this, 750 μl of 10% SDS was added, immediately stirred vigorously with Vortex, incubated at 37 ° C. for 30 minutes, and placed on ice for 10 minutes. Next, 750 μl of 2N-NaOH was added and immediately stirred with Vortex and placed on ice for 10 minutes. To this was added 4 ml of 3M sodium acetate (pH 4.8), stirred with Voretx, and placed on ice for 30 minutes. The treated bacterial solution was centrifuged at 14000 rpm (about 20,000 × g) for 10 minutes, 10 ml of the supernatant was transferred to another centrifuge tube, 25 ml of cold ethanol was added, and the mixture was centrifuged at 14000 rpm for 30 minutes. Add 1 ml of Sol IV (prepare 2 μl RNase / 7.5 μl Sol IV) to the precipitate, leave it at room temperature for 20 minutes, add 2.5 ml of cold ethanol, centrifuge at 14000 rpm for 30 minutes, and add 5 ml of cold 70% ethanol. Poured and centrifuged at 14000 rpm for 1 minute to remove the supernatant.
After drying the precipitate, 100 μl of sterilized water was added to obtain a plasmid solution. The plasmid solution was analyzed by 0.7% agarose gel electrophoresis to confirm the presence of the plasmid. The plasmid was named pRC032. The base sequence of the plasmid was determined using ABI PRISM 3100. As a result, the base sequence represented by SEQ ID NO: 1 was obtained.
(2)ロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC 21199株由来プラスミドの制限酵素地図の作製
プラスミドpRC032溶液1μlに、2μlの10xH Buffer、16μlの滅菌水および1μlの制限酵素(2種の制限酵素を組み合わせる場合は各1μlずつ)を加え、37℃にて4時間反応させた。生成したDNA断片をアガロースゲル電気泳動にて分析し、制限酵素地図(図1)を作成した。
(2) Preparation of restriction enzyme map of plasmid derived from Rhodococcus rhodochrous ATCC 21199 1 μl of plasmid pRC032 solution, 2 μl of 10xH Buffer, 16 μl of sterilized water and 1 μl of restriction enzyme (when combining two restriction enzymes) 1 μl each) was added and reacted at 37 ° C. for 4 hours. The generated DNA fragment was analyzed by agarose gel electrophoresis, and a restriction enzyme map (FIG. 1) was prepared.
[実施例2]
大腸菌−ロドコッカス(Rhodococcus)属細菌シャトルベクターの構築
(1)プラスミドpRC032の制限酵素BamHIによる消化
上述の方法で調製したプラスミドpRC032溶液20μlに、3μlの10xH Buffer、5μlの滅菌水、2μlの制限酵素BamHIを加え、37℃にて4時間反応させた。反応終了後、反応液30μlに3μlの3M−酢酸ナトリウム(pH5.2)と75μlの冷エタノールを加えて、15000rpm(約21000×g)で30分間遠心により沈殿を得た。これに、200μlの70%冷エタノール溶液を加え、15000rpmで1分間遠心し、上清を除き沈殿を得た。該沈殿物を乾燥後、10μlの滅菌水に溶解し、2μlの10×loading buffer(2μl)を加え、全量を0.7%アガロースゲル電気泳動に供した。泳動終了後、365nmの紫外線ランプを照射して目的とするバンド(ゲル)を切り出し、GFX PCR DNA and Gel Band Purification Kit(アマシャムバイオサイエンス社)によりDNA断片を得た。具体的には下記のように行った。マイクロ遠心管に切り出したゲルを移し、160μlのCapture Bufferを加え60℃でゲルが完全に溶けるまでインキュベートした。溶解液全量をGFX Columnに移し1分間静置した後、15000rpmで30秒間遠心し、collection tubeに溜まった液を除いた。さらに500μlのwash bufferをGFX Columnに加え、15000rpmで30秒間遠心し、同様にcollection tubeに溜まった液を除いた。フィルター部分をマイクロ遠心管の上に乗せ、そこに50μlの滅菌水を注ぎ15000rpmで30秒間遠心分離し、マイクロ遠心管にプラスミドpRC032-BamHI断片の溶液を回収した。
[Example 2]
Construction of E. coli-Rhodococcus genus shuttle vector (1) Digestion of plasmid pRC032 with restriction enzyme BamHI Into 20 μl of plasmid pRC032 solution prepared as described above, 3 μl of 10 × H Buffer, 5 μl of sterile water, 2 μl of restriction enzyme BamHI And reacted at 37 ° C. for 4 hours. After completion of the reaction, 3 μl of 3M sodium acetate (pH 5.2) and 75 μl of cold ethanol were added to 30 μl of the reaction solution, and a precipitate was obtained by centrifugation at 15000 rpm (about 21000 × g) for 30 minutes. To this, 200 μl of 70% cold ethanol solution was added and centrifuged at 15000 rpm for 1 minute, and the supernatant was removed to obtain a precipitate. The precipitate was dried, dissolved in 10 μl of sterilized water, 2 μl of 10 × loading buffer (2 μl) was added, and the entire amount was subjected to 0.7% agarose gel electrophoresis. After completion of the electrophoresis, a target band (gel) was cut out by irradiation with a 365 nm ultraviolet lamp, and a DNA fragment was obtained by GFX PCR DNA and Gel Band Purification Kit (Amersham Bioscience). Specifically, it was performed as follows. The excised gel was transferred to a microcentrifuge tube, 160 μl of Capture Buffer was added, and the mixture was incubated at 60 ° C. until the gel was completely dissolved. The entire lysate was transferred to the GFX Column and allowed to stand for 1 minute, and then centrifuged at 15000 rpm for 30 seconds to remove the liquid accumulated in the collection tube. Furthermore, 500 μl of wash buffer was added to the GFX Column, and centrifuged at 15000 rpm for 30 seconds to remove the liquid accumulated in the collection tube. The filter part was placed on a microcentrifuge tube, 50 μl of sterilized water was poured into it, and centrifuged at 15000 rpm for 30 seconds, and a solution of the plasmid pRC032-BamHI fragment was recovered in the microcentrifuge tube.
(2)プラスミドpHSG298の制限酵素BamHIによる消化
プラスミドpHSG298(タカラバイオ株式会社:図2参照)溶液10μlを用い制限酵素反応液を半量にした以外は上記(1)と同様の操作により、制限酵素BamHIによる消化、エタノール沈殿によるDNA断片の回収を行った。得られたDNA断片に44μlの滅菌水を加え、SAP(Shrimp Alkaline Phosphatase:アマシャムバイオサイエンス社)処理を行った。SAP処理は、該DNA断片溶液に5μlの10×SAP Buffer、1μlのSAPを加え、37℃にて15分間行った。処理後、SAPを失活させるため、60℃にて15分間インキュベートした。50μlのSAP処理済みDNA断片溶液に150μlの滅菌水を加え、200μlのTE緩衝液(10 mM Tris-HCl、1 mM EDTA)飽和フェノールを分注し、よく攪拌した。これを15000rpm(約21,000×g)で2分間遠心し上層(水層)を別のマイクロ遠心管に移した。同様に200μlのTE飽和フェノールを加え、よく攪拌して、15000rpmで遠心分離後上層180μlを別のマイクロ遠心管に移した。得られた上層液に200μlのクロロホルム(イソアミルアルコール含)を加えよく攪拌した後、15000rpmで遠心分離し上層160μlを別のマイクロ遠心管に移した。再度200μlのクロロホルム(イソアミルアルコール含)を加え、よく攪拌した後、15000rpmで遠心分離し上層140μlを別のマイクロ遠心管に移した。
該回収液に14μlの3M-酢酸ナトリウム(pH5.2)と350μlの冷エタノールを加えて、15000rpmで遠心分離し沈殿を得た。これに、500μlの70%冷エタノール溶液を注ぎ、15000rpmで遠心分離し、上清を除いた。沈殿を乾燥させた後、20μlの滅菌水に溶解し、SAP処理済みのpHSG298-BamHI断片を得た。
(2) Digestion of plasmid pHSG298 with restriction enzyme BamHI Restriction enzyme BamHI was performed in the same manner as in (1) above except that 10 µl of plasmid pHSG298 (Takara Bio Inc .: see Fig. 2) was used and the restriction enzyme reaction solution was halved. DNA fragments were recovered by digestion with ethanol and ethanol precipitation. 44 μl of sterilized water was added to the obtained DNA fragment, and SAP (Shrimp Alkaline Phosphatase: Amersham Bioscience) treatment was performed. SAP treatment was performed at 37 ° C. for 15 minutes by adding 5 μl of 10 × SAP Buffer and 1 μl of SAP to the DNA fragment solution. After the treatment, the mixture was incubated at 60 ° C. for 15 minutes to inactivate SAP. 150 μl of sterilized water was added to 50 μl of the SAP-treated DNA fragment solution, and 200 μl of TE buffer (10 mM Tris-HCl, 1 mM EDTA) saturated phenol was dispensed and stirred well. This was centrifuged at 15000 rpm (about 21,000 × g) for 2 minutes, and the upper layer (aqueous layer) was transferred to another microcentrifuge tube. Similarly, 200 μl of TE saturated phenol was added, stirred well, centrifuged at 15000 rpm, and then 180 μl of the upper layer was transferred to another microcentrifuge tube. 200 μl of chloroform (including isoamyl alcohol) was added to the obtained upper layer solution and stirred well, followed by centrifugation at 15000 rpm, and 160 μl of the upper layer was transferred to another microcentrifuge tube. 200 μl of chloroform (including isoamyl alcohol) was added again and stirred well, followed by centrifugation at 15000 rpm, and 140 μl of the upper layer was transferred to another microcentrifuge tube.
14 μl of 3M-sodium acetate (pH 5.2) and 350 μl of cold ethanol were added to the recovered solution, and centrifuged at 15000 rpm to obtain a precipitate. To this, 500 μl of 70% cold ethanol solution was poured, centrifuged at 15000 rpm, and the supernatant was removed. The precipitate was dried and then dissolved in 20 μl of sterilized water to obtain a pHSG298-BamHI fragment that had been treated with SAP.
(3)pRC032-BamHI断片とpHSG298-BamHI断片との結合によるシャトルベクターの構築
SAP処理済みのプラスミドpHSG298-BamHI断片溶液0.5μlおよびpRC032-BamHI断片溶液6μlをDNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。大腸菌の形質転換は下記のように行った。大腸菌JM109株コンピテントは、野島らの方法(野島 博. 1991. 高効率コンピテントセル調製法. 村 松正美・岡山博人編, 遺伝子工学ハンドブック,pp46−51, 羊土社, 東京 )により調製した。氷上に立てた試験管に、大腸菌JM109株コンピテントセルを100μl分注し、Ligation反応液を5μl加え30分間静置した。次に42℃の恒温槽に30秒間浸けて熱ショックを与え、その後2分間氷上で保冷した。SOC培地(Bacto-tryptone 20 g/L、Bacto-yeast extract 5g/Lに終濃度1 mM塩化ナトリウム、2.5 mM 塩化カリウム、5 mM 塩化マグネシウム、5 mM 硫酸マグネシウム、20 mM グルコースを添加)を0.4ml加え、37℃の振盪培養器で1時間培養した。100μlの培養液を100mg/Lのカナマイシンを含むLB寒天培地(Bacto-Trypton 10g/L、Bacto-Yeast Extract 5g/L、(以上、Difco社製)、塩化ナトリウム 5g/L、寒天15g/L)に播き、37℃の培養器で一晩静置培養した。
翌日、プレート上に生えた白コロニーを任意に6個選び、LB液体培地(Bacto-Trypton 10g/L、Bacto-Yeast Extract 5g/L(以上、Difco社)、塩化ナトリウム 5g/L)1.5mlを入れた試験管に植菌し、37℃で9時間振盪培養した。培養終了後、マイクロ遠心管に移し遠心分離により菌体を回収した。菌体からのプラスミドの調製はFlexiPrep Kit(アマシャムバイオサイエンス社)を用いて行った。
(3) Construction of shuttle vector by binding of pRC032-BamHI fragment and pHSG298-BamHI fragment 0.5 μl of SAP-treated plasmid pHSG298-BamHI fragment solution and 6 μl of pRC032-BamHI fragment solution were added to DNA Ligation Kit ver 2.1 (Takara Bio Inc.) ) Was used for overnight ligation reaction at 4 ° C. Transformation of E. coli was performed as follows. E. coli JM109 strain competent was prepared by the method of Nojima et al. (Hiroshi Nojima. 1991. Highly efficient competent cell preparation method. Edited by Masami Muramura and Hiroto Okayama, Genetic Engineering Handbook, pp 46-51, Yodosha, Tokyo). did. 100 μl of E. coli JM109 strain competent cell was dispensed into a test tube placed on ice, and 5 μl of the Ligation reaction solution was added and allowed to stand for 30 minutes. Next, it was immersed in a constant temperature bath at 42 ° C. for 30 seconds to give a heat shock, and then kept on ice for 2 minutes. 0.4 ml of SOC medium (Bacto-tryptone 20 g / L, Bacto-yeast extract 5 g / L with final concentrations of 1 mM sodium chloride, 2.5 mM potassium chloride, 5 mM magnesium chloride, 5 mM magnesium sulfate, 20 mM glucose) In addition, the cells were cultured for 1 hour in a shaking incubator at 37 ° C. LB agar medium (Bacto-Trypton 10g / L, Bacto-Yeast Extract 5g / L, (Difco), sodium chloride 5g / L, agar 15g / L) And then statically cultured overnight in a 37 ° C. incubator.
The next day, arbitrarily select 6 white colonies that grew on the plate and add 1.5 ml of LB liquid medium (Bacto-Trypton 10 g / L, Bacto-Yeast Extract 5 g / L (above, Difco), sodium chloride 5 g / L). The test tube was inoculated and cultured with shaking at 37 ° C. for 9 hours. After completion of the culture, the cells were transferred to a microcentrifuge tube and the cells were collected by centrifugation. Preparation of the plasmid from the cells was performed using FlexiPrep Kit (Amersham Bioscience).
具体的には、200μlのSolution Iを菌体に加えVortexでよく懸濁し、Solution IIを200μl加えゆっくりと撹拌した後、200μlの Solution IIIを加えよく撹拌した。15000rpm(約21,000×g)で5分間遠心分離し上清を別のマイクロ遠心管に移した。これに420μlのイソプロパノールを加え混合し、10分間室温で静置した後、15000rpmで10分間遠心分離し沈澱を得た。該沈澱に150μlのSephaglas FPを加えよく攪拌して1分間静置し、15000rpmで15秒間遠心分離後沈澱を得た。これに200μlのWash Bufferを加えよく撹拌し、15000rpmで15秒間遠心分離し沈澱を得た。該沈殿に300μlの70%エタノールを加え混合した。そして、15000rpmで15秒間遠心分離し上清を除いた。沈殿物を崩し、蓋を空けたままで乾燥させた。50μlの滅菌水を加えよく混合し、5分間静置した。その後15000rpmで1分間遠心分離し上清45μlを別のマイクロ遠心管に移し、精製プラスミドとした。
こうして得られた精製プラスミドを、0.7%アガロースゲル電気泳動によりサイズを確認した。その際、数種の制限酵素による切断後、0.7%アガロースゲル電気泳動により断片サイズを調べることにより、得られたプラスミドが目的のものかどうかを調べた。その結果、挿入断片の向きが異なる目的のプラスミドを取得し、それぞれシャトルベクターpKR321およびpKR322と名付けた(図3)。
Specifically, 200 μl of Solution I was added to the cells and suspended well with Vortex, 200 μl of Solution II was added and stirred gently, and then 200 μl of Solution III was added and stirred well. The mixture was centrifuged at 15000 rpm (about 21,000 × g) for 5 minutes, and the supernatant was transferred to another microcentrifuge tube. 420 μl of isopropanol was added thereto, mixed, and allowed to stand at room temperature for 10 minutes, and then centrifuged at 15000 rpm for 10 minutes to obtain a precipitate. 150 μl of Sephaglas FP was added to the precipitate and stirred well, allowed to stand for 1 minute, and centrifuged at 15000 rpm for 15 seconds to obtain a precipitate. To this, 200 μl of Wash Buffer was added and stirred well, followed by centrifugation at 15000 rpm for 15 seconds to obtain a precipitate. 300 μl of 70% ethanol was added to the precipitate and mixed. The supernatant was removed by centrifugation at 15000 rpm for 15 seconds. The precipitate was broken and dried with the lid left open. 50 μl of sterilized water was added and mixed well, and allowed to stand for 5 minutes. Thereafter, the mixture was centrifuged at 15000 rpm for 1 minute, and 45 μl of the supernatant was transferred to another microcentrifuge tube to obtain a purified plasmid.
The purified plasmid thus obtained was confirmed in size by 0.7% agarose gel electrophoresis. At that time, after digestion with several kinds of restriction enzymes, the fragment size was examined by 0.7% agarose gel electrophoresis to determine whether the obtained plasmid was the target one. As a result, target plasmids having different orientations of the inserted fragments were obtained and named shuttle vectors pKR321 and pKR322, respectively (FIG. 3).
[実施例3]
シャトルベクターpKR321を用いたATCC12674株の形質転換
凍結保存しているロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC12674コンピテントセルを室温で解凍し、よく混合して、滅菌済みのマイクロ遠心管に20μl移した。なお、コンピテントセルは、ATCC 12674株の対数増殖期の細胞を遠心分離により集菌し、氷冷した滅菌水にて3回洗浄し、滅菌水に懸濁し、-80℃で凍結保存している。次に、そこにpKR321溶液を0.5μl加え、氷上に10分間静置した。全量を0.1cmのエレクトロキュベット(greiner bio-one社)に移し、Gene Pulser(BIO-RAD 社)で2.00kV、200HMsの高電圧を掛けた。氷上に10分間静置後、37℃の培養器で10分間インキュベートし、MYK培地(ポリペプトン5g/L、Bacto-Malt extract 3g/L、Bacto-yeast extract 3g/L、KH2PO4 0.5g/L、K2HPO4 0.5g/L)を0.5ml加え、30℃で5時間静置培養した。培養終了後、エレクトロキュベット内をよくピペッティングし、100μlの培養液を75mg/Lのカナマイシンを含むMYK寒天培地(ポリペプトン5g/L、Bacto-Malt extract 3g/L、Bacto-yeast extract 3g/L、KH2PO4 0.5g/L、K2HPO4 0.5g/L、寒天15g/L)に播き、30℃の培養器で2日間静置培養した。
生育したコロニーを50mg/Lのカナマイシンを含む10mlのMYK液体培地に植菌し、30℃で2日間前培養した。次に該培養液0.1mlをMYK(50mg/Lカナマイシン含む)液体培地10mlを入れた試験管に加え、8時間振盪培養した。さらに20%グリシンを1ml加え、16時間培養した。培養液から1.5mlをマイクロ遠心管に移し、15000rpm(約21,000×g)で5分間遠心分離し沈殿を得た。これに200μlのリゾチーム(30mg/ml)を含むTENS溶液を加え、37℃で一晩反応させ、一旦凍結させた後、室温で解凍した。これに、30μlの10%SDSを加えすぐに強く攪拌し、37℃で30分間インキュベートし、その後10分間氷上に置いた。次に、30μlの2N-NaOHを加えすぐに攪拌し、10分間氷上に置いた。これに160μlの3M−酢酸ナトリウム(pH4.8)を加え攪拌し、30分間氷上に置いた。15000rpmで10分間遠心分離し360μlの上清を別の遠沈管に移し、0.9mlの冷エタノールを加え15000rpmで30分間遠心分離した。沈殿に、100μlのSolIV(0.5μl RNase/0.5mlSolIVを調製)を加え、37℃で1時間放置した。これに、250μlの冷エタノールを加え15000rpmで30分間遠心分離し沈殿を得た。該沈殿に500μlの冷70%エタノールを注ぎ、15000rpmで1分間遠心分離し、沈殿を得た。沈殿を乾燥後、20μlの滅菌水を加えプラスミド溶液とした。
こうして得られたプラスミドのサイズ、および数種の制限酵素による切断後の断片サイズは、pKR321と同じであった。これらの結果より、pKR321はATCC12674株において複製する能力を有することが明らかとなった。
[Example 3]
Transformation of ATCC12674 strain using shuttle vector pKR321 Cryopreserved Rhodococcus rhodochrous ATCC12674 competent cells were thawed at room temperature, mixed well, and transferred to a sterile microcentrifuge tube 20 μl. For competent cells, cells in the logarithmic growth phase of ATCC 12674 strain are collected by centrifugation, washed three times with ice-cooled sterilized water, suspended in sterilized water, and stored frozen at -80 ° C. Yes. Next, 0.5 μl of the pKR321 solution was added thereto and left on ice for 10 minutes. The whole amount was transferred to a 0.1 cm electro cuvette (greiner bio-one), and a high voltage of 2.00 kV and 200 HMs was applied with Gene Pulser (BIO-RAD). After standing on ice for 10 minutes, incubate for 10 minutes in a 37 ° C incubator. MYK medium (polypeptone 5 g / L, Bacto-Malt extract 3 g / L, Bacto-yeast extract 3 g / L, KH 2 PO 4 0.5 g / L, K 2 HPO 4 0.5 g / L) was added, and the mixture was statically cultured at 30 ° C. for 5 hours. After completion of the culture, pipette well inside the electro cuvette and add 100 μl of the culture solution to MYK agar medium containing 75 mg / L kanamycin (polypeptone 5 g / L, Bacto-Malt extract 3 g / L, Bacto-yeast extract 3 g / L, KH 2 PO 4 0.5 g / L, K 2 HPO 4 0.5 g / L, agar 15 g / L) and statically cultured in a 30 ° C. incubator for 2 days.
The grown colonies were inoculated into 10 ml of MYK liquid medium containing 50 mg / L kanamycin and pre-cultured at 30 ° C. for 2 days. Next, 0.1 ml of the culture solution was added to a test tube containing 10 ml of MYK (containing 50 mg / L kanamycin) liquid medium, and cultured with shaking for 8 hours. Further, 1 ml of 20% glycine was added and cultured for 16 hours. 1.5 ml of the culture solution was transferred to a microcentrifuge tube and centrifuged at 15000 rpm (about 21,000 × g) for 5 minutes to obtain a precipitate. To this, a TENS solution containing 200 μl of lysozyme (30 mg / ml) was added, reacted at 37 ° C. overnight, once frozen, and then thawed at room temperature. To this, 30 μl of 10% SDS was added and vortexed immediately, incubated at 37 ° C. for 30 minutes, and then placed on ice for 10 minutes. Next, 30 μl of 2N-NaOH was added and stirred immediately and placed on ice for 10 minutes. To this, 160 μl of 3M sodium acetate (pH 4.8) was added and stirred, and placed on ice for 30 minutes. After centrifugation at 15000 rpm for 10 minutes, 360 μl of the supernatant was transferred to another centrifuge tube, 0.9 ml of cold ethanol was added, and the mixture was centrifuged at 15000 rpm for 30 minutes. To the precipitate, 100 μl of SolIV (0.5 μl RNase / 0.5 ml SolIV was prepared) was added and left at 37 ° C. for 1 hour. To this, 250 μl of cold ethanol was added and centrifuged at 15000 rpm for 30 minutes to obtain a precipitate. 500 μl of cold 70% ethanol was poured into the precipitate and centrifuged at 15000 rpm for 1 minute to obtain a precipitate. After drying the precipitate, 20 μl of sterilized water was added to obtain a plasmid solution.
The size of the plasmid thus obtained and the fragment size after cleavage with several restriction enzymes were the same as pKR321. From these results, it was revealed that pKR321 has the ability to replicate in the ATCC12674 strain.
[実施例4]
pKR321からの欠失プラスミドの作製とそれを用いたATCC12674株の形質転換による複製必須領域の同定
(1)欠失プラスミドpKR323とpKR324の作製
プラスミドpKR321溶液5μlを用い、制限酵素BamHIおよびBglIIを使用し、反応液量を1/4量とした以外は実施例2の(1)と同様にして消化した。反応終了後、これに160μlの滅菌水を加え全量を200μlとし、200μlのTE飽和フェノールを分注し、よくVortexで攪拌して、15000rpm(約21,000×g)で2分間遠心し上層(水層)を別のマイクロ遠心管に移した。同様に200μlのTE飽和フェノールを加え、よくVortexで攪拌して、15000rpmで2分間遠心し上層(水層)を別のマイクロ遠心管に移した。得られた上層液に200μlのクロロホルム(イソアミルアルコール含)を加えよく懸濁したのち15000rpmで30秒間遠心し上層を別のマイクロ遠心管に移した。再度200μlのクロロホルム(イソアミルアルコール含)を加えよく懸濁したのち15000rpmで30秒間遠心し、上層170μlを別のマイクロ遠心管に移した。これに17μlの3M-酢酸ナトリウムと425μlの冷エタノールを加え、15000rpmで30分間遠心して沈殿を得た。該沈殿に500μlの冷70%エタノールを加え15000rpmで1分間遠心し、上清を除いた。沈殿を乾燥させた後、10μlの滅菌水に溶解し、BamHI-BglII消化プラスミドpKR321溶液を得た。この溶液には、4.2kb、2.2kb、2.7kbの3断片が含まれている。この溶液5μlを用い、DNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。
得られたコロニーから調製したプラスミドを調べたところ、このプラスミドはpKR321から約2.2kbのBamHI-BglII断片が除かれたものであった。これをプラスミドpKR323と名付けた。また挿入断片が逆向きにあたるプラスミドも得られた。これをプラスミドpKR324と名付けた。
[Example 4]
Preparation of deletion plasmid from pKR321 and identification of replication essential region by transformation of ATCC12674 strain using it (1) Preparation of deletion plasmids pKR323 and pKR324 Using 5 μl of plasmid pKR321 solution, restriction enzymes BamHI and BglII were used. The digestion was carried out in the same manner as in (2) of Example 2 except that the amount of the reaction solution was reduced to 1/4. After completion of the reaction, add 160 μl of sterilized water to make a total volume of 200 μl, dispense 200 μl of TE saturated phenol, stir well with Vortex, centrifuge for 2 minutes at 15000 rpm (about 21,000 × g) ) Was transferred to another microcentrifuge tube. Similarly, 200 μl of TE-saturated phenol was added, stirred well with Vortex, centrifuged at 15000 rpm for 2 minutes, and the upper layer (aqueous layer) was transferred to another microcentrifuge tube. 200 μl of chloroform (including isoamyl alcohol) was added to the obtained upper layer solution, suspended well, then centrifuged at 15000 rpm for 30 seconds, and the upper layer was transferred to another microcentrifuge tube. 200 μl of chloroform (including isoamyl alcohol) was added again and suspended well, followed by centrifugation at 15000 rpm for 30 seconds, and 170 μl of the upper layer was transferred to another microcentrifuge tube. To this, 17 μl of 3M sodium acetate and 425 μl of cold ethanol were added and centrifuged at 15000 rpm for 30 minutes to obtain a precipitate. 500 μl of cold 70% ethanol was added to the precipitate and centrifuged at 15000 rpm for 1 minute, and the supernatant was removed. The precipitate was dried and then dissolved in 10 μl of sterilized water to obtain a BamHI-BglII digested plasmid pKR321 solution. This solution contains three fragments of 4.2 kb, 2.2 kb, and 2.7 kb. Using 5 μl of this solution, a ligation reaction was performed overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies.
When the plasmid prepared from the obtained colony was examined, this plasmid was obtained by removing the BamHI-BglII fragment of about 2.2 kb from pKR321. This was named plasmid pKR323. A plasmid was also obtained in which the inserted fragment was reversed. This was named plasmid pKR324.
(2)欠失プラスミドpKR327とpKR328の作製
プラスミドpKR323溶液5μlをXbaIおよびNotIで消化し、アガロース電気泳動によりXbaI断片(約1.9kb)を精製した。本断片とSAP処理済みのpHSG298-XbaI断片でDNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。
得られたコロニーのひとつから調製したプラスミドを調べたところ、このプラスミドはpKR323から約2.3kbのXbaI-BamHI断片が除かれたものであった。これをプラスミドpKR327と名付けた。また挿入断片が逆向きにあたるプラスミドも得られた。これをプラスミドpKR328と名付けた。
(2) Preparation of deletion plasmids pKR327 and pKR328 5 μl of plasmid pKR323 solution was digested with XbaI and NotI, and an XbaI fragment (about 1.9 kb) was purified by agarose electrophoresis. This fragment and the pHSG298-XbaI fragment that had been treated with SAP were subjected to a ligation reaction overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies.
When a plasmid prepared from one of the obtained colonies was examined, this plasmid was obtained by removing about 2.3 kb of XbaI-BamHI fragment from pKR323. This was named plasmid pKR327. A plasmid was also obtained in which the inserted fragment was reversed. This was named plasmid pKR328.
(3)欠失プラスミドpKR329の作製
プラスミドpKR323溶液10μlをSacIで切断し、SacI断片溶液を得た。この溶液は、約1.3kb、1.5kb、4.1kbの3断片の混合物からなる。該溶液1μlを用い、DNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。得られたコロニーのひとつから調製したプラスミドを調べたところ、このプラスミドはpKR323から約2.8kbのSacI断片が除かれたものであった。これをプラスミドpKR329と名付けた。
(3) Preparation of deletion plasmid pKR329 10 μl of plasmid pKR323 solution was cleaved with SacI to obtain a SacI fragment solution. This solution consists of a mixture of about 1.3 kb, 1.5 kb, 4.1 kb three pieces. Using 1 μl of the solution, a ligation reaction was performed overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies. When a plasmid prepared from one of the obtained colonies was examined, this plasmid was obtained by removing about 2.8 kb of SacI fragment from pKR323. This was named plasmid pKR329.
(4)欠失プラスミドpKR325の作製
プラスミドpKR321溶液1μlをXbaIで消化した。反応終了後、該反応液を65℃にて15分間の処理によりXbaIを失活させ、エタノール沈殿によりXbaI断片混合物を得、滅菌水に溶解した。この溶液は、約0.6kb、1.7kb、6.8kbの3断片の混合物からなる。
該溶液1μlを用い、DNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。
得られたコロニーのひとつから調製したプラスミドを調べたところ、このプラスミドはpKR321から約2.3kbのXbaI断片が除かれたものであった。これをプラスミドpKR325と名付けた。
(4) Preparation of deletion plasmid pKR325 1 μl of plasmid pKR321 solution was digested with XbaI. After completion of the reaction, XbaI was inactivated by treating the reaction solution at 65 ° C. for 15 minutes, and an XbaI fragment mixture was obtained by ethanol precipitation and dissolved in sterilized water. This solution consists of a mixture of about 0.6 kb, 1.7 kb, and 6.8 kb three pieces.
Using 1 μl of the solution, a ligation reaction was performed overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies.
When a plasmid prepared from one of the obtained colonies was examined, this plasmid was obtained by removing an about 2.3 kb XbaI fragment from pKR321. This was named plasmid pKR325.
(5)欠失プラスミドpKR326の作製
プラスミドpKR325溶液5μlをBamHIおよびBglIIで消化し、BamHI-BglII断片混合物を得、滅菌水に溶解した。この溶液は2.2kb、4.6kbの2断片の混合物からなる。該溶液5μlを用い、DNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。
得られたコロニーのひとつから調製したプラスミドを調べたところ、このプラスミドはpKR325から約2.2kbのBamHI-BglII断片が除かれたものであった。これをプラスミドpKR326と名付けた。
(5) Preparation of deletion plasmid pKR326 5 μl of plasmid pKR325 solution was digested with BamHI and BglII to obtain a BamHI-BglII fragment mixture and dissolved in sterile water. This solution consists of a mixture of two fragments of 2.2 kb and 4.6 kb. Using 5 μl of the solution, a ligation reaction was performed overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies.
When a plasmid prepared from one of the obtained colonies was examined, this plasmid was obtained by removing the BamHI-BglII fragment of about 2.2 kb from pKR325. This was named plasmid pKR326.
(6)欠失プラスミドpKR3211の作製
プラスミドpKR321溶液1μlをXhoIで消化し、XhoI断片混合物を得、滅菌水に溶解した。この溶液は4断片の混合物からなる。該溶液1μlを用い、DNA Ligation Kit ver 2.1 (タカラバイオ株式会社)を用いて4℃で一晩ライゲーション反応を行った。実施例2の(3)と同様に大腸菌JM109株の形質転換を行い、得られたコロニーよりプラスミドを調製した。得られたコロニーのひとつから調製したプラスミドを調べたところ、このプラスミドはpKR321から計約2.9kbの3つのXhoI断片が除かれたものであった。これをプラスミドpKR3211と名付けた。
(6) Preparation of deletion plasmid pKR3211 1 μl of plasmid pKR321 solution was digested with XhoI to obtain a XhoI fragment mixture, which was dissolved in sterile water. This solution consists of a mixture of 4 fragments. Using 1 μl of the solution, a ligation reaction was performed overnight at 4 ° C. using DNA Ligation Kit ver 2.1 (Takara Bio Inc.). E. coli strain JM109 was transformed in the same manner as in Example 2 (3), and a plasmid was prepared from the resulting colonies. When a plasmid prepared from one of the obtained colonies was examined, this plasmid was obtained by removing three XhoI fragments of about 2.9 kb in total from pKR321. This was named plasmid pKR3211.
(7) 欠失プラスミドを用いたATCC12674株の形質転換
欠失プラスミドを用いたロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC12674株の形質転換は実施例3と同様にして行った。その結果、形質転換に必須な領域はXbaI部位とBglII部位に挟まれる約2kbの断片にあることが明らかとなった。なお、図4は、上記のようしにて作製した、プラスミドpKR321からの欠失プラスミドの作製の流れを示している。図5には、プラスミドpKR321からの欠失プラスミドのロドコッカスロドクロウス(Rhodococcus rhodochrous)ATCC12674株における複製の可否を示している。
(7) Transformation of ATCC12674 strain using a deletion plasmid Transformation of Rhodococcus rhodochrous ATCC12674 strain using a deletion plasmid was carried out in the same manner as in Example 3. As a result, it was clarified that the region essential for transformation was in a fragment of about 2 kb sandwiched between the XbaI site and the BglII site. FIG. 4 shows the flow of preparation of a deletion plasmid from plasmid pKR321 prepared as described above. FIG. 5 shows the possibility of replication in the Rhodococcus rhodochrous ATCC12674 strain of the deletion plasmid from the plasmid pKR321.
(8)複製必須領域の塩基配列
上述のXbaI部位とBglII部位に挟まれる約2kb断片の塩基配列の決定は、ABI PRISM 3100を用いて行った。その結果、配列番号4に示される塩基配列が得られた。また、本配列中にひとつのORF(Open Reading Frame)が見いだされた。該ORFの塩基配列(配列番号3)およびアミノ酸配列(配列番号2)について、GenBankに対してホモロジー検索を行った結果、有意なホモロジーは見出されなかったことから、全く新規な複製系であると考えられた。
(8) Base sequence of replication essential region The base sequence of the about 2 kb fragment sandwiched between the XbaI site and the BglII site described above was determined using ABI PRISM 3100. As a result, the base sequence shown in SEQ ID NO: 4 was obtained. One ORF (Open Reading Frame) was found in this sequence. As a result of homology search against GenBank for the nucleotide sequence (SEQ ID NO: 3) and amino acid sequence (SEQ ID NO: 2) of the ORF, no significant homology was found, so this is a completely new replication system. It was considered.
[実施例5]
2種のシャトルベクターpTP014とpKR326のロドコッカス(Rhodococcus)属細菌における共存
トリメトプリム耐性シャトルベクターpTP014を、実施例3と同様にしてロドコッカス ロドクロウス(Rhodococcus rhodochrous)ATCC12674株に導入した。選択培地としては、トリメトプリム(200μg/ml)を含むM9-カザミノ酸寒天培地(KH2PO4 3g/L、Na2HPO4 6g/L、NaCl 0.5g/L、NH4Cl 1g/L、グルコース 4g/L、チアミン−塩酸塩 2mg/L、MgSO4 (1mM)、カザミノ酸 2g/L、寒天15g/L)を用いた。得られた形質転換体よりプラスミドを調製し、プラスミドが導入されていることを確認した。pTP014は独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1-1-1中央第6)に平成16年5月26日付で寄託されており、その受託番号はFERM P-20065である。
次に、該形質転換体の対数増殖期の細胞を遠心分離により集菌し、氷冷した滅菌水にて3回洗浄し、滅菌水に懸濁し、コンピテントセルを作成した。該コンピテントセルは-80℃で凍結保存した。該コンピテントセルを使用した以外は、実施例3と同様にしてプラスミドpKR326を用いて形質転換を行った。選択培地には75mg/lのカナマイシンを含むMYK寒天培地を用いた。得られた形質転換体よりプラスミドを調製し、両プラスミドの存在を確認した。
本シャトルベクターは、異なる複製系を有すると考えられるシャトルベクターpTP014と、ロドコッカス(Rhodococcus)属細菌内で共存可能であることを確認した。
[Example 5]
Coexistence of two shuttle vectors pTP014 and pKR326 in bacteria belonging to the genus Rhodococcus The trimethoprim resistant shuttle vector pTP014 was introduced into Rhodococcus rhodochrous ATCC12674 strain in the same manner as in Example 3. As the selective medium, M9-casamino acid agar medium (KH 2 PO 4 3 g / L, Na 2 HPO 4 6 g / L, NaCl 0.5 g / L, NH 4 Cl 1 g / L, glucose 4 g / L) containing trimethoprim (200 μg / ml) L, thiamine-hydrochloride 2 mg / L, MgSO4 (1 mM), casamino acid 2 g / L, agar 15 g / L). A plasmid was prepared from the obtained transformant, and it was confirmed that the plasmid was introduced. pTP014 was deposited on May 26, 2004 at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (Chuo 6-1-1 Tsukuba City, Ibaraki Prefecture), and the deposit number is FERM P-20065 It is.
Next, cells in the logarithmic growth phase of the transformant were collected by centrifugation, washed three times with ice-cooled sterilized water, and suspended in sterilized water to prepare competent cells. The competent cells were stored frozen at -80 ° C. Transformation was performed using plasmid pKR326 in the same manner as in Example 3 except that the competent cells were used. As the selective medium, MYK agar medium containing 75 mg / l kanamycin was used. Plasmids were prepared from the resulting transformants, and the presence of both plasmids was confirmed.
This shuttle vector was confirmed to be capable of coexisting with the shuttle vector pTP014 considered to have a different replication system in bacteria belonging to the genus Rhodococcus.
大腸菌とロドコッカス(Rhodococcus)属細菌において相互複製が可能な新規な複製系を有するシャトルベクターは、ロドコッカス(Rhodococcus)属細菌において、既存のベクターと共存可能なベクターであった。 A shuttle vector having a novel replication system capable of mutual replication in E. coli and Rhodococcus bacteria was a vector that could coexist with an existing vector in Rhodococcus bacteria.
Claims (6)
(a)配列番号1記載の塩基配列からなるプラスミド。
(b)配列番号1記載の塩基配列において、複製必須領域以外の部分の1若しくは数個の塩基が、欠失、付加、挿入若しくは置換された塩基配列からなるプラスミド。 The plasmid according to the following (a) or (b).
(A) A plasmid comprising the nucleotide sequence set forth in SEQ ID NO: 1.
(B) A plasmid comprising a base sequence described in SEQ ID NO: 1, wherein one or several bases other than the replication essential region are deleted, added, inserted or substituted.
A shuttle constructed from the plasmid according to any one of claims 1 to 5 or a part thereof and a plasmid or a part thereof capable of autonomous replication in E. coli and capable of autonomous replication in bacteria of the genus Rhodococcus and in E. coli. vector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004235297A JP4570075B2 (en) | 2004-08-12 | 2004-08-12 | Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004235297A JP4570075B2 (en) | 2004-08-12 | 2004-08-12 | Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006050967A JP2006050967A (en) | 2006-02-23 |
JP4570075B2 true JP4570075B2 (en) | 2010-10-27 |
Family
ID=36028830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004235297A Expired - Fee Related JP4570075B2 (en) | 2004-08-12 | 2004-08-12 | Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4570075B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564589A (en) * | 1991-03-04 | 1993-03-19 | Teruhiko Beppu | Composite plasmid vector and transformed microorganism |
JP2003009863A (en) * | 2001-07-05 | 2003-01-14 | Mitsubishi Rayon Co Ltd | Dna fragment containing gene having function regarding autonomous replication of plasmid |
JP2004159587A (en) * | 2002-11-14 | 2004-06-10 | Mitsubishi Rayon Co Ltd | Recombinant of rhodococcus bacterium and method for producing optically active body by using the same |
-
2004
- 2004-08-12 JP JP2004235297A patent/JP4570075B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0564589A (en) * | 1991-03-04 | 1993-03-19 | Teruhiko Beppu | Composite plasmid vector and transformed microorganism |
JP2003009863A (en) * | 2001-07-05 | 2003-01-14 | Mitsubishi Rayon Co Ltd | Dna fragment containing gene having function regarding autonomous replication of plasmid |
JP2004159587A (en) * | 2002-11-14 | 2004-06-10 | Mitsubishi Rayon Co Ltd | Recombinant of rhodococcus bacterium and method for producing optically active body by using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2006050967A (en) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nakano et al. | Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis | |
Jakobsen et al. | Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus | |
Gilmore et al. | Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan | |
US7083953B2 (en) | Method for the production of p-Hydrozybenzoate in species of Pseudomonas and Agrobacterium | |
Lee et al. | Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector | |
Moriyama et al. | A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination | |
Armbruster et al. | Identification of the lyso-form N-acyl intramolecular transferase in low-GC Firmicutes | |
EP1337645A2 (en) | Rhodococcus cloning and expression vectors | |
KR100358532B1 (en) | Adjusting and controlling factor for expression of nitrile solution deenzyme and gene thereof | |
US20110281362A1 (en) | Electrotransformation of Gram-Positive, Anaerobic, Thermophilic Bacteria | |
EP0373181A1 (en) | Novel enzyme. | |
JP5641297B2 (en) | Constitutive promoter | |
JP4570075B2 (en) | Plasmid derived from Rhodococcus bacterium and derivatives thereof, and E. coli-Rhodococcus bacterium shuttle vector | |
Vargas et al. | Genetic Organization of the Mobilization Region of the Plasm id pHE1 from Halomonas elongata | |
Fernandez et al. | Reverse-Engineered High-Yield Lasso Peptide Production in an Alternative Host | |
US5830693A (en) | Gene encoding a regulatory factor involved in activating expression of the nitrilase gene promoter | |
JP4904444B2 (en) | Shuttle vector | |
JP4903004B2 (en) | Methods for transforming bacteria belonging to the genus Rhodococcus | |
JP2003235565A (en) | Shuttle vector for lactobacillus | |
Fjellbirkeland et al. | Molecular analysis of an outer membrane protein, MopB, of Methylococcus capsulatus (Bath) and structural comparisons with proteins of the OmpA family | |
EP1411121B1 (en) | Dna fragments containing gene having function relating to autonomous proliferation of plasmid | |
Vázquez-Cruz et al. | Mechanism of decay of the cry1Aa mRNA in Bacillus subtilis | |
Sun | A LysR-family transcriptional regulator is involved in the selenium-dependent transcriptional regpression of selenium-free hydrogenase gene groups in Methanococcus voltae | |
JP6171406B2 (en) | DNA modifying enzyme and gene thereof | |
WO2008136451A1 (en) | Sphingomyelinase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100506 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100805 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |